
The growing availability of big data in healthcare and pub-
lic health opens possibilities for infectious disease control 
in local settings. We prospectively evaluated a method for 
integrated local detection and prediction (nowcasting) of 
influenza epidemics over 5 years, using the total popula-
tion in Östergötland County, Sweden. We used routine 
health information system data on influenza-diagnosis 
cases and syndromic telenursing data for July 2009–June 
2014 to evaluate epidemic detection, peak-timing pre-
diction, and peak-intensity prediction. Detection perfor-
mance was satisfactory throughout the period, except for 
the 2011–12 influenza A(H3N2) season, which followed a 
season with influenza B and pandemic influenza A(H1N1)
pdm09 virus activity. Peak-timing prediction performance 
was satisfactory for the 4 influenza seasons but not the 
pandemic. Peak-intensity levels were correctly catego-
rized for the pandemic and 2 of 4 influenza seasons. We 
recommend using versions of this method modified with 
regard to local use context for further evaluations using 
standard methods. 

Although the seasonal variations in influenza incidence 
among nations and global regions are well described 

(1), the duration and intensity of influenza epidemics in 
local communities have been less well monitored and 
understood. The rapidly growing availability of big data 
from diagnostic and prediagnostic (syndromic) sources 
in healthcare and public health settings opens new possi-
bilities for increasing the granularity in infectious disease 
control (2,3). However, development of outbreak models 
and efficient use of the information produced by prediction 
models in public health response decision-making remain 
challenging. This observation was recently highlighted  

by the Congress of the United States request that the Gov-
ernment Accountability Office gather information on vali-
dation of emerging infectious disease model predictions 
(https://energycommerce.house.gov/wp-content/uploads/ 
2017/11/20171109GAO.pdf).

We previously reported the design of a nowcasting 
method (detection of influenza epidemics and short-term 
predictions) for local-level application in the northwest-
ern region of the world (4). In other fields, such as me-
teorology, nowcasting methods represent standard tools for 
warning the public against dangerous high-impact events 
(5). The rationale for developing this novel method was to 
inform the planning of local responses and adjustments of 
healthcare capacities. Many such adjustments are planned 
and performed locally, at county and municipality levels. 
In Sweden, for instance, the hospital bed capacity is ha-
bitually overextended; on average, 103 patients occupy 100 
regular hospital bed units (6). It is therefore important that 
an influenza epidemic is noticed early at the local level to 
make time for implementation of adjustments (e.g., free-
ing hospital beds by removing from the waiting list those 
patients scheduled for elective interventions).

 We performed a prospective 5-year evaluation of local 
influenza nowcasting by using routine health information 
system data. The evaluation period included 1 pandemic 
(2009) and 4 winter influenza seasons (Figure). The now-
casting method is based on mathematical modeling of epi-
demic curves generated from historic local data (4). Now-
casting comprises 3 functions: detection of the local start of 
the epidemic, prediction of peak timing, and prediction of 
peak intensity.

Methods
We used an open cohort design based on the total popula-
tion (n = 445,000) in Östergötland County, Sweden. We 
used prospective data from July 1, 2009, through June 30, 
2014, from 2 sources in the countywide health informa-
tion system: clinical influenza-diagnosis cases recorded 
by physicians and syndromic chief complaint data from a 
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telenursing service (4). The influenza-diagnosis case data 
were used for detection of the local start of the epidemic 
and prediction of its peak intensity; the syndromic data 
were used for prediction of the peak timing. Timeliness 
was used as a performance metric for detection of the lo-
cal start of the epidemic and the peak-timing prediction; 
the correct identification of intensity category on a 5-grade 
scale was used for peak-intensity prediction. The study de-
sign was approved by the Regional Research Ethics Board 
in Linköping (no. 2012/104–31).

Definitions
We identified influenza cases by using codes from the In-
ternational Classification of Diseases, 10th Revision, for 
influenza (J10.0, J10.1, J10.8, J11.0, J11.1, J11.8) (7) as 
recorded in the local electronic health data repository. We 
identified influenza-related telenursing call cases by using 
the chief complaint codes associated with influenza symp-
toms (dyspnea, fever [child and adult], cough [child and 
adult], sore throat, lethargy, syncope, dizziness, and head-
ache [child and adult]).

The intensity level for the start of a local epidemic 
(i.e., the endpoint for the detection function) was set to 
6.3 influenza-diagnosis cases/100,000 population recorded 
during a floating 7-day period in the countywide health 
information system (3). A recent comparison of influenza 
intensity levels in Europe estimated a similar definition 
(6.4 influenza-diagnosis cases/wk/100,000 population) for 
the 2008–09 winter influenza season in Sweden (8). Peak 
timing was defined as the date when the highest number of 
influenza-diagnosis cases were documented in the county-
wide electronic patient record. Peak intensity was defined 
as the number of influenza-diagnosis cases that had been 
documented on that date.

The detection threshold was adjusted to situations 
when extended simmering of influenza-related activity 
appears before an epidemic. Such simmering was associ-
ated with exceptionally mild winter influenza seasons and 
pandemics. Preepidemic simmering before winter influ-
enza seasons was defined as occurring when the period 
between increased influenza incidence above baseline 
and the start of the epidemic is prolonged (4). The upper 
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Figure. Data used for evaluation 
of nowcasting for detection and 
prediction of local influenza 
epidemics, Östergötland County, 
Sweden, January 1, 2008, 
through June 30, 2014.  
A) Unadjusted daily numbers  
of influenza-diagnosis cases  
per 100,000 population.  
B) Unadjusted daily telenursing 
calls because of fever (child and 
adult) per 100,000 population.
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threshold for the baseline was set to 3.2 influenza-diag-
nosis cases/100,000 population during a floating 7-day 
period (i.e., half of the defined start-of-epidemic intensity 
level). If the baseline threshold was surpassed for a period 
3 times longer than the average period before previous 
epidemics without exceeding the start-of-epidemic level 
(i.e., 6.3 influenza-diagnosis cases/100,000 population 
during a floating 7-day period), preepidemic simmering 
was considered to have occurred. Preepidemic simmering 
in association with a pandemic was defined as that ensuing 
from the date of a World Health Organization pandemic 
alert. We determined all definitions and adjustments be-
fore using the method for detection and prediction.

Method Application
Technical details concerning the 3 functions of nowcast-
ing are provided in online Technical Appendix 1 (https://
wwwnc.cdc.gov/EID/article/24/10/17-1940-Techapp1.
pdf). The programming code for the analyses is provided in 
online Technical Appendix 2 (https://wwwnc.cdc.gov/EID/
article/24/10/17-1940-Techapp2.pdf).

To calibrate the detection component of the nowcasting 
method, we retrospectively determined weekday effects on 
recording of influenza-diagnosis cases and a baseline alarm 
threshold by using learning data. These data were collected 
from January 1, 2008, through June 30, 2009, including the 
2 winter influenza seasons 2007–08 and 2008–09. To deter-
mine weekday effects, we used data from the entire learn-
ing data collection period. To determine the initial alert-
ing threshold, we used only data from the winter influenza 
season in 2008–09. The 2007–08 winter influenza season 
could not be used for this purpose because collection of 
learning data had already started. Throughout the study pe-
riod, the calibration data were updated after every winter 
influenza season (i.e., no updates after the 2009 pandemic 
outbreak). The detection algorithm was thus applied to the 
next epidemic by using the revised threshold determined in 
the updated learning dataset. We identified 2 exceptional 
situations: pandemic settings and winter influenza seasons 
that simmered before they started (4). In these situations, 
the alarm threshold is doubled. Accordingly, following the 
World Health Organization pandemic alert (9), the alarm 
threshold was doubled for the 2009 season. Before the 
2010–11 winter influenza season, the threshold was reset 
to the regular level. No updates were performed because 
the set of learning data remained the same (i.e., it contained 
data from the 2008–09 winter influenza season). For the 
2011–12 winter influenza season, we updated the thresh-
old by using learning data from the 2008–09 and 2010–11 
winter influenza seasons. For the 2012–13 winter influenza 
season, we updated the threshold by using learning data 
from the 2008–09, 2010–11, and 2011–12 winter influenza 
seasons. For the 2013–14 winter influenza season, we again 

updated the alerting threshold by using learning data from 
the previous winter influenza seasons (2008–09, 2010–11, 
2011–12, and 2012–13). However, because this winter in-
fluenza season simmered before it started, the threshold 
was doubled before the detection method was applied. The 
weekday effects were assumed to be relatively constant 
over time in the local detection analyses and therefore were 
not updated after every winter influenza season.

We also used the set of learning data from the win-
ter influenza seasons in 2007–08 and 2008–09 to initially 
calibrate the first component of the local prediction mod-
ule. The dataset was used to decide the grouping of chief 
complaints with the largest correlation strength and longest 
lead time between influenza-diagnosis data and telenursing 
data (10,11). The best performing telenursing chief com-
plaint was fever (child and adult), and the most favorable 
lead time was 14 days. When the peak timing had been 
determined, the second component of the local prediction 
module was applied to influenza-diagnosis data from the 
corresponding epidemics to find the peak intensity on the 
predicted peak day (4). Regarding weekday effects on lo-
cal prediction, the same calculation was applied and the 
same grouping of chief complaints and lead time were used 
throughout the study.

Metrics and Interpretations
For trustworthiness of the nowcasting method in local 
healthcare planning, we set the maximum acceptable 
timeliness error for detection and peak timing predic-
tions to 1.5 weeks. Method performance was defined to 
be excellent if the absolute value of the timeliness error 
was <3 days, good if it was 4–7 days, acceptable if it was 
8–11 days, and poor if it was >12 days. For peak intensity 
predictions, we used the epidemic threshold and intensity 
level categories (nonepidemic, low, medium, high, and 
very high) identified for Sweden in a study involving 28 
European countries (8) (Table 1). If the predicted peak 
intensity fell into the same category as the actual peak 
intensity, the prediction was considered successful; other-
wise, it was considered unsuccessful.

Results

Local Detection
The detection component of the local nowcasting method 
showed good performance during the 2009 pandemic of 
influenza A(H1N1)pdm09 (pH1N1) virus (Table 2), alert-
ing for the local influenza epidemic 5 days after it actually 
started. For the 2010–11 winter influenza season with influ-
enza B and pH1N1 viruses circulating, the local detection 
performance was also good; the alarm was raised 5 days 
after the start of the local epidemic. During the 2011–12 
winter influenza season, with influenza A(H3N2) virus  
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activity only, detection performance was poor. During that 
season, the alarm was raised 15 days before the actual local 
epidemic started. During the 2012–13 and 2013–14 win-
ter influenza seasons, with influenza A(H3N2), influenza 
B, and pH1N1 viruses circulating, the local detection per-
formance was excellent; alarms were raised 3 days before 
the 2012–13 epidemic started and 3 days after the 2013–14 
epidemic started.

Local Prediction
For the 2009 influenza pandemic, performance of the lo-
cal peak-timing prediction was poor, but the peak-inten-
sity level was correctly categorized (medium intensity 
epidemic) (Table 3). For the 2010–11 winter influenza 
season, with influenza B and pH1N1 viruses circulating, 
the local peak-timing prediction was excellent and the 
peak intensity was successfully predicted to the correct 
category (medium intensity). For the 2011–12 winter in-
fluenza seasons with influenza A(H3N2) virus circulating 
and the 2012–13 winter season with influenza A(H3N2), 
influenza B, and pH1N1 viruses circulating, the local 
peak-timing predictions were good. The local peak-inten-
sity predictions were successful for the 2012–13 winter 
influenza season, correctly categorizing it to a very high 
intensity level and unsuccessful for the 2011–12 season, 
categorizing it as a medium intensity epidemic when it 
actually developed into a very high-intensity epidemic. 
For the 2013–14 winter influenza season, with influenza 
B and pH1N1 viruses circulating and a simmering start, 
the local peak-timing prediction was acceptable, but the 
local peak intensity was wrongly predicted to be at the 
nonepidemic level when the winter influenza season actu-
ally reached a medium intensity level.

Discussion
In this prospective 5-year evaluation of a method for lo-
cal nowcasting of influenza epidemics that used routine 
health information system data, we identified aspects that 
were satisfactory and identified areas where improvements 
are needed. The detection function displayed satisfactory 
performance throughout the evaluation period, except for 
the 2011–12 winter influenza season, in which influenza 
A(H3N2) virus circulated after a season with influenza B 
and pH1N1 virus activity. Peak-timing prediction perfor-
mance was satisfactory for the 4 winter influenza seasons 
but not for the 2009 pandemic. In addition, the method 
categorized the local peak-intensity levels correctly for the 
2009 pandemic and for 2 of the winter influenza seasons, 
but it was unsuccessful at forecasting the very high peak 
intensity of the 2011–12 season and the medium peak in-
tensity of the 2013–14 season, which was preceded by a 
simmering phase.

The results indicate that securing the availability of a 
new data source is only the first step toward using the data 
stream in routine surveillance. The syndromic data source 
used for the big data stream in this study was subjected to 
rigorous restructuring and maintenance. Nonetheless, not 
all parameters associated with the syndromic data stream 
were regularly updated. For the peak-timing predictions 
made by using telenursing data, we assumed that increases 
in telenursing activity precede influenza diagnoses by 14 
days. Although this assumption is grounded (10,11), the 
interval may change over time and thereby influence in-
fluenza predictions. Using the constant interval estimate, 
we estimated the influenza diagnosis peaks for the 2011–
12 and 2012–13 winter influenza seasons 1 week before 
and 1 week after the actual influenza-diagnosis peaks. In 
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Table 1. Epidemic intensity categories used to interpret performance measurements in evaluation of nowcasting for detection and 
prediction of local influenza epidemics, Sweden, 2009–2014* 

Intensity level 
Threshold, cases/d/100,000 population 

2008–09 2009 pandemic 2010–11 2011–12 2012–13 2013–14 
Nonepidemic  <0.9 <0.9 <0.9 <1.0 <1.2 <1.2 
Low  0.9 0.9 0.9 1.0 1.2 1.2 
Medium  2.4 2.5 2.5 2.5 2.8 2.9 
High  5.5 5.4 5.4 5.2 5.6 5.5 
Very high  7.9 7.5 7.5 7.1 7.7 7.4 
*Based on (8). 

 
 

 
Table 2. Performance of the detection algorithm displayed with alert thresholds updated by using data from previous winter influenza 
seasons in evaluation of nowcasting for detection and prediction of local influenza epidemics, Sweden, 2009–2014* 

Influenza virus activity 
Updated threshold, 

cases/d/100,000 population Timeliness† Interpretation 
2009 pH1N1‡ 0.424 5 Good 
2010–11 B and pH1N1 0.212 5 Good 
2011–12 A(H3N2) 0.207 15 Poor 
2012–13 A(H3N2), B, and pH1N1 0.242 3 Excellent 
2013–14 A(H3N2), B, and pH1N1‡ 0.481 3 Excellent 
*pH1N1, pandemic influenza A(H1N1)pdm09 virus. 
†Positive value means that the algorithm issued an alarm before the local epidemic had started; negative value means that the alarm was raised after the 
start of the epidemic. 
‡The threshold was doubled because of a pandemic alert or observation of a period of simmering influenza activity. 
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other words, the basic prediction method may have been 
more accurate at predicting the peak timing than the results 
of this study show. In the setting of our study, the perfor-
mance was most likely decreased by the assumption that 
telenursing precedes influenza diagnosis by 14 days is ap-
plicable to all situations. Althouse et al. reported that meth-
ods underpinning the use of big data sources (e.g., search 
query logs) need regular upkeep to maintain their accuracy 
(12). In future versions of nowcasting methods, regular 
updates and syndromic sources that are more stable than 
telenursing data (regarding time lag to influenza diagnosis 
data) may become available and can be used to improve the 
peak-timing predictions.

Influenza forecasting is methodologically challenging 
(13,14), and only a few prospective evaluations have trans-
parently reported algorithms and study designs. In the first 
Centers for Disease Control and Prevention (CDC) chal-
lenge, a prospective study of state-of-the-art methods in 
which 4 aspects of influenza epidemics (start week, peak 
week, peak percentage, and duration) were forecasted by 
using routine data (15), none of the evaluated methods 
showed satisfactory performance for all aspects. Similarly, 
in the second CDC challenge, in which 3 aspects of influ-
enza epidemics (start week, peak week, and peak intensity) 
were forecasted by using 7 methods, none of the evaluated 
methods displayed satisfactory performance (16). These 
challenge studies have substantially helped to widen the 
understanding of the difficulties of forecasting different as-
pects of influenza epidemics. In our study, the detection 
and peak-intensity prediction functions of the local now-
casting method underperformed during the 2011–12 winter 
influenza season. One reason for the observed underperfor-
mance may be that the data from preceding seasons used to 
generate local epidemic curves were insufficient for mod-
eling the between-seasons drift in the immunity status of 
the population in relation to the circulating influenza strain. 
In other words, the present parameters used to compute  

epidemic curves were deficient when large drifts in popula-
tion immunity with corresponding changes in virus dissem-
ination patterns occurred. For instance, the epidemic phase 
of the influenza A(H3N2) season in 2011–12 may not have 
started with virus spread among the young persons in the 
community as it had during previous seasons (17,18). It has 
been suggested that including virologic information (i.e., 
influenza virus type and subtype) as model parameters may 
improve the predictive accuracy of mathematical models 
(19). We contend also that, for local influenza detection and 
prediction, historical accounts of the circulating influenza 
virus types should be considered for inclusion in the sta-
tistical models and suggest adding information about the 
population age structure. However, such model extensions 
must also be paralleled by securing a continuous supply 
of the corresponding data in the local settings where the 
models are to be used.

This study has strengths and weaknesses that need to be 
considered when interpreting the results. The main strength 
of the study is that it prospectively evaluates an integrated 
influenza nowcasting method in a local community. On the 
basis of experiences from previous studies (4,15,16,20), we 
considered timeliness to be the most valid general evalu-
ation metric for our purposes. To be able to accurately 
support adjustments of local healthcare capacity, we used 
daily data for the evaluations. In the CDC challenge studies 
(15,16), forecasts of the start and peak timing of an epi-
demic were based on weekly data and considered accurate 
if they occurred within 1 week of the actual timing of each 
component. Therefore, we consider the limits used for 
evaluating detection and the peak-timing predictions in this 
study to be at least as strict as those in the CDC challenge. 
Regarding the prediction of peak intensity, we considered 
a forecast to be accurate if it predicted the peak intensity to 
be the correct peak-intensity category as defined by Vega 
et al. (8), who calculated the thresholds for each of these 
categories for every winter influenza season by applying  
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Table 3. Performance of peak-timing and peak-intensity predictions from evaluation of nowcasting for detection and prediction of local 
influenza epidemics, Sweden, 2009–2014* 

Influenza virus active 

Time-of-peak predictions† 

 

Peak intensity predictions 
Date when 
prediction 

made 
Time to 
peak, d 

Prediction 
error Interpretation 

Category (cases/d/100,000 
population) 

Interpretation Predicted Factual 
2009 pH1N1 2009 Sep 27  8 28 Poor  Medium (3.3) Medium 

(2.9) 
Successful 

2010–11 B and pH1N1 2011 Feb 11  10 0 Excellent  Medium (4.5) Medium 
(4.9) 

Successful 

2011–12 A(H3N2) 2012 Feb 25  9 7 Good  Medium (4.5) Very high 
(12.4) 

Unsuccessful 

2012–13 A(H3N2), B, and pH1N1 2013 Feb 22  10 7 Good  Very high 
(10.1) 

Very high 
(11.7) 

Successful 

2013–14 A(H3N2), B, and pH1N1 2014 Feb 17  8 8 Acceptable  Nonepidemic 
(1.0) 

Medium 
(3.4) 

Unsuccessful 

*pH1N1, pandemic influenza A(H1N1)pdm09 virus. 
†Positive value means that the peak was predicted to be reached before the actual peak occurred; negative value means that the peak was predicted to 
be reached after the actual peak occurred. 
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the moving epidemic method (21) on 5–10 previously oc-
curring seasons. Hence, we consider these categories to 
be reliable. A longer prospective evaluation period would 
have increased the possibility of drawing valid conclusions 
concerning the outcome of the evaluation, and it would be 
preferable to have corresponding local data from other cit-
ies or regions (22). Evaluating our nowcasting method for 
epidemics from several other regions would enable conclu-
sions to be drawn about the generalizability of the method.

We contend that methods for local nowcasting of in-
fluenza epidemics based on routine health information sys-
tem data have potential for general dissemination and use. 
Future versions of the nowcasting model will be gradually 
extended with information on population age distribution 
and on current and previously circulating influenza types. 
Such extensions need to be paralleled by securing a routine 
supply of data to the added parameters in local health in-
formation systems. We recommend using versions of the 
nowcasting method modified with regard to their local use 
context for further evaluations with standard measures.
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