Privacy Analysis for Data Sharing in *nix Systems

Aameek Singh

Ling Liu

Mustaque Ahamad

College of Computing, Georgia Institute of Technology
{aameek, lingliu, mustag}@cc.gatech.edu

Abstract

Linux and its various flavors (together called *nix) are
growing in mainstream popularity and many enterprise
infrastructures now are based on *nix platforms. An
important component of these systems is the ingrained
multi-user support that lets users share data with each
other. In this paper, we analyze *nix systems and iden-
tify an urgent need for better privacy support in their
data sharing mechanisms. In one of our studies it was
possible to access over 84 GB of private data at one or-
ganization of 836 users, including over 300,000 emails
and 579 passwords to financial and other private services
websites. The most surprising aspect was the extremely
low level of sophistication of the attack. The attack uses
no technical vulnerabilities, rather inadequacies of *nix
access control combined with user/application’s privacy-
indifferent behavior.

1 Introduction

With increasing popularity of open source operating sys-
tems like Linux, many enterprises are opting to set up
their intranets using such *nix systems. The market re-
search firm IDC expects linux server sales to hit US
$9.1 billion by 2008 and that linux servers will com-
prise 25.7% of total server units shipped in 2008. Con-
sequently, many big companies like IBM, Dell actively
support the open source *nix movement.

One of the important features of *nix systems is their
ingrained multi-user support. These operating systems
are designed for simultaneous multiple users and pro-
vide seamless mechanisms to share data between differ-
ent users. For example, user alice can set up appropriate
access “permissions” on the data she wants to share with
her group students by executing a simple chmod com-
mand [7]. These access permissions are dictated by the
*nix access control model.

In this paper, we take a critical look at the *nix access
control model. Our objective is to analyze the privacy

support in its data sharing mechanisms. For example,
how does the system assist a user to share data only with
desired users and prevent private information from being
leaked to unauthorized users? In order to successfully do
this, we also need to look at the convenience of using
*nix data sharing mechanisms in typical situations. This
is due to the fact that lack of convenience typically leads
to users compromising (intentionally or mistakenly) their
security requirements to conveniently fit the specifica-
tions of the underlying access control model.

Please note that we use the seemingly oxymoronic
phrase “private sharing” to indicate the desire of shar-
ing data only with a select set of authorized users.

As part of our analysis, we looked at how users use
the access control for their data sharing needs in prac-
tice. We conducted experiments at two *nix installations
of a few hundred computer-literate users each. Surpris-
ingly, we found that large chunks of private data was ac-
cessible to unauthorized users. In many cases, the user’s
definition of an “authorized user” does not match the un-
derlying system’s definition, that leads to such a breach.
This observation is best exemplified in the following sce-
nario. Many users attempt to privately share data by us-
ing execute-only permissions for their home directories.
This prevents other users from listing the contents of the
directory, but any user who knows the name of a subdi-
rectory can cd into it. The data owner authorizes some
users by explicitly giving them the names of the sub-
directory through out-of-band mechanisms like personal
communication or email. However, this authorization is
not the same as the system’s authorization. From the un-
derlying system perspective, it is assumed that any user
who issues the command with the right directory name
is authorized. Thus, users who simply guess the subdi-
rectory name can also access the data. Along with that,
setting execute-only permissions on the home directory
to share one subdirectory, puts all other subdirectories
(sibling to the shared directory) also at risk, which if not
protected appropriately, can be accessed.

USENIX Association

Annual Tech *06: 2006 USENIX Annual Technical Conference

249

We were able to effectively exploit these shortcom-
ings in our studies. At one organization of 836 users,
over 84 GB of data was accessible, including more than
300,000 emails and 579 passwords to financial websites
like bankofamerica.com and other private websites like
medical insurance records. Importantly, the attack does
not always need to guess directory names, but can find
actual names from unprotected command history files
(-history, .bash_history) or standard application directory
names (.mozilla). The reason for this surprisingly large
privacy breach without exploiting technical vulnerabili-
ties like buffer overflows or gaining elevated privileges,
is the combination of lack of system support and user
or even applications’ privacy-indifferent behavior either
mistakenly or for lack of anything better. Also, as we
discuss later in Section-2, even for an extremely privacy-
conscious user with all available tools, it is tough to pro-
tect private data in many situations.

The attack described in this paper is a form of an in-
sider attack, in which the attacker is inside the organi-
zation. The attacker could be a disgruntled employee,
contractor or simply a curious employee trying to access
the salaries chart in the boss’s home directory. According
to a recent study by the US Secret Service and CERT [6],
such attacks are on a rise with 29% of the surveyed com-
panies reporting! having experienced an insider attack in
the past year [4]. Also, in complete congruence to our
attack, the report finds that:

“Most incidents were not technically
sophisticated or complex ”

The rest of the paper is organized as follows. In
Section-2, we discuss multiple *nix issues, including us-
ability, that lead to privacy breaches. In Section-3, we
present our case studies at two *nix installations which
demonstrate these breaches. We briefly describe possi-
ble enhancements to these breaches in Section-4. We
conclude in Section-5.

2 Data Privacy: Vulnerability Analysis

In this section, we discuss various privacy breaches that
occur in *nix systems. The discussion below primar-
ily explores the popular {owner, group, others} *nix
paradigm. The advanced mechanisms like ACLs [5] en-
hance privacy in only a few cases and we will demon-
strate a clear need of a new, more complete solution.

2.1 Selective Data Sharing

The first privacy breach occurs due to the need to “selec-
tively” share data. The selectivity can be of two kinds:

e Data Selectivity: Data selectivity is when a user
wants to share only a few (say one) of the subdi-
rectories in the home directory. So, an authorized
user is allowed to access only the shared subdirec-
tory, but not any of the sibling directories. In order
to do this correctly, the owner needs to follow two
steps - (a) set appropriate permissions to the shared
subdirectory (at least execute permissions on the en-
tire path to the subdirectory and the sharing permis-
sions on the subdirectory), and (b) remove permis-
sions from the sibling subdirectories. The second
step is unintuitive, since the user needs to act on ob-
jects that are not the focus of the transaction. Also,
any new file being created needs to be protected.

o User Selectivity: In many situations, users need to
share data with an adhoc set of users that do not be-
long to a single user group or are only a subset of a
user group, and not the entire others set. In this sit-
uation, the permissions for group or others are not
sufficient. Creating a new group requires adminis-
trative assistance which is not always feasible.

In order to do selective data sharing (a common exam-
ple is to allow access to public_html), currently own-
ers mostly use execute-only permissions on the home di-
rectories. The perception is that since users can not list
the contents of the directory, they cannot go any further
than traversing into the home directory unless they know
the exact name of the subdirectory. Now, the owner can
authorize desired users by giving them the names of the
appropriate subdirectories. Those authorized users can
traverse into the home directory and then use the subdi-
rectory name to cd into it (without having to list the con-
tents of the home directory). From data selectivity per-
spective, it is assumed that they cannot access the rest of
the contents and from user selectivity perspective, unau-
thorized users cannot access any contents.

However, the underlying system cannot distinguish
between such authorized or unauthorized users. Any user
who can guess the subdirectory name can actually access
the data. For an attacker inside the organization, this is
not a herculean task. For example, for a computer sci-
ence graduate school, it is highly likely that users will
have directories named research, classes or thesis. An
easy way of creating such a list of names is by collecting
names from users that actually have read permissions on
the home directories. Within the context of a single or-
ganization, or in general human psychology, it is likely
that many users have similar directory names.

Secondly, many times directory names do not need to
be guessed at all. The names can be extracted from his-
tory files (like .history or .bash_history), that contain the
commands last executed by the owner, like cd, which
will include real directory names. In fact, in our experi-
ments we found around 20-30% of all users had readable

250

Annual Tech *06: 2006 USENIX Annual Technical Conference

USENIX Association

history files and around 40% of the total leaked data was
obtained from the directory names extracted from these
history files.

Thirdly, it is not always user created directories that
leak information. Many applications use standard direc-
tory names and fail to protect critical information. For
example, the famous Mozilla web browser [2] stores the
profile directory in ~/ .mozil1la and had that directory
world-readable [8] in many cases, till as late as 2003.
Many *nix installations with the browser installed be-
fore that have this vulnerability and we were able to ob-
tain around 575 password to financial and private web-
sites (because users saved passwords without encrypting
them). In addition, their browser caches, bookmarks,
cookies and histories were also available. The browser
Opera [3] also has a similar vulnerability, though to a
lesser extent. While it can be argued that it is the respon-
sibility of application developers to ensure that this does
not happen, we believe that the underlying system can
assist users and applications in a more proactive manner.

The POSIX ACLs [5], if used help in achieving only
user selectivity. They do not address the data selectivity
requirements or prevent leaking of application data.

2.2 Metadata Privacy

So far, we have only talked about the privacy breach for
file data. However, there are many situations in which
users are interested in protecting even the metadata of
the files. The metadata contains information like own-
ership, access time, updation time, creation time and file
sizes. There are scenarios where a user might obtain con-
fidential information by just looking at the metadata. For
example, an employee might be interested in knowing
how big is his annual review letter or did the boss update
it after the argument he had with her?

The *nix access control does not provide good meta-
data privacy. Even if users only have execute permissions
on a directory, as long as they can guess the name of the
contained file, its metadata can be accessed even if the
file itself does not have any read, write or execute per-
missions on it. Thus, if a user has to share even a single
file/directory within the home directory (thus, requiring
atleast execute permissions), all other files contained in
the home directory lose their metadata privacy if their
names are known or can be guessed.

2.3 Data Sharing Convenience

User convenience is an important feature of an access
control implementation. If users find it tough to im-
plement their security requirements, they are likely to
compromise them to easily fit the underlying access con-
trol model. This can be seen as one of the reasons why

encryption file systems are not in widespread use, even
though they guarantee maximum security.

From our analysis of the *nix access control, along
with some of the issues discussed earlier, we found the
following two data sharing scenarios in which there is no
convenient support for privacy.

e Sharing a Deep-Rooted Directory: For a user to
share a directory that is multiple levels in depth
from the home directory, there needs to be at least
execute permissions on all directories in the path.
This in itself (a) leaks the path information, (b) puts
sibling directories at risk and (c) leaks metadata in-
formation for sibling directories. In order to pre-
vent this, since most operating systems do not al-
low hard links to directories anymore, a user would
have to create a new copy of the data. And since
users are more careless with permissions for deep
rooted directories (they protect a higher level di-
rectory and that automatically protects children di-
rectories), a copy of such a directory could have
privacy-compromising permissions.

o Representation of Shared Data: In many circum-
stances the way one user represents data might not
be the most suitable way for another user. For ex-
ample, while an employee might keep his resume in
a directory named job-search, it is clearly not
the most apt name to share with his boss. The em-
ployee might want her to see the directory simply as
CV. Changing the name to meet the needs of other
users is not an ideal solution. This again shows the
lack of adequate system support for private and con-
venient data sharing.

It is important to recognize that even an extremely
privacy-conscious user can not protect data at all times.
Exhaustive efforts to maintain correct permissions for all
user and application created data will still be insuffi-
cient to protect metadata or allow private sharing of deep
rooted directories with user-specific representation.

3 Case Studies

As part of our study, we conducted experiments at two
geographically and organizationally distinct *nix instal-
lations. Users at both installations (CS graduate schools)
are highly computer literate and can be expected to be
familiar with all available access control tools. For our
analysis, we consider the following data to be private:

e All user emails are considered private.

e All data under an execute-only home directory is
considered private.

¢ Browser profile data (saved passwords, caches,
browsing history, cookies) is considered private.

USENIX Association

Annual Tech *06: 2006 USENIX Annual Technical Conference

251

The second assumption above merits further justification.
It can be argued that not every subdirectory under an
execute-only home directory is meant to be private (for
example, a directory named public). However, the se-
mantics of the execute-only permission set dictate that
any user other than the owner cannot list the contents
of the directory and since the owner never broadcasts
the names of the shared directories, an unauthorized user
should not be able to access that data. And since we do
not include in our measurements any obviously-private
data from home directories of users with read permis-
sions (for example, world-readable directories named
personal, or private), we believe the two effects
to approximately cancel out.

3.1 Modus Operandi

Next, we describe the design of our attack? that scans
user directories and measures the amount of private data
accessible to unauthorized users.

The attack works in multiple phases. The first step is
to obtain directory name lists which can be tried against
users with execute-only home directories. Three strate-
gies are used to obtain these lists:

e Static Lists: These are manually entered names of
directories likely to be found in the context of the
organizations - CS graduate schools. For example,
“research”, “papers”, “private” and their variants in
case (“Research’) or abbreviations (“pvt”).

e Global Lists: These lists are generated by obtaining
the directory names from home directories of users
that have read permissions.

e History Lists: These are user specific lists gener-
ated by parsing users’ history files, if readable. We
used a simple mechanism, parsing only cd com-
mands with directory names. It is possible to do
more by parsing text editor commands (like vim)
or copy/move commands.

In the next step the tool starts a multi-threaded scanning
operation that attempts to scan each user directory. For
users with no permissions, no scanning is possible.
For users with read permissions, as discussed earlier,
since there is no precise way of guessing which data
would be private, we only measure email and browser
profile statistics. Finally, for users with execute-only
permissions, along with email and browser statistics, we
also attempt to extract data using the directory name lists
prepared in the first step.

Evaluating Email Statistics

This is done by attempting to read data from standard
mailbox names - “mail”, “Mail”’, “mbox” in the home
directory and the mail inboxes in /var/mail/userName.

A grep [7] like tool is used to measure (a) number
of readable emails, (b) number of times the word
“password” or its variants appeared in the emails.

Evaluating Execute-only Data Statistics

For users with execute-only permissions on the home
directory, the scanner uses the combination of static,
global and the user’s history lists to access possible
subdirectories. Double counting is avoided by ensuring
that a name appearing in more than one list is accounted
for only once and by not traversing any symbolic links.
While scanning the files, counts are obtained for the
total number of files and the total size of the data that
could be accessed.

Evaluating Browser Statistics

The mozilla browser [2] stores user profiles in the
~/.mozilla directory. This directory used to be
world-readable till as late as 2003 when the bug was cor-
rected [8]. Within that profile directory, there are sub-
directories for each profile that has been used by that
user. Within the profile directory, there is another direc-
tory with a randomized name (for security against remote
attacks) ending in “.slf” [1]. Within this directory, the
following files exist and (with this bug) were readable:

e Password Database: A file with the name of type
“12345678.s” containing user logins and passwords
saved by mozilla. Since many users do not en-
crypt their passwords, mozilla stores the passwords
in a base-64 encoding (indicated by the line start-
ing with a ~ in the passwords file), which can po-
tentially be trivially decoded to get plaintext pass-
words.

e Cookies: The cookies.txt file contains all
browser cookies. Many websites including popu-
lar email services like Gmail, Hotmail allow users
to automatically login by keeping such cookies. Hi-
jacking this cookie can allow a malicious user to
login into these accounts. For many other cookies
related attacks, see [9].

¢ Cache: This is a subdirectory that contains the
cached web pages visited by the user.

¢ History Database: Web surfing history, which
many sophisticated viruses and spyware invest re-
sources to collect, are also readable.

3.2 Results

The complete characteristics of the two organizations are
shown in Table-1. At both the organizations, a significant
number of users (68% and 77%) used execute-only per-
missions on their home directories.

252

Annual Tech *06: 2006 USENIX Annual Technical Conference

USENIX Association

Org. | #Users | #ReadX | # NoPerms | # X-only Org. | #History Hits | # Files | Data Size
Org-1 836 198 54 573 Org-1 253 561254 35GB
Org-2 768 136 39 593 Org-2 237 155826 14 GB

Table 1: Case Study Organization Characteristics. #
ReadX is the number of users with read and execute per-
missions to their home directories, # NoPerms are users
with no permissions and # X-only are the users with only
execute permissions

Org. | #Hit Users | # Hits | #Files | Data Size
Org-1 462 2409 | 983086 | 82 GB
Org-2 380 911 | 364932 | 25GB

Table 2: Data extracted from X-only home directory per-
missions. # Hit Users is the number of users that leaked
private information. # Hits is the total number of direc-
tory name hits against all X-only users. # Files is the
number of leaked files and Data-Size is the total size of
those files

Table-2 lists the amount of data extracted from execute-
only home directories at Org-1 and 2.
As can be seen, a large fraction of users indeed leaked
private information - 55% and 49% of total users respec-
tively. Recall that we do not extract any data from users
with read permissions on their home directories; so a
more useful number is the fraction of X-only users that
revealed private information. That number is 80% and
64% respectively. Also, on an average, 2127 files and
177 MB of data is leaked in the first organization for each
X-only user and 960 files and 65 MB of data is leaked in
the second organization. A partial reason for the lower
numbers in the second organization could be the fewer
number of users with read permissions, which would
have impacted the global name lists creation. Overall,
we believe this to be a very significant privacy breach.
As mentioned earlier, many times the names of the
subdirectories do not need to be guessed and can be ob-
tained from the history files in the user home directories.
Table-3 lists the success rate of the attack in exploiting
history files. As it shows, around 40% of X-only users
had readable history files which led to 40-50% of total
leaked data in size.

Email Statistics

Table-4 presents the results of the email data extracted
from users in both organizations. Recall that this data is
obtained for both X-only users and the users with read
permissions on their home directories.

As can be seen, a large number of emails are accessible
to unauthorized users (especially at Org-1). Also, the

Table 3: Exploiting History Files. # History Hits is the
number of users with readable history files. # Files is
the number of private files leaked due to directory names
obtained from history files and Data-Size is the size of
the leaked data

Org. | #Folders | # Emails Size # Password
Org-1 2509 315919 | 42GB 6352
Org-2 505 38206 | 120 MB 237

Table 4: Email Statistics. # Folders is the number of
leaked email folders. # Emails is the total number of
leaked emails. Size is the size of leaked data and # Pass-
word is the number of times the word “password” or its
variants appeared in the emails

number of times the word “password” or its variants
appear in these emails is alarming. Even though we
understand that some of these occurrences might not
be accompanied by actual passwords, by personal
experience, distributing passwords via emails is by no
means an uncommon event.

Browser Statistics

The second organization did not have the mozilla vul-
nerability since they had a more recent version of the
browser installed, by which time the bug had been cor-
rected. So the results shown in Table-5 have been ob-
tained only from the first organization. Looking at the
results, the amount of accessible private information is
enormous. Figure-1 contains a sample of the websites
that had their passwords extractable and clearly most
of these websites are extremely sensitive and a privacy
breach of this sort is completely unacceptable.

Note that some obtained passwords were for accounts
in other institutions and a few of them are likely to be
*nix systems. Thus, it is conceivable that this password

Users with accessible .mozilla 311 (54%)
Users with readable password DB 149 (26%)
Passwords Retrievable 579

Users with readable cookies DB 207 (36%)

Cookies Retrievable 19456
Users with accessible caches 233 (40%)

Cached Entries 20907
Users with readable browsing histories | 256 (44%)

URLs in History 130,503

Table 5: Browser Statistics at Org-1

USENIX Association

Annual Tech *06: 2006 USENIX Annual Technical Conference

253

Personal Websites
adultfriendfinder.com
www.hthstudents.com

www.icers911.org

Financial Websites
www.paypal.com
www.ameritrade.com
www.bankofamerica.com

Other Institutions
cvpr.cs.toronto.edu
e8.cvliis.u-tokyo.ac.jp

Email Accounts
mail.lycos.com
my.screenname.aol.com
webmail.bellsouth.net

systems.cs.colorado.edu

Figure 1: Sample accounts with retrievable passwords

extraction can be used to expand to other *nix instal-
lations and thus be much more severe in scope than a
single installation.

3.3 Attack Severity

It is important to highlight the severity of this attack:

¢ Low Technical Sophistication: The attack is ex-
tremely low-tech; the commands used in a man-
ual attack would be cd, 1s and such. This aspect
makes the threat significantly more dangerous than
most other vulnerabilities.

Low Detection Possibility: In absence of extensive
logging, as typically is the case, this attack has a
very low probability of detection and even if de-
tected by means like modified last access time, the
attacker can not be identified.

No Quick Fix: Unlike most other security vul-
nerabilities, this attack uses a design shortcoming
combined with user/application carelessness and no
patches would correct this problem overnight.

High Success Rate: The attack had a high success
rate at installations where most users are computer
literate. With increasing mainstream penetration of
*nix systems, ordinary users cannot be expected to
fully understand the vulnerabilities. This makes this
attack a very potent threat.

4 Privacy Enhancements

The results presented in the previous section clearly es-
tablish the fact that there needs to be much better privacy
protection in *nix installations. We are currently explor-
ing two enhancement approaches. The first solution is a
Privacy Auditing Tool that monitors the privacy health of
an organization and can alert users/administrators of po-
tential threats. Analogous to the enterprise security ap-
plications that monitor virus and other malicious activ-
ity, the privacy auditing tool periodically monitors user
home directories and identifies potential data exposures.
The second approach is a more proactive approach that

modifies the file system hierarchy by virtualizing it dif-
ferently for different users. Ensuring the most private
user data stays only in the owner’s view, many forms of
inadvertant exposure can be avoided.

5 Conclusions

In this paper, we critically analyzed the *nix access con-
trol model for privacy support in its data sharing mech-
anisms. We identified a number of design inadequa-
cies that, combined with user or application’s privacy-
indifferent behavior, lead to privacy breaches. We tested
two *nix installations of a few hundred users and found
that a massive amount of private data is inadequately pro-
tected including emails and actual passwords to financial
and other sensitive websites. We briefly proposed two
enhancement approaches that can improve data conden-
tiality in *nix systems and we continue to develop these
approaches for our future work.

References

[1] Mozilla Contents http://www.holgermetzger.de/pdl.html.
[2] Mozilla web browser http://www.mozilla.org.
[3] Opera web browser http://www.opera.com.

[4] D. Cappelli and Michelle Keeney. Insider threat: Real
data on a real problem. USSS/CERT Insider Threat Study,
2004.

[5] A. Grunbacher and A. Nuremberg. POSIX Access Con-
trol Lists on Linux. http://www.suse.de/ agruen/acl/linux-
acls/online.

[6] Carnegie Mellon Software Engineering Institute. CERT.
[7] Linux Manual Pages. man command-name.

[8] Mozilla Bug Report. Bug 59557.
https://bugzilla.mozilla.org/show%5Fbug.cgi?id=59557.

[9] Emil Sit and Kevin Fu. Web Cookies: Not Just a Privacy
Risk. Communications of the ACM, 44(9), 2001.

United States Secret Service and CERT Coordination
Center. E-Crime Watch Survey. 2004.

(10]

Notes

Mt is believed that such attacks are usually much under-reported for
lack of concrete evidence or fear of negative publicity [10]

2Due to the sensitive nature of the task (measuring private content)
we took precautions to ensure that our study does not violate user pri-
vacy by anonymizing users, randomizing scan orders and only collect-
ing aggregates

254

Annual Tech *06: 2006 USENIX Annual Technical Conference

USENIX Association

