
- Python - Home
- Python - Overview
- Python - History
- Python - Features
- Python vs C++
- Python - Hello World Program
- Python - Application Areas
- Python - Interpreter
- Python - Environment Setup
- Python - Virtual Environment
- Python - Basic Syntax
- Python - Variables
- Python - Data Types
- Python - Type Casting
- Python - Unicode System
- Python - Literals
- Python - Operators
- Python - Arithmetic Operators
- Python - Comparison Operators
- Python - Assignment Operators
- Python - Logical Operators
- Python - Bitwise Operators
- Python - Membership Operators
- Python - Identity Operators
- Python - Operator Precedence
- Python - Comments
- Python - User Input
- Python - Numbers
- Python - Booleans
- Python - Control Flow
- Python - Decision Making
- Python - If Statement
- Python - If else
- Python - Nested If
- Python - Match-Case Statement
- Python - Loops
- Python - for Loops
- Python - for-else Loops
- Python - While Loops
- Python - break Statement
- Python - continue Statement
- Python - pass Statement
- Python - Nested Loops
- Python Functions & Modules
- Python - Functions
- Python - Default Arguments
- Python - Keyword Arguments
- Python - Keyword-Only Arguments
- Python - Positional Arguments
- Python - Positional-Only Arguments
- Python - Arbitrary Arguments
- Python - Variables Scope
- Python - Function Annotations
- Python - Modules
- Python - Built in Functions
- Python Strings
- Python - Strings
- Python - Slicing Strings
- Python - Modify Strings
- Python - String Concatenation
- Python - String Formatting
- Python - Escape Characters
- Python - String Methods
- Python - String Exercises
- Python Lists
- Python - Lists
- Python - Access List Items
- Python - Change List Items
- Python - Add List Items
- Python - Remove List Items
- Python - Loop Lists
- Python - List Comprehension
- Python - Sort Lists
- Python - Copy Lists
- Python - Join Lists
- Python - List Methods
- Python - List Exercises
- Python Tuples
- Python - Tuples
- Python - Access Tuple Items
- Python - Update Tuples
- Python - Unpack Tuples
- Python - Loop Tuples
- Python - Join Tuples
- Python - Tuple Methods
- Python - Tuple Exercises
- Python Sets
- Python - Sets
- Python - Access Set Items
- Python - Add Set Items
- Python - Remove Set Items
- Python - Loop Sets
- Python - Join Sets
- Python - Copy Sets
- Python - Set Operators
- Python - Set Methods
- Python - Set Exercises
- Python Dictionaries
- Python - Dictionaries
- Python - Access Dictionary Items
- Python - Change Dictionary Items
- Python - Add Dictionary Items
- Python - Remove Dictionary Items
- Python - Dictionary View Objects
- Python - Loop Dictionaries
- Python - Copy Dictionaries
- Python - Nested Dictionaries
- Python - Dictionary Methods
- Python - Dictionary Exercises
- Python Arrays
- Python - Arrays
- Python - Access Array Items
- Python - Add Array Items
- Python - Remove Array Items
- Python - Loop Arrays
- Python - Copy Arrays
- Python - Reverse Arrays
- Python - Sort Arrays
- Python - Join Arrays
- Python - Array Methods
- Python - Array Exercises
- Python File Handling
- Python - File Handling
- Python - Write to File
- Python - Read Files
- Python - Renaming and Deleting Files
- Python - Directories
- Python - File Methods
- Python - OS File/Directory Methods
- Python - OS Path Methods
- Object Oriented Programming
- Python - OOPs Concepts
- Python - Classes & Objects
- Python - Class Attributes
- Python - Class Methods
- Python - Static Methods
- Python - Constructors
- Python - Access Modifiers
- Python - Inheritance
- Python - Polymorphism
- Python - Method Overriding
- Python - Method Overloading
- Python - Dynamic Binding
- Python - Dynamic Typing
- Python - Abstraction
- Python - Encapsulation
- Python - Interfaces
- Python - Packages
- Python - Inner Classes
- Python - Anonymous Class and Objects
- Python - Singleton Class
- Python - Wrapper Classes
- Python - Enums
- Python - Reflection
- Python Errors & Exceptions
- Python - Syntax Errors
- Python - Exceptions
- Python - try-except Block
- Python - try-finally Block
- Python - Raising Exceptions
- Python - Exception Chaining
- Python - Nested try Block
- Python - User-defined Exception
- Python - Logging
- Python - Assertions
- Python - Built-in Exceptions
- Python Multithreading
- Python - Multithreading
- Python - Thread Life Cycle
- Python - Creating a Thread
- Python - Starting a Thread
- Python - Joining Threads
- Python - Naming Thread
- Python - Thread Scheduling
- Python - Thread Pools
- Python - Main Thread
- Python - Thread Priority
- Python - Daemon Threads
- Python - Synchronizing Threads
- Python Synchronization
- Python - Inter-thread Communication
- Python - Thread Deadlock
- Python - Interrupting a Thread
- Python Networking
- Python - Networking
- Python - Socket Programming
- Python - URL Processing
- Python - Generics
- Python Libraries
- NumPy Tutorial
- Pandas Tutorial
- SciPy Tutorial
- Matplotlib Tutorial
- Django Tutorial
- OpenCV Tutorial
- Python Miscellenous
- Python - Date & Time
- Python - Maths
- Python - Iterators
- Python - Generators
- Python - Closures
- Python - Decorators
- Python - Recursion
- Python - Reg Expressions
- Python - PIP
- Python - Database Access
- Python - Weak References
- Python - Serialization
- Python - Templating
- Python - Output Formatting
- Python - Performance Measurement
- Python - Data Compression
- Python - CGI Programming
- Python - XML Processing
- Python - GUI Programming
- Python - Command-Line Arguments
- Python - Docstrings
- Python - JSON
- Python - Sending Email
- Python - Further Extensions
- Python - Tools/Utilities
- Python - GUIs
- Python Advanced Concepts
- Python - Abstract Base Classes
- Python - Custom Exceptions
- Python - Higher Order Functions
- Python - Object Internals
- Python - Memory Management
- Python - Metaclasses
- Python - Metaprogramming with Metaclasses
- Python - Mocking and Stubbing
- Python - Monkey Patching
- Python - Signal Handling
- Python - Type Hints
- Python - Automation Tutorial
- Python - Humanize Package
- Python - Context Managers
- Python - Coroutines
- Python - Descriptors
- Python - Diagnosing and Fixing Memory Leaks
- Python - Immutable Data Structures
- Python Useful Resources
- Python - Questions & Answers
- Python - Interview Questions & Answers
- Python - Online Quiz
- Python - Quick Guide
- Python - Reference
- Python - Cheatsheet
- Python - Projects
- Python - Useful Resources
- Python - Discussion
- Python Compiler
- NumPy Compiler
- Matplotlib Compiler
- SciPy Compiler
Water Jug Problem with Python
The Water Jug Problem is one of the oldest puzzles in computer science and Mathematics. It is worked out using two jugs of different volumes, where you have to measure out a certain target volume of water through a series of steps. This document also offers an algorithm in python which will identify whether the target amount can or cannot be measured as well as the states that will get to the solution.
Question
Given two jugs with capacities jug1_capacity and jug2_capacity, and a target amount target, how can you determine if it is possible to measure exactly target liters of water using the two jugs? Furthermore, if it is possible, what is the sequence of states (steps) from the initial state (0, 0) to a state where one of the jugs contains exactly target liters of water?
Installation
To run the provided Python code, make sure Python 3.x is installed on your system. If it is not installed, download and install it from the official Python website.
Python Code to Solve Water Jug Problem
from collections import deque def water_jug_problem_trace_path(jug1_capacity, jug2_capacity, target): # Queue to keep track of states and the path to reach them queue = deque([((0, 0), [(0, 0)])]) # Set to keep track of visited states visited = set() visited.add((0, 0)) while queue: (jug1, jug2), path = queue.popleft() # Check if we have reached the target amount of water in either jug if jug1 == target or jug2 == target: return path # List of possible actions actions = [ (jug1_capacity, jug2), # Fill jug1 (jug1, jug2_capacity), # Fill jug2 (0, jug2), # Empty jug1 (jug1, 0), # Empty jug2 (min(jug1_capacity, jug1 + jug2), jug2 - (min(jug1_capacity, jug1 + jug2) - jug1)), # Pour jug2 into jug1 (jug1 - (min(jug2_capacity, jug1 + jug2) - jug2), min(jug2_capacity, jug1 + jug2)) # Pour jug1 into jug2 ] for action in actions: if action not in visited: visited.add(action) queue.append((action, path + [action])) return None # Example usage jug1_capacity = 4 jug2_capacity = 3 target = 2 path = water_jug_problem_trace_path(jug1_capacity, jug2_capacity, target) if path: print("Path of states followed:", path) else: print("No solution found.")
Output

Instead, the code will display the transition of states from the initial state to a state in which one of the juges has exactly the desired amount. In the considered example where there are two jug with the capacities 4 liters and 3 liters respectively and with the goal to get 2 liters
This result shows the sequence of states and the operations performed in order to successfully obtain the value 2 liters of water using the jugs and from an empty state.
Code Explanation
- Initial State − They both are initially empty and so the initial position of the two jugs is (0, 0).
- Operations − These include; an action of putting water into a jug transferring water from one jug to another or taking water out of a jug. In the process of function activation each operation leads to the formation of a new state.
- BFS Approach − It is used in the game or simulation to find out all possible states and all transitions possible between these states such as Breadth-First Search (BFS). The BFS makes certain that the absolute minimum number of steps is taken to get to the target state.
- Path Tracing − The solution keeps track of the paths taken to get to each of the states thus produces the steps to get to the required amount.
Conclusion
The Water Jug Problem can be associated with algorithms and state space as a valuable example of the state space exploration. This matter is granted with help of the provided Python code not only to determine measurability of the target amount, but also to identify the sequence of states, which would allow to define its solution. It eliminates ones vision from the operations and states, and from this perspective, one is in a better position to understand the problem and find a solution to it.