
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
Numpy nonzero() Function
The Numpy nonzero() function is used to return the indices of the non-zero elements in a array. It can be used to quickly locate the positions of non-zero elements, which is helpful in various operations, such as masking or extracting specific elements from the array. The function works with arrays of any shape (1D, 2D, etc.).
In the Numpy nonzero() function, the result is a tuple of arrays, one for each dimension of the input array a, containing the indices of the non-zero elements along that dimension. The indices are returned in a row-major (C-style) order, ensuring that the first array in the tuple represents the row indices, the second array represents the column indices, and so on for higher-dimensional arrays.
Syntax
Following is the syntax of the Numpy nonzero() function −
numpy.nonzero(a)
Parameters
Following is the parameter of the Numpy nonzero() function −
- a: The input array. It can be of any shape and contains both zero and non-zero elements.
Return Type
This function returns indices of elements that are non-zero in the input array.
Example
Following is a basic example to find the indices of non-zero elements in an array using the Numpy nonzero() function −
import numpy as np my_array = np.array([3, 0, 0, 5, 6, 0]) nonzero_indices = np.nonzero(my_array) print("Original Array:", my_array) print("Indices of Non-zero Elements:", nonzero_indices)
Output
Following is the output of the above code −
Original Array: [3 0 0 5 6 0] Indices of Non-zero Elements: (array([0, 3, 4]),)
Example: Non-zero Indices in a 2D Array
The numpy.nonzero() function works with multi-dimensional arrays as well. It returns a tuple of arrays containing indices of non-zero elements along each dimension.
In the following example, we find the non-zero indices in a 2D array of shape (3,3) and the indices of the non-zero elements are returned using numpy.nonzero() −
import numpy as np my_array = np.array([[3, 0, 0], [0, 4, 0], [5, 6, 0]]) nonzero_indices = np.nonzero(my_array) print("Original Array:\n", my_array) print("Indices of Non-zero Elements:", nonzero_indices)
Output
Following is the output of the above code −
Original Array: [[3 0 0] [0 4 0] [5 6 0]] Indices of Non-zero Elements: (array([0, 1, 2, 2]), array([0, 1, 0, 1]))
Example: Finding Indices from a Boolean Array
Here, we have used the Numpy nonzero() function to find the indices of elements greater than 3 in a 2D array. The condition a > 3 creates a boolean array, and nonzero() returns the indices where the condition is True −
import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) Boolean_Array = a > 3 print("Boolean Array:\n", Boolean_Array) result = np.nonzero(Boolean_Array) print("Indices of elements greater than 3:\n", result)
Output
Following is the output of the above code −
Boolean Array: [[False False False] [ True True True] [ True True True]] Indices of elements greater than 3: (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))