
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
Numpy intersect1d() Function
The Numpy intersect1d() function finds the intersection of two arrays. It return's a sorted array of unique elements that are present in both input arrays. This function is useful for identifying common elements between arrays, whether they contain numeric or non-numeric data types such as strings or objects.
The Numpy intersect1d() function can also be used to identify the indices of common elements in both input arrays by setting the return_indices parameter to True.
Syntax
Following is the syntax of the Numpy intersect1d() function −
numpy.intersect1d(ar1, ar2, assume_unique=False, return_indices=False)
Parameters
Following are the parameters of the Numpy intersect1d() function −
- ar1: The first input array.
- ar2: The second input array.
- assume_unique (optional): If True, the input arrays are assumed to be unique, which can speed up the calculation. Default is False.
- return_indices (optional): If True, the indices of the shared elements in the original arrays are returned as additional outputs. Default is False.
Return Type
This function returns a sorted 1D array containing unique elements present in both input arrays.
Example
Following is a basic example of finding the intersection of two arrays using the Numpy intersect1d() function −
import numpy as np array1 = np.array([10, 20, 30, 40, 50]) array2 = np.array([30, 40, 70]) result = np.intersect1d(array1, array2) print("Intersection:", result)
Output
Following is the output of the above code −
Intersection: [30 40]
Example: Usage of assume_unique Parameter
When assume_unique is set to True, the function skips internal uniqueness checks, improving performance when the arrays are known to contain unique elements −
import numpy as np array1 = np.array([10, 20, 30, 40]) array2 = np.array([30, 40, 50, 60]) result = np.intersect1d(array1, array2, assume_unique=True) print("Intersection with assume_unique=True:", result)
Output
Following is the output of the above code −
Intersection with assume_unique=True: [30 40]
Example: Using return_indices Parameter
The return_indices parameter returns the indices of the intersecting elements in the original arrays. This is useful for locating the positions of the common elements −
import numpy as np array1 = np.array([10, 20, 30, 40, 50]) array2 = np.array([30, 40, 70]) result, idx1, idx2 = np.intersect1d(array1, array2, return_indices=True) print("Intersection:", result) print("Indices in array1:", idx1) print("Indices in array2:", idx2)
Output
Following is the output of the above code −
Intersection: [30 40] Indices in array1: [2 3] Indices in array2: [0 1]
Example: Passing Strings as an Arguments
The intersect1d() function can also be applied to string arrays. In the following example, we have found the common strings between the array1 and array2 −
import numpy as np array1 = np.array(["apple", "banana", "cherry"]) array2 = np.array(["banana", "grape", "cherry"]) result = np.intersect1d(array1, array2) print("Intersection:", result)
Output
Following is the output of the above code −
Intersection: ['banana' 'cherry']
Example: Multi-dimensional Arrays
When using the intersect1d() function with multi-dimensional arrays, the input arrays are first flattened before finding the intersection. The output remains a 1D array of unique elements present in both input arrays −
import numpy as np array1 = np.array([[1, 2], [3, 4]]) array2 = np.array([[3, 4], [5, 6]]) result = np.intersect1d(array1, array2) print("Intersection:", result)
Output
Following is the output of the above code −
Intersection: [3 4]