
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
Numpy eye() Function
The Numpy eye() function is used to create a 2D array with ones on the diagonal and zeros in all other positions. This means that all elements apart from the diagonal are zero. This function commonly used to generate identity matrices and similar structures in numerical computations.
A square matrix with ones on the diagonal is known as an identity matrix. The numpy.eye() function allows us to create a identity matrix with non-square matrices by specifying different values for rows and columns.
Syntax
Following is the syntax of the Numpy eye() function −
numpy.eye(N, M=None, k=0, dtype=float)
Parameters
Following are the parameters of the Numpy eye() function −
- N - This represents the number of rows in the output array.
- M - This represents the number of columns in the output array. If None, the output array will have the same number of columns as rows (i.e., a square matrix).
- k - This represents the index of the diagonal. Default value is 0 (the main diagonal). Positive values create diagonals above the main diagonal, and negative values create diagonals below the main diagonal.
- dtype - It is the desired data type for the array. By default value is float.
Return Values
This function returns a 2D NumPy array with ones on the specified diagonal and zeros in remaining positions.
Example
Following is a basic example to generate a 4x4 identity matrix using Numpy eye() function −
import numpy as np identity_matrix = np.eye(4) print("Identity Matrix:\n", identity_matrix)
Output
Following is the output of above code −
Identity Matrix: [[1. 0. 0. 0.] [0. 1. 0. 0.] [0. 0. 1. 0.] [0. 0. 0. 1.]]
Example : Specifying Number of Columns
Using the M parameter in numpy.eye(), we can specify a different number of columns than rows, allowing us to generate non-square matrices. This is useful in applications where we need a identity matrix with specified dimensions.
In the following example, we generate a 5x3 identity matrix using numpy.eye() −
import numpy as np non_square_matrix = np.eye(5, 3) print("Matrix with diagonal ones:\n", non_square_matrix)
Output
Following is the output of the above code −
Matrix with diagonal ones: [[1. 0. 0.] [0. 1. 0.] [0. 0. 1.] [0. 0. 0.] [0. 0. 0.]]
Example : Shifting the Diagonal in 'numpy.eye()'
The k parameter in numpy.eye() allows us to shift the diagonal. By default, the diagonal with ones is the main diagonal (i.e., k=0), but we can specify positive or negative values for k to shift the diagonal up or down, respectively.
'k' with Positive Integer
If we set k to a positive value, the diagonal shifts up, placing the ones above the main diagonal. Here, we have generated a 4x4 matrix with the diagonal shifted up by one position (i.e., k=1) −
import numpy as np shifted_diagonal_matrix = np.eye(4, k=1) print("Matrix with diagonal shifted up:\n", shifted_diagonal_matrix)
Output
Following is the output of the above code −
Matrix with diagonal shifted up: [[0. 1. 0. 0.] [0. 0. 1. 0.] [0. 0. 0. 1.] [0. 0. 0. 0.]]
'k' with Negative Integer
If we set k to a negative value, the diagonal shifts down, placing the ones below the main diagonal. Here, we have generated a 5x5 matrix with the diagonal shifted down by -2 position (i.e., k=-2) −
import numpy as np shifted_diagonal_matrix = np.eye(5, k=-2) print("Matrix with diagonal shifted down : \n", shifted_diagonal_matrix)
Output
Following is the output of the above code −
Matrix with diagonal shifted down : [[0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.] [1. 0. 0. 0. 0.] [0. 1. 0. 0. 0.] [0. 0. 1. 0. 0.]]
Example : Specifying Data Type in 'eye()'
The numpy.eye() function allows us to specify the data type of the output array using the dtype parameter. We can change this to any valid data type, such as int, complex. By default, it returns an array of float data type.
In the following example, we have generated a 3x3 integer identity matrix by setting the dtype parameter to int −
import numpy as np int_identity_matrix = np.eye(3, dtype=int) print("Integer Identity Matrix:\n", int_identity_matrix)
Output
Following is the output of the above code −
Integer Identity Matrix: [[1 0 0] [0 1 0] [0 0 1]]
Example : Complex Identity Matrix with 'eye()'
We can also create complex identity matrices by specifying the dtype parameter as complex. This is useful in applications involving complex numbers, such as signal processing or quantum mechanics.
In the following example, we create a 3x3 complex identity matrix −
import numpy as np complex_identity_matrix = np.eye(3, dtype=complex) print("Complex Identity Matrix:\n", complex_identity_matrix)
Output
Following is the output of the above code −
Complex Identity Matrix: [[1.+0.j 0.+0.j 0.+0.j] [0.+0.j 1.+0.j 0.+0.j] [0.+0.j 0.+0.j 1.+0.j]]