
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
Numpy copy() Function
The Numpy copy() function is used to copy given object into an array. The object can be a tuple, list , nested list, nested tuple and array.
We can create an array using the assignment (=) operator and numpy.copy(). The assignment operator creates a reference to the original array, meaning both variables point to the same memory location. Therefore, if changes are made to one array, they will be reflected in the other.
On the other hand, when we create a NumPy array using numpy.copy(), it creates a new, separate copy of the array. As a result, changes made to one array will not affect the other.
The numpy.array(arr, copy=True) function is similar to the numpy.copy() function, as both generate a new array that duplicates the data from the original, ensuring any modifications to the new array do not affect the original.
Syntax
Following is the syntax of the Numpy copy() function −
numpy.copy(array, order = 'K', subok = False)
Parameters
Following are the parameters of the Numpy copy() function −
- array- The array that to be copied.
- order(optional)- This specifies the order in which the elements are filled in copied class.
- subok(optional)- It determines whether to subclass the output array if the data type is changed or to return a base-class array
Return Value
This function returns the array interpretation of given input
Example
Following is an basic example to create a numpy array using Numpy copy() function −
import numpy as np # creating an array my_array=[24,9,1,8,97] # implementing the numpy.copy() function copy_Array = np.copy(my_array) print("Numpy Array:",copy_Array) print(type(copy_Array))
Output
Following is the output of the above code −
Numpy Array: [24 9 1 8 97] <class 'numpy.ndarray'>
Example : Copy Numpy Array into Another Array
We can copy numpy array into another array using numpy.copy() function. Here, we have copied my_array into copy_Array using numpy.copy() function −
import numpy as np # creating an array my_array=np.array([10,99,56,34,78]) print("Original Array",my_array) print(type(my_array)) # implementing the numpy.copy() function copy_Array = np.copy(my_array) print("Numpy Array:",copy_Array) print(type(copy_Array))
Output
Following is the output of the above code −
Original Array [10 99 56 34 78] <class 'numpy.ndarray'> Numpy Array: [10 99 56 34 78] <class 'numpy.ndarray'>
Example : Create Array with '=' and numpy.copy()
The assignment operator creates a reference to the same array, while numpy.copy() creates a separate copy, so changes to one array do not affect the other.
In the following example, we can find the difference between creating a numpy array using assignment(=) operator and numpy.copy() function −
import numpy as np # create an array my_Array = np.array([10,45,78,15,99]) print("Original Numpy Array -", my_Array) # copy an array using assignment operator my_Array1 = my_Array # copy an array using np.copy() my_Array2 = np.copy(my_Array) # change 1st element of new array my_Array1[0] = 88 # print both arrays print("Numpy Array copied using assignment operator -",my_Array1) print("Numpy Array copied using copy() operator -",my_Array2)
Output
Following is the output of the above code −
Original Numpy Array - [10 45 78 15 99] Numpy Array copied using assignment operator - [88 45 78 15 99] Numpy Array copied using copy() operator - [10 45 78 15 99]