Interfacing C/C++ and Python with SWIG

David M. Beazley
Department of Computer Science
University of Utah
Salt Lake City, Utah 84112

beazl ey@s. ut ah. edu

SWIG Tutoria 6th International Python Conference

Prerequisites

C/C++ programming

« You've written a C program.
* You've written a Makefile.
* You know how to use the compiler and linker.

Python programming

*You've heard of Python.

« You've hopefully written a few Python programs.
Optional, but useful

» Some knowledge of the Python C API.

e C++ programming experience.
Intended Audience

This tutorial is aimed at C/C++ application developers who are interested in using
Python as an interface (I am one of these developers).

SWIG Tutorial 6th International Python Conference

Notes

C/C++ Programming

The good
« High performance.
* Low-level systems programming.
« Available everywhere and reasonably well standardized

The bad

» The compile/debug/nap development cycle.
« Difficulty of extending and modifying.
» Non-interactive.

The ugly
« Writing user-interfaces.
» Writing graphical user-interfaces (worse).
« High level programming (“claims” about C++ are questionable).
« Trying to glue different “components” together (i.e. reuse).

SWIG Tutorial 6th International Python Conference

Notes

What Python Brings to C/C++

An interpreted high-level programming environment
* Flexibility.
« Interactivity.
« Scripting.
 Debugging.
« Testing
* Rapid prototyping.

Component gluing
< A common interface can be provided to different C/C++ libraries.
» C/C++ libraries become Python modules.
« Dynamic loading (use only what you need when you need it).

The best of both worlds

By mixing Python and C/C++ we not only get the high-performance of C, but also
get the benefits of interpreted environments--rapid development, interactivity,

components, debugging, and high level programming. This is a powerful
computing model.

SWIG Tutorial 6th International Python Conference

Notes

An Approach That Works

Success stories
* Unix
* Emacs (C + elisp)
* MATLAB, IDL, etc...
» Tcl/Tk, Perl, Visual Basic, etc...
« Pick almost any sufficiently powerful package that you like using.

“Surely the most powerful stroke for software productivity, reliability, and simplicity
has been the progressive use of high-level languages for programming. Most
observers credit that development with at least a factor of 5 in productivity, and
with concomitant gains in reliability, simplicity, and comprehensibility.”

--- Frederick Brooks

“The best performance improvement is the transition from the nonworking state to
the working state.”
--- John Ousterhout

“It's cool”
--- Anonymous

SWIG Tutorial 6th International Python Conference

Notes

Preview

Building Python Modules

* What is an extension module and how do you build one?

SWIG

» Automated construction of Python modules from ANSI C/C++ declarations.
« Building Python interface to C libraries.

» Managing Objects.

« Using library files.

* Exception handling and constraints.

» Customization and advanced features.

Practical Isses

» Working with shared libraries.

« C/C++ coding strategies

« Potential incompatibilities and problems.
* Tips and tricks.

SWIG Tutorial 6th International Python Conference

Notes

Python Extension Building

SWIG Tutorial

6th International Python Conference

Extending and Embedding Python

There are two basic methods for integrating C/C++ with Python

« Extension writing

Extension writing involves the creation of new Python modules. These modules
provide access to underlying C/C++ functions and variables.

« Embedding

Embedding allows C/C++ programs to access the Python interpreter and execute
Python commands.

(Python)

A
Extending l Embedding

(C/C++)

We are primarily concerned with “extension writing”. That is,
providing Python access to existing C/C++ libraries.

SWIG Tutorial 6th International Python Conference

Notes

Writing Wrapper Functions

Python talks to C/C++ through special “wrapper” functions
« Really, it's just a glue layer between languages.
 Need to convert function arguments from Python to C.
* Need to return results in a Python-friendly form.

int fact(int n) {
if (n<=1) return 1;
el se return n*fact(n-1);

<

PyQoj ect *wrap_fact (PyQbhject *self, PyCoject *args) {

int n, result;
if (!'PyArg_ParseTuple(args,”i:fact”, &))
return NULL;

result = fact(n);
return Py_BuildValue(“i”,result);

SWIG Tutorial 6th International Python Conference

Notes

The conversion of data between Python and C is performed using two functions :

int PyArg_ParseTupl e(PyQbj ect *args, char *format, ...)
PyQbj ect *Py_Bui |l dVal ue(char *format, ...)

For each function, the format string contains conversion codes according to the following table :

char *

int

long int

short int

char

f1 oat

doubl e

PyCoj ect *

A tuple

Optional argunents

oa—+os——on

(items)
|itenms

These functions are used as follows :

PyArg_ParseTupl e(args, "iid”, &, &, &c); // Parse an int,int,double

PyAr g_ParseTupl e(args, "s|s”, &, &) ; // Parse a string and an optional string
Py_Bui | dVal ue(“d”, val ue); I/l Create a double
Py_Bui | dval ue(“(ddd)”, a, b, c); /Il Create a 3-itemtuple of doubles

Refer to the Python extending and embedding guide for more details.

Module Initialization

All extension modules need to register their methods with the
Python interpreter.

« An initialization function is called whenever you import an extension module.
« The initialization function registers new methods with the Python interpreter and

A simple initialization function :

should perform other initialization needed to make the module work.

/static PyMet hodDef exanpl eMet hods[] = {

{ "fact", wap_fact, 11},
{ NULL, NuULL }

s

void initexanple() {
PyCoj ect *m
m = Py_I ni t Modul e("exanpl e", exanpl eMet hods) ;

}

\-
SWIG Tutorial 6th International Python Conference 10

Notes

When using C++, the initialization function must be given C linkage. For example:

extern “C’ void initexanple() {

}

On some machines, particularly Windows, it may be necessary to explicitly export the initialization functions. For example,

#if defined(_ WN32_)

if defined(_MSC VER

define EXPORT(a, b) _ decl spec(dllexport) a b
else

if defined(___BORLANDC

define EXPORT(a,b) a _export b
el se

define EXPORT(a,b) a b

endi f

endif

#el se

define EXPORT(a,b) a b

#endi f

iE.XiDCRT(voi d, initexanple) {

}

#i ncl ude <Pyt hon. h>
PyQbj ect *wrap_fact(PyQoject *self, PyCoject *args) {
int n, result;
if (!'PyArg_ParseTuple(args,”i:fact”, &))
%ﬁgﬁg;s return NULL;
result = fact(n);
return Py_BuildValue(“i”,result);
}
static PyMethodDef exanpl eMethods[] = {
Methods > { "fact", wap_fact, 11},
Table { NULL, NULL }
s
Initialization void initexanpl e() {
Function ———» PyGbj ect *m . . .
m = Py_I ni t Modul e("exanpl e", exanpl eMet hods) ;
}
SWIG Tutorial 6th International Python Conference 11
Notes

A real extension module might contain dozens or even hundreds of functions, but the idea is the same.

Compiling A Python Extension

There are two methods
« Dynamic Loading.
« Static linking.

Dynamic Loading

* The extension module is compiled into a shared library or DLL.
* When you type ‘import’, Python loads and initializes your module on the fly.

Static Linking

* The extension module is compiled into the Python core.
» The module will become a new “built-in” library.
« Typing ‘import’ simply initializes the module.

Given the choice, you should try to use dynamic loading

* It's easier.
« It's surprisingly powerful if used right.

SWIG Tutorial 6th International Python Conference 12

Notes

Most modern operating systems support shared libraries and dynamic loading. To find out more details, view the man-pages for
the linker and/or C compiler.

Dynamic Loading

Unfortunately, the build process varies on every machine

 Solaris

cc -c -l/usr/local/includel/pythonl.4 \
-1/usr/local/lib/pythonl.4/config \
exanpl e. ¢ wapper.c

Id -G exanpl e. 0 wapper.o -o exanpl enodul e. so

e Linux

gcc -fpic -c -1/usr/local/include/pythonl. 4 \
-1/usr/local/lib/pythonl.4/config \
exanpl e. ¢ wapper.c

gcc -shared exanpl e.o wapper.o -o exanpl enodul e. so

* Irix

cc -c -l/usr/local/includel/pythonl.4 \
-1/usr/local/lib/pythonl.4/config \
exanpl e. ¢ wapper.c
I d -shared exanpl e. o wapper.o -o exanpl enodul e. so

SWIG Tutorial 6th International Python Conference

Notes

13

Dynamic Loading (cont...)

* Windows 95/NT (MSVC++)
Select a DLL project from the AppWizard in Developer Studio. Make sure you add
the following directories to the include path

pyt hon-1. 4
pyt hon- 1. 4\ | ncl ude
pyt hon- 1. 4\ Pc

Link against the Python library. For example :

pyt hon- 1. 4\vc40\ pyt honl4.1ib

Also....

« If your module is named ‘exanpl e’, make sure you compile it into a file named
‘exanpl e. so’ or ‘exanpl enodul e. so’.

* You may need to modify the extension to compile properly on all different platforms.
« Not all code can be easily compiled into a shared library (more on that later).

SWIG Tutorial 6th International Python Conference

Notes

Static Linking

How it works

« You compile the extension module and link it with the rest of Python to form a new
Python executable.

Custom Python

When would you use it?
« When running Python on esoteric machines that don’t have shared libraries.
* When building extensions that can't be linked into a shared library.
« If you had a commonly used extension that you wanted to add to the Python core.

SWIG Tutorial 6th International Python Conference

Notes

15

Modifying ‘Setup’ to Add an Extension

To add a new extension module to the Python executable

1. Locatethe ‘Modul es’ directory in the Python source directory.
2. Edit thefile‘Set up’ by adding aline such as the following :

exanpl e exanpl e. ¢ wrapper.c

Module name C source files

3. Execute the script “nakeset up”
4. Type ‘nake’ to rebuild the Python executable.

Disadvantages
« Requires the Python source
» May be difficult if you didn't install Python yourself.
« Somewhat cumbersome during module development and debugging.

SWIG Tutorial 6th International Python Conference

Notes

Rebuilding Python by Hand

To manually relink the Python executable (if necessary) :

/ PREFI X = /usr/local
EXEC_PREFI X = /usr/local
cc = cc
PY! NCLUDE = -1 $(PREFI X)/incl ude/ pyt honl. 4 -1$(EXEC _PREFI X)/|ib/pythonl.4/config
PYLI BS = - L$(EXEC_PREFI X)/ | i b/ pyt honl. 4/ config \
-1 Modul es -1 Python -1 Qbjects -1 Parser
SYSLI BS =-ldl -Im
PYSRCS = $(EXEC_PREFI X)/ i b/ pythonl. 4/ config/getpath.c \
$(EXEC_PREFI X)/ 1i b/ pyt honl. 4/ config/config.c
MAI NOBJ = $(EXEC_PREFI X)/ i b/ pyt honl. 4/ confi g/ mai n. o
PYTHONPATH = .:$(PREFI X)/1ib/pythonl. 4: $(PREFI X) /| i b/ pyt honl. 4/ shar edmodul es
oBJS = # Additional object files here
all:
$(CC) $(PYI NCLUDE) - DPYTHONPATH=' " $(PYTHONPATH) "' - DPREFI X=" " $(PREFI X) "' \
- DEXEC_PREFI X=""$(EXEC_PREFI X)"* - DHAVE_CONFI G_H $(PYSRCS) \
$(0BIS) $(MAINOBJ) $(PYLIBS) $(SYSLIBS) -0 python

Fortunately, there is a somewhat easier way (stay tuned).

SWIG Tutorial 6th International Python Conference 17

Notes

If performing a by-hand build of Python, thefile‘conf i g. ¢’ contains information about the modules contained in the “ Setup”
script. If needed, you can copy conf i g. ¢ and modify it as needed to add your own modules.

The book “Internet Programming with Python”, by Watters, van Rossum, and Ahlstrom contains more information about
rebuilding Python and the process of adding modules.

Using The Module

This is the easy part :

Python 1.4 (Aug 21 1997) [GCC 2.7.2.1])
Copyright 1991-1995 Stichting Mt hemati sch Centrum
Anst er dam

>>> jnport exanple
>>> exanpl e. f act (4)
24

>>>

Summary :
« To write a module, you need to write some wrapper functions.

« To build a module, the wrapper code must be compiled into a shared library or staticly
linked into the Python executable (this is the tricky part).

« Using the module is easy.
« If all else fails, read the manual (honestly?!).

SWIG Tutorial 6th International Python Conference

Notes

The process

The problem

Wrapping a C Application

« Write a Python wrapper function for every C function you want to access.
« Create Python versions of C constants (not discussed).

* Provide access to C variables, structures, and classes as needed.

» Write an initialization function.

« Compile the whole mess into a Python module.

« Imagine doing this for a huge library containing hundreds of functions.
« Writing wrappers is extremely tedious and error-prone.

« Consider the problems of frequently changing C code.

« Aren't there better things to be working on?

| want to spend my time working on the application, not writing a bunch of grungy
wrapper code.

SWIG Tutorial

Notes

6th International Python Conference 19

Extension Building Tools

Stub Generators (e.g. Modulator)

« Generate wrapper function stubs and provide additional support code.
«*You are responsible for filling in the missing pieces and making the module work.

Automated tools (e.g. SWIG, GRAD, bgen, etc...)

< Automatically generate Python interfaces from an interface specification.
» May parse C header files or a specialized interface definition language (IDL).
« Easy to use, but somewhat less flexible than hand-written extensions.

Distributed Objects (e.g. ILU)

» Concerned with sharing data and methods between languages
« Distributed systems, CORBA, COM, ILU, etc...

Extensions to Python itself (e.g. Extension classes, MESS, etc...)

» Aimed at providing a high-level C/C++ API to Python.
« Allow for powerful creation of new Python types, providing integration with C++, etc...

SWIG Tutorial 6th International Python Conference 20

Notes:

The Python contributed archives contain awide variety of programming tools. Thereisno right or wrong way to extend Python-
-it depends on what kind of problem you're trying to solve. In some cases, you may want to use many of the tools together.

SWIG

SWIG Tutorial

6th International Python Conference

21

An Introduction to SWIG

SWIG (Simplified Wrapper and Interface Generator)
« A compiler that turns ANSI C/C++ declarations into scripting language interfaces.
» Completely automated (produces a fully working Python extension module).
e Language neutral. SWIG can also target Tcl, Perl, Guile, MATLAB, and Java.
« Eliminates the tedium of writing extension modules.

ANSI C/C++ declarations

N T

| Python | [Perl5 | | TciTk | | Guile |

SWIG Tutorial 6th International Python Conference 22

Notes

SWIG was originally developed at Los Alamos National Laboratory and has been in use since June, 1995. The original version
was devel oped as an easy-to-use tool for extending a customized scripting language devel oped for large scale parallel
computation (and the SPaSM molecular dynamics code in particular). Scientists needed a simple mechanism for gluing software
components together, constructing data analysis tools, and working with existing code. Support for multiple languages was
added at alater time (when it became clear that such a capability could be quite powerful).

SWIG acceptsinput in the form of ANSI C/C++ declarations that would typically be found in a header file. Input generally
comes from three sources--C header files, C sourcefiles, and special SWIG “interfacefiles’ (which are usualy given a.i suffix).
In most cases, a combination of different kinds of fileswill be used to build an interface.

ANSI C/C++ syntax was chosen because SWIG was designed to work with existing code. Theideaisthat you cangrabaC
header file, tweak it alittle bit, and produce a working scripting interface with minimal effort. In other cases, one might create a
combined SWIG/C header file that defines everything about your C library (including the Python interface).

The different scripting languages supported by SWIG are referred to as “ Language Modules” SWIG can extended with any
number of language modules or different versions of the same scripting language.

SWIG Features

Core features

« Parsing of common ANSI C/C++ declarations.

« Support for C structures and C++ classes.

« Automatic documentation generation (in HTML, ASCII, and LaTeX).
» Comes with a library of useful stuff.

« A wide variety of customization options.

« Language independence (works with Tcl, Perl, MATLAB, and others).
 Extensive documentation.

The SWIG Philosophy
» There’s more than one way to do it (a.k.a. the Perl philosophy)
« Provide a useful set of primitives.
* Keep it simple, but allow for special cases.
« Allow people to shoot themselves in the foot (if they want to).

The bottom line : SWIG was developed to solve problems.

SWIG Tutorial 6th International Python Conference 23

Notes

SWIG started simple, but has grown with the contributions of its users.

A Simple SWIG Example

Some C code

/* exanple.c */
doubl e Foo = 7.5;
int fact(int n) {

if (n<=1) return 1,
el se return n*fact(n-1);

A SWIG interface file

/1 exanple.i
Module Name %rodul e exanpl e

extern int fact(int n);
extern doubl e Foo;
#defi ne SPAM 42

C declarations

SWIG Tutorial 6th International Python Conference 24

Notes

Scripting interfaces are typically defined in terms of a special “interfacefile” Thisfile containsthe ANSI C declarations of
things you want to access, but may also contain SWIG specific directives such as“ % odul e”. Writing a separate interfacefileis
not always required however.

A Simple SWIG Example (cont...)

Building a Python Interface

% swi g -python exanple.i

Generating w appers for Python

%cc -c exanple.c exanple_wap.c \
-1/usr/local/include/pythonl.4 \
-1/usr/local/lib/pythonl. 4/config

%1 d -shared exanpl e.o exanpl e_w ap.o -o exanpl enodul e. so

* SWIG produces a file ‘exanpl e_wr ap. ¢’ that is compiled into a Python module.
* The name of the module and the shared library should match.

Using the module

/Pyt hon 1.4 (Jan 16 1997) [GCC 2.7.2]
Copyright 1991-1995 Stichting Mt hemati sch Centrum
Anst er dam
>>> jnport exanple
>>> exanpl e. f act (4)
24
>>> print exanpl e.cvar. Foo
7.5
>>> print exanpl e. SPAM
42

SWIG Tutorial 6th International Python Conference 25

Notes

The process of building a shared library differs on every machine. Refer to earlier dlides for more details.
All global variables are accessed through a special object ‘cvar’ (for reasons explained shortly).
Troubleshooting tips

« If you get the following error, it usually means that the name of your module and the name of the shared library don’t match.

>>> jnport exanple
Traceback (innernost |ast):

File "<stdin>", line 1, in ?
ImportError: dynami c nodul e does not define init function
>>>

 |If you get the following error, Python may not be able to find your module.

>>> jnport exanple
Traceback (innernost |ast):

File "<stdin>", line 1, in ?
InportError: No nodul e named exanpl e
>>>

To fix this problem, you may need to modify Python’s path as follows

>>> jnport sys
>>> sys. pat h. append("/ your/ nodul e/ pat h")
>>> jnport exanple

« Thefollowing error usually means your forgot to link everything or thereisamissing library.

>>> jnport exanple
python: can't resolve synbol 'foo'
Traceback (innernost |ast):

File "<stdin>", line 1, in ?
InportError: Unable to resol ve synbol
>>>

What SWIG Does

Basic C declarations

« C functions become Python functions (or commands).
« C global variables become attributes of a special Python object 'cvar .
« C constants become Python variables.

Datatypes

« C built-in datatypes are mapped into the closest Python equivalent.
int, long, short <--->Python integers.

«fl oat, doubl e <---> Python floats

echar, char * <--->Python strings.

e voi d <---> None

el ong long, |ong doubl e ---> Currently unsupported

SWIG tries to create an interface that is a natural extension of the
underlying C code.

SWIG Tutorial 6th International Python Conference 26

Notes

» Python integers are represented as’| ong’ values. All integers will be cast to and from typel ong when
converting between C and Python.

» Python floats are represented as’doubl e’ values. Single precision floating point values will be cast to type
doubl e when converting between the languages.

* long |l ongandl ong doubl e areunsupported due to the fact that they can not be accurately represented
in Python (the values would be truncated).

More on Global Variables

Why does SWIG access global variables through 'cvar’?

"Assignment” in Python

« Variable "assignment" in Python is really just a renaming operation.

« Variables are references to objects.
>>> a =[1,2,3]
>>> b = a
>>> p[1] = -10
>>> print a
[1, -10, 3]
« A C global variable is not a reference to an object, it is an object.

« To make a long story short, assignment in Python has a meaning that doesn’t
translate to assignment of C global variables.

Assignment through an object

« C global variables are mapped into the attributes of a special Python object.
« Giving a new value to an attribute changes the value of the C global variable.
« By default, the name of this object is 'cvar’, but the name can be changed.

SWIG Tutorial 6th International Python Conference 27

Notes

Each SWIG generated module has a special object that is used for accessing C global variables present in the interface. By
default the name of this object is’cvar * which isshort for 'C variables.’ If necessary, the name can be changed using the
- gl obal s option when running SWIG. For example:

% swi g -python -gl obals nyvar exanple.i

changes the nameto 'nyvar ' instead.

If a SWIG module contains no global variables, the’ cvar’ variable will not be created. Some care is aso in order for using
multiple SWIG generated modules--if you use the Python 'f r om nodul e *’ directive, you will get a namespace collision on
the value of "cvar’ (unless you explicitly changed its name as described above).

The assignment model in Python takes some getting used to. Here's apictorial representation of what's happening.

a=4 a—>®

b =a a—— >
b/

NG

More on Constants

The following declarations are turned into Python variables

* f#define
e const
e enum

Examples :

#defi ne | CONST 5

#def i ne FCONST 3. 14159

#def i ne SCONST "hell o worl d"

enum bool ean {NO=0, YES=1};

enum mont hs {JAN, FEB, MAR APR, MAY, JUN, JUL, AUG SEP, OCT, NOV, DEC};
const double PI = 3.141592654;

#define MODE 0x04 | 0x08 | 0x40

 The type of a constant is inferred from syntax (unless given explicitly)
 Constant expressions are allowed.

« Values must be defined. For example, '#defi ne FOO BAR does not resultin a
constant unless BAR has already been defined elsewhere.

SWIG Tutorial 6th International Python Conference 28

Notes

#defineis also used by the SWIG preprocessor to define macros and symbols. SWIG only creates a constant if a#def i ne
directive looks like a constant. For example, the following directives would create constants

#def i ne READ_MODE 1
#define HAVE ALLOCA 1
#define FOOBAR 8.29993
#define VALUE 4* FOOBAR

Thefollowing declarations would not result in constants

#def i ne USE_PROTOTYPES /1 No val ue given
#define _ANSI _ARGS (a) a /1 A macro
#defi ne FOO BAR /1 BAR is undefined

Pointers

Pointer management is critical!
e Arrays

* Objects
« Most C programs have tons of pointers floating around.

The SWIG type-checked pointer model
« C pointers are handled as opaque objects.
« Encoded with type-information that is used to perform run-time checking.
« Pointers to virtually any C/C++ object can be managed by SWIG.

Advantages of the pointer model

« Conceptually simple.

« Avoids data representation issues (it's not necessary to marshal objects between a
Python and C representation).

« Efficient (works with large C objects and is fast).
« It is a good match for most C programs.

SWIG Tutorial 6th International Python Conference

Notes

The pointer model allows you to pass pointersto C objects around inside Python scripts, pass pointers to other C functions, and so
forth. In many cases this can be done without ever knowing the underlying structure of an object or having to convert C data

structures into Python data structures.

An exception to the rule : SWIG does not support pointers to C++ member functions. Thisis because such pointers can not be

properly cast to a pointer of type’voi d *’ (thetypethat SWIG usersinternaly).

Pointer Example

/ %rodul e exanpl e

FI LE *fopen(char *filenanme, char *node);

int fcl ose(FI LE *f);

unsi gned fread(void *ptr, unsigned size, unsigned nobj, FILE *);
unsigned fwite(void *ptr, unsigned size, unsigned nobj, FILE *);

/1 A nenory allocation functions
voi d *mal | oc(unsi gned nbytes);
voi d free(void *);
/ i nport exanpl e
def filecopy(source,target):
f1 = exanpl e. fopen(source,"r")
f2 = exanpl e. fopen(target,"w")
buf fer = exanpl e. mal | oc(8192)
nbytes = exanpl e.fread(buffer, 1,8192,f1)
whil e nbytes > 0:
exanpl e. fwite(buffer, 1, nbytes, f2)
nbyt es = exanpl e.fread(buffer, 1,8192,f1)
exanpl e. fcl ose(f1)

exanpl e. fcl ose(f2)
exanpl e. free(buffer)

.

SWIG Tutorial 6th International Python Conference 30

Notes

¢ You can use C pointers in exactly the same manner asin C.

¢ Inthe example, we didn’'t need to know what aFI LE was to use it (SWIG does not need to know anything about the data a
pointer actually points to).

¢ Like C, you have the power to shoot yourself in the foot. SWIG does nothing to prevent memory leaks, double freeing of
memory, passing of NULL pointers, or preventing address violations.

Pointer Encoding and Type Checking

Pointer representation

« Currently represented by Python strings with an address and type-signature.

>>> f = exanple.fopen("test","r")
>>> print f

_f8e40a8_FI LE_p

>>> puffer = exanpl e. nal | oc(8192)
>>> print buffer

_1000af e0_voi d_p

>>>

« Pointers are opaque so the precise Python representation doesn’t matter much.

Type errors result in Python exceptions

>>> exanpl e. f cl ose(buf fer)

Traceback (innernost last):

File "<stdin>", line 1, in ?

TypeError: Type error in argument 1 of fclose. Expected _FILE p.
>>>

« Type-checking prevents most of the common errors.
» Has proven to be extremely reliable in practice.

SWIG Tutorial 6th International Python Conference 31

Notes

¢ The NULL pointer is represented by the string "NULL"

« Python has a special object "CObject" that can be used to hold pointer values. SWIG does not use this object because it does
not currently support type-signatures.

¢ Run-time type-checking is essential for reliable operation because the dynamic nature of Python effectively bypasses all type-
checking that would have been performed by the C compiler. The SWIG run-time checker makes up for much of this.

Array Handling

Arrays are pointers
« Same model used in C (the "value" of an array is a pointer to the first element).
» Multidimensional arrays are supported.
 There is no difference between an ordinary pointer and an array.
» However, SWIG does not perform bounds or size checking.

%odul e exanpl e

doubl e *create_array(int size);
voi d span(doubl e a[10] [10][10]);

g

>>> d = create_array(1000)
>>> print d

_100f 800_doubl e_p

>>> span{d)

>>>

SWIG Tutorial 6th International Python Conference 32

Notes

Pointers and arrays are more-or-lessinterchangable in SWIG. However, no checks are made to insure that arrays are of the proper
size or even initialized properly (if not, you'll probably get a segmentation fault).

SWIG is used extensively in science and engineering applications--many of which manipulate large arrays of data. The pointer
model allows us to pass huge arrays (millions of elements) of data around between different functions without any performance
penalities.

It may be useful to re-read the section on arrays in your favorite C programming book---there are subtle differences between
arrays and pointers (unfortunately, they are easy to overlook or forget).

Effective use of arrays may require the use of accessor-functions to access individual members (this is described later).

If you plan to do alot of array manipulation, you may want to check out the Numeric Python extension.

Complex Objects

SWIG manipulates all "complex" objects by reference

« The definition of an object is not required.
« Pointers to objects can be freely manipulated.
< Any "unrecognized" datatype is treated as if it were a complex object.

Examples :

doubl e dot _product (Vector *a, Vector *b);
FI LE *fopen(char *, char *);
Matrix *mat_nul (Matrix *a, Matrix *b);

One catch....
« Make sure you tell SWIG about typedef’s.

Real span(Real a); /1 "Real’ is unknown. Use as a pointer.
VS.

typedef doubl e Real ;
Real span(Real a); /Il "Real’ is just a 'double’.

SWIG Tutorial 6th International Python Conference 33

Notes

Whenever SWIG encounters an unknown datatype, it assumes that it is a derived datatype and manipulates it by reference.
Unlike the C compiler, SWIG will never generate an error about undefined datatypes. While this may sound strange, it makesit
possible for SWIG to build interfaces with a minimal amount of additional information. For example, if SWIG sees a datatype
"Matri x *’',it'sobviously apointer to something (from the syntax). From SWIG's perspective, it doesn't really matter what the
pointer is actually pointing to--that is, SWIG doesn’t need the definition of Mat ri x.

Passing Objects by Value

What if a program passes complex objects by value?

(double dot _product (Vector a, Vector b);)

* SWIG converts pass-by-value arguments into pointers and creates a wrapper
equivalent to the following :

doubl e wrap_dot _product (Vector *a, Vector *b) {
return dot_product (*a, *b);
}

* This transforms all pass-by-value arguments into pass-by reference.

Is this safe?

« Works fine with C programs.
» Seems to work fine with C++ if you aren’t being too clever.

SWIG Tutorial 6th International Python Conference 34

Notes

Trying to implement pass-by-value directly would be extremely difficult---we would be faced with the problem of trying to find a
Python representation to C objects. Thisis one of the problems that we're trying to avoid.

Return by Value

Return by value is more difficult...

(Vector cross_product (Vector a, Vector b) ;)

« What are we supposed to do with the return value?
« Can't generate a Python representation of it (well, not easily), can’t throw it away.

* SWIG is forced to perform a memory allocation and return a pointer.

Vector *wrap_cross_product (Vector *a, Vector *b) {
Vector *result = (Vector *) nalloc(sizeof(Vector));
*result = cross_product(*a, *b);
return result;

Isn’t this a huge memory leak?
*Yes.
« It is the user’s responsibility to free the memory used by the result.
* Better to allow such a function (with a leak), than not at all.

SWIG Tutorial 6th International Python Conference

Notes

When SWIG is processing C++ libraries, it uses the default copy constructor instead. For example :

Vector *wrap_cross_product (Vector *a, Vector *b) {
Vector *result = new Vector(cross_product(*a, *b));
return result;

35

Renaming and Restricting

Renaming declarations

%mame(out put) void print();
« Often used to resolve namespace conflicts between C and Python.

Creating read-only variables

* The % eadonl y and % eadwr i t e directives can be used to change access
permissions to variables.

doubl e foo; /1 A global variable (read/wite)
% eadonl y

doubl e bar; /1 A global variable (read only)
doubl e spam /1l (read only)

% eadwite
» Read-only mode stays in effect until it is explicitly disabled.

* The %ane directive can be used to change the name of the Python command.

SWIG Tutorial 6th International Python Conference

Notes

36

Code Insertion

The structure of SWIG’s output

/* This file was created by SWG */
Header p| #include <Python. h>
. PyQoj ect *_wap_foo(PyCbject *, ...) {
Wrapper functions > o
}
voi d initexanple() {
Initialization function > -

Four directives are available for inserting code

*% ... 9% inserts code into the header section.
«%wapper %4 ... % inserts code into the wrapper section.
*%nit % ... 9% inserts code into the initialization function.
% nline % ... 9% inserts code into the header section and "wraps" it.
SWIG Tutorial 6th International Python Conference 37

Notes

These directivesinsert code verbatim into the output file. Thisisusually necessary.

The syntax of these directivesisloosely derived from YACC parser generators which also use %f{,%} to insert supporting code.

Almost all SWIG applications need to insert supporting code into the wrapper output.

Code Insertion Examples

Including the proper header files (extremely common)

%rodul e opengl ™\
%

#i ncl ude <@./gl.h>

#i ncl ude <@./ gl u. h>

%

/1 Now |ist declarations

.
Module specific initialization
%rodul e natl ab
}).Initialize the nodul e when inported.
%nit %
eng = engQpen("matl ab42");
%
SWIG Tutorial 6th International Python Conference 38

Notes

Inclusion of header files and module specific initialization are two of the most common uses for the code insertion directives.

Helper Functions

Sometimes it is useful to write supporting functions

« Creation and destruction of objects.
« Providing access to arrays.
 Accessing internal pieces of data structures.

-

%rodul e darray
% nline %
doubl e *new darray(int size) {
return (double *) mall oc(size*sizeof (double));

doubl e darray_get (doubl e *a, int index) {
return afindex];

voi d darray_set (double *a, int index, double value) {
a[index] = val ue;

}
%

%ane(del ete_darray) free(void *);

SWIG Tutorial 6th International Python Conference 39

Notes

Helper functions can be placed directly inside an interface file by enclosing theminan %, % block.

Helper functions are commonly used for providing access to all sorts of datatypes. For our example above, we would be able to
use the functions from Python in a straightforward manner. For example :

fromdarray inport *

Turn a Python list into a C double array
def createfromist(l):
d = new darray(len(l))

for i in range(0,len(l)):
darray_set(d,i,I[i])
return d

Print out some elenments of an array
def printelenments(a, first, last):
for i in range(first,last):
print darray_get(a,i)

In many cases we may not need to provide Python access, but may need to manufacture objects suitable for passing to other C
functions.

Conditional Compilation

Use C preprocessor directives to control SWIG compilation

* The SWIG symbol is defined whenever SWIG is being run.
» Can be used to make mixed SWIG/C header files

//* header. h
A mxed SWJ C header file */
#ifdef SWG

%rodul e exanpl e
0,

#i ncl ude "header. h"
%
#endi f

/* C declarations */

#i.fndef SW G
/* Don't wap these declarations. */
#endi f

SWIG Tutorial 6th International Python Conference 40

Notes

SWIG includes an almost complete implementation of the preprocessor that supports#i f def , #i f ndef , #i f , #el se, #el i f,
and #endi f directives.

File Inclusion

The %include directive
« Includes a file into the current interface file.
« Allows a large interface to be built out of smaller pieces.
« Allows for interface libraries and reuse.

%rodul e opengl . i

% ncl ude gl . i

% ncl ude glu.i

% ncl ude aux. i

% ncl ude "vis.h"
% ncl ude hel per. i

« File inclusion in SWIG is really like an "import." Files can only be included once and
include guards are not required (unlike C header files).

SWIG Tutorial 6th International Python Conference a1

Notes

Like the C compiler, SWIG library directories can be specified using the - option. For example :

% swi g -python -1/hone/ beazley/ SWElib exanple.i

Two other directives, %ext er n and % npor t are also available, but not described in detail. Refer to the SWIG users manual for
more information.

Quick Summary

You now know almost everything you need to know

« C declarations are transformed into Python equivalents.

« C datatypes are mapped to an appropriate Python representation.
« Pointers can be manipulated and are type-checked.

» Complex objects are managed by reference.

This forms the foundation for discussing the rest of SWIG.
« Handling of structures, unions, and classes.
« Using the SWIG library.
« Python wrapper classes.
 Customization.
* And more.

* SWIG provides special directives for renaming, inserting code, including files, etc...

SWIG Tutorial 6th International Python Conference

Notes

42

A SWIG Example

SWIG Tutorial

6th International Python Conference

43

Building a Python Interface to OpenGL

OpenGL

« A widely available library/standard for 3D graphics.
* Consists of more than 300 functions and about 500 constants.
« Available on most machines (Mesa is a public domain version).

Interface Building Strategy (in a nutshell)

» Copy the OpenGL header files.

« Modify slightly to make a SWIG interface file.
* Clean up errors and warning messages.

» Write a few support functions.

* Build it.

Why OpenGL?
« It's a significant library that does something real.
« It's available everywhere.

« An early SWIG user wrapped it in only 10 minutes as his first use of SWIG (so it
sounded like a good example).

SWIG Tutorial 6th International Python Conference 44

Notes

The Strategy

Locate the OpenGL header files

<@./gl.h> /1 Main OpenCGL header file
<@/ gl u. h> /1 Wility functions
<d /gl aux. h> /1 Some auxiliary functions

Build the module
« Write a separate interface file for each library.

gl .i
glu.i
gl aux. i

« Combine everything using a master interface file like this

Il SWG Interface to OpenGL
%rodul e opengl

% ncl ude gl .i

% ncl ude gl u.i

% ncl ude gl aux. i

» Write a few supporting functions to make the interface work a little better.

SWIG Tutorial 6th International Python Conference

Notes

Wrapping gl.h

A simple interface file (first attempt):

%rodul e gl

0,

#i ncl ude <@/gl.h>
%

/1 Try grabbing it unnodified

% ncl ude “Q./gl.h"

A first attempt (SWIG 1.1)

% swi g -python -1/usr/local/src/Mesa-2.3/include gl.i

Generating wappers for Python

/usr/local/src/Mesa-2.3/include/ G/qgl.
/usr/local/src/Mesa-2.3/include/ G/qgl.
/usr/local/src/Mesa-2.3/include/ G/qgl.
/usr/local/src/Mesa-2.3/include/ G/qgl.

%

jm i s s

Line 751. Syntax error in input.
Line 754. Syntax error in input.
Li ne 755. Syntax error in input.

Li ne 1677. M spl aced endi f

« Hmmm. Not perfect, but only 4 errors in a 1600 line header file.

SWIG Tutorial

Notes

6th International Python Conference

46

Fixing the Bugs

In this case, SWIG is being confused by condition compilation

/typedef enum {

Error }
#i f def CENTERLI NE_CLPP

/* CenterlLine C+t+ workaround: */

gl _enum
typedef int G.enum
#el se
/* all other conpilers */
GLenum
#endi f

.

To fix it, simply copy the gl.h header file into gl.i file and edit

/%mdul e gl
0,
#i nclude <@&/gl.h>
%
. copy gl.h here ...
) typedef enum {
Fixed

} Genum /1 Renove condition conpilation.

.

SWIG Tutorial 6th International Python Conference

Notes

SWIG 1.2 (in development) has afull C preprocessor and generates no such errors when run on the samefile.

Wrapping glu.h

We take the same approach

%rodul e glu
0,

#i nclude <@/ gl u. h>

%

/1 Try grabbing it unnodified
% ncl ude “Q./glu.h”

A few different errors this time (but not many)

% swi g -python -1/usr/local/src/Mesa-2.3/include glu.i
Generating wappers for Python
/usr/local/src/Mesa-2.3/include/G/glu.h : Line 279. Error.
not allowed (remap with typedef).
/usr/local/src/Mesa-2.3/include/G/glu.h : Line 348. Error.
not allowed (remap with typedef).
/usr/local/src/Mesa-2.3/include/G/glu.h : Line 361. Error.
not allowed (remap with typedef).

%

Function pointer
Function pointer

Function pointer

SWIG Tutorial 6th International Python Conference

Notes

48

Fixing Function Pointers

Use the same tactic as before--make a copy of glu.h and edit it

/%mdul e glu

A

#include “GA/glu.h”
0,

/1 Copy the contents of glu.h here

Comment out _>/ / . extern void gl uQuadricCal | back(G.UquadricCoj *qobj,
the offending /1 GLenum whi ch, void (*fn)());
function

N\

Alternatively, if function pointers are needed, you can do this

% nline %
typedef void (*PVF)();
%

extern void gl uQuadri cCal | back(GLUquadri cObj *qobj,
GLenum whi ch, PVF fn);

SWIG Tutorial 6th International Python Conference 49

Notes

Handling function pointersisatricky business. SWIG can certainly pass pointers to functions around in Python, but writing
Python functionsin place of a C callback function is a different matter (although this can be accomplished).

Wrapping The Remaining Libraries

Use the same process

« Copy header files.
» Make minor tweaks if necessary.

Issues to keep in mind

* SWIG isn’t perfect. There may be a few minor parsing errors--especially with heavy
preprocessing or complicated declarations.

* Wrapping an entire header file may not be the best approach (it can lead to excessive
clutter in some cases).
Other issues

< Some functions in a library may be difficult to work with. For example :

void gl Material fv(GLenum face, G.enum pnarne,
const G.float *paranms);

«‘par ans’ is supposed to be a 4-element array.
« How do we manufacture such an object in Python and use it?

SWIG Tutorial 6th International Python Conference 50

Notes

Writing a few Helper Functions

Helper functions can be used to create useful objects.

/// hel p.i : OpenG. hel per functions
% nline %

fv[0] =a; fv[1] =b; fv[2] =c; fv[3] = d;

}

G.float *newfv4(C.float a, Gfloat b, Gfloat c, Gfloat d) {
G.float *f = (Gfloat *) malloc(4*sizeof (Gfloat));
setfv4(f,a, b, c,d);
return f;

}

0,

Y%ane(del fv4) void free(void *);

.

voi d setfv4(CG.float *fv, Gfloat a, Gfloat b, Gfloat ¢, Gfloat d) {

« Usually not difficult--just write normal C code.

Most interfaces will involve a few helper functions.

« C programs often weren't designed with scripting in mind.
« Sometimes they need a little help (but hopefully not therapy).

» Make a few functions to manufacture objects and perform other useful operations.

SWIG Tutorial 6th International Python Conference

Notes

51

Putting it all together

Final interface file :

/'l opengl .i

%rodul e opengl
% ncl ude gl .i

% ncl ude glu.i
% ncl ude gl aux. i
% ncl ude hel p.i

The steps (summary) :
» Copy header files.
« Make a few minor changes (only about a dozen in this case).
» Write a few helper functions.
« Compile the module.

SWIG Tutorial 6th International Python Conference

Notes

52

Python OpenGL Example

~

from opengl inport *

def displayObjects()
torus_diffuse = newfv4(0.7,0.7,0.0,1.0);
cube_di ffuse = newfv4(0.0,0.7,0.7,1.0);
sphere_di ffuse = newfv4(0.7,0.0,0.7,1.0);
octa_diffuse = newfv4(0.7,0.4,0.4,1.0);
gl PushMatri x();
gl Rotatef (30.0, 1.0, 0.0, 0.0);
gl PushMatri x();
gl Transl atef (-0.80, 0.35, 0.0);
gl Rotatef (100.0, 1.0, 0.0, 0.0);
gl Material f v(GL_FRONT, GL_DI FFUSE, torus_diffuse);
auxSol i dTorus(0. 275, 0.85);

def display()

aux! ni t Di spl ayMbde (AUX_SINGLE | AUX_RGB |
AUX_ACCUM | AUX_DEPTH) ;

aux! nitPosition (0, 0, 400, 400);

aux! ni t Wndow ("accanti");

nyinit();

reshape(400, 400) ;

display();

ﬁ

SWIG Tutorial 6th International Python Conference

Notes

Summary

Building an interface to a C library is relatively straightfoward

« Can often use header files.
» Might need to make minor changes.
« Write a few helper functions to aid in the process.

Some things to think about
* Wrapping a raw header file might result in an interface that is unusable.
« It is rarely necessary to access everything in a header file from Python.

« SWIG is meant to be fast, but it isn't a substitute for proper planning (nor is it magically
going to make you an expert interface designer).

* SWIG allows you to “grow” an interface. Start with raw headers and gradually refine
the interface until you like it.
Is this the only way?
* No, SWIG provides a variety of customization options.
« Stay tuned.

SWIG Tutorial 6th International Python Conference 54

Notes

While SWIG promotes the idea of simply being able to take a header file and make a Python interface, SWIG's use of C syntax is
really motivated by the need to make SWIG easy to use. Whileit is certainly possible to process araw header file, | feel that the
best results are obtained with alittle planning and attention to the precise functionality that you would like to expose to Python. It
is often unnecessary to access every single C function in alibrary from Python.

Objects

SWIG Tutorial

6th International Python Conference

55

Manipulating Objects

The SWIG pointer model (reprise)
* SWIG manages all structures, unions, and classes by reference (i.e. pointers)
» Most C/C++ programs pass objects around as pointers.
« In many cases, writing wrappers and passing opaque pointers is enough.
» However, in some cases you might want more than this.

Issues

* How do you create and destroy C/C++ objects in Python?

« How do you access the internals of an object in Python?

« How do you invoke C++ member functions from Python?

» How do you work with objects in a mixed language environment?

Concerns
« Don’t want to have to write a full C++ compiler to make it work (a nightmare)
« Don’t want to require code modifications to Python.
« Keep it minimalistic and simple in nature.

SWIG Tutorial 6th International Python Conference 56

Notes

Creating and Destroying Objects

Objects can be created and destroyed by writing special functions :

typedef struct {
doubl e x,y, z;

} Vector;
. M
SWIG Interface file ~
" %nline %
Vect or *new_Vector (doubl e x, double y, double z) {
Vector *v = (Vector *) nalloc(sizeof(Vector));
V->X = X; V->y =y, v->Z = Z;
return v;
}
voi d del ete_Vector(Vector *v) {
free(v);
}
%
-
SWIG Tutorial 6th International Python Conference 57

Notes

Creating and Using Objects in Python

/>>> v = new Vector(1, -3, 10) \
>>> w = new_Vector(0,-2.5,3)
>>> print v

_1100ef 00_Vect or _p

>>> print w

_1100ef 20_Vect or _p

>>> print dot_product(v,w
37.5

>>> a = cross_product (v, w)
>>> print a

_1100ef 80_Vect or _p

>>> del et e_Vect or (V)

>>> del et e_Vect or (w)

>>> del et e_Vector (a)

G .

« Special C helper functions are used to construct or destroy objects.
» The model is not radically different than C---we're just manipulating pointers.

Caveat

C/C++ objects created in this manner must be explicitly destroyed. SWIG/Python
does not apply reference counting or garbage collection to C/C++ objects.

SWIG Tutorial 6th International Python Conference 58

Notes

Whileit may be sensible to apply areference counting scheme to C/C++ objects, this proves to be problematic in practice. There
are asevera factors:

* Weoften don't know how a*“ pointer” was manufactured. Unlessit was created by mal | oc() or new; it would probably be a
bad idea to automatically invoke a destructor on it.

e C/C++ programs may use objectsinternally. 1t would be abad ideafor Python to destroy an object that was still being used
inside a C program. Unfortunately, thereis no way for Python to know this.

¢ A C/C++ program may performing its own management (reference counting, smart pointers, etc...). Python wouldn’t know
about this.

Overdll, | feel that explicit destruction is better than a garbage collection scheme that only works some of the time (you can
aways make things work correctly with explicit destruction--even though it might require alittle more code).

Accessing the Internals of an Object

This is also accomplished using accessor functions

% nline %
doubl e Vector_x_get (Vector *v) {
return v->x;

void Vector_x_set(Vector *v, double val) {
v->x = val;
}

%

<

>>> v = new_Vector(1,-3,10)
>>> print Vector_x_get(v)
1.0

>>> \ector_x_set(v, 7.5)

>>> print Vector_x_get(v)
7.5

>>>

« Minimally, you only need to provide access to the “interesting” parts of an object.
« Admittedly crude, but conceptually simple.

SWIG Tutorial 6th International Python Conference

Notes

59

Accessing C++ Member Functions

You guessed it

class Stack {
public:
St ack();
~St ack();
voi d push(Object *);
Qbj ect *pop();

b

% nline %

void Stack_push(Stack *s, Object *o) {
s- >push(0);

}

Obj ect *Stack_pop(Stack *s) {
return s->pop();

}

%

« Basically, we just create ANSI C wrappers around C++ methods.

SWIG Tutorial 6th International Python Conference

Notes

60

Automatic Creation of Accessor Functions

SWIG automatically generates accessor functions if given structure,
union or class definitions.

e N

Stack *new_ Stack() {
return new St ack;

}
voi d del ete_Stack(Stack *s) {

/Yrodul e st ack N\) delete s;
class Stack { voi d Stack_push(Stack *s, Cbject *o) {
public: s->push(0);
Stack(); I
~Stack(); Obj ect *Stack_pop(Stack *s) {
voi d push(Qvj ect *); return s->pop();

bj ect *po ;
i th dept E; P() int St ack_dept h_get (Stack *s) {

return s->depth;

(-
L

}

voi d St ack_dept h_set (Stack *s, int d) {
s->depth = d;

}

E

« Avoids the tedium of writing the accessor functions yourself.

SWIG Tutorial 6th International Python Conference 61

Notes

The creation of accessor functionsis so straightforward, it makes sense for SWIG to automate the process. Why write functions
by hand when SWIG can write them?

Parsing Support for Objects

SWIG provides parsing support for the following
« Basic structure and union definitions.
« Constructors/destructors.
« Member functions.
« Static member functions.
« Static data.
* Enumerations.
¢ C++ inheritance.

Not currently supported (mostly related to C++)

» Template classes (what is a template in Python?)
 Operator overloading.
 Nested classes.

However, SWIG can work with incomplete definitions

« Just provide the pieces that you want to access.
* SWIG is only concerned with access to objects, not the representation of objects.

SWIG Tutorial 6th International Python Conference 62

Notes

It isimportant to remember that SWIG only turns object definitions into accessor functions. This transformation can be easily
performed with incomplete or partial information about the real C/C++ object. Again, SWIG is avoiding the problem of object
data representation and using a scheme that relies upon of references.

Compare with CORBA, COM, and other systems.

Renaming and Restricting Members

Structure members can be renamed using %name

struct Foo {
Y%mame(spam voi d bar (doubl e);
%manme(status) int s;

}s

Access can be restricted using %readonly and %readwrite

class Stack {
publi c:
St ack();
~St ack();
voi d push(Object *);
Gbj ect *pop();

% eadonl y /1 Enabl e read-only node
i nt depth;
% eadwite /!l Re-enable wite access
};
SWIG Tutorial 6th International Python Conference

Notes

C++ Inheritance and Pointers

SWIG encodes C++ inheritance hierarchies

/cl ass Shape { \ />>> c = new drcle(7) \
public: >>> s = new_Squar e(10)
virtual double area() = 0; >>> print Square_area(s)
}s 100.0
>>> print Shape_area(s)
class Circle : public Shape { 100.0
publ i c: >>> print Shape_area(c)
G rcl e(doubl e radius); 153. 938040046
~Grcle(); >>> print Square_area(c)
doubl e area(); Traceback (innernost |ast):
b File "<stdin>", line 1, in ?
TypeError: Type error in argunent 1 of
class Square : public Shape { Square_area. Expected _Square_p.
Squar e(doubl e wi dt h); >>>
~Square();
doubl e area();
b

« The run-time type checker knows the inheritance hierarchy.
« Type errors will be generated when violations are detected.
« C++ pointers are properly cast when necessary.

SWIG Tutorial 6th International Python Conference 64

Notes
One of the problems with C++ inheritance is that pointer values may change when casting pointer values between derived classes
and base classes. Thisis especialy true when working with multiple inheritance. For example :

class A{ };

class B { };

class C: public A public B{ };

In this case, the object C may be organized in memory as follows :

B
or

Asaresult, casting a pointer from C to either of its base classes yields different results. That is:

C *c;
(A*) c!=(B*) c; /| Cast values are different!

When SWIG works with pointer values, it sometimes needs to change the pointer value. Thisis accomplished using conversion
functions such as the following :

void *CtoA(void *obj) {
C*c = (C*) obj;
A*a=(A*) c;
return (void *) a;

}

This conversion processis hidden from you, but occurs automatically in the SWIG pointer type-checker. Without this, SWIG
would be unable to support C++ multiple inheritance. SWIG does not currently use the new type-casting operationsin C++
(dynam c_cast, stati c_cast, etc...).

Shadow Classes

Writing a Python wrapper class
/cl ass Stack: \

def __init_ (self):
self.this = new_Stack()
class Stack { N\ def _ del _ (self):
public: del ete_St ack(sel f.this)
St ack(); def push(self,o0):
~St ack(); St ack_push(sel f.this, o)
voi d push(Qoj ect *); |: def pop(self):
Qbj ect *pop(); return Stack_pop(self.this)
int depth; def _ getattr_ (self, name):
b if name == ‘depth’:
J return Stack_depth_get(self.this)
raise AttributeError, nane
- 4

« Can encapsulate C structures or C++ classes with a Python class

» The Python class serves as a wrapper around the underlying C/C++ object (and is said
to “shadow” the object).

« Easily built using pointers and low-level accessor functions.
« Contrast to writing a new Python type in C.

SWIG Tutorial 6th International Python Conference 65

Notes

An dternative approach to writing wrapper classesin Python isto map C/C++ objectsinto new Python types. Thisapproach may
provide better performance and a somewhat more “natural” interface. However, there are a number of problemsrelated to

making new Python types. One of the more serious problems (well, more annoying than serious), isthat you can’t inherit from a
type. A number of efforts are attempting to address this problem with varied success (the MESS extension is one such example).

By writing wrappersin Python, C structures or C++ classes can be accessed through areal Python class. We can inherit from this
class and extend it with new functionality. Thisturns out to be useful in practice (I've even used multiple inheritance between a
C structure and a Python class in one application).

Automatic Shadow Class Generation

SWIG can automatically generate Python shadow classes
% swi g -c++ -python -shadow st ack. i
* When used, SWIG now creates two files :

st ack. py # Python wappers for the interface
stack_wap.c # C w apper nodul e.

Creation of shadow classes results in a layering of two modules

Python wrappers — stack.py

Low-level C wrappers — stackc.so —I

« Typically, only the Python layer is accessed directly.
« The original SWIG interface is still available in the ‘st ackc’ module.

Shadow classes are just an interface extension

« They utilize pointers and accessor functions.
» No changes to Python are required.

SWIG Tutorial 6th International Python Conference 66

Notes

When using shadow classes, SWIG creates two modules. For example:
%rodul e exanpl e
a.e.cl arations

would result into two modules

exanpl e. py # The Python wrappers
exanpl e_wrap. c # The C wrappers

To build the module, ‘exanpl e_w ap. ¢’ file should be compiled and linked into a shared library with the name
‘exanpl ecnodul e. so’. Note that an extra ‘¢’ has been appended to the module name.

Now, to use the module, simply useit normally. For example:

>>> jnport exanple

Thiswill load the Python wrappers (and implicitly load the C extension module aswell). To usethe old C interface, you can |load
it asfollows:

>>> jnport exanpl ec # Load original Cinterface.

1 .
Here’s what SWIG really creates :
/# This file was created automatically by SWG \
) . . inport stackc
This class defines the methods available class StackPtr :
for ageneric Stack object (given asa def __init__(self,this):
. . self.this = this
pointer). The constructor for this class o~ self. thisown = 0
simply takes a pointer to an existing v def __del __(self):
. A if self.thisown == 1 :
ObJeCt and mcapwlates” in aPython stackc. del ete_Stack(sel f.this)
class. def push(sel f, arg0):
stackc. St ack_push(sel f.this, arg0)
def pop(self):
val = stackc. Stack_pop(self.this)
return val
def __setattr__(self, nane, val ue):
if name == "depth" :
stackc. St ack_dept h_set (sel f.this, val ue)
return
self.__dict__[name] = value
def __getattr__(self,nane):
if name == "depth" :
return stackc. Stack_depth_get(self.this)
rai se AttributeError, name
def __repr__(self):
- - return "<C Stack instance>"
Thisclassis used to create anew Stack
object. The constructor callsthe cl aszef" aclkfnst ac?:;r 2))
underlying C/C++ constructor to generate i self.this = stackc. new Stack()
anew object. self.thisown = 1
SWIG Tutorial 6th International Python Conference 67

Notes

To effectively use shadow classes with real C/C++ programs, you must consider two cases
¢ The creation of new objectsin Python.

¢ Providing access to objects that have been already created in C/C++.

The use of apair of Python classes handles both cases. Theclass St ackPt r above is used to provide a Python wrapper around
an existing Stack object while the class St ack is used to create a new Stack object.

One of the reasons for using two classesis to simplify the handling of object construction. If asingle class were created, it might
be impossible to distinguish the two difficult cases (especidly, if the real C/C++ constructor took arguments of its own).

Using a Shadow Class

This is the easy part--they work just like a normal Python class

/>>> inport stack)
>>> s = Stack()
>>> s. push(“Dave”)
>>> s. push(“M ke”)
>>> s. push(“ Qui do”)
>>> s. pop()

Qui do

>>> s. depth

2

>>> print s.this
_1008fe8_Stack_p
>>>

- .

In practice this works pretty well

A natural interface to C/C++ structures and classes is provided.
» C++ classes work like Python classes (you can even inherit from them)

« The implementation is relatively simple (it's just a layer over the SWIG pointer
mechanism and accessor functions)

» Changes to the Python wrappers are easy to make---they’re written in Python

SWIG Tutorial 6th International Python Conference

Notes

68

Nested Objects

/struct Vector {
doubl e x;
doubl e vy;
doubl e z;

b

struct Particle {

Particle();
~Particle();
int type;
Vect or r;
Vect or V;
Vect or f;

-

Shadow classing even works with nested objects

~

>>> p.r

>>> p.r.x
>>> p.r.y
>>> p.r.z

>>> print
-7.5
>>> p.v =

>>> print
-7.5
>>>

S G

=Nl

TT

/>>> p = Particle()

<C Vector instance>

0.0
-7.5
-1.0
r.y

r
v.y

* SWIG keeps track of various objects and produces appropriate Python code.
« Access to sub-objects works exactly as in C

« Everything is still being manipulated by reference (all operations are being performed
directly on the underlying C object without any data copying).

SWIG Tutorial

Notes

6th International Python Conference

69

Managing Object Ownership

Who owns what?
« Objects created by Python are owned by Python (and destroyed by Python)
« Everything else is owned by C/C++.
« The ownership of an object is controlled by the ‘t hi sown’ attribute.

1 # Python owns the object
0 # C/ C++ owns the object.

sel f.thi sown
sel f.thi sown

« The owner of an object is responsible for its deletion!

Caveat : sometimes you have to explicitly change the ownership

/# Convert a Python list to a Node |ist \
def listtonode(l):
struct Node { n = NodePtr(“NULL");

Node() ; for i inl:

~!\bde(); m = Node()
i nt val ue; mval ue = i
Node *next; n.next = m

¥ n.thisown = 0
n=m
return n

SWIG Tutorial 6th International Python Conference 70

Notes

If you understand the code example, you can safely say that you understand Python’s reference counting mechanism.

In the example, we are saving pointers to objectsin the ‘next ’ field of each data structure. However, consider the use of the
variables‘n’ and ‘m’ in the Python code above. Asshown, ‘n’ will be assigned to anew object on each iteration of the loop. Any
previous value of ‘N’ will be destroyed (because there are no longer any Python referencesto it). Had we not explicitly changed
the ownership of the object, this destruction would have a so destroyed the original C object. This, in turn, would have created a
linked list of invalid pointer values---probably not the effect that you wanted.

When the ‘t hi sown’ variableis set to 0, Python will still destroy ‘n’ on each iteration of the loop, but this destruction only
applies to the Python wrapper class--not the underlying C/C++ object.

 Debugging.

A C structure

struct | mage {
int wdth;
int height;

~\

J

Some C functions

Image *ingcreate(int w, int h);

int color);

void ingclear(lmge *im int color);
void ingplot(lmage *imint x,int vy,

9

~

)

Extending Structures and Classes

Object extension : A cool trick for building Python interfaces

« You can provide additional “methods” for use only in Python.

« Attach functions to C structures (i.e. object-oriented C programming) .

A Python wrapper class

/class | mage:
def __init_ (self,wh):
self.this = ingcreate(w, h)
def clear(self,color):
i ngcl ear (sel f.this,color)
def plot(self,x,y,c):
ingpl ot (self.this,x,y,c)

>>> i = | mage(400, 400)
>>> . cl ear (BLACK)
>>> i . pl ot (200, 200, BLUE)

o

SWIG Tutorial

Notes

6th International Python Conference

71

Class Extension with SWIG

The %addmethods directive
4

%odul e i mage

struct | mage {
int wdth;
int height;

I
%addnet hods | mage {
Image(int w, int h) {
return ingcreate(w h);

void clear(int color) {
return ingclear(self,color);

void plot(int x, int y, int color) {

}

return ingplot(self,x,y,color);

e Same syntax as C++.

« Just specify the member functions you would like to have (constructors, destructors,
member functions).

* SWIG will combine the added methods with the original structure or class.

SWIG Tutorial 6th International Python Conference 72

Notes

Unlike C++, SWIG uses the variable ‘self’ to hold the original object in added methods. One motivation for thisis that class
extension is not the same as C++ inheritance nor are the new methods added to any real C++ class. Many C++ compilers would
complain about use of the ‘this’ pointer outside of a class so SWIG uses a different name.

Adding Methods (cont...)

Works with both C and C++

< Added methods only affect the Python interface--not the underlying C/C++ code.
« Does not rely upon inheritance or any C++ magic.

How it works (in a nutshell)

* SWIG creates an accessor/helper function, but uses the code you supply.
« The variable ‘self’ contains a pointer to the corresponding C/C++ object.

%ddnet hods | mage {

voi d cl ear(int color) { voi d I mage_cl ear (I mage *self, int color) {
clear(self,color); |:>) clear(self,color);

}

« If no code is supplied, SWIG assumes that you have already written a function with
the required name (methods always have a name like ‘Cl ass_net hod’).

» SWIG treats the added method as if it were part of the original structure/class
definition (from Python you will not be able to tell).

SWIG Tutorial 6th International Python Conference 73

Notes

Adding Special Python Methods

%addmethods can be used to add Python specific functions
™

/typedef struct {
doubl e x,vy, z;
} Vector;

%ddnet hods Vector { >>> v = Vector(2,5.5,9)
>>> print v

char *__str_ () { [2, 5.5, 9]
static char str[256]; >>>

sprintf(str,”[%, %, %",
sel f->x, sel f->y, sel f->z);
return str;

}
}s
N\ 4

» Most of Python'’s special class methods can be implemented in C/C++ and added to
structures or classes.

« Allows construction of fairly powerful Python interfaces.

SWIG Tutorial 6th International Python Conference 74

Notes

The use of a static variable above insures that the ‘char *' returned exists after the function call. Python will make a copy of
the returned string when it converts the result to a Python object.

A safer approach would al so include some bounds checks on the result string.

Accessing Arrays of Objects

Added methods to the rescue...

/typedef struct { \ />>> a = varray(1000)
doubl e x,y, z; >>> print af100]
} Vector; [0, 0, O]
>>> for i in range(0,1000):

Vector *varray(int nitens); afi]l.x =i

>>> print a[500]
%ddnet hods Vector { |:> [500, 0, 0]
>>>

Vector *__getitem_ (int index) {
return sel f +i ndex;

}
L
. . G

« Accesing arrays of any kind of object is relatively easy.
« Provides natural access (arrays can be manipulated like you would expect).
« Similar tricks can be used for slicing, iteration, and so forth.

SWIG Tutorial 6th International Python Conference

Notes

Numeric Python also provides interesting methods for accessing large arrays of numerical data.

Making Sense of Objects (Summary)

SWIG uses a layered approach

High Level Access to

C/C++ structures and objects Python Shadow Classes
Helper/Accessor functions C/C++ Accessor Functions
that provide access to objects

Manipulation of objects

as opaque pointer values ANSIC Wrappers

All three modes are useful and may be mixed in the same program
 Use opaque pointers when access to an object’s internals is unnecessary.
« Use C/C++ accessor functions when occasional access to an object is needed.

 Use Python shadow classes when you want an interface that closely mimics the
underlying C/C++ object.

SWIG Tutorial 6th International Python Conference 76

Notes

Interested users might want to compare the SWIG approach to that used in other object systems such as CORBA, ILU, and COM
(in fact, some users have used SWIG in conjunction with these systems).

The SWIG Library

SWIG Tutorial

6th International Python Conference

7

The SWIG Library

SWIG is packaged with a standard “library”
« Think of it as the SWIG equivalent of the Python library.

Contents of the library :
* Interface definitions to common C libraries.
« Utility functions (array creation, pointer manipulation, timers, etc...)
* SWIG extensions and customization files.
« Support files (Makefiles, Python scripts, etc...)

Using the library is easy--just use the %include directive.

%rodul e exanpl e

% ncl ude nall oc.i
% ncl ude pointer.i
% nclude tiners.i

» Code from the library files is simply inserted into your interface.

SWIG Tutorial 6th International Python Conference

Notes

Library Structure

A typical installation

lfusr/local/lib/swig_lib/
/ pyt hon
/tcl
/ perl5
/guile

« General purpose files (language independent) are placed in the top level

« Language specific extensions are placed in subdirectories. (Python extensions are
unavailable when building a Perl module for example).

Setting the library search path (optional)
« Set the environment variable SW G _LI B
% setenv SWG LIB /usr/local/lib/swig_lib

» Use the - | option

swig -l/usr/local/lib/swig_lib -1/usr/beazley/ifiles \
interface.i

SWIG Tutorial 6th International Python Conference 79

Notes

A Simple Library File

malloc.i

/// SWGinterface to sone nenory allocation functions
%odul e mal | oc

A

#i ncl ude <stdlib.h>

%

void *mal | oc(unsigned int size);

void *cal |l oc(unsigned int nobj, unsigned int size);
void *realloc(void *ptr, unsigned int size);

void free(void *ptr);

.

Using the library file

 Copy it to the SWIG library.

* Now, just use ‘% ncl ude nal | oc. i’ whenever you want these functions in your
interface.

Don’t rewrite--build interfaces out of bits and pieces.

SWIG Tutorial 6th International Python Conference 80

Notes

The %module directive found in library filesis overridden (or ignored) by any modules that include thefile. The functionality of
alibrary fileis merely inserted into the module that is being created (i.e. the functions become part of the new module).

Example : The SWIG Pointer Library

%include pointer.i
« Provides high level creation, manipulation, and destruction of common types
« Can create arrays, dereference values, etc...
* The cool part : uses the SWIG type-checker to automatically infer types.

%rodul e exanpl e
% ncl ude pointer.i

voi d add(doubl e *a, double *b, double *result);

<

/>>> a = ptrcreate(“double”, 3.5))
>>> b = ptrcreate(“double”, 7.0)
>>> ¢ = ptrcreate(“double”, 0.0)
>>> add(a, b, c)
>>> print ptrval ue(c)

10.5

>>> ptrset(a,-2.0)
>>> print ptrval ue(a)
-2.0

>>> ptrfree(a)

>>> ptrfree(b)

>>> ptrfree(c)

.

SWIG Tutorial 6th International Python Conference 81

Notes

The SWIG pointer library can also perform type-casting, pointer arithmetic, and the equivalent of arun-time ‘typedef’. One of the
more useful features of the library isits dynamic deferencing operations. For example, pt r val ue will return the value of any
pointer that is one of the built-in C datatypes (int, long, short, char, float, double, etc...). The type-determination is made
dynamically (since al pointers are already encoded with that information).

Library Example : Embedding

%include embed.i

« Includes all of the code needed to build a static version of Python
* The SWIG module is added automatically.

« All builtin Python modules (found in Setup) are also included.

« Compare to the process described earlier.

%rodul e exanpl e
% ncl ude enbed. i

% swi g - pyt hon exanple.i

% cc -c exanple_wap.c -I1/usr/local/include/pythonl.4 \
-1/usr/local/lib/pythonl.4/config

%1 d exanpl e_wrap.o -L/usr/local/lib/pythonl.4/config \
-1 Modul es -1 Python -1 Cbjects -1Parser -1dl -1socket -Im\
-0 nypython

SWIG Tutorial 6th International Python Conference

Notes

82

Library Example : Support Files

Need a Python Makefile in a hurry?

% swi g -python -co Makefile
Makefil e checked out fromthe SWGIibrary
%

« Copies a preconfigured Python Makefile from the library into the current directory.
« Edit it and you're off and running.

/ # Cenerated automatically from Makefile.in by configure.
$Header : $
SW G Pyt hon Makefile

By default this file is set up for dynamc |oading, but it can
be easily custom zed for static extensions by nodifying various
portions of the file.

#
#
#
#
This file can be used to build various Python extensions with SWG
#
#
#
#

SWIG Tutorial 6th International Python Conference

Notes

In principle any kind of file can be placed in the SWIG library. Think of it as arepository of useful stuff.

83

The SWIG Documentation System

SWIG Tutorial 6th International Python Conference

84

The SWIG Documentation System

It's relatively easy to make an interface...

“But what were those 400 functions | justed turned into a Python module?”

SWIG can automatically produce documentation

 Supports HTML, ASCII, and LaTeX

« Fully hierarchical (sections, subsections, etc...)

« Can turn C/C++ comments into descriptive text.

« Provides options for formatting, sorting, etc...

« Limited interaction with Python doc strings (work in progress).

Not a full-blown documentation system
» Mainly designed to document the scripting interface.
« Also used by the SWIG library (which is self-documenting).
* Your mileage may vary.

SWIG Tutorial 6th International Python Conference 85

Notes

Documentation Example

int fact(int n);
/* Conputes n factorial */

L

fact(n)
[returns int]
Conputes n factorial

Generation rules
< Documentation follows the syntax of the target language (Python, Tcl, etc...)
« Function argument names are taken from the C declaration.
« C comments become descriptions.

SWIG Tutorial 6th International Python Conference

Notes

86

Titles, sections, and subsections

Interface files can be organized in a hierarchical manner

/%itle“Ny Appl i cation”)
%odul e exanpl e

%section “G aphics”
Y%subsection “2D Plotting”
. Cdeclarations ...
Y%subsection “3D Plotting”

.. Cdeclarations ...
Y%subsubsection “Lighting”

%subsubsection “Vi ew ng transfornations”

Y%ection “File |/ O

\...

« Encourages interface files to be organized in a somewhat reasonable manner.
 Can be used to combine interface definition, documentation, and header files.

SWIG Tutorial

Notes

6th International Python Conference

87

Interfaces can be turned into

HTML Example

Grall:

Help

File Go Search Bookmarks Preferences
URL: [fileshome/heazley/SWIG/SWIGT. The/swig_lib/autodoc_wrap.himl

web documents

Hierarchical structure is
converted into a hyperlinked
table of contents —»

SWIG Library Reference
Version 1.1 Beta 2
Decenber, 1996

Copyright {€) 1996
Dave Beazley

(This file was autematically generated by SWIG)

Contents

1. Introduction
© 1.1. Call for contributions
® 2. Character Class Testing Module
* 3. Ivlemary Allocation iviodule
#* 4 Iemary Manipulation Module
5. Perl Library Files
© 5.1, perlmain.
® 5, Python Library Files
O B.1. embedi
0 B.2. embed13i
® 7 SWIG C Array hiodule
© ZL1. Inteder Arrays
© 7.2 Floafing Point Arrays
© 7.3. 5iring Arrays
® 5. SWIG Math viodule
© B.1. Functions
© B.2. Mathematical constants

3 Tcllibrary Files
FERRGENY

L_L1{

SWIG Tutorial

Notes

6th International Python Conference

88

Adding Additional Text

Can add with the %text directive.

-

%rodul e carray
%ection “SWG C Array Mdule”, pre

% ext %
% ncl ude array. i

Thi s nodul e provides scripting | anguage access to various kinds of C G+
arrays. For each datatype, a collection of four functions are created :

<type>_array(size) : Create a new array of given size
<type>_get (array, index) : CGet an elenent fromthe array
<type>_set(array, index, value) : Set an elenent in the array

<t ype>_destroy(array) . Destroy an array

The functions in this library are only | owlevel accessor functions
designed to directly access C arrays. Like C no bounds checking is
performed so use at your own peril.

%

» Use additional text to describe modules in more detail

SWIG Tutorial 6th International Python Conference

Notes

89

Example from the SWIG Library

Fle Go Search Bookmarks Preferences

Help

@ URL: [fileshomerbeazley/SWIGSWIGT .1 harswig_lib/autodoc_wrap. himl

7. SWIG C Array Module

$include array.i

This medule provides scripting language access to various kinds of C/C+
arrasys. For each datatype, a collection of four functions are created :

<type>_array{size} : Create a new array of given size
<type> get{array, index) Get an element from the array
<type> set{array, index, value) : Set an element in the array
<typer_destroy(array) Destroy an array

The functions in this library are only low-level accessor functions
designed to directly access € arrays. Like €, no bounds checking is
performed so use at your own peril.
7.1. Integer Arrays
The following functions provide access to integer arrays (mapped
omto the € 'int' datatype.
int_array(nitems);

[returns int ¥

The array is oreated using malleo{) in C and new{} in C++.
int_destroy(array);

[returns woid
Destroys the given array.

Creates a mew array of imtegers. nitems specifies the mumber of elements

=

SWIG Tutorial

Notes

6th International Python Conference

920

Preprocessing

SWIG Tutorial

6th International Python Conference

91

Preprocessing

SWIG contains a modified version of the C preprocessor

« Conditional compilation of interface files.
» Macro expansion (SWIG 1.2).

Caveat : the SWIG preprocessor differs as follows
« #i ncl ude definitions are ignored.
» C/C++ comments are left in the source (these are used for documentation)
« #def i ne statements are used to create constants (require special handling).

Note :

SWIG 1.1 and earlier provide limited conditional compilation. SWIG 1.2 (under
development) provides full support for macro expansion and most of the other
capabilities of a full preprocessor.

SWIG Tutorial 6th International Python Conference 92

Notes

Making Mixed Header/Interface Files

SWIG directives can be placed in C header files

* The SWIG symbol is defined whenever SWIG is running.
« Conditionally compile SWIG directives into a header file when needed.

/#i fndef _HEADER H)
#defi ne _HEADER H
#if def SWG
%rodul e exanpl e
A
#i ncl ude “header.h”
%

#endi f

/* Don't wap this */

#i fndef SWG

voi d foobar(double (*func)(), ...);
#endi f

G .

This approach makes it a little easier to keep interfaces consistent.

SWIG Tutorial 6th International Python Conference

Notes

93

Working with Macros (SWIG 1.2)

Macro expansion can be used with very complex header files

4 #i f ndef HEADER H
#def i ne HEADER_H
#ifdef SWG
%rodul e exanpl e
%
#i ncl ude “header. h”
%
#endi f
#def i ne EXTERN extern
#define _ANSI _ARGS (a) a

iE'X;I'ERN voi d spam _ANSI _ARGS ((int a, double b));

.

» Macros can be used as long as they eventually result in an ANSI C/C++ declaration.

« In extreme cases, one could probably redefine most of SWIG’s syntax (at the expense
of really confusing yourself and others).

SWIG Tutorial 6th International Python Conference 94

Notes

Perversions of Preprocessing

Macro expansion leads to other “interesting” possibilities

/1 Make SWG wappers around instantiations of a C++ tenplate class
%

#include “list.h”

%

/1 Define a macro that nmirrors a tenplate class definition
#define LI ST_TEMPLATE(nane, type) \
%\
typedef List<type> nane; \
%\
class nare {\
public:\
name();\
~nanme();\
voi d append(type); \
int length(); \
type get(int n); \

/1 Now create wappers around a bunch of different lists
LI ST_TEMPLATE(! ntLi st,int)

LI ST_TEMPLATE(Doubl eLi st, doubl e)

LI ST_TEMPLATE(Vect or Li st, Vector *)

LI ST_TEMPLATE(Stri ngLi st, char *)

SWIG Tutorial 6th International Python Conference 95

Notes

While SWIG only supports a subset of C/C++, it often possible to workaround these problems in clever ways. For example, the
above code generates wrappers around afew C++ template instantiations using a combination of a‘typedef’ and a class definition
(which is only given to SWIG).

Advanced SWIG Features

SWIG Tutorial

6th International Python Conference

96

Exception Handling

« Translating C error conditions into Python exceptions.
« Catching C++ exceptions.
« Improving the reliability of our Python modules.

The %except directive

« Allows you to define an application specific exception handler
« Fully configurable (you can do anything you want with it).

/ %except (pyt hon) {

try {
$function /* This gets replaced by the real function call */

}
cat ch(RangeError) {

PyErr_Set String(PyExc_I ndexError, ”index out-of-bounds”);
return NULL;

}
-

 Exception handling code gets inserted into all of the wrapper functions.

Python has a nice exception handling mechanism...we should use it.

SWIG Tutorial 6th International Python Conference

Notes

97

SWIG Exception Library

SWIG includes a library of generic exception handling functions

« Language independent (works with Python, Tcl, Perl5, etc...)
» Mainly just a set of macros and utility functions.

/ % ncl ude exceptions.i
%except (pyt hon) {

try {
$f uncti on

}
cat ch(RangeError) {

SW G exception(SW G_|I ndexError, ”i ndex out - of -bounds”);
}

}
-

Other things to note
« Exception handling greatly improves the reliability of C/C++ modules.
» However, C/C++ applications need to be written with error handling in mind.

« SWIG can be told to look for errors in any number of ways--as long as there is an error
mechanism of some sort in the underlying application.

SWIG Tutorial 6th International Python Conference 98

Notes

SWIG isnot limited to C++ exceptions or formal exception handling mechanisms. An exception handling might be something as
simple asthe following :

%except (pyt hon) {
$f unction
if (check_error()) {
char *msg = get_error_nsg();
SW G_excepti on(SW G Runti neError, nsg);

}

wherecheck_error () andget _error_nsg() areC functionsto query the state of an application.

Constraint enforcement

Simple example

The Constraint Library

« Can apply constraints/conditions to function input values.
« Useful for catching bogus values and other problems.

/ %rodul e exanpl e
% ncl ude constraints.i

doubl e exp(doubl e x);

doubl e | og(doubl e PCSI Tl VE) ; I
doubl e sqrt (doubl e NONNEGATI VE) ; I
doubl e i nv(doubl e NONZERO) ; I

void free(void *NONNULL); I

.

Al ow positive values only
Nonnegati ve val ues only
Non- zero val ues only

Non- NULL pointers only

« Violations of the conditions result in Python exceptions.
« Catch errors before they get to the underlying C code!

SWIG Tutorial 6th International Python Conference 99

Notes

Applying Constraints to New Datatypes

Name matching rules

« Constraints are applied to a (type,name) pair corresponding to the datatype and
function parameter name.

» One can assign different rules to different combinations.

The %apply directive

« Applies a rule to a (type,name) pair.

/% ncl ude constraints.i

%ppl y Nunber POSITIVE { Real px };
%pply Pointer NONNULL { Vector *, Particle *, Matrix * };

/1 px must be positive!
Real |og(Real px);

/1 Vectors nust be non-NULL
doubl e dot _product (Vector *a, Vector *b);

.

« Allows very flexible handling of function parameters---especially if your code is using
a naming convention.

SWIG Tutorial 6th International Python Conference

Notes

100

Typemaps

Typemaps allow you to change the processing of any datatype
< Handling of input/output values.
« Converting Python objects into C/C++ equivalents (tuples,lists, etc...)
« Telling SWIG to use new Python types.
» Adding constraint handling (the constraint library is really just typemaps).

Very flexible, very powerful
« You can do almost anything with typemaps.
«*You can even blow your whole leg off (not to mention your foot).
« Often the topic of discussion on the SWIG mailing list

Caveats

» Requires knowledge of Python’s C API to use effectively.

« It's possible to break SWIG in bizarre ways (an interface with typemaps might not even
work).

* Impossible to cover in full detail here.

SWIG Tutorial 6th International Python Conference 101

Notes

Typemaps : In a Nutshell

What is a typemap?

« A special processing rule applied to a particular (datatype,name) pair.
doubl e span{int a, int);

(doubl e,”spant) (int,”a”) (int,”")

Pattern Matching Rules

» SWIG looks at the input and tries to apply rules using a pattern matching scheme

« Examples :
(int,”") # Matchs all integers
(int,”a"”) # Matches only “int a
(int *,"") # Matches “int *' and arrays.
(int [4],"") # Matches ‘int[4]’
(int [ANY],"") # Matches any 1-D “int’ array

(int [4][4],"t”) # Matches only “int t[4][4]’
« Multiple rules may apply simultaneously
* SWIG always picks the most specific rule.

SWIG Tutorial 6th International Python Conference

Notes

The Typemap Library

typemaps.i
« A SWIG library file containing a variety of useful typemaps.
» Handling input/output arguments and other special datatypes.

%rodul e exanpl e
% ncl ude typenaps. i

voi d add(doubl e *1 NPUT, doubl e *I NPUT, doubl e *QUTPUT) ;

Y%apply int QUTPUT { int *width, int *height };
voi d get_viewport(lmage *im int *width, int *height);
>>> add(3, 4)

<

>>> g = get_viewport(im
>>> print a

[500, 500]

>>>

« Hmmm. This is much different than the standard pointer model we saw before
« Typemaps allow extensive customization!

SWIG Tutorial 6th International Python Conference 103

Notes

The typemaps.i file contains a number of generally useful typemaps. You should check here before writing a new typemap from
scratch.

Writing a New Typemap

Prerequisites

« Need to relatively comfortable with SWIG

« Should be somewhat familar with Python extension writing (and the Python C API)
The %typemap directive

« Used to define new SWIG typemaps at a low level.

/1 Sone sinple SWG typenmaps
% ypemap(pyt hon,in) int, short, long {
if (!Pylnt_Check($source)) {
PyErr_Set String(PyExc_TypeError,” Argunent $argnumnot an integer!”);
return NULL;

}
$target = ($type) Pylnt_AsLong($source);

« The code given to a typemap is inserted directly into wrapper functions.

» The variables $sour ce,$t ar get ,$t ype, etc... are filled in with the names of C
variables and datatypes.

* Rule of thumb : $sour ce is original data. $t ar get contains the result after
processing.

SWIG Tutorial 6th International Python Conference

Notes

104

How Typemaps Work

% ypemap(python,in) int {
see previous slide ...
}

int span(int a, int b);

<

/ static PyObject *_w ap_spanm(PyCbject *self, PyCbject *args) {
PyObj ect * _resultobj;

int _result, _arg0O, _argl;

PyObject * _obj0 = 0, *_objl = 0;

if(!PyArg_ParseTupl e(args, " OO spani', & obj 0, & obj 1))

return NULL;
{
if (!Pylnt_Check(_obj0)) {
typemap > zFL:HSﬁiE:_H ng(PyExc_TypeError, "Argunent 1 not an integer!");
}
_arg0 = (int) Pylnt_AsLong(_objO0);
}
{
if (!Pylnt_Check(_obj1)) {
PyErr_Set String(PyExc_TypeError, "Argunent 2 not an integer!");
typemap —> return NULL;
}
_argl = (int) Pylnt_AsLong(_obj1);
}
_result = (int)spanm(_arg0, _argl);
_resultobj = Py_Buildvalue("i", _result);
return _resultobj;
SWIG Tutorial 6th International Python Conference 105

Notes

Typemap Methods

Typemaps can be defined for a variety of purposes

« Function input values (“in”)

« Function output (“out”)

« Default arguments

* Ignored arguments

« Returned arguments.

* Exceptions.

« Constraints.

« Setting/getting of structure members
» Parameter initialization.

The SWIG Users Manual has all the gory details.

SWIG Tutorial 6th International Python Conference

Notes

106

Typemap Applications

Consider our OpenGL example

>>> torus_di ffuse = newfv4(0.7,0.7,0.0,1.0);
>>> gl Material fv(G._FRONT, G__Dl FFUSE, torus_diffuse);

>>> del fv4(torus_diffuse)

« Needed to manufacture and destroy 4-element arrays using helper functions.

Now a possible typemap implementation
» We define a typemap for converting 4 element lists to 4 element arrays.

* Rebuild the OpenGL interface with this typemap.

>>> torus_diffuse = [0.7,0.7,0.0,1.0]
>>> gl Material fv(G_FRONT, G__Dl FFUSE, t orus_di f f use)

or sinmply ...

>>> gl Material fv(G_FRONT, GL_DI FFUSE, [0.7,0.7,0.0,1.0])

* Yes, that's much nicer now...

SWIG Tutorial 6th International Python Conference

Notes

Typemaps : The Bottom Line

Typemaps can be used to customize SWIG

« Changing the handling of specific datatypes.
« Building better interfaces.
« Doing cool things (consider Mark Hammond's Python-COM for instance).

Typemaps can interface with other Python types
« Python lists could be mapped to C arrays.
« You could provide a different representation of C pointers.
-:t is)possible to use the types of other Python extensions (NumPYy, extension classes,
etc...).
Some caution is in order
» Typemaps involve writing C/C++ (always risky).

 Understanding the Python C API goes a long way.
« Typemaps may break other parts of SWIG (shadow classes in particular).

SWIG Tutorial 6th International Python Conference 108

Notes

Practical Issues

SWIG Tutorial

6th International Python Conference

109

Practical Issues

You've had the grand tour, now what?

« Problems and pitfalls in interface generation.
» Working with shared libraries.

¢ Run-time problems.

» Debugging a Python extension.

« Software construction tips.

Python extension building is only one piece of the puzzle

In this section | hope to describe some of the problems I've experienced using
SWIG/Python and how to work around them.

SWIG Tutorial 6th International Python Conference

Notes

110

Give me Your Namespace

C/C++ Namespace collisions

« Fortunately this is rare since most Python functions start with ‘Py’.
e C/C++ function names may conflict with Python commands.

» C/C++ libraries may have namespace collisions with themselves.
« A fun problem (but one that has not gone unnoticed).

Resolving conflicts with Python’s C implementation

» Use a C macro to redefine symbols in the original C library.
« Unfortunately, this requires recompiling the entire library.
» Might be able to hide with a wrapper.

Resolving conflicts with Python built-in commands

« Use the SWIG %mane() to rename functions.

« A C/C++ application may have a namespace conflict with Python’s implementation.

SWIG Tutorial 6th International Python Conference

Notes

111

Namespace Problems (cont...)

Header file conflicts

« Caused when one of Python’s header files has the same name as one used by your C

program.

 Can use explicit file names :
%
#i ncl ude “/hone/ beazl ey/ app/i ncl ude/ obj ect. h
%

» Use symbol links to rename the header file to something else.
« Create a special header file exclusively for interface building

A

#i ncl ude “nyapp_i nterface. h”

%

« As a last resort, copy all of the header files into the interface file like this

%

... copy all header files here ...
%

SWIG Tutorial 6th International Python Conference 112

Notes

More Namespace Problems

Resolving conflicts between C libraries

 Not easy to fix---perhaps impossible if using static linking.
« Using shared libraries and dynamic loading seems to fix many problems.
« Use the preprocessor to try and mangle symbols.

Interesting diversion (NICS)

* NIST Identifier Collaboration Service

< An online repository of identifiers (symbols, TCP ports, etc...)

« Idea is that you can connect and check for identifiers that are in use.

« Aimed at resolving namespace conflicts.

« Still a prototype, but interesting....
http://pitch.nist.gov/nics

SWIG Tutorial 6th International Python Conference 113

Notes

More on Shared Libraries

Shared libraries and C++

« A little more tricky to build than C libraries.

» Require addition runtime support code (default constructors, exceptions, etc...)
* Need to initialize static constructors when loaded.

* Not documented very well.

Rules of thumb when building a dynamic C++ extension

« Try linking the library with the C++ compiler
CC -shared exanpl e.o exanple_wap.o -o exanpl enodul e. so

« If that doesn’t work, link against the C++ libraries (if you can find them)
Id -G exanple.o exanple_wap.o -L/opt/SUNWspro/lib \
-1 C -0 exanpl enpdul e. so
cc -shared exanpl e. 0o exanple_wap.o -1 g++ -Istdc++ -1 gcc
-0 exanpl enpdul e. so

« If that still doesn’t work, try recompiling Python’s main program and relinking the
Python executable with the C++ compiler.

SWIG Tutorial 6th International Python Conference

Notes

Mixing Shared and Static Libraries

Linking dynamic Python extensions against static libraries is
generally a bad idea:

| * Iibspama * [O%rodul e foo \

static int spam= 7; .

int get span?) { extern int get_spam();
return spam Y,

}

voi d set_span(int val) { O%rodul e bar N\
spam = val ; L

} extern void set_span(int);

J

* When both Python modules are created, they are linked against | i bspam a.

What happens :

>>> jnport foo

>>> jnport bar

>>> bhar.set _spam(42)

>>> f 00. get _spam()

7 (hnrmm .. this probably isn’t what we expected)

SWIG Tutorial 6th International Python Conference

Notes

The Static Library Problem

Linking against static libraries results in multiple or incomplete
copies of alibrary

foo bar
int spam int spam
int get_span(); voi d set_span(int);

« Both modules contain a private copy of a variable.

Consider linking against a big library (like MPI, OpenGL, etc...)

« Significant internal state is managed by each library.
« Libraries may be resource intensive and have significant interaction with the OS.
* A recipe for disaster.

Solution : use shared libraries

 Neither module contains the complete library (the linker only resolves used symbols).

SWIG Tutorial 6th International Python Conference

Notes

116

Using Shared Libraries

If using dynamic loading, use shared libraries

/* 1ibspamso */ %cc -c spamc
static int spam= 7; #1rix
int get_span() { %11 d -shared spamo -o |ibspam so
return spam # Solaris
|: %Ild -G spamo -o |ibspam so
voi d set_span(int val) { # Li nux
spam = val ; % cc -shared spamo -o |ibspam so

}

» The process of building a shared library is the same as building a Python extension.

Building and linking Python extensions

« Compile and link normally, but be sure to link against the shared library.

Now it works

>>> jinmport foo

>>> jnport bar

>>> bar.set _spam(42)
>>> f 00. get _spam()
42

>>>

SWIG Tutorial 6th International Python Conference 117

Notes

More Shared Libraries

Resolving missing libraries
«You may get an error like this :
ImportError: Fatal Error : cannot not find ‘libspam so’

» The run-time loader is set to look for shared libraries in predefined locations. If your
library is located elsewhere, it won’t be found.

Solutions
e Set LD_LIBRARY_PATH to include the locations of your libraries
% set env LD LI BRARY_PATH / hone/ beazl ey/ app/|i bs
« Link the Python module using an ‘r pat h’ specifier (better)

%1d -shared -rpath /honme/ beazl ey/app/libs foo_wap.o \
-1 spam - o foonpdul e. so

%1ld -G -R /home/beazl ey/ app/libs foo_wap.o \
-1 spam - o foonpdul e. so

% gcc -shared -Xlinker -rpath /honme/beazl ey/app/libs \
foo_wap.o -lspam-o foonodul e. so

« Unfortunately, the process varies on every single machine (sigh).

SWIG Tutorial 6th International Python Conference

Notes

118

Structuring a Large Application

| Python-based Application |

v

Python Modules | | | |

W swie
C shared libraries The world at large
|] | [Tcl/Tk
<:| Perl
| | | | CoM

| Stand-alone C Application |

* All modules should be built as shared libraries.

« C/C++ code should be built as stand-alone libraries (this allows them to be used in
non-Python applications).

« Build a separate set of Python modules and link them against the C shared libraries.

Interesting feature

The use of shared libraries allows any of the underlying modules to be modified or
recompiled without recompiling all of the other modules. (this is cool).

SWIG Tutorial 6th International Python Conference 119

Notes

Runtime Problems

Some C programs do not work well as shared libraries

« Initialization problems.
» Dependencies on other packages not designed as shared libraries.

Example: I/O handling
« Packages that rely on extensive use of st di o may crash or operate weirdly.
» One solution is to provide wrappers around system calls

C/C++ Application

v
Wrappers

v

System Services

» Wrappers provide special processing to prevent run-time problems.
« Not trivial to implement, but can improve reliability.
» One example : catch all st di o operations and convert output into a Python string.

SWIG Tutorial 6th International Python Conference 120

Notes

The process of writing wrappersis not for the weak at heart, but here's the general idea...

Suppose you wanted to write awrapper around the printf() function. To do this, you could write your own version of the
function:

int my_printf(char *format, ...) {
/* Inpl ement a special version of printf */

}

Now, within your C program, you can play C preprocessor tricks. For example :

#i ncl ude <stdio. h>
#define printf ny_printf

All portions of the C code that used pri nt f () before, will now useny_print f () instead. Of course, thereal trick now isto
write your own version of printf!

Debugging Dynamic Modules

Suppose one of my Python modules crashes. How do | debug it?

* There is no executable!
* What do you run the debugger on?
« Unfortunately, this is a bigger problem than one might imagine.

My strategy

* Run the debugger on the Python executable itself.
* Run the Python program until it crashes.
» Now use the debugger to find out what's wrong (use as normal).

Caveats

« Your debugger needs to support shared libraries (fortunately most do these days).

shared modules.
« Takes a little practice.

» Some debuggers may have trouble loading symbol tables and located source code for

SWIG Tutorial 6th International Python Conference

Notes

121

Where to go from here

SWIG Tutorial

6th International Python Conference

122

Summary

This tutorial had 4 main goals
« Promote the benefits of using Python with C/C++,
« Describe the process of building Python extensions.
« A thorough overview of using SWIG to produce modules.
« Discuss a few practical issues.

Conclusions

« Integration of C/C++ with Python is a powerful tool--both for developing better C
programs and for building better applications.

« Python is designed for extension programming.
« Automated tools can greatly simplify the task of integrating C/C++ with Python.
« But, there are also a variety of coding issues you need to keep in mind.

« Many of the techniques and issues described are applicable to other Python extension
tools and even other scripting languages.

SWIG Tutorial 6th International Python Conference 123

Notes

Topics Not Covered

Modifying SWIG
* SWIG can be extended with new language modules and capabilities.
 Python-COM for example.

Really wild stuff

« Implementing C callback functions in Python.
» Typemaps galore.

Use of other Python extensions
« Modulator
«ILU
* NumPY
* MESS
 Extension classes
. etc....

SWIG Tutorial 6th International Python Conference

Notes

124

SWIG Resources

Web-page

http://ww. cs. ut ah. edu/ ~beazl ey/ SW G
FTP-server

ftp://ftp.cs.utah. edu/ pub/ beazl ey/ SWG
Mailing list

sSW g@s. ut ah. edu

Documentation

SWIG comes with about 350 pages of tutorial style documentation (it also
supports Tcl and Perl so don't let the size scare you).

To subscribe, send a message ‘subscribe swig’ to maj or dono@s. ut ah. edu.

SWIG Tutorial 6th International Python Conference

Notes

125

Python Resources

The Python home
http://ww. pyt hon. org

Usenet
conp. | ang. pyt hon

Books about Python

e Mark Lutz,”"Programming Python”, O'Reilly & Associates (1996).

« A. Watters, G. van Rossum, J. Ahlstrom, “Internet Programming with Python”, M&T
Books (1996).

SWIG Tutorial 6th International Python Conference

Notes

126

Other Useful Resources

Other scripting languages
» Tcl/Tk and Perl users also must deal with C/C++ extension issues.
e conp.lang.tcl, http://ww. sunscript.com
e conp.lang. perl.nmsc, http://ww.perl.com

Useful and Interesting Books
« B. Kernighan and D. Ritchie, “The C Programming Language”
< M. Ellis, B. Stroustrup, “The Annotated C++ Reference Manual”
* D. Lewine, “POSIX Programmer’s Guide”.
« . Brooks, Jr. “The Mythical Man-Month”
* T. Winograd, “Bringing Design to Software”

SWIG Tutorial 6th International Python Conference 127

Notes

