Table of Contents

Preface	

Chapter 1	
An Introduction to Micromechanics W. Yu	3
Chapter 2	
Optimisation of Variable Stiffness Plates P.M. Weaver, Z.M. Wu and G. Raju	27
Chapter 3	
Selected Aspects of Current Challenges in Composite Product Development for Automotive and Aerospace Industry S. Czichon, J. Köhnke, A. Preisler and H. Herranen	51
Chapter 4	
Fatigue Properties of Aerospace Z-Pinned Composites A.P. Mouritz, F. Pegorin, M.D. Isa and K. Pingkarawat	67
Chapter 5	
Some Examples of "Multi-Physical" Fatigue of Organic Matrix Composites for Aircraft Applications M. Gigliotti, Y. Pannier, M.C. Lafarie-Frenot and J.C. Grandidier	79
Chapter 6	
Post-Buckling Analysis of Damaged Multilayered Composite Stiffened Plates by Rayleigh- Ritz Method V. Oliveri, A. Alaimo and A. Milazzo	99
Chapter 7	
A Promising Way to Model Damage in Composite and Dry Fabrics Using a Discrete Element Method (DEM) F. Dau, J. Girardot and B.D. Le	119
Chapter 8	
A Thermal Stress Analysis of Three-Dimensional Beams by Refined One-Dimensional Models and Strong Form Solutions G. Giunta, S. Belouettar and E. Carrera	139

G. Giunta, S. Belouettar and E. Carrera

High-Fidelity and Computationally Efficient Component-Wise Structural Models: An Overview of Applications and Perspectives M. Petrolo and E. Carrera	175
Chapter 10	
Reduced Order Models for Static and Dynamic Analysis of Composite Panels Based on a Perturbation Approach E. Jansen, T. Rahman and R. Rolfes	199
Chapter 11	
Shell Finite Elements for the Analysis of Multifield Problems in Multilayered Composite Structures M. Cinefra and E. Carrera	215