
Diss. ETH No. 20500

Graceful Degradation
in Multi-Party Computation

A dissertation submitted to

ETH ZURICH

for the degree of
Doctor of Sciences

presented by

Christoph Lucas
MSc ETH CS, ETH Zurich

born May 03, 1983
citizen of the Federal Republic of Germany

accepted on the recommendation of

Prof. Dr. Ueli Maurer, examiner
Prof. Dr. Jesper Buus Nielsen, co-examiner

Dr. Martin Hirt, co-examiner

2012





Acknowledgments

First of all I would like to thank Ueli, most importantly for giving me the
great opportunity to do a PhD in his group and to explore the world of re-
search. Since my first year at ETH, when I had the pleasure to attend one of
his lectures, I have been impressed by his way of teaching and thinking. Dur-
ing my master studies, he introduced me to the realm of cryptography, which
has been a passion of mine ever since. Thanks to him I understood the power
of abstraction as a means of simplification, not only in research, but also in
real life.

Secondly, I am very thankful to Martin. Without his patience in our many
discussions, I would certainly not have reached this point. From him I learned
the tedious but fascinating process of turning an intuitive idea into science.
I have to admit that in our often controversial research discussions he was
mostly right. Yet, he was always kind enough to let me win when playing
pool afterwards. I hope there are still plenty of pool games ahead of us.

Furthermore, I thank Jesper for serving on my committee, for reviewing
my thesis, and for his valuable feedback. Special thanks go also to my co-
author Nik, with whom I had many interesting discussions especially at the
beginning of my PhD, and to our secretary Beate for her administrative sup-
port.

I would like to express my deepest gratitude to my parents, Gert and
Sabine. From my very childhood on, they taught me to be curious, to ask
questions, and to be open when looking for answers. I hope I picked up at
least some of their teachings. Throughout my time at school and later at uni-
versity, they gave me all the support a kid could dream of, even during times
when it was not easy for them. I know that wherever I am, whatever I do, I
can count on them. This gives me the confidence to set out on enterprises that
seem impossible in the first place.



Last but by no means least, I would like to thank my friends who were
there for me when times got rough and who got my mind on to other things.
In particular, there were two persons that gave me their exceptional personal
support. I might have given up if not for their understanding and encour-
agement: Sophie, thank you for being in my life and for letting me be part of
your life. Björn, thanks for your countless helpful advices, being it research
related or not.

The research in this thesis was carried out under partial support from the
Zurich Information Security Center (ZISC).

“No sólo no hubiéramos sido nada sin ustedes, sino con toda la gente que estuvo
a nuestro alrededor desde el comienzo; algunos siguen hasta hoy. ¡Gracias totales!”



Abstract

The goal of Multi-Party Computation (MPC) is to perform an arbitrary com-
putation in a distributed, private, and fault-tolerant way. For this purpose, a
fixed set of n parties runs a protocol that tolerates an adversary corrupting a
subset of the parties, preserving certain security guarantees like correctness,
secrecy, robustness, and fairness. Corruptions can be either passive or active:
A passively corrupted party follows the protocol correctly, but the adversary
learns the entire internal state of this party. An actively corrupted party is
completely controlled by the adversary, and may deviate arbitrarily from the
protocol. Security can be maintained against more passive corruptions than
is possible for active corruptions.

Most MPC protocols provide security guarantees in an all-or-nothing fash-
ion: Either the set of corrupted parties is tolerated and the protocol provides
all specified security guarantees, or the set of corrupted parties is not toler-
ated and the protocol provides no security guarantees at all. Similarly, cor-
ruptions are in an all-or-nothing fashion: Either a party is fully honest, or
it is fully corrupted. For example, an actively secure protocol is rendered
completely insecure when just one party is corrupted additionally to what is
tolerated, even if all corrupted parties are only passive.

In this thesis, we provide the first treatment of MPC with graceful degra-
dation of both security and corruptions. First of all, our protocols provide
graceful degradation of security, i.e., different security guarantees depending
on the actual number of corrupted parties: the more corruptions, the weaker
the security guarantee (so-called hybrid security). We consider all security
properties generally discussed in the literature (secrecy, correctness, robust-
ness, fairness, and agreement on abort). Furthermore, the protocols provide
graceful degradation with respect to the corruption type, by distinguishing
fully honest parties, passively corrupted parties, and actively corrupted par-
ties (so-called mixed adversaries).



We prove exact bounds for which MPC with graceful degradation of se-
curity and corruptions is possible for both threshold and general adversaries
and for all security levels (perfect, statistical, and computational). Further-
more, we provide protocols that meet these bounds. This strictly generalizes
known results on hybrid security and mixed adversaries.

Among our technical contributions, especially two might be of indepen-
dent interest: First, we introduce the notion of multi-thresholds. To the best of
our knowledge, all known protocols for threshold mixed adversaries charac-
terize the tolerable adversaries with a single pair of thresholds (one threshold
for the number of actively, and one for the number of passively corrupted
parties). This pair represents the single maximal adversary that can be toler-
ated. We generalize this basic characterization to allow for several incompa-
rable maximal adversaries. It turns out that, in our setting, multi-thresholds
allow to construct protocols that tolerate strictly more adversaries than a sin-
gle pair of thresholds, without losing efficiency. Second, we present a new
secret-sharing scheme that, in the reconstruction phase, releases secrecy grad-
ually. This allows to construct non-robust MPC protocols which, in case of an
abort, still provide as much secrecy as possible.



Zusammenfassung

Das Ziel von Mehr-Parteien-Berechnungen ist es, eine beliebige Berechnung
verteilt, geheim und fehlertolerant durchzuführen. Dafür führt eine gegebe-
ne Menge von n Parteien ein Protokoll aus, das gewisse Sicherheitsgaranti-
en wie zum Beispiel Korrektheit, Geheimhaltung, Robustheit und Fairness
erhält, auch wenn eine Teilmenge der Parteien von einem Gegner korrum-
piert ist. Korruptionen sind entweder passiv oder aktiv: Eine passiv korrum-
pierte Partei führt das Protokoll wie eine ehrliche Partei korrekt aus, der Geg-
ner erfährt allerdings den kompletten internen Zustand dieser Partei. Eine ak-
tiv korrumpierte Partei wird vollständig vom Gegner kontrolliert und kann
beliebig vom Protokoll abweichen. Protokolle können Sicherheit gegen mehr
passiv als aktiv korrumpierte Parteien garantieren.

Die meisten Protokolle für Mehr-Parteien-Berechnungen geben entwe-
der alle oder keine Sicherheitsgarantien: Entweder wird die Menge der kor-
rumpierten Parteien toleriert und das Protokoll garantiert alle spezifizierten
Sicherheitseigenschaften, oder die Menge der korrumpierten Parteien wird
nicht toleriert und das Protokoll gibt keine Sicherheitsgarantien. Das gleiche
gilt für Korruptionen: Eine Partei ist entweder vollkommen ehrlich oder voll-
kommen korrumpiert. Zum Beispiel ist ein Protokoll, das sicher ist gegen ak-
tive Korruptionen, komplett unsicher wenn auch nur eine einzige Partei mehr
korrumpiert ist als toleriert wird, selbst wenn alle korrumpierten Parteien nur
passiv korrumpiert sind.

In dieser Doktorarbeit behandeln wir zum ersten Mal Mehr-Parteien-
Berechnungen mit ”Graceful Degradation“ (z. Dt. fortschreitende Verschlech-
terung) sowohl der Sicherheit als auch der Korruptionen. Erstens bieten un-
sere Protokolle ”Graceful Degradation“ der Sicherheit, d. h. die Sicherheitsga-
rantien nehmen mit steigender Anzahl korrumpierter Parteien graduell ab: je
mehr Parteien korrumpiert sind, desto schwächer sind die Sicherheitsgaran-
tien (sogenannte hybride Sicherheit). Wir betrachten alle Sicherheitseigen-



schaften, die gewöhnlich in der Literatur diskutiert werden (Geheimhaltung,
Korrektheit, Robustheit, Fairness und Einigkeit über den Protokollabruch).
Zweitens bieten die Protokolle ”Graceful Degradation“ der Korruptionen,
d. h. die Sicherheitsgarantien hängen nicht von der Gesamtanzahl der Kor-
ruptionen ab, sondern davon, wieviele Parteien mit welchem Typ korrum-
piert sind. Wir betrachten vollkommen ehrliche Parteien, passiv korrumpier-
te Parteien und aktiv korrumpierte Parteien in einem einzigen Protokolllauf
(sogenannte gemischte Gegner).

Wir beweisen exakte Schranken, wann Mehr-Parteien-Berechnungen mit

”Graceful Degradation“ möglich sind, sowohl für Schwellwertgegner (also
Gegner, die durch einen Schwellwert an die Anzahl korrumpierter Parteien
charakterisiert sind) als auch für allgemeine Gegner (also Gegner, die durch
eine allgemeine Bechreibung charakterisiert sind) und für alle Sicherheitsni-
veaus (perfekt, statistisch und berechenmässig). Ausserdem beschreiben wir
Protokolle, die diese Schranken erreichen. Diese Resultate sind strikte Verall-
gemeinerungen von bekannten Resultaten bezüglich hybrider Sicherheit und
gemischter Gegner.

Insbesondere zwei der in dieser Arbeit beschriebenen technischen Bei-
träge könnten von unabhängigem Interesse sein: Erstens führen wir die Idee
der Mehrfachschwellwerte ein. So weit uns bekannt ist, charakterisieren alle
bekannten Protokolle für gemischte Schwellwertgegner die tolerierten Geg-
ner mit einem einzigen Paar von Schwellwerten (ein Schwellwert für die
Anzahl aktiv und ein Schwellwert für die Anzahl passiv korrumpierter Par-
teien). Dieses Paar beschreibt den einzigen maximalen Gegner, der toleriert
wird. Wir verallgemeinern diese einfache Charakterisierung, um mehrere
unvergleichbare maximale Gegner berücksichtigen zu können. Tatsächlich
können wir im Modell mit Mehrfachschwellwerte Protokolle konstruieren,
die strikt mehr Gegner tolerieren, als es mit einem einzigen Paar von Schwell-
werten möglich gewesen wäre, und die trotzdem effizient sind. Zweitens
präsentieren wir ein neues Verfahren zum Verteilen geheimer Werte, welches
in der Rekonstruktionsphase die Geheimhaltung schrittweise abbaut. Mit
diesem Verfahren ist es möglich, Protokolle für Mehr-Parteien-Berechnungen
zu konstruieren, die zwar nicht robust sind, aber bei einem Abbruch die
bestmögliche Geheimhaltung garantieren.



Contents

1 Overview 13

1.1 Multi-Party Computation . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Graceful Degradation . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Introduction 19

2.1 Parties and Channels . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 The Adversary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Corruption Types . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Description of the Tolerated Sets of Corrupted Parties . . 22

2.2.3 Mixed Adversaries . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Security Properties . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Hybrid Security . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Ideal Functionalities . . . . . . . . . . . . . . . . . . . . . 26

2.3.4 Definition of Security . . . . . . . . . . . . . . . . . . . . . 26

2.3.5 Levels of Security . . . . . . . . . . . . . . . . . . . . . . . 28

3 Graceful Degradation 31

3.1 General Adversaries . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Threshold Adversaries . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Multi-Threshold Adversaries . . . . . . . . . . . . . . . . . . . . 33



10 Contents

4 Protocols with Perfect Security 35

4.1 General Adversaries . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 A Parametrized Protocol for General Adversaries . . . . 36

4.1.2 A Trivial Non-Secret Protocol . . . . . . . . . . . . . . . . 41

4.1.3 The Main Result for General Adversaries . . . . . . . . . 42

4.1.4 Proofs of Necessity . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Threshold Adversaries . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 A Parametrized Protocol for Threshold Adversaries . . . 47

4.2.2 The Main Result for Threshold Adversaries . . . . . . . . 56

4.3 The Model without Broadcast Channel . . . . . . . . . . . . . . . 57

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Protocols with Statistical Security 61

5.1 Information Checking . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.1 The IC Sign Protocol . . . . . . . . . . . . . . . . . . . . . 63

5.1.2 The IC Reveal Protocol . . . . . . . . . . . . . . . . . . . . 64

5.2 MPC with General Adversaries . . . . . . . . . . . . . . . . . . . 65

5.2.1 A Parametrized Protocol for General Adversaries . . . . 65

5.2.2 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.3 Proofs of Necessity . . . . . . . . . . . . . . . . . . . . . . 77

5.3 MPC with Threshold Adversaries . . . . . . . . . . . . . . . . . . 79

5.3.1 A Parametrized Protocol for Threshold Adversaries . . . 80

5.3.2 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



Contents 11

6 Protocols with Computational Security 93

6.1 Gradual Verifiable Secret Sharing . . . . . . . . . . . . . . . . . . 94

6.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.2 A Gradual VSS for General Adversaries . . . . . . . . . . 96

6.1.3 A Gradual VSS for Threshold Adversaries . . . . . . . . 100

6.2 The Protocol of [GMW87] . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1 The Passive Protocol . . . . . . . . . . . . . . . . . . . . . 104

6.2.2 The Active Protocol . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Non-Reactive Multi-Party Computation . . . . . . . . . . . . . . 106

6.3.1 Non-Reactive MPC for General Adversaries . . . . . . . 107

6.3.2 Non-Reactive MPC for Threshold Adversaries . . . . . . 111

6.4 Reactive Multi-Party Computation . . . . . . . . . . . . . . . . . 114

6.4.1 Reactive MPC for General Adversaries . . . . . . . . . . 114

6.4.2 Reactive MPC for Threshold Adversaries . . . . . . . . . 117

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7 Conclusions 121

Bibliography 123



12 Contents



Chapter 1

Overview

Imagine you travel to some new place, and you meet some really nice people.
Then, during dinner, the radio plays “I’ve been looking for freedom” from
David Hasselhoff, your favorite song when you were a teenager. Of course,
you are far too embarrassed to admit that you have ever listened to this song,
let alone that David Hasselhoff was your idol. But then again, if the others
were also fans, it would be nice to talk about the good old times. Maybe,
you could even start some kind of Hasselhoff-You Tube-Party and have the
revival night of the year. Still, the embarrassment prevails.

One solution could be to ask the help of the waiter: He could go around
and ask each one of the group whether he was a David Hasselhoff fan or not.
Then, if everybody admitted his youthful folly, the waiter could let every-
body know (or simply play the entire album). In contrast, if one or more of
the people at the table said they were not Hasselhoff fans, the waiter should
simply shake his head and bring the dessert.

Yet, the waiter might just laugh at each and single one who was a fan. Or
he could be the friend of one person in the group, and tell him afterwards
who suffered a lapse of taste when he was young. Short, the waiter might
not be trusted, or at least not by everybody. So, the question remains how the
“David Hasselhoff Problem” can be solved.

If only a (trusted version of the) waiter could be emulated among the peo-
ple at the table.



14 Overview

1.1 Multi-Party Computation

Considering the above example more formally, there are 5 to 6 parties (the
people at the table), each with one bit of input (whether he or she was a
Hasselhoff-fan or not). However, the parties do not trust each other, and
each party does not want the others to know his or her input. The goal is to
compute the logical ’and’ of all inputs. This problem can be solved with a
protocol for Multi-Party Computation (MPC).

More generally, MPC allows a set of n parties to securely compute any
(probabilistic) function f in a distributed manner. Security means that secrecy
of the inputs and correctness of the output are maintained even when some
of the parties are dishonest. Furthermore, such dishonest parties should not
be able to abort the protocol once it has started (robustness). If robustness
cannot be guaranteed, at least the protocol should be fair in the sense that if
the dishonest parties learn the output then so do the remaining parties.

The dishonesty of parties is modeled with a central adversary who cor-
rupts parties. This models the strongest possible adversary, namely one that
coordinates the attack of all corrupted parties. The adversary can corrupt par-
ties passively, i.e., can read their internal state, or actively, i.e., can additionally
make them deviate arbitrarily from the protocol. The distinction between dif-
ferent corruption types reflects the real world fact that an attacker might be
able to compromise machines in different ways, and that the adversary has
to invest more resources to completely control a machine (active corruption),
than to just read out the internal memory (passive corruption).

MPC was originally proposed by Yao [Yao82]. The first general solution
was given in [GMW87], where two protocols are presented, one providing
passive security against any number of corruptions (i.e., t < n corrupted
parties), and one providing active security against a corrupted minority (i.e.,
t < n/2). These protocols are computationally secure only, that means based
on the computational assumption that some mathematical problem cannot be
solved efficiently.

In [BGW88, CCD88], information-theoretic security (i.e., security not
based on a computational assumption) was achieved at the price of lower
corruption thresholds, namely t < n

2 for passive and t < n
3 for active adver-

saries. The latter bound can be improved to t < n
2 if both broadcast channels

are assumed and a small error probability is tolerated [RB89, Bea89].

These early results considered only threshold adversaries. That means, the
protocols are characterized by a threshold t which represents the maximum



1.2 Graceful Degradation 15

tolerated number of corruptions against which security can still be guaran-
teed. The idea behind this symmetric characterization is that each party is
equally likely to be corrupted, and that essentially only the number of cor-
rupted parties is of interest.

The model with threshold adversaries is very restrictive, allowing to
model only a very specific class of adversaries. The most general character-
ization is to state for each subset of the set of all parties, whether security is
still guaranteed if this subset is corrupted. This model is called general adver-
saries. In this model, the tolerated sets of corrupted parties are not specified
by a threshold t, but rather by a so-called adversary structure Z , a monotone
collection of subsets of the player set [HM97]. Security is guaranteed as long
as the set of corrupted parties is one of the subsets in Z .

1.2 Graceful Degradation

All protocols mentioned above achieve full security, i.e., secrecy, correctness,
and robustness. Furthermore, those protocols (and most MPC protocols in
the literature) do not degrade very gracefully. They provide a very high level
of security up to some threshold t (usually full security), but no security at all
beyond this threshold. There are no intermediate levels of security. Further-
more, a party is considered either fully honest or fully corrupted. There are
no intermediate levels of corruptions.

Many papers in the literature consider several corruption types, or even
several levels of security, but in separate protocols. For example, [BGW88]
proposes a protocol for passive security with t < n

2 , and another protocol
for active security with t < n

3 . There is no graceful degradation: If in the
active protocol, some passive adversary corrupts dn

3 e parties, the protocol is
insecure.

The notion of graceful degradation was first considered by Chaum
[Cha89]. On the one hand, he introduced graceful degradation of secu-
rity (often called hybrid security). Previously known protocols provided
either full security, or no security guarantees at all. The idea of hybrid
security is to guarantee each security property independently against as
many corrupted parties as possible. Chaum proposed a protocol that pro-
vides information-theoretic security as long as only a few parties are cor-
rupted, computational security if more parties are corrupted, and no secu-
rity in case of many corruptions. This protocol was recently generalized
in [FHHW03, FHW04, IKLP06, Kat07, LRM10].



16 Overview

On the other hand, Chaum considered graceful degradation of corrup-
tions (often called mixed adversaries). Traditional results consider only a sin-
gle corruption type. Chaum proposed a protocol that considers fully honest,
passively corrupted, and actively corrupted parties in the same protocol ex-
ecution. This protocol was generalized and extended in [DDWY93, FHM98,
FHM99, BFH+08, HMZ08].

1.3 Contributions

In this thesis, we introduce the notion of graceful degradation in several di-
mensions, i.e., we present protocols with graceful degradation of both secu-
rity (i.e., hybrid security) and of corruptions (i.e., mixed adversaries). Hybrid
security and mixed adversaries are two concepts with the same goal: To pro-
vide protocols with fine-grained security guarantees and high flexibility that
model real life requirements as closely as possible. While they follow two
orthogonal approaches on a conceptual level, similarities can be found on a
technical level. Consequently, it is only natural to merge these two directions
of research and to provide a single model with both types of graceful degra-
dation.

We solve the problem of graceful degradation of security and of corrup-
tions in the perfect, the statistical, and the computational setting, for both
threshold and general adversaries. Our main results are strict generalizations
of the previous results for MPC, which appear as special cases in our unified
treatment.

Apart from the main goal to provide these protocols (together with tight
bounds), we developed several techniques which might be of independent
interest. Furthermore, our results give precise insights that were previously
only conjectured on an intuitive level.

Multi-thresholds: The model with general adversaries is the most gen-
eral possible model. Yet, the runtime of protocols is polynomial in the size of
the adversary structure, which is (typically) exponential in the number of par-
ties. In contrast, the runtime of protocols for threshold adversaries is (usually)
polynomial in the number of parties. However, the threshold model imposes
a strong restriction on the ability to characterize the tolerated adversaries. In
this thesis, we introduce the model with multi-thresholds (Section 3.3). The
runtime of protocols in this model is also polynomial in the number of parties,
yet multi-thresholds can capture strictly more adversaries than simple thresh-
olds: Consider two adversaries, one that corrupts a few parties actively and



1.3 Contributions 17

many parties passively, and another that corrupts more parties actively, but
less parties passively. These two adversaries are incomparable, i.e., security
against one of the two does not imply security against the other. Now, assume
that there is a protocol that tolerates both adversaries. Simple thresholds do
not allow to make a security statement that encompasses both tolerated ad-
versaries, while multi-thresholds do.

Gradual VSS: Most protocols for verifiable secret sharing (VSS) from the
literature show a very unfair behaviour: Even if the adversary aborts the re-
construction protocol, he usually still learns the shared secret. Fairness means
that, in every step, the adversary either did not yet obtain any information
about the secret (secrecy), or cannot abort the protocol (robustness). We intro-
duce the notion of gradual VSS, which reduces secrecy in a step-wise fashion
and at the same time increases robustness (Section 6.1). This results in VSS
schemes that provide the best possible fairness.

In most traditional MPC protocols with mixed adversaries, there is a static
tradeoff between active and passive corruptions: the higher the threshold
for active corruptions, the lower the threshold for passive corruptions. That
means, only certain pairs of thresholds for active and passive corruptions
can be tolerated, and one has to fix the pair before the protocol execution.
The combination of a gradual VSS with multi-thresholds allows to model a
dynamic tradeoff, where these thresholds do not have to be fixed beforehand
(Section 6.3). As a consequence, the protocol is secure against all tolerated
pairs of thresholds for active and passive corruptions simultaneously.

Group Commitments: For the setting with statistical security, we intro-
duce the notion of group commitments, which is a pair of protocols that allows
a group to first commit to a value on which they agree (while providing se-
crecy with respect to the remaining parties), and, at a later point in time, to
reveal this value to the remaining parties (Section 5.2.1.1). While standard
commitments are impossible to be realized in this setting, the combination of
several parties into a group results in a very useful variant of commitments.
From a more technical point of view, this generalization to groups generates
more information on which to base the decision in the reveal protocol. The
implementation illustrates how such a broader and more complex basis for
decision-making can be exploited. We use group commitments instead of IC
signatures to construct a verifiable secret sharing scheme, that can be verified
reliably even without an honest majority.

Relation between corruption types and security properties: Usually, the
intuition behind the different corruption types is that passively corrupted
parties only aim to break secrecy, whereas actively corrupted parties aim to



18 Overview

break correctness (and/or robustness). However, this analogy does not read-
ily extend to mixed adversaries that simultaneously perform passive and ac-
tive corruptions. Our model of graceful degradation separates the different
security properties, and therefore allows, for the first time, to make precise
statements formalizing the above intuition. While we could confirm this folk-
lore belief for the perfect setting, it turns out that in the statistical setting,
passively corrupted parties play an important role not only for secrecy but
also for correctness and robustness. Furthermore, in the computational set-
ting, passively corrupted parties influence also fairness (but not correctness
or robustness).



Chapter 2

Introduction

In this chapter we discuss the basics of Multi-Party Computation, and make
the concepts introduced in Chapter 1 more precise. As a first step, we describe
the basic setting (Section 2.1). Then, we provide a detailed description of the
adversary model (Section 2.2). Finally, we formalize the notion of security
(Section 2.3).

2.1 Parties and Channels

We consider a set of n parties P = {p1, . . . , pn}, who want to compute a func-
tion f over a finite field F. In general, this function can be probabilistic (i.e.,
use randomness during its computation), and reactive (i.e., parties can pro-
vide further inputs after having received some intermediate outputs). We
represent f as a circuit with input, addition, multiplication, random, and out-
put gates. Output gates can be either public (i.e., the value is given to all
parties) or private (i.e., it is given only to a specific party).

In a setting with reactive functions, the circuit is partitioned into phases.
In each phase, first all input gates are processed, then all computation gates,
and finally all output gates. All input gates (as well as all output gates) of
a phase are processed in parallel. Note that non-reactive functions can be
considered as reactive functions with a single phase.

In all our protocols, we apply two generic simplifications. First, private
output, where a value s is disclosed only to a single party pk, is reduced



20 Introduction

to public output using a simple blinding technique [CDG88]: Party pk first
shares a uniform random value, which is added to s before public output is
invoked. It is easy to see that pk can recover s, while all other parties obtain
no information about s. Second, we reduce randomness gates to addition
gates as follows: First each party pi inputs a random value ri. Then, all ri’s
are added up. As long as secrecy is guaranteed, this results in a random
value. In a setting without secrecy, we do not require true randomness (see
Section 2.3.2). As a consequence, we do not need to provide implementations
neither for private output, nor for randomness gates.

For the communication between the parties, we assume a complete net-
work of secure channels, i.e., each pair of parties can communicate in a con-
fidential (i.e., only the recipient can read the messages), authenticated (i.e.,
messages cannot be changed during transmission), and robust (i.e., messages
cannot be deleted) way. Note that, in the computational setting, confidential-
ity and authenticity are usually established via standard techniques such as
encryption and digital signatures from insecure channels.

A broadcast channel allows one party to send a message to all other par-
ties, and all parties are guaranteed to receive the same message (consistency).
If the broadcast channel is authenticated, than the message received by all
parties is identical to the one sent by the sender (validity). In most of our
results, we assume that each party has an authenticated broadcast channel to
all other parties. In the computational setting, broadcast channels are usually
implemented with an appropriate protocol [DS82].

Furthermore, we consider a synchronous model of communication. That
means, the protocol execution is split into rounds, and messages sent during
one round are guaranteed to reach the recipient before the beginning of the
next round. Hence, if a party does not receive a message it is supposed to
receive, it can be sure that the sender did not send it (and hence knows that
the sender is actively corrupted). For this reason (and for ease of notation),
we assume that if a party does not receive an expected message (or receives
an invalid message), a default message is used instead. We assume that the
adversary is rushing. That means, in any given round, the adversary receives
the messages sent by other parties in that round before sending his own mes-
sages.



2.2 The Adversary 21

2.2 The Adversary

The dishonest behaviour of parties is modeled with a central adversary who
corrupts certain parties. In Section 2.2.1, we discuss different possible corrup-
tion types. Then, we describe how the sets of corrupted parties that a protocol
can tolerate without losing security can be characterized; first for the setting
with a single corruption type (Section 2.2.2), then for the setting with several
corruption types (also called mixed adversary, Section 2.2.3).

2.2.1 Corruption Types

The central adversary corrupts certain parties in P . The implication of such
a corruption depends on the corruption type. In this work, we consider the
two most prominent corruption types:

• Passive corruption: The adversary can read the entire internal state
of passively corrupted parties throughout the protocol execution. He
learns both all messages the party receives, as well as all the random-
ness the party chooses. Yet, passively corrupted parties follow the pro-
tocol description correctly. Furthermore, we assume that the random-
ness is chosen “on the fly”, whenever needed (“instant randomness”).
This allows passively corrupted parties to e.g. select challenges that are
unpredictable to the adversary. The set of actually passively corrupted
parties during a protocol run is denoted by E∗ (eavesdropping).

• Active corruption: The strongest possible notion of corruption is ac-
tive corruption. Actively corrupted parties are completely controlled
by the adversary. That means, he learns their entire internal state, and
can make them deviate from the protocol description. Hence, an ac-
tively corrupted party might send wrong messages, or no messages at
all. The set of actually actively corrupted parties during a protocol run
is denoted by D∗ (disrupting).

Uncorrupted parties are called honest, non-actively corrupted parties are
called correct. As a matter of fact, the sets D∗ and E∗ are not known to the
parties. In particular, this implies that passively corrupted parties are not
aware of the fact that they are corrupted.



22 Introduction

2.2.2 Description of the Tolerated Sets of Corrupted Parties

The security of a protocol depends on the set of actually corrupted parties,
i.e., a protocol tolerates only certain sets of corrupted parties without losing
security. In this work, we consider the two most common approaches to char-
acterize these tolerated sets.

The most general possible approach is to enumerate the tolerated sets of
corrupted parties in a so-called adversary structure Z , a collection of sub-
sets of the player set [HM97]. This model is called general adversaries. We
require that, if a protocol tolerates some subset M , then it must also tolerate
all subsets M ′ of M .1 Therefore, the adversary structure must be monotone
in the sense that for each set M ∈ Z , all subsets of M must also be in Z (i.e.,
∀M,M ′ ⊆ P : M ∈ Z ∧ M ′ ⊆ M ⇒ M ′ ∈ Z). We say a set M is maximal
in Z if there is no other set M ′ in Z with M ⊂ M ′. A protocol is secure with
respect toZ , if the protocol is secure against all adversaries corrupting parties
in some set M ∈ Z .

The characterization of protocols with general adversaries allows to state
for each subset of P whether security is guaranteed or not in the case where
this subset is corrupted. Therefore, this characterization is the most expres-
sive one possible. While protocols for general adversaries are efficient in the
input length (which includes the adversary structure Z), the length of Z itself
is usually super-polynomial in the number n of parties.

In the model with threshold adversaries, the tolerated sets are characterized
with a threshold t: All sets of size at most t are tolerated. In other words, if a
protocol is secure with respect to t, it is secure as long as at most t parties are
corrupted; and if more than t parties are corrupted, no security guarantees
are given. Protocols for threshold adversaries are (usually) efficient in the
number of parties, which is in contrast to protocols in the general model.

2.2.3 Mixed Adversaries

Traditional protocols consider only purely active or purely passive adver-
saries, i.e., all corruptions of the central adversary are of the same type. In
order to analyze active and passive corruptions in a single protocol execution,
one has to consider mixed adversaries that can perform each corruption with a
different type. That means that there is one set D∗ of actively corrupted par-
ties, and at the same time another set E∗ of passively corrupted parties. For

1Intuitively, the adversary could simply have the parties in M \M ′ behave honestly.



2.3 Security 23

ease of notation, we assume that the set of actively corrupted parties D∗ is a
subset of the set of passively corrupted parties E∗, i.e. that D∗ ⊆ E∗.

In the setting with general adversaries, a protocol for mixed adversaries is
characterized by an adversary structure consisting of tuples (D, E) of subsets
of P with D ⊆ E , where the parties in E can be passively corrupted, and
the parties in D ⊆ E even actively. Again, we assume that the adversary
structure is monotone, i.e., ∀(D, E), (D′, E ′) : (D, E) ∈ Z ∧ D′ ⊆ D ∧ E′ ⊆
E ⇒ (D′, E ′) ∈ Z . Then, a protocol is secure with respect to Z , if it is secure
against all adversaries corrupting some (D∗, E∗) ∈ Z .

In the threshold setting, a protocol for mixed adversaries is characterized
by two thresholds ta and tp, where up to tp parties can be passively corrupted,
and up to ta of these parties can even be corrupted actively. Since D∗ ⊆ E∗,
we have that tp denotes the upper bound on the total number of corruptions
(active as well as purely passive), and ta denotes the upper bound on the
number of actively corrupted parties (hence, ta ≤ tp). A protocol is secure
with respect to (ta, tp), if it is secure as long as |D∗| ≤ ta and |E∗| ≤ tp (for
which we use the shorthand (|D∗|, |E∗|) ≤ (ta, tp)).

2.3 Security

In this section we define what it means for a protocol to be secure. We first
provide a description of the various security properties (Section 2.3.1), and
introduce the notion of hybrid security (Section 2.3.2). Then, we formalize
the notion of security (Section 2.3.4), and discuss different levels of security
(Section 2.3.5).

2.3.1 Security Properties

We first give a description of the five standard security guarantees, which a
protocol can provide.

• Secrecy means that the adversary learns nothing neither about the hon-
est parties’ inputs and outputs, nor about intermediate results of the
computation (except, of course, for what can be derived from the cor-
rupted parties’ inputs and outputs).



24 Introduction

• Correctness means that each (correct) party either outputs the right value
or no value at all (in particular, some parties may output the correct
value, while others output no value).

• Robustness means that the adversary cannot prevent the correct parties
from learning their respective outputs. This requirement turns out to
be very demanding. Therefore, relaxations have been proposed, where
robustness is replaced by weaker output guarantees:

• Fairness means that the adversary can possibly prevent the correct par-
ties from learning their outputs. Yet, if not all correct parties learn
their complete output, the adversary obtains no information about any
output. In the case of reactive MPC (i.e., MPC with multiple, non-
concurrent outputs), fairness can only be achieved for outputs provided
in the same phase: either all (correct) parties learn their outputs, or also
the adversary does not obtain any information about any output. How-
ever, the adversary can abort the protocol after having received outputs
from prior phases.

• Agreement on abort means that the adversary can possibly prevent cor-
rect parties from learning their output, even while corrupted parties do
learn their outputs, but then the correct parties at least reach agreement
on this fact (and typically make no output).

In all our constructions, all abort decisions are based on publicly known
values. Hence, we have agreement on abort for free. Note that the impossi-
bility proofs hold even when agreement on abort is not required.

Clearly, actively corrupted parties do not have any security guarantees,
as they are completely controlled by the adversary. In contrast, passively
corrupted parties may or may not have security guarantees, depending on
the interpretation of passive corruption. Our definitions explicitly include
guarantees for passively corrupted parties.

2.3.2 Hybrid Security

Most protocols in the literature consider only full security: Each set of cor-
rupted parties is either tolerated (i.e., the protocol provides full security with
correctness, secrecy, and robustness), or not (i.e., if a single party is corrupted
in addition to what is tolerated, immediately all security guarantees are lost).



2.3 Security 25

Protocols with hybrid security consider each security property separately,
and provide each against as many corrupted parties as possible. In other
words, the guaranteed security properties (secrecy, correctness, fairness, ro-
bustness, agreement on abort) depend on the set of corrupted parties. The
more parties are corrupted, the fewer properties are guaranteed. Hence, the
security of a protocol is not characterized with a single parameter, but with
one parameter for each security property.

In the setting with general adversaries, hybrid security is modeled with
four adversary structures: Zc for correctness, Zs for secrecy, Zr for robust-
ness, and Zf for fairness. Since all our protocols achieve agreement on abort
for free, we do not introduce a separate structure for this security property.
Then, correctness is guaranteed if the set of corrupted parties is contained in
Zc, secrecy if it is contained in Zs, robustness if it is contained in Zr, and
fairness if it is contained in Zf . If the set of corrupted parties is contained
in several structures, all corresponding security properties are achieved. In
particular, full security is achieved if the set of corrupted parties is contained
in all structures. We assume that Zs ⊆ Zc and Zr ⊆ Zc, since secrecy and ro-
bustness are not well defined in a setting without correctness. Furthermore,
we assume that Zf ⊆ Zs since in a setting without secrecy the adversary
inherently has an unfair advantage over honest parties.

In the threshold setting, we consider protocols with four thresholds: tc for
correctness, ts for secrecy, tr for robustness, and tf for fairness. Again, we
do not introduce a separate pair of thresholds for agreement on abort. Then,
correctness is guaranteed for up to tc corrupted parties, secrecy is guaranteed
for up to ts corrupted parties, robustness is guaranteed for up to tr corrupted
parties, and fairness is guaranteed for up to tf corrupted parties. If the num-
ber of corruptions is below multiple thresholds, all corresponding security
properties are achieved. Analogously to the setting with general adversaries,
we assume that ts ≤ tc and tr ≤ tc, as well as tf ≤ ts.

Note that the notion of correctness for a security level without secrecy dif-
fers from the usual interpretation: The adversary is rushing (cf. Section 2.1)
and may know the entire state of the protocol execution. Hence, for inputs
provided in the same phase, input-independence is not guaranteed. Further-
more, for the same reason, when computing a probabilistic function in a set-
ting without secrecy, we allow the adversary to choose the randomness.



26 Introduction

2.3.3 Ideal Functionalities

The circuit to be computed and the desired security properties are specified
using an ideal functionality F that communicates with the parties and per-
forms computations. Ideal functionalities are either deterministic (i.e., per-
form computations only on the inputs given by parties) or probabilistic (i.e.,
additionally choose random values). Furthermore, ideal functionalities are
either non-reactive or reactive. A non-reactive functionality first receives all
inputs, then performs all computations, and then provides all outputs. The
setting of non-reactive functionalities is also called Secure Function Evaluation
(SFE). In contrast, reactive functionalities are not restricted to a single phase of
inputs and outputs. That means, parties can provide additional inputs after
having received (intermediate) results.

Before the execution begins, F is initialized with the set of corrupted par-
ties (i.e., F is corruption aware), and the adversary structures (or, in the
threshold setting, the thresholds) for each security property. Then, F per-
forms the computation according to the given circuit. If the set of corrupted
parties is not contained in one of the adversary structures, F provides the
adversary with additional powers, depending on which security property
is not guaranteed. For this purpose, F has a special adversarial interface,
over which it communicates directly with the adversary. For example, if
(D∗, E∗) 6∈ Zs, i.e., if secrecy is not guaranteed, F forwards all inputs, out-
puts, intermediate results, etc. to the adversary.

2.3.4 Definition of Security

In the following, we describe the simulation based security model as intro-
duced to MPC by [GMW87, Can00]. The security of a protocol π (the real
world) is defined with respect to an ideal functionality F that correctly per-
forms all computations (the ideal world). Informally, a protocol is secure if
whatever an adversary can achieve in the real world, he could also achieve in
the ideal world.

More precisely, in the real world, for each correct party pi there is an inter-
active program πi that can communicate via (secure bilateral and broadcast)
channels with other programs. Furthermore, there is an adversary A. For
actively corrupted parties, A has direct access to the channels. For passively
corrupted parties pj , πj remains in place, yet A learns its entire internal state
throughout the protocol execution. At the beginning of the execution, each



2.3 Security 27

program πi takes an input xi. Also, the adversary takes some input. We de-
note the vector of all inputs with ~x. The input of actively corrupted parties to
the computation is implicitly defined by A and is therefore not part of ~x (i.e.,
the corresponding entries in the vector are fixed to �). Then, the protocol is
executed. At the end of the execution, each program πi provides all its out-
puts, and the adversary outputs some function of its internal state (e.g., the
identity function). The vector of the output values of all parties (where the
output of actively corrupted parties is fixed to �) together with the output of
the adversary is denoted by REAL~x

π,A.

The ideal world consists of the ideal functionality F and an ideal adver-
sary (or simulator) σ connected to F via the adversarial interface. The task
of σ is to make the ideal world look identical to the real world, i.e., it mimics
the actions of the real world adversary A as good as possible (in particular,
σ depends on A). At the beginning of the execution, F takes some input xi

for each correct party pi, and the simulator σ takes the input corresponding
to the input for the adversary in the real world. Again, we denote the vector
of all inputs with ~x (where again the entries in the vector corresponding to
actively corrupted parties are fixed to �). Over the adversarial interface to σ,
F first forwards the inputs for passively corrupted parties to the adversary,2

and then accepts inputs for actively corrupted parties. After that, F eval-
uates the circuit while communicating with σ according to its specification
(i.e., depending on the guaranteed security properties) over the adversarial
interface. At the end of the execution, F provides the output for each correct
party over the corresponding interface. Furthermore, F provides the output
for passively and actively corrupted parties over the adversarial interface to
σ,3 which subsequently outputs some function of its internal state. The vec-
tor of the output values of all parties (where, again, the output of actively
corrupted parties is fixed to �) together with the output of the simulator is
denoted by IDEAL~x

F,σ .

In both the real and the ideal world, the set of corrupted parties is the
same and fixed before the beginning of the execution (static corruption). Fur-
thermore, the ideal functionality, the adversary, and the simulator obtain this
set as an input.

To formalize the statement that whatever the adversary can achieve in the
real world, he can also achieve in the ideal world, the notion of a distinguisher
is used: This distinguisher, denoted by D, chooses the input vector ~x and

2If secrecy is not guaranteed, F forwards the inputs of all parties.
3Again, if secrecy is not guaranteed, F reveals all outputs to σ.



28 Introduction

obtains either REAL~x
π,A or IDEAL~x

F,σ . Then, D outputs a bit that, intuitively
speaking, denotes which one of the two output collections it had obtained.

A protocol π is said to securely implement a functionality F if, for every
possible set of corrupted parties and every adversaryA, there is a simulator σ

such that for all distinguishers D the two executions REAL~x
π,A and IDEAL~x

F,σ

are indistinguishable, i.e.

|Prob[D(IDEAL~x
F,σ) = 1]− Prob[D(REAL~x

π,A) = 1]| ≤ ε

where ε denotes the error probability.

The choice of ε and the computing power of the involved entities depend
on the desired level of security (perfect, statistical, or computational), and is
discussed in the next section.

The security model as described here is called stand-alone security. It guar-
antees security only if a single protocol instance is executed at any point in
time. In [Can01, BPW04] this model has been extended to allow for univer-
sal composition (UC). In the UC model, any number of protocols can be com-
posed concurrently and/or sequentially, which allows for a modular analysis
of protocols. For ease of presentation, we focus on stand-alone security. Yet,
we conjecture that our results can also be carried over to the UC model.

While the paradigm of simulation based security allows for formally pre-
cise statements, proofs become very technical and most if not all of the in-
tuition is lost. Therefore, in this thesis, we provide rather intuitive proofs
which, formally speaking, are only proof sketches.

2.3.5 Levels of Security

Before defining the different levels of security, we need to introduce the
notions of negligibility and efficiency. A negligible function is a function
f : N 7→ R+ that goes faster to zero than the inverse of any polynomial.
Formally, we say that f(x) is negligible, if

∀c > 0,∃x0,∀x > x0 : f(x) <
1
xc

.

Closely related to the concept of negligibility is the concept of an overwhelm-
ing probability: A probability p(κ) is overwhelming if 1 − p(κ) is negligible.
Furthermore, we say a program is efficient if the number of steps it performs
during the protocol execution is polynomial in the input size.



2.3 Security 29

In the information-theoretic setting, both the adversary and the distin-
guisher are not restricted to efficient computation. This setting is further di-
vided according to the tolerated error probability: In the perfect setting, the
error probability is zero (ε = 0), whereas in the statistical setting, the error
probability is a negligible function in the security parameter. That means that
in the statistical setting, the adversary has a very small chance of breaking
the security of the protocol, depending on the random choices, while in the
perfect setting, security holds independent of the randomness.

In the computational setting (also called the cryptographic setting), security
is based on some computational assumption, and only efficient adversaries
and distinguishers are considered. Furthermore, as in the statistical setting,
a negligible small error probability is tolerated (i.e., the error probability is a
negligible function in the security parameter).

As a matter of fact, all programs πi must be efficient in all settings. Fur-
thermore, simulators must be efficient (in the runtime of the adversary) not
only in the computational, but also in the information-theoretical setting,
since otherwise, information-theoretical security does not imply computa-
tional security.



30 Introduction



Chapter 3

Graceful Degradation

In this work, we introduce the notion of graceful degradation in several di-
mensions. More concretely, we provide protocols that provide both graceful
degradation of security (hybrid security), as well as graceful degradation of
corruptions (mixed adversaries). For this purpose, we introduce a notation to
characterize the tolerated sets of corrupted parties, merging the notations for
mixed adversaries (Section 2.2.3) and for hybrid security (Section 2.3.2).

3.1 General Adversaries

On the one hand, protocols for mixed general adversaries are traditionally
characterized by an adversary structure Z , which consists of tuples (D, E) of
subsets of the player set, where E is the set of passively, and D ⊆ E is the
set of actively corrupted parties (see Section 2.2.3). On the other hand, each
security guarantee depends on the sets of actually corrupted parties. We con-
sider four security guarantees, namely correctness, secrecy, robustness, and
fairness. Depending on the set of actually corrupted parties, different secu-
rity properties are achieved. This is modeled with four adversary structures
(see Section 2.3.2).

To characterize mixed general adversaries in a setting with hybrid secu-
rity, we use four adversary structures, one for each security guarantee, and
each consisting of tuples (D, E) specifying the tolerated combinations of sets
of actively and passively corrupted parties, such that the security require-
ment is still guaranteed. More specifically, we consider the four adversary



32 Graceful Degradation

structures Zc for correctness, Zs for secrecy, Zr for robustness, and Zf for
fairness. Since all our protocols achieve agreement on abort for free, we do
not introduce a separate structure for this security property.

Then, correctness is guaranteed for (D∗, E∗) ∈ Zc, secrecy is guaranteed
for (D∗, E∗) ∈ Zs, robustness is guaranteed for (D∗, E∗) ∈ Zr, and fairness
is guaranteed for (D∗, E∗) ∈ Zf . Trivially, if several of these conditions are
satisfied, all corresponding security properties are guaranteed. In particular,
full security is guaranteed if the conditions for all four security properties are
fulfilled.

We assume that Zr ⊆ Zc and Zs ⊆ Zc, as secrecy and robustness are
not well defined without correctness, and Zf ⊆ Zs since in a setting without
secrecy the adversary inherently has an unfair advantage over honest parties.

3.2 Threshold Adversaries

The characterization for general adversaries can be adjusted to threshold ad-
versaries: We consider mixed adversaries which are characterized by two
thresholds ta and tp, where up to tp parties can be passively corrupted, and
up to ta of these parties can even be corrupted actively (see Section 2.2.3).
Furthermore, the level of security depends on the number of actually cor-
rupted parties; the fewer parties are corrupted, the more security is guar-
anteed. We consider four security properties, namely correctness, secrecy,
robustness, and fairness, which is modeled with four thresholds, one for each
security property.

To characterize mixed threshold adversaries in a setting with hybrid se-
curity, we use four pairs of thresholds, one for each security property, and
each specifying the upper bound on the number of active and passive cor-
ruptions that the adversary may perform, such that the security property is
still guaranteed. More specifically, we consider the four pairs of thresholds
(tca, tcp) for correctness, (tsa, tsp) for secrecy, (tra, trp) for robustness, and (tfa , tfp)
for fairness. As in the setting with general adversaries, we do not introduce
a separate pair of thresholds for agreement on abort. And again we assume
that (tsa, tsp) ≤ (tca, tcp) and (tra, trp) ≤ (tca, tcp),4 as secrecy and robustness are not
well defined without correctness, and (tfa , tfp) ≤ (tsa, tsp), as fairness cannot be
achieved without secrecy.

4We write (tsa, tsp) ≤ (tca, tcp) as shorthand for tsa ≤ tca and tsp ≤ tcp.



3.3 Multi-Threshold Adversaries 33

Then, correctness is guaranteed for (|D∗|, |E∗|) ≤ (tca, tcp), secrecy is guar-
anteed for (|D∗|, |E∗|) ≤ (tsa, tsp), robustness is guaranteed for (|D∗|, |E∗|) ≤
(tra, trp), and fairness is guaranteed for (|D∗|, |E∗|) ≤ (tfa , tfp). Trivially, if sev-
eral of these conditions are satisfied, all corresponding security properties are
guaranteed.

3.3 Multi-Threshold Adversaries

The traditional model for threshold mixed adversaries uses a single pair of
thresholds (ta, tp), where the protocol tolerates up to tp passive corruptions,
of which up to ta may even be active. This model allows to define only a
single maximal adversary. As an example, consider the following two pairs of
thresholds (ta, tp) and (t′a, t′p) with ta < t′a and tp > t′p. Now, assume a setting
where security against both (ta, tp) and (t′a, t′p), but not against (t′a, tp), can be
guaranteed by a single protocol. That means, the protocol is secure against
two incomparable maximal adversaries, but not against their “union”. In
the traditional model, it is impossible to express this bound, and one has to
choose either one of the two maximal adversaries.

To model security guarantees against two or more incomparable maxi-
mal adversaries, we consider multiple pairs of thresholds. Therefore, we use
multi-thresholds T = {(ta,1, tp,1), . . . , (ta,k, tp,k)}, i.e., sets of pairs of thresh-
olds (ta, tp). In this model, security is guaranteed if (|D∗|, |E∗|) ≤ (ta, tp) for
some (ta, tp) ∈ T , denoted by (|D∗|, |E∗|) ≤ T .

Again, the guaranteed security properties (correctness, secrecy, robust-
ness, and fairness) depend on the number (|D∗|, |E∗|) of actually corrupted
parties (hybrid security). As before, we do not introduce a separate pair
of thresholds for agreement on abort. Hence, we consider the four multi-
thresholds T c, T s, T r, and T f : Correctness is guaranteed for (|D∗|, |E∗|) ≤ T c,
secrecy is guaranteed for (|D∗|, |E∗|) ≤ T s, robustness is guaranteed for
(|D∗|, |E∗|) ≤ T r, and fairness is guaranteed for (|D∗|, |E∗|) ≤ T f . As for
general and threshold adversaries, if several of these conditions are satisfied,
all corresponding security properties are guaranteed. Also, we have again
the assumption that T s ≤ T c and T r ≤ T r,5 as secrecy and robustness are not
well defined without correctness, and T f ≤ T s as fairness cannot be achieved
without secrecy.

Note that incomparable adversaries can only exist if both the set of active
and passive corruptions are relevant for a security property. If each of the

5We write T1 ≤ T2 as a shorthand for ∀(ta, tp) ∈ T1, ∃(t′a, t′p) ∈ T2 : (ta, tp) ≤ (t′a, t′p).



34 Graceful Degradation

security properties is influenced only by one of the two sets, the model with
simple thresholds is sufficiently expressive.



Chapter 4

Protocols with Perfect
Security

We first present the protocols for the setting with perfect security. The re-
sults in this setting are rather straight-forward and less complex than in the
other settings. This allows us to present our general approach: We design
parametrized protocols and analyze when the various security properties are
guaranteed. Then, given the security of the parametrized protocols, we de-
duce bounds when reactive MPC can be achieved, and prove their tightness.

For the construction of the perfectly secure protocols, we parametrize
existing protocols ([Mau02] for general, and [BGW88] for threshold adver-
saries). On an abstract level, our modifications can be described as follows:
First, we define the state that is held in the protocol in terms of a parame-
ter that influences the secrecy. Second, given the parameter for secrecy, we
express the reconstruct protocol in terms of an additional parameter deter-
mining the amount of error correction taking place without aborting the pro-
tocol, i.e., a parameter for robustness. Traditional protocols correct as many
errors as possible. By using a parameter, our protocol may stay below the
theoretical limit, thereby providing extended error detection. To our knowl-
edge, such a second parameter has not been considered before. Then, we
analyze the parametrized protocols with respect to correctness, secrecy, and
robustness (fairness is treated separately).

The treatment follows along the lines of [HLMR11], where this setting was
first discussed.



36 Protocols with Perfect Security

4.1 General Adversaries

The solution for the setting with general adversaries is conceptually simpler
and provides more insight into the underlying problem. Therefore, we dis-
cuss this setting first.

4.1.1 A Parametrized Protocol for General Adversaries

As discussed above, we generalize the protocol of [Mau02] introducing two
parameters: The sharing specification S = (S1, . . . , S`) is a parameter of the
state and influences the secrecy. The robustness parameter R = {R1, . . . , Rk}
is a parameter of the reconstruction protocol and determines the amount of
error correction: If the errors can be explained with a set R ∈ R of actively cor-
rupted parties, the errors are ignored (corrected) and the protocol proceeds.
Otherwise, the protocol is aborted. Both parameters are collections of subsets
of P .

4.1.1.1 The Underlying Verifiable Secret Sharing Scheme

The state of the protocol is maintained with an `-out-of-` sharing, where each
party holds several summands.

Definition 1 (S-Sharing). A value s is S-shared for sharing specification
S = (S1, . . . , S`) if there are values s1, . . . , s` ∈ F, such that s1 + . . . + s` = s
and, for all i, every (correct) party pj ∈ Si holds the summand si. A sharing
specification S is E-secret if the summands held by the parties in E are statisti-
cally independent from the secret, and D-permissive if the summands held by
the parties in P \ D uniquely define the secret.

Lemma 1. An S-sharing is E-secret if ∃Si ∈ S : Si ∩ E = ∅, and D-permissive if
∀Si ∈ S : Si \ D 6= ∅.

Proof. Secrecy follows from the fact that E lacks at least one summand si.
Furthermore, given that ∀Si ∈ S : Si \ D 6= ∅, each summand si is held
by at least one party in P \ D. Hence, the secret s is uniquely defined by
s = s1 + . . . + s`.

The share protocol takes as input a secret s from a dealer, and outputs an
S-sharing of the secret s (see Figure 4.1).



4.1 General Adversaries 37

Protocol SHAREGA
P : Given input s from the dealer, compute an S-sharing

of this value.

1. The dealer chooses uniformly random summands s1, . . . , s` such that
s =

∑`
i=1 si, where ` = |S|. Then, for i = 1, . . . , `, the dealer sends si

to every party pj ∈ Si.

2. For all Si ∈ S: Every party pj ∈ Si sends si to every other party in Si.
Then, every party in Si broadcasts a complaint bit, indicating whether
it observed an inconsistency.

3. The dealer broadcasts each summand si for which inconsistencies
were reported, and the players in Si accept this summand.

4. Each party pj outputs its share {si | pj ∈ Si}.

Figure 4.1: The perfectly secure share protocol for general adver-
saries.

Lemma 2. Let S be the sharing specification. On input s from the dealer, SHAREGA
P

correctly, secretly and robustly computes an S-sharing. If S is D∗-permissive, and if
the dealer is correct, the sharing uniquely defines the secret s.

Proof. SECRECY: Given a correct dealer, a valid S-sharing is distributed in the
first step. In the remaining protocol run, no additional information is revealed
to the adversary: A summand si is broadcasted only if a party pj with pj ∈ Si

reported an inconsistency. Yet, such an inconsistency occurs only if one of the
parties in Si is actively corrupted, i.e., when the adversary knew the value
already beforehand.

CORRECTNESS: First, we have to show that the protocol outputs a valid S-
sharing. Due to the bilateral checks, the summands held by correct parties
are always consistent, which implies already a valid S-sharing. Second, we
have to show that if S is D∗-permissive and if the dealer is correct, then the
shared value equals the input of the dealer. A correct dealer always responds
on reported inconsistencies with the original summands. Hence, the unique
value defined by the sharing is the secret s.

ROBUSTNESS: It follows from inspection that the protocol cannot be aborted.



38 Protocols with Perfect Security

For the public reconstruction6 of a shared value, we modify the reconstruc-
tion protocol of [Mau02]. In our protocol, we trade correctness for robust-
ness by introducing a robustness parameter R. First, each summand si is
broadcasted by all parties in Si. Then, if the inconsistencies can be explained
with a faulty set R ∈ R, the values from parties in R are ignored (cor-
rected), and reconstruction proceeds. Otherwise, the protocol is aborted.
PUBLIC RECONSTRUCTIONGA

P is the only subprotocol that might abort. All
other protocols abort only if they use PUBLIC RECONSTRUCTIONGA

P as a sub-
protocol and the invocation thereof aborts. Therefore, it is sufficient to discuss
agreement on abort only for this protocol.

Whenever two sets of possibly actively corrupted parties cover a set
S ∈ S, i.e. S ⊆ D1∪D2, and the parties inD1 contradict the parties inD2, then
it is impossible to decide which is the correct value. This observation implies
an upper bound on R, namely ∀S ∈ S, R1, R2 ∈ R : S 6⊆ R1 ∪ R2. However,
instead of always correcting as many errors as possible, the protocol allows
to select a parameter R that remains below this upper bound (i.e. contains
smaller sets R). Now, when only correcting errors that are covered by a set
R ∈ R, then we can detect errors in sets D where ∀S ∈ S, R ∈ R : S 6⊆ D ∪R.
Hence, this approach provides a tradeoff between reduced robustness and
extended correctness.

Protocol PUBLIC RECONSTRUCTIONGA
P : Given an S-sharing of some value

s, reconstruct s to all parties.

1. For each summand si:

(a) Each party pj ∈ Si broadcasts si. For pj ∈ Si, let s
(j)
i denote the

value (for si) broadcasted by party pj .

(b) Each party (locally) reconstructs the summand si: If there is a
value si such that there exists R ∈ R with s

(j)
i = si for all

pj ∈ Si \R, use si. Otherwise abort.

2. Each party outputs the secret s = s1 + . . . + s`.

Figure 4.2: The perfectly secure public reconstruction protocol for
general adversaries.

6Private reconstruction can be reduced to public reconstruction using a blinding technique
as discussed in Section 2.3.3. Note that the trivial solution, where each party sends its share to
party pk , does not achieve agreement on abort.



4.1 General Adversaries 39

Lemma 3. Let S be the sharing specification, and R be the robustness parameter,
where ∀S ∈ S, R1, R2 ∈ R : S 6⊆ R1 ∪ R2. Given an S-sharing of some value
s, PUBLIC RECONSTRUCTIONGA

P is correct if ∀R ∈ R, S ∈ S : S \ R 6⊆ D∗, is
robust if D∗ ∈ R, and always guarantees agreement on abort.

Proof. CORRECTNESS: The condition ∀R ∈ R, S ∈ S : S \ R 6⊆ D∗ states that
for every summand si and every set R ∈ R, there is at least one correct party
whose summand is not ignored. Hence, if a value si is chosen, it must be the
correct one.

ROBUSTNESS: When reconstructing the summand si, all but the actively cor-
rupted parties in D∗ broadcast the same summand si. Since D∗ ∈ R, these
inconsistencies can be explained with a set in R. Hence, the corresponding
set can be ignored and reconstruction terminates without abort.

Since the abort decision is based only on broadcasted values, we always
have AGREEMENT ON ABORT (cf. Section 2.3.2).

4.1.1.2 Addition, Multiplication, and Random Values

Linear functions (and in particular additions) can be computed locally, since
S-sharings are linear. In particular, given sharings of a and b, and a constant
c, one can easily compute the sharings of a + b, ca, and a + c. Computing a
shared random value can be achieved by letting each party pi share a random
value ri, and computing a sharing of r = r1 + . . . + rn (cf. Section 2.3.3).

For the multiplication of two values a and b, we use the protocol from
[Mau02], based on our modified share and reconstruct protocols. The multi-
plication protocol exploits the fact that ab =

∑`
i=1

∑`
j=1 aibj : For each aibj ,

first, all parties who know ai and bj compute aibj and share it. Then, all par-
ties choose a (correct) sharing of aibj . In the end, each party locally computes
the linear function described above. In order to ensure the correctness of the
sharing of aibj , the protocol checks whether all parties that computed aibj

shared the same value. If this holds, and if at least one correct party shared
aibj , all sharings contain the correct value, and an arbitrary one can be chosen.
Otherwise, at least one of the parties that computed aibj is actively corrupted,
and the summands ai and bj can be reconstructed without violating secrecy.



40 Protocols with Perfect Security

Protocol MULTIPLICATIONGA
P : Given S-sharings of some values

a =
∑`

i=1 ai and b =
∑`

i=1 bi, compute an S-sharing of the product c = ab.

1. For each pair Si, Sj ∈ S:

(a) Each party in Si ∩ Sj computes aibj and invokes SHAREGA
P on it.

(b) All parties (distributedly) compute the difference of the value
shared by the party with the smallest index in Si ∩ Sj and each
other party in Si ∩ Sj , and invoke PUBLIC RECONSTRUCTIONGA

P
on it.

(c) If all these opened differences are 0, then the sharing by the
party with the smallest index in Si ∩ Sj is used as the sharing
of aibj . Otherwise, ai and bj are reconstructed along the lines
of PUBLIC RECONSTRUCTIONGA

P , and a default sharing of aibj is
used.

2. The parties (distributedly) compute the sum of their sharings of all
terms aibj , resulting in a sharing of c = ab.

Figure 4.3: The perfectly secure multiplication protocol for general
adversaries.

Lemma 4. Let S be the sharing and R be the robustness parameter, where ∀S ∈
S, R1, R2 ∈ R : S 6⊆ R1 ∪ R2. Given S-sharings of a and b, MULTIPLICATION
outputs a correct S-sharing of the product c = ab if ∀Si, Sj ∈ S : Si ∩ Sj 6⊆ D∗
and the subprotocols are correct,7 is secret if the subprotocols are secret and correct,
and is robust if the subprotocols are robust.

Proof. SECRECY: Secrecy is guaranteed if the adversary cannot provoke the
reconstruction of summands ai and bj where he did not know ai or bj be-
forehand, i.e., where Si ∩ D∗ = ∅ or Sj ∩ D∗ = ∅. In that case, we have in
particular that (Si ∩ Sj) ∩ D∗ = ∅, i.e., only correct parties share the product
aibj (Step 1). Hence, given correct reconstruction (Step 2), all differences in
Step 3 are 0, and the summands are not reconstructed.

CORRECTNESS: Correctness for the summand of the product aibj is guaran-
teed given that reconstruction is correct, and if there is at least one correct

7In particular ∀Si, Sj ∈ S : Si ∩ Sj 6= ∅, since otherwise no party can compute aibj .



4.1 General Adversaries 41

party in Si ∩ Sj that correctly computes and shares this value, which is guar-
anteed by the premise in the lemma.

ROBUSTNESS: This security requirement follows directly from the robustness
of PUBLIC RECONSTRUCTIONGA

P and SHAREGA
P .

4.1.1.3 The Security of the Generalized Protocol from [Mau02]

Considering the security of the subprotocols described above, we can derive
the security of the parametrized protocol, denoted by πS,R

P :

Lemma 5. Let S be the sharing specification, and R be the robustness parameter,
where ∀S ∈ S, R1, R2 ∈ R : S 6⊆ R1 ∪R2. The protocol πS,R

P guarantees

• CORRECTNESS if ∀Si, Sj ∈ S : Si ∩ Sj 6⊆ D∗ and
∀R ∈ R, S ∈ S : S \R 6⊆ D∗,

• SECRECY if ∃Si ∈ S : Si ∩ E∗ = ∅ and correctness is guaranteed,

• ROBUSTNESS if D∗ ∈ R, and

• AGREEMENT ON ABORT always.

Proof. For each property, given its condition in the lemma, it is easy to verify
that the corresponding conditions for this property in all subprotocols are
fulfilled.

4.1.2 A Trivial Non-Secret Protocol

If there is no secrecy requirement (i.e., if Zs = {(∅, ∅)}), each party can simply
broadcast its inputs, and all parties locally compute the output.

Trivially, this protocol achieves correctness and robustness for any number
of corrupted parties. As mentioned in Section 2.3.2, in a setting without se-
crecy, we do not achieve the traditional interpretation of correctness: We can
obtain neither input-independence nor true randomness. Yet, the output is
guaranteed to be consistent with the input of the correct parties.



42 Protocols with Perfect Security

Protocol for non-secret MPC: Given a circuit, evaluate the circuit gate-wise.

• Input gates: Party pi provides input s by broadcasting s to all parties.

• Addition and multiplication gates: Each party locally performs all
computations on the broadcasted values.

• Random gates: Party p1 broadcasts a random value r.

• Output gates: Each party outputs the value computed locally before.

Figure 4.4: A protocol without secrecy.

4.1.3 The Main Result for General Adversaries

The following theorem states the optimal bound for perfectly secure reac-
tive MPC with graceful degradation of both security (allowing for hybrid
security) and corruptions (allowing for mixed adversaries) for general adver-
saries, given broadcast. Furthermore, we show that the bound is sufficient for
MPC by providing parameters for the generalized protocol described in Sec-
tion 4.1.1. In the following section, we prove that the bound is also necessary.

Theorem 1. In the secure channels model with broadcast and general adversaries,
perfectly secure reactive MPC among n ≥ 2 parties with respect to (Zc,Zs,Zr,Zf ),
where Zr ⊆ Zc and Zf ⊆ Zs ⊆ Zc, is possible if(

∀(Dc, ·) ∈ Zc, (·, Es
1 ), (·, Es

2 ) ∈ Zs, (Dr, ·) ∈ Zr :

Dc ∪ Es
1 ∪ Dr 6= P ∧ Dc ∪ Es

1 ∪ Es
2 6= P

)
∨ Zs = {(∅, ∅)}.

This bound is tight: If violated, there are (reactive) functionalities that cannot be
securely computed.

Note that the bound holds for any Zf ⊆ Zs, and we can always have
Zf = Zs.

Proof. The necessity of the bound in the theorem is proven in Section 4.1.4. To
prove that the bound is also sufficient, we first note that if Zs = {(∅, ∅)}, then
there is no secrecy requirement, and we can directly use the trivial non-secret
protocol described in Section 4.1.2. Otherwise, we employ the parametrized



4.1 General Adversaries 43

version πS,R
P of the protocol of [Mau02] described in Section 4.1.1. We set

S := {Es | (·, Es) ∈ Zs} and R = {D | (D, ·) ∈ Zr ∪ Zf}.

The precondition of Lemma 5 is that ∀S ∈ S, R1, R2 ∈ R : S 6⊆ R1 ∪ R2,
which is equivalent to ∀S ∈ S, R1, R2 ∈ R : S ∪ R1 ∪ R2 6= P . We have that
Zr ∪Zf ⊆ Zc. Hence, for our choice of parameters S and R, we have that for
all S, R1, and R2, there are sets Es andDc, such that S∪R1∪R2 ⊆ Es∪Dc∪R2.
By construction of R, (R2, ·) is either from Zr or from Zf . Therefore, the
inequality follows either from the left-hand side (if (R2, ·) ∈ Zr) or from the
right-hand side (if (R2, ·) ∈ Zf ⊆ Zs) of the condition in the theorem. Hence,
we can apply the lemma to derive correctness, secrecy and robustness: Given
the bound in the theorem, the choice of the structures S and R, and the fact
that (D∗, E∗) is an element of the corresponding adversary structure, it is easy
to verify that the condition for each property is fulfilled.

For fairness we have ∀(Df , ·) ∈ Zf : Df ∈ R. Hence, for (D∗, E∗) ∈ Zf

the protocol is robust, and the adversary cannot abort.

4.1.4 Proofs of Necessity

In this section, we prove that the bound in Theorem 1 is necessary, i.e., if
violated, some (reactive) functionalities cannot be securely computed. The
bound is violated if(

∃(Dc, ·) ∈ Zc, (·, Es
1 ), (·, Es

2 ) ∈ Zs, (Dr, ·) ∈ Zr :

Dc ∪ Es
1 ∪ Dr = P ∨ Dc ∪ Es

1 ∪ Es
2 = P

)
∧ Zs 6= {(∅, ∅)}.

Due to monotonicity, we can assume that the sets Dc, Es
1 , Es

2 , and Dr are dis-
joint. Furthermore, since Zs 6= {(∅, ∅)}, we can assume that Es

1 6= ∅. We can
split the condition according to whetherDc∪Es

1 ∪Dr = P orDc∪Es
1 ∪Es

2 = P .

1. ∃(Dc, ·) ∈ Zc, (·, Es
1 ) ∈ Zs, (Dr, ·) ∈ Zr : Dc ∪ Es

1 ∪ Dr = P ∧ Es
1 6= ∅.

We further split this case according to whether Dc = ∅ or Dr = ∅. Since
Zr ⊆ Zc, the case where Dc = ∅ ∧ Dr 6= ∅ is subsumed by Case 1(b).

(a) ∃(Dc, ·) ∈ Zc, (·, Es
1 ) ∈ Zs, (Dr, ·) ∈ Zr :

Dc ∪ Es
1 ∪ Dr = P ∧ Es

1 6= ∅ ∧ Dc 6= ∅ ∧ Dr 6= ∅ (Section 4.1.4.1)

(b) ∃(Dc, ·) ∈ Zc, (·, Es
1 ) ∈ Zs : Dc ∪ Es

1 = P ∧ Es
1 6= ∅ ∧ Dc 6= ∅

(Section 4.1.4.2)



44 Protocols with Perfect Security

(c) ∃(·, Es
1 ) ∈ Zs : Es

1 = P ∧ Es
1 6= ∅: Due to monotonicity and

|P| = n ≥ 2, this implies ∃(·, Es
1 ), (·, Es

2 ) ∈ Zs :
Es
1 ∪ Es

2 = P ∧ Es
1 6= ∅ ∧ Es

2 6= ∅ ∧ Es
1 ∩ Es

2 = ∅,
which is identical to Case 2(b).

2. ∃(Dc, ·) ∈ Zc, (·, Es
1 ), (·, Es

2 ) ∈ Zs : Dc ∪ Es
1 ∪ Es

2 = P ∧ Es
1 6= ∅. Again,

we further split this case according to whether Dc = ∅ or Es
2 = ∅. Note

that the case where Dc 6= ∅ ∧ Es
2 = ∅ is identical to Case 1(b), and the

case where Dc = ∅ ∧ Es
2 = ∅ is identical to Case 1(c).

(a) ∃(Dc, ·) ∈ Zc, (·, Es
1 ), (·, Es

2 ) ∈ Zs :
Dc ∪ Es

1 ∪ Es
2 = P ∧ Es

1 6= ∅ ∧ Es
2 6= ∅ ∧ Dc 6= ∅ (Section 4.1.4.3)

(b) ∃(·, Es
1 ), (·, Es

2 ) ∈ Zs : Es
1∪Es

2 = P ∧ Es
1 6= ∅∧Es

2 6= ∅ (Section 4.1.4.4)

4.1.4.1 Case 1(a): ∃(Dc, ·) ∈ Zc, (·, Es
1 ) ∈ Zs, (Dr, ·) ∈ Zr :

Dc ∪ Es
1 ∪ Dr = P ∧ Es

1 6= ∅ ∧ Dc 6= ∅ ∧ Dr 6= ∅

A state is a requirement for reactive functionalities. We first prove that it is
impossible to hold a state in a specific 3-party setting. This proof is inspired
by [BFH+08].

Definition 2 (State). A state for n parties p1, . . . , pn is a tuple (s1, . . . , sn) that
defines a value s ∈ {0, 1,⊥}, where party pi holds si. A state is secret if the
state information held by corrupted parties contains no information about the
bit s. A state is correct if it uniquely defines either s or ⊥. A state is robust if it
uniquely defines either 0 or 1.

Lemma 6. Three parties A, B, and C cannot hold a state (sA, sB , sC) that defines a
bit s providing secrecy in case of a passively corrupted A, correctness and robustness
in case of an actively corrupted B, and correctness (without agreement on abort) in
case of an actively corrupted C.

Proof. To arrive at a contradiction, assume that (a, b, c) is a state for s = 0. Due
to secrecy in case of a passively corrupted A, there exists b′ and c′ such that
(a, b′, c′) is a valid state for s = 1. Due to correctness and robustness in case of
an actively corrupted B, the state (a, ·, c) must define the value 0 (where · is a
placeholder for an arbitrary state information held by B). Due to correctness
in case of an actively corrupted C, the state (a, b′, ·) defines either 1 or ⊥. As
a consequence, with probability greater 0, the state (a, b′, c) can be achieved
if s = 0 and B is actively corrupted, and it can be achieved if s = 1 and C is
actively corrupted. Hence, it must define both 0 and either 1 or ⊥, which is a
contradiction.



4.1 General Adversaries 45

Given Lemma 6, we can prove the desired bound by reducing the n-party set-
ting to the 3-party setting specified there: Assume we have a perfectly secure
n-party state (s1, . . . , sn) for the case ∃(Dc, ·) ∈ Zc, (·, Es

1 ) ∈ Zs, (Dr, ·) ∈ Zr :
Dc ∪ Es

1 ∪ Dr = P ∧ Es
1 6= ∅ ∧ Dc 6= ∅ ∧ Dr 6= ∅. By assumption we have that

Dc, Es
1 , and Dr are disjoint.

We obtain a 3-party state (sA, sB , sC) from (s1, . . . , sn) by having A, B,
and C emulate the parties in Es

1 ,Dr, andDc respectively. The state (s1, . . . , sn)
tolerates passive corruption of all parties in Es

1 while maintaining secrecy, ac-
tive corruption of all parties in Dr while maintaining correctness and robust-
ness, and active corruption of all parties in Dc while maintaining correctness.
Hence, the resulting state (sA, sB , sC) is secure for the specific corruption set-
ting specified in Lemma 6, which is a contradiction.

4.1.4.2 Case 1(b): ∃(Dc, ·) ∈ Zc, (·, Es
1 ) ∈ Zs :

Dc ∪ Es
1 = P ∧ Es

1 6= ∅ ∧ Dc 6= ∅

Analogously to the previous section, we prove that it is impossible to hold a
state in a specific 2-party setting:

Lemma 7. Two parties A and B cannot hold a state (sA, sB) that defines a bit s
providing secrecy in case of a passively corrupted A, and correctness in case of an
actively corrupted B.

Proof. For a contradiction, assume that (a, b) is a state for s = 0. Due to se-
crecy in case of a passively corrupted A, there exists b′ such that (a, b′) is a
valid state for s = 1. As a consequence, with probability greater 0, an ac-
tively corrupted B can choose between the state (a, b) and (a, b′), violating
correctness.

Given Lemma 7, we can prove the desired bound by reducing the n-party
setting to the 2-party setting along the lines of the previous case.

4.1.4.3 Case 2(a): ∃(Dc, ·) ∈ Zc, (·, Es
1 ), (·, Es

2 ) ∈ Zs :
Dc ∪ Es

1 ∪ Es
2 = P ∧ Es

1 6= ∅ ∧ Es
2 6= ∅ ∧ Dc 6= ∅

We first prove impossibility of computing the logical “and” in a specific 3-
party setting.



46 Protocols with Perfect Security

Lemma 8. Consider protocols for three parties A (with input a ∈ {0, 1}), B (with
input b ∈ {0, 1}), and C (without input) that compute the logical “and” z = a ∧ b
and output it to all parties. There is no such protocol providing secrecy when A or B
are passively corrupted, and correctness when C is actively corrupted.

Proof. To arrive at a contradiction, assume that a secure protocol exists. We
consider the random variables TAB , TAC and TBC describing the transcripts
of the channels connecting parties A and B, A and C, and B and C, respec-
tively, and T describing the transcript of the broadcast channel, for honest
protocol executions.

First, observe that for a = 0, we have z = 0 independent of b, hence
I(b;TAB , TAC , T |a = 0) = 0. Analogously, for a = 1, A must learn z = b,
hence H(b|TAB , TAC , T, a = 1) = 0. We distinguish two cases, namely when
H(b|TAB , T, a = 1) is zero (i) or non-zero (ii).

In case (i), it follows from I(b;TAB , TAC , T |a = 0) = 0, that in particular
we must have I(b;TAB , T |a = 0) = H(b|a = 0)−H(b|TAB , T, a = 0) = 0, and
hence H(b|TAB , T, a = 0) = H(b|a = 0) > 0. Furthermore, by assumption we
have H(b|TAB , T, a = 1) = 0. That means that party B can decide if a = 0 or
a = 1 by observing the transcripts TAB and T . This contradicts the secrecy in
presence of a passively corrupted party B.

In case (ii), let (tAB , tAC , tBC , t) be a list of transcripts corresponding to a
protocol run with a = 1 and b = 0. It follows from H(b|TAB , T, a = 1) > 0
that there are transcripts t′AC and t′BC , such that (tAB , t′AC , t′BC , t) is a list of
transcripts corresponding to a protocol run with a = 1 and b = 1. Thus,
when observing tAB , t′AC , and t, party A cannot distinguish whether b = 1
and all parties behave correctly, or whether b = 0 and party C is actively
corrupted provoking a wrong transcript t′AC (which C achieves with non-
zero probability). In the first scenario, due to completeness, A must output 1.
In the second scenario, due to correctness, party A must output 0 (or abort).
This is a contradiction.

Given Lemma 8, we can prove the desired bound by reducing the n-party
setting to the 3-party setting along the lines of the previous cases.

4.1.4.4 Case 2(b): ∃(·, Es
1 ), (·, Es

2 ) ∈ Zs :
Es
1 ∪ Es

2 = P ∧ Es
1 6= ∅ ∧ Es

2 6= ∅

As stated in [BGW88, Kil00], it is impossible to compute the logical “and”
with perfect secrecy in a 2-party setting. Again, we can prove the desired



4.2 Threshold Adversaries 47

bound by reducing the n-party setting to the 2-party setting along the lines of
the previous cases.

4.2 Threshold Adversaries

Trivially, the protocol for general adversaries can also be applied to the special
case of threshold adversaries. Yet, protocols for general adversaries are super-
polynomial in the number of parties for most adversary structures. Therefore,
we present a protocol that exploits the symmetry of threshold adversaries,
and is efficient in the number of parties.

It follows from the bound for general adversaries in Theorem 1 that in the
perfect setting, incomparable maximal adversaries cannot occur. Therefore,
the adversary model with simple thresholds as introduced in Section 3.2 is
sufficient and we do not need to use multi-thresholds.

In this section, we assume that each party pi is assigned a unique and
publicly known evaluation point αi ∈ F \ {0}. This implies that the field F
must have more than n elements.

4.2.1 A Parametrized Protocol for Threshold Adversaries

Analogously to the setting with general adversaries, we generalize the per-
fectly secure MPC protocol of [BGW88] by introducing two parameters: On
the one hand, the parameter of the state that influences the secrecy is the de-
gree d of the sharing polynomial (see also [FHM98]). On the other hand, the
robustness parameter of the reconstruct protocol that determines the amount
of error correction taking place (without aborting the protocol) is the number
e of corrected errors during reconstruction. The two parameters must fulfill
d + 2e < n. Note that by staying below the theoretical limit and choosing
d + 2e 6= n − 1, it is possible to reduce robustness for extended correctness.
In [BGW88], both parameters are set to d = e = t, the maximum number of
actively corrupted parties.

In the following, we present the parametrized protocol and analyze it with
respect to correctness, secrecy, and robustness. We do not consider fairness.
The main result (including fairness) is discussed in Section 4.2.2.



48 Protocols with Perfect Security

4.2.1.1 The Underlying Verifiable Secret Sharing Scheme

The state of the protocol is maintained with a Shamir sharing [Sha79] of each
value.

Definition 3 (d-Sharing). A value s is d-shared when there is a share polyno-
mial ŝ(x) of degree d with ŝ(0) = s, and every (correct) party pi holds a share
si = ŝ(αi). We denote a d-sharing of s with [s], and the share si also with [s]i.
A sharing degree d is tp-secret if the shares held by the parties in any set of
size at most tp are statistically independent from the secret, and ta-permissive
if the shares of all but ta parties uniquely define the secret.

Lemma 9. A d-sharing is tp-secret if tp ≤ d, and ta-permissive if ta < n− d.

Proof. It follows directly from the properties of a polynomial of degree d that
any set of at most d parties has no information about the secret. Furthermore,
ta < n−d implies that there remain at least d+1 parties whose shares uniquely
define a share polynomial.

The share protocol takes as input a secret s from a dealer, and outputs a d-
sharing [s] (see Figure 4.5).

Lemma 10. Let d be the sharing degree. On input s from the dealer, SHARETH
P

correctly, secretly, and robustly computes a d-sharing. If d is |D∗|-permissive, and if
the dealer is correct, the sharing uniquely defines the secret s.

Proof. SECRECY: In Step 1, the dealer distributes a bivariate polynomial
g(x, y), that contains a d-sharing of its input s. It follows from the proper-
ties of a bivariate polynomial that g(x, y) reveals no more information about
s than the d-sharing. After Step 1, the adversary does not obtain any addi-
tional information. Hence, the protocol does not leak more information than
the specified output, and thus always provides secrecy.
CORRECTNESS: First, we have to show that the protocol outputs a valid d-
sharing. Due to the bilateral consistency checks, the shares held by correct
parties are always consistent, which implies already a valid d-sharing. Sec-
ond, we have to show that if d is |D∗|-permissive and if the dealer is correct,
then the shared value equals the input of the dealer. A correct dealer can al-
ways consistently answer all complains and accusations with the correct val-
ues. Hence, if d is |D∗|-permissive, the unique value defined by the sharing is
the secret s.
ROBUSTNESS: By inspection, the protocol always outputs some correct d-
sharing.



4.2 Threshold Adversaries 49

Protocol SHARETH
P : Given input s from the dealer, compute a d-sharing [s]

of this value.

1. The dealer chooses a random (2-dimensional) polynomial g(x, y) with
g(0, 0) = s, of degree d in both variables, and sends to party pi (for
i = 1, . . . , n) the (1-dimensional) polynomials ki(y) = g(αi, y) and
hi(x) = g(x, αi).

2. For each pair of parties (pi, pj), party pi sends hi(αj) to party pj , and
party pj checks whether hi(αj) = kj(αi). If this check fails, it broad-
casts a complaint, and the dealer has to broadcast the correct value.

3. If some party pi observes an inconsistency between the polynomials
received in Step 1 and the broadcasted value in Step 2, it accuses the
dealer. The dealer has to answer the accusation by broadcasting both
ki(y) and hi(x). Now, if some other party pj observes an inconsis-
tency between the polynomial received in Step 1 and these broad-
casted polynomials, it also accuses the dealer. This step is repeated
until no additional party accuses the dealer.

4. If the dealer does not answer some complaint or accusation, or if the
broadcasted values contradict, the parties output a default d-sharing.
Otherwise, each party pi outputs si := ki(0), and the dealer outputs
ŝ(x) := g(x, 0).8

Figure 4.5: The perfectly secure share protocol for threshold adver-
saries.

The public reconstruction9 of a d-shared value s uses techniques from coding
theory, which allow a more intuitive understanding of the trade-off between
correctness and robustness. It follows from coding theory that a d-sharing
is equivalent to a code based on the evaluation of a polynomial of degree
d. Such a code has minimal distance n − d. Hence, the decoding algorithm
can detect up to n − d − 1 errors and abort (for correctness), or correct up
to bn−d−1

2 c errors (for robustness). In our protocol, we trade correctness for

8That means, in general we discard the second dimension of g(x, y). Yet, in a special context,
we will subsequently make use of it.

9Private reconstruction can be reduced to public reconstruction using a blinding technique
as discussed in Section 2.3.3. Note that the trivial solution, where each party sends its share to
party pk , does not achieve agreement on abort.



50 Protocols with Perfect Security

Protocol PUBLIC RECONSTRUCTIONTH
P : Given a d-sharing [s] of some

value s, reconstruct s to all parties.

1. Each party pi broadcasts its share si. Let ~s = (s1, ..., sn) denote the
vector of broadcasted shares.

2. Each party identifies the closest codeword ~sc (e.g. using the
Berlekamp-Welch algorithm). If the Hamming distance between ~sc

and ~s is larger than e, the protocol is aborted. Otherwise, each party
interpolates the entries in ~sc with a polynomial ŝc(x) of degree d, and
outputs ŝc(0).10

Figure 4.6: The perfectly secure public reconstruction protocol for
threshold adversaries.

robustness by introducing the correction parameter e < n−d
2 : Our decoding

algorithm provides error correction for up to e errors, and error detection for
up to (n− d)− e− 1 errors. Note that this trade-off is optimal: If the distance
to the correct codeword is greater than (n − d) − e − 1, the distance to the
next codeword is at most e, and the decoding algorithm would decode to the
wrong codeword.

The public reconstruction protocol (Figure 4.6) proceeds as follows: First,
each party broadcasts its share si. Then, each party locally “decodes” the
broadcasted shares to the closest codeword, and aborts if the number of
errors cannot be explained with an adversary actively corrupting at most
e parties, i.e., if the Hamming distance between the shares and the de-
coded codeword is larger than e. PUBLIC RECONSTRUCTIONTH

P is the only
subprotocol that might abort. All other protocols abort only if they use
PUBLIC RECONSTRUCTIONTH

P as a subprotocol and the invocation thereof
aborts. Therefore, it is sufficient to discuss agreement on abort only for this
protocol.

Lemma 11. Let d be the sharing degree, and e be the robustness parameter, where
d + 2e < n. Given a d-sharing [s] of some value s, PUBLIC RECONSTRUCTIONTH

P
is correct if |D∗| < (n − d) − e, is robust if |D∗| ≤ e, and always guarantees
agreement on abort.

10That means, in general we discard the vector ~sc of corrected shares. Yet, in a special context,
we will subsequently make use of it.



4.2 Threshold Adversaries 51

Proof. Only actively corrupted parties broadcast incorrect shares. Hence, the
Hamming distance between the broadcasted shares and the correct codeword
is at most |D∗|.
CORRECTNESS: The minimal distance between two codewords is (n−d), and
the decoding algorithm corrects up to e errors. Hence, if |D∗| + e < (n − d),
the decoding algorithm never decodes to the incorrect codeword.
ROBUSTNESS: Since |D∗| ≤ e, the Hamming distance between the shares and
the correct codeword is at most e and the decoding cannot be aborted.
Since the abort decision is based only on broadcasted values, we always have
AGREEMENT ON ABORT (cf. Section 2.3.2).

4.2.1.2 Addition, Multiplication, and Random Values

Linear functions (and in particular additions) can be computed locally, since
d-sharings are linear: Given sharings [a] and [b], and a constant c, one can eas-
ily compute the sharings [a]+[b], c[a], and [a]+c. Computing a shared random
value can be achieved by letting each party pi share a random value ri, and
computing [r] = [r1] + . . . + [rn].

The multiplication protocol (Figure 4.7) is more involved. The product c
of two shared values a and b is computed as follows [GRR98]: Each party
multiplies its shares ai and bi, obtaining vi = aibi. This results in a sharing
of c with a polynomial v̂(x) of degree 2d. We reduce the degree by having
each party d-share its value vi (resulting in [vi]), and employing Lagrange
interpolation to distributedly compute v̂(0). This results in a d-sharing of the
product c.

This protocol is secure only against passive adversaries. An active adver-
sary could share a wrong value v′i 6= vi. Therefore, each party has to prove
that it shared the correct value vi = aibi by invoking ABC-PROOFTH

P on d-
sharings of vi, ai, and bi. To obtain the d-sharings of ai and bi, we invoke
UPGRADETH

P on the d-sharings of a and b, resulting in [ai] and [bi] for all i.
Given [ai], [bi], and [vi], it remains to show that aibi = vi, which is equiv-

alent to z = 0 for [z]2d := [ai][bi] − [vi], where [z]2d is a 2d-sharing. Party pi

knows the sharing polynomial ĝ(x) corresponding to [z]2d. However, party pi

cannot simply broadcast ĝ(x), since this would violate secrecy (the adversary
could obtain information about other shares). Therefore, we blind [z]2d by
adding a uniformly random 2d-sharing of 0.

Finally, all parties (locally) check whether z = 0, and whether
party pi broadcasted the correct polynomial ĝ(x), i.e. for party pj whether



52 Protocols with Perfect Security

ĝ(αj) = [z]2d
j . Two polynomials of degree 2d are equal if they coincide in

2d + 1 points. So, if party pi broadcasts an incorrect ĝ(x), and if there are
at least 2d + 1 correct parties, at least one correct party detects the cheating
attempt and raises an accusation. To prove the accusation, the shares of the
corresponding party are reconstructed.

Protocol MULTIPLICATIONTH
P : Given [a] and [b], compute [c] for c = ab.

1. Each party pi computes vi = aibi, and invokes SHARETH
P on vi, result-

ing in [vi].

2. Invoke UPGRADETH
P on [a] and [b], resulting in [ai] and [bi] for

i = 1, . . . , n.

3. For i = 1, . . . , n, all parties invoke ABC-PROOFTH
P on [ai], [bi], and

[vi]. If the proof is rejected, invoke PUBLIC RECONSTRUCTIONTH
P on

[ai] and [bi], and use a default d-sharing of vi := aibi.

4. All parties distributedly compute the Lagrange interpolation11 on
[v1], . . . , [vn] for c = v(0), and output the resulting [c].

Figure 4.7: The perfectly secure multiplication protocol for thresh-
old adversaries.

Lemma 12. Let d be the sharing degree, and e be the robustness parameter, where
d + 2e < n. Given d-sharings of a and b, SHARETH

P outputs a correct d-sharing
of the product c = ab if 2d < n and if the subprotocols are correct, is secret if the
subprotocols are secret and correct, and robust if the subprotocols are robust.

Proof. By assumption, all subprotocols are secure. In Step 4, the parties inter-
polate a polynomial of degree 2d using n evaluation points. This interpola-
tion computes the correct result only if 2d < n, which is given by assumption.
Hence, security of the multiplication protocol follows straightforwardly.

We first present the UPGRADETH
P protocol (Figure 4.8): Given a d-sharing [s]

for some value s, the UPGRADETH
P protocol computes d-sharings [si] of all

shares si.

11Lagrange interpolation is a linear and therefore local computation on the shares of
v1, . . . , vn.



4.2 Threshold Adversaries 53

Protocol UPGRADETH
P : Given [s], compute [si] for i = 1, . . . , n.

1. All parties jointly compute a sharing of a random value r, such that
each share rj is also shared with a d-sharing:

(a) Each party pi chooses a uniformly random value r(i), and invokes
SHARETH

P on r(i). By keeping the second dimension at the end
of SHARETH

P , this results in a d-sharing [r(i)], where additionally
every share r

(i)
j is d-shared with [r(i)

j ].

(b) All parties compute [r] =
∑n

i=1[r
(i)] and [rj ] =

∑n
i=1[r

(i)
j ] for

j = 1, . . . , n.

2. All parties compute [q] := [r] − [s] and invoke
PUBLIC RECONSTRUCTIONTH

P on [q]. Denote by q1, . . . , qn the
(error-corrected) shares, which are known to all parties.

3. For j = 1 . . . n, all parties compute [s′j ] = [rj ] − qj , where s′j is a share
of some value s′.

4. Each party pi outputs its share s′i of s′, a d-sharing [s′i] of s′i, and for all
j a share-share of s′j .

Figure 4.8: A perfectly secure protocol for threshold adversaries for
upgrading a d-sharing.

Lemma 13. Let d be the sharing degree, and e be the robustness parameter, where
d + 2e < n, and assume that SHARETH

P and PUBLIC RECONSTRUCTIONTH
P are

secure. Given a d-sharing of some value s, UPGRADETH
P correctly, robustly, and

secretly computes a d-sharing of each share si.

Proof. The proof follows directly from the observation that the protocol is
as secure as SHARETH

P and PUBLIC RECONSTRUCTIONTH
P : Let r̂(x, y) be the

polynomial with which r is shared, and ŝ(x) be the polynomial with which s
is shared.
CORRECTNESS follows from the observation that in Step 3 the parties com-
pute ĥ(x, y) = r̂(x, y)− q̂(x) = r̂(x, y)− (r̂(x, 0)− ŝ(x)). Hence, ĥ(x, 0) = ŝ(x)
(and s′i = si and s′ = s) and h(αi, y), the polynomial corresponding to [si], is
a random12 polynomial of degree d, as required.

12Actually, the d-sharings [si] are only (d+1)-wise independent. However, this does not affect



54 Protocols with Perfect Security

SECRECY is guaranteed in the sense that the protocol does not leak more in-
formation than the specified output.

ROBUSTNESS: This security requirement depends only on the subprotocols.

Next, we present a protocol that allows to prove that a given sharing contains
the product of the values of two other given sharings (Figure 4.9).

Lemma 14. Let d be the sharing degree, and e be the robustness parameter, where
d + 2e < n, and assume that SHARETH

P and PUBLIC RECONSTRUCTIONTH
P

are secure. Given d-sharings [ai], [bi], and [vi], ABC-PROOFTH
P is correct if

|D∗| < n− 2d, is secret given that the subprotocols are correct, and is always robust.

Proof. SECRECY: If party pi is correct, then [0]2d (Step 1) is a uniformly ran-
dom 2d-sharing of the value 0 [BGW88]: Let r̂i(x) be the sharing polynomial
(of degree d and with uniformly random coefficients) corresponding to [ri].
Then, the sharing polynomial corresponding to [0]2d is xdr̂d(x)+ . . .+x1r̂1(x).
It is easy to see that this is a polynomial of degree 2d with uniformly random
coefficients. This implies that the sharing [z]2d computed in Step 2 is also a
uniformly random 2d-sharing. If in Step 5 the shares of a party pj are re-
constructed, either party pi or party pj are actively corrupted. Hence, the
adversary knew these shares already beforehand.

CORRECTNESS: We are guaranteed that the sharing degree of [ai], [bi], and
[vi] is d (by assumption on the input), that [0]2d is a 2d-sharing containing
the value 0 (by construction and correctness of SHARETH

P ), and that ĝ(x) is
a polynomial of degree 2d (by construction). Now, if ĝ(x) = 0 and ĝ(x) is
the sharing polynomial corresponding to [z]2d = [0]2d + [ai][bi] − [vi], then
vi = aibi. Therefore, we only need to verify that the broadcasted polynomial
ĝ(x) is correct.

In Step 3, the sharing polynomial of [z]2d is fixed. Assume that, in this
step, party pi broadcasts a wrong polynomial ĝ′(x).13 Note that ĝ′(x) has to
be also of degree 2d. Now, if two polynomials of degree 2d coincide in at least
2d + 1 points, then they are equal. Hence, if n − |D∗| ≥ 2d + 1 (i.e. if there
are at least 2d + 1 correct parties), and if for each correct party pj it holds that
ĝ(αj) = [z]2d

j , the polynomials must be equal.

security.
13E.g. one that hides the fact that vi 6= ab, i.e. the adversary sets ĝ′(0) = 0 and selects 2d

evaluation points α where ĝ′(α) = ĝ(α).



4.2 Threshold Adversaries 55

Protocol ABC-PROOFTH
P : Given [ai], [bi], and [vi] that are known to

party pi, check whether vi = aibi.

1. All parties compute a 2d-sharing of 0, such that party pi knows the
sharing polynomial [BGW88]:

(a) Party pi chooses uniformly random values r1, . . . , rd and invokes
SHARETH

P with degree d on each of the values, resulting in
[r1], . . . , [rd].

(b) All parties compute [0]2d = xd[rd] + . . . + x1[r1].
(i.e. each party pj computes [0]2d

j = αd
j [rd]j + . . . + α1

j [r1]j)

2. (a) All parties compute [w]2d := [ai][bi], i.e. each party pj locally
computes [w]2d

j := [ai]j [bi]j .

(b) All parties compute [z]2d := [0]2d + [w]2d − [vi], i.e. each party pj

locally computes[z]2d
j := [0]2d

j + [w]2d
j − [vi]j .

(Note that party pi knows the sharing polynomial ĝ(x) of [z]2d.)

3. Party pi broadcasts ĝ(x). If ĝ(x) has a degree greater than 2d or
ĝ(0) 6= 0, all parties output reject.

4. Each party pj checks that ĝ(αj) = [z]2d
j . If this check fails, it raises a

complaint.

5. For each complaining party pj , all parties open the four shares [ai]j ,
[bi]j , [vi]j , and [0]2d

j . The complaint holds if
ĝ(αj) 6= [0]2d

j + [ai]j [bi]j − [vi]j .
For the opening of [ai]j , invoke UPGRADETH

P on [ai], and then
PUBLIC RECONSTRUCTIONTH

P on the d-sharing of the share [ai]j
([bi]j and [vi]j accordingly). Opening of [0]2d

j is done by opening
[r1]j , . . . , [rd]j , and computing [0]2d

j = αd
j [rd]j + . . . + α1

j [r1]j .

6. If any complaint holds, output reject. Otherwise output correct.

Figure 4.9: A perfectly secure protocol for threshold adversaries for
proving that c = ab.

Furthermore, correctness can be violated if the adversary can provoke a



56 Protocols with Perfect Security

correct proof to be rejected. For this purpose, the adversary has to provoke
an incorrect opening in Step 5, which is excluded by assumption.

ROBUSTNESS: This security requirement depends only on the subprotocols.

4.2.1.3 The Security of the Parametrized Protocol

Considering the security of the subprotocols described above, we can derive
the security of the parametrized protocol, denoted by πd,e

P :

Lemma 15. Let d be the sharing degree, and e be the robustness parameter, where
d + 2e < n. Protocol πd,e

P guarantees

• CORRECTNESS if |D∗| < (n− d)− e and |D∗| < n− 2d,

• SECRECY if |E∗| ≤ d and correctness is guaranteed,

• ROBUSTNESS if |D∗| ≤ e, and

• AGREEMENT ON ABORT always.

Proof. For each property, given its condition in the lemma, it is easy to verify
that the corresponding conditions for this property in all subprotocols are
fulfilled.

4.2.2 The Main Result for Threshold Adversaries

The following theorem states the optimal bound for perfectly secure reactive
MPC with graceful degradation of both security (allowing for hybrid secu-
rity) and corruptions (allowing for mixed adversaries) for threshold adver-
saries, given broadcast. The model without broadcast is treated in Section 4.3.
Furthermore, we show that the bound is sufficient for MPC by providing pa-
rameters for the generalized protocol introduced in Section 4.2.1.

Theorem 2. In the secure channels model with broadcast and threshold adversaries,
perfectly secure reactive MPC among n ≥ 2 parties with thresholds (tca, tcp), (tsa, tsp),
(tra, trp), and (tfa , tfp), where (tra, trp) ≤ (tca, tcp) and (tfa , tfp) ≤ (tsa, tsp) ≤ (tca, tcp), is
possible if (

tca + tsp + tra < n ∧ tca + 2tsp < n
)

∨ tsp = 0.

This bound is tight: If violated, there are (reactive) functionalities that cannot be
securely computed.



4.3 The Model without Broadcast Channel 57

Note that the bound holds for any (tfa , tfp) ≤ (tsa, tsp), and we can always have
(tfa , tfp) = (tsa, tsp).

Proof. Necessity of the bound in the theorem follows directly from the cor-
responding proof for general adversaries (Section 4.1.4). To prove that the
bound is also sufficient, we first note that if tsp = 0, there is no secrecy require-
ment, and we can directly use the trivial non-secret protocol described in Ap-
pendix 4.1.2. Otherwise, we employ the parametrized version πd,e

P of the pro-
tocol of [BGW88] described in Section 4.2.1 with d := tsp and e := max(tra, tfa).

The precondition of Lemma 15 is that d + 2e < n. Note that e =
max(tra, tfa) ≤ tca. Hence for our choice of parameters d and e, we have that
d + e + e ≤ tsp + tca + max(tra, tfa). If max(tra, tfa) = tra, the precondition of
the lemma follows from the left-hand side of the condition in the theorem.
Otherwise, it follows from the right-hand side (note that tfa ≤ tsp). Hence, we
can apply the lemma to derive correctness, secrecy and robustness: Given the
bound in the theorem, the choice of the parameters d and e, and the fact that
(|D∗|, |E∗|) is below the corresponding threshold, it is easy to verify that the
condition for each property is fulfilled.

For fairness, analogously to the setting with general adversaries, we have
tfa ≤ e. Hence, for (|D∗|, |E∗|) ≤ (tfa , tfp) the protocol is robust, and the adver-
sary cannot abort.

4.3 The Model without Broadcast Channel

We now turn to a model where no broadcast channels are given, but only a
complete network of secure channels. In this model, we obtain essentially the
same bound as in the model with broadcast channels, with an additional limi-
tation on the sets of possibly actively corrupted parties. If this additional con-
dition is not fulfilled, no security guarantees (not even agreement on abort)
are given. For the bounds, we assume that correctness requires agreement on
abort.

Corollary 1. In the secure channels model without broadcast and with general
adversaries, perfectly secure reactive MPC among n ≥ 2 parties with respect to
(Zc,Zs,Zr,Zf ), where Zr ⊆ Zf ⊆ Zc and Zs ⊆ Zc, is possible if((
∀(Dc, ·) ∈ Zc, (·, Es

1 ), (·, Es
2 ) ∈ Zs, (Df , ·) ∈ Zf :

Dc ∪ Es
1 ∪ Df 6= P ∧ Dc ∪ Es

1 ∪ Es
2 6= P

)
∨ Zs = {(∅, ∅)}

)
∧ ∀(Dc

1, ·), (Dc
2, ·), (Dc

3, ·) ∈ Zc : Dc
1 ∪ Dc

2 ∪ Dc
3 6= P.



58 Protocols with Perfect Security

This bound is tight: If violated, there are (reactive) functionalities that cannot be
securely computed.

Proof. The sufficiency of the bound follows directly by basing the protocol
of Section 4.1.1 on the perfectly secure broadcast protocol of [FM98]. Given
the condition in the corollary, the broadcast protocol is secure. Otherwise, no
security guarantees (not even agreement on abort) are given.

The necessity of the bound follows from the necessity of Theorem 1 and
from [LSP82, Lam83]: As broadcast is a special type of MPC, a general MPC
protocol must be able to achieve broadcast. Yet, even non-robust but correct
broadcast (or weak Byzantine agreement as it is more commonly called in the
literature) cannot be realized with perfect security if three sets of possibly ac-
tively corrupted parties may cover the entire player set [Lam83]. Thus, per-
fectly secure MPC without broadcast requires ∀(Dc

1, ·), (Dc
2, ·), (Dc

3, ·) ∈ Zc :
Dc

1 ∪ Dc
2 ∪ Dc

3 6= P , in addition to the bound of Theorem 1.

An analogous statement holds for the setting with threshold adversaries.

Corollary 2. In the secure channels model without broadcast and with threshold
adversaries, perfectly secure reactive MPC among n ≥ 2 parties with thresholds
(tca, tcp), (tsa, tsp), (tra, trp), and (tfa , tfp), where (tsa, tsp) ≤ (tca, tcp) and (tra, trp) ≤
(tfa , tfp) ≤ (tca, tcp), is possible if((

tca + tsp + tfa < n ∧ tca + 2tsp < n
)

∨ tsp = 0
)

∧ 3tca < n

This bound is tight: If violated, there are (reactive) functionalities that cannot be
securely computed.

Proof. The sufficiency of the bound follows directly by basing the protocol
of Section 4.2.1 on the perfectly secure broadcast protocol of [BGP89, CW89]
tolerating |D∗| < n

3 actively corrupted parties. Again, for |D∗| ≥ n
3 , no secu-

rity guarantees (not even agreement on abort) are given. The necessity of the
bound follows along the lines of the setting with general adversaries.

4.4 Summary

We have provided perfectly secure MPC protocols with graceful degrada-
tion of both security and corruptions, for both threshold and general adver-



4.4 Summary 59

saries. These protocols are strict generalizations (and combinations) of pro-
tocols with hybrid security and for mixed adversaries. Furthermore, we de-
rived tight bounds for the existence of such protocols, and have proven that
our protocols achieve these bounds.

A different perspective on our results reveals that our protocols provide
an additional degree of freedom: Ben-Or et al. [BGW88] prove that in a setting
with full security, the condition 3t < n is optimal, where t denotes the number
of actively corrupted parties. This condition leaves a single optimal choice
for t. Fitzi et al. [FHM98] consider mixed adversaries, and thus generalize
the original condition to 2tp + ta < n. This condition allows to choose a
threshold tp, thereby fixing an optimal value for ta. The bound in Theorem 2
illustrates that our work further generalizes the known results: Our treatment
of graceful degradation provides an additional degree of freedom, allowing
to choose thresholds tsp for secrecy and tra for robustness, thereby fixing an
optimal threshold tca for correctness. A similar observation holds for our main
result for general adversaries (Theorem 1). As a consequence, we provided
the most comprehensive treatment, integrating the previous results on perfect
security.

Furthermore, our protocols provide a flexible tradeoff between different
security properties. Consider a setting with n = 100 parties. The traditional
results from [BGW88] provide one protocol, which is secure for up to 49 pas-
sive corruptions, and another protocol for up to 33 active corruptions. In
[FHM98], these protocols are merged into a single protocol which is secure
e.g. for 40 passively corrupted parties, of which 19 may even be actively cor-
rupted. Yet, if only one more party is corrupted (passively or actively), im-
mediately, all security guarantees are lost. Our protocols allow to trade one
security guaranteed (which, in a certain situation, might be less important)
for another security guarantee (which is more important). For example, we
provide a protocol that is at the same time

• secret for up to 12 passive corruptions,

• robust for up to 12 active corruptions (and any number of passive cor-
ruptions), and

• correct for up to 75 active corruptions (and any number of passive cor-
ruptions).

If more robustness is required, the threshold for correctness can be reduced
e.g. to 50 active corruptions. This results in a protocol that guarantees robust-
ness for up to 37 active corruptions.



60 Protocols with Perfect Security

Finally, our results confirm the folklore belief that, in the perfect setting
with mixed adversaries, passive corruption affects only secrecy, but not cor-
rectness or robustness.



Chapter 5

Protocols with Statistical
Security

For the setting with statistical security, we use the same approach as in the
perfect setting: First, we design parametrized protocols and analyze them
with respect to correctness, secrecy, and robustness (again, fairness is treated
separately). Then, given the security of the parametrized protocols, we de-
duce tight bounds for reactive MPC.

Our model with graceful degradation of both security and corruptions al-
lows to study the exact consequences of active and passive corruptions on
the various security properties. In the perfect setting, we have seen that the
number of passive corruptions only affects the thresholds for secrecy, while
the number of active corruptions affects all thresholds. It turns out that in the
statistical setting, the number of passive corruptions in particular also affects
the threshold for correctness, i.e., in all protocols there are inevitably (toler-
ated) adversaries for which a single additional passive corruption is sufficient
to break correctness. This is in contrast to both the perfect and the computa-
tional setting, where such an influence cannot be observed.

Apparently, this effect arises from the use of information-theoretic sig-
natures, which are part of most (if not all) statistical protocols. When com-
bining active and passive corruptions, one inherent problem of any kind of
information-theoretic signature is that passively corrupted parties cannot re-
liably verify signed values. Existing protocols for the statistical setting as-
sume an honest majority. Therefore, a simple majority vote on the signature



62 Protocols with Statistical Security

guarantees reliable verification even for passively corrupted parties. Here,
we show that this assumption is too strong, and that signatures can be used
even without an honest majority. In Sections 5.2 and 5.3, we provide optimal
protocols for both general and threshold adversaries, respectively, that cope
with this issue.

The treatment follows along the lines of [HLMR12], where this setting was
first discussed.

5.1 Information Checking

Information checking (IC) [RB89, CDD+99] is a primitive that allows a sender
to send a value to an intermediary, such that when the receiver obtains this
value from the intermediary, he can check that this is indeed the value from
the sender. When all parties act as receivers, this primitive is called IC signa-
ture, and the sender is called signer. IC signatures are realized using a pair of
protocols IC-SIGN and IC-REVEAL. IC-SIGN allows a signer to sign a value
for a particular intermediary (while providing secrecy with respect to the re-
maining parties), and IC-REVEAL allows this intermediary to verifiably for-
ward this value to all other parties. In the following, we assume that each
pair of parties (pi, pj) has a value αij which only they know. This setup can
easily be achieved for each pair (pi, pj) by having pi choose and send αij to
pj before the protocol starts.

Definition 4 (α-consistent). A triple (v, y, z) is α-consistent, if the points
(0, v), (1, y), and (α, z) lie on a line, i.e. if z = (y − v)α + v.

Definition 5 (IC-Signature). A value v is IC-signed (or simply signed) by
signer pi for intermediary pj , denoted by 〈v〉i,j , if pj holds values v, y1, ..., yn

and each (correct) pk ∈ P holds a value zk such that (v, yk, zk) is αik-
consistent. In analogy to traditional signatures, we equivalently say that the
intermediary pj holds the signature 〈v〉i,j .

A default signature 〈v〉i,j can be generated given that all parties know the
value v. Furthermore, given v, αik, and zk, a value yk can be computed effi-
ciently such that (v, yk, zk) are αik-consistent. This implies in particular that if
the intermediary is actively corrupted, then any z-values held by the (correct)
recipients constitute a valid signature for v. Additionally, IC-signatures are
linear, i.e. the sum of two signatures 〈v〉i,j and 〈v′〉i,j from signer pi to inter-
mediary pj for values v and v′, respectively, is a signature from pi to pj for the
sum v + v′.



5.1 Information Checking 63

5.1.1 The IC Sign Protocol

The IC sign protocol assumes that the signer and the intermediary both know
a value v, e.g. that the signer has already sent v to the intermediary. The
protocol either computes a valid signature on v, or outputs ⊥ to all parties.

Protocol IC-SIGN : Given a signer pi and an intermediary pj that both know
a value v, either compute a valid signature 〈v〉i,j on this value, or output ⊥
to all parties.

1. For each recipient pk ∈ P :

(a) pi chooses v′k, yk, y′k, zk and z′k uniformly at random such
that (v, yk, zk) and (v′, y′k, z′k) are both αik-consistent. pi sends
v′k, yk, y′k to pj , and zk, z′k to pk.

(b) pk broadcasts a uniform random challenge rk. Then, both pi and
pj broadcast v′′ := v′k + rkv and y′′ := y′k + rkyk.

(c) If in the previous step pi and pj did not broadcast the same val-
ues, all parties output ⊥.

(d) pk broadcasts “accept” if (v′′, y′′, z′k +rkzk) is αik-consistent. Oth-
erwise, pk broadcasts (“reject”,αik,zk), and pj sets yk such that
(v, yk, zk) are αik-consistent.

2. pj outputs v, y1, . . . , yn, and each pk outputs zk.

Figure 5.1: The statistically secure IC-Sign protocol.

Lemma 16. Given a signer pi and an intermediary pj that both know the same value
v. If pi and pj are correct, IC-SIGN correctly computes a valid signature 〈v〉i,j on v
while providing secrecy with respect to the remaining parties. Otherwise, IC-SIGN
either correctly computes a valid signature 〈v〉i,j on v, or all (correct) parties out-
put ⊥. IC-SIGN is always secret and robust.

Proof. CORRECTNESS: If pi and pj are both correct, it is trivial to see that the
output is a valid signature (and not ⊥). Else, if the intermediary pj is cor-
rupted, either the output of the correct parties trivially corresponds to a valid
signature, or all parties output ⊥. Otherwise, if the intermediary pj is correct,
we have to show that for all correct receivers pk it holds that (v, yk, zk) is αik-
consistent. If pk is correct, the adversary does not know rk in advance, and



64 Protocols with Statistical Security

an inconsistent triple (v, yk, zk) would be detected by pk with overwhelming
probability.

SECRECY: For a corrupted pk, both v′′ and y′′ look uniformly random. Hence,
pk obtains no information apart from his intended output. Furthermore, the
value αik is broadcasted in Step 1.d) only if pi or pk are actively corrupted.
Hence, the adversary knew the value already beforehand.

ROBUSTNESS: It follows from inspection that the protocol does not abort.

5.1.2 The IC Reveal Protocol

If a value v is IC-signed (e.g. if the IC-SIGN protocol resulted in a valid sig-
nature and did not terminate with output ⊥), the IC-REVEAL protocol allows
to verifiably reveal the value v to all parties.

Protocol IC-REVEAL : Given a signature 〈v〉i,j , reveal a value v′ to all par-
ties.

1. pj broadcasts (v, y1, . . . , yn).

2. Each receiver pk outputs (“accept”, v) if (v, yk, zk) is αik-consistent,
and “reject” otherwise.

Figure 5.2: The statistically secure IC-Reveal protocol.

Lemma 17. Given a signature 〈v〉i,j , IC-REVEAL robustly computes the output
xk ∈ {(“accept”, v′), “reject”} for each pk. We have the following correctness guar-
antees:

1. If pj is correct, all correct parties pk output xk = (“accept”, v).

2. Else, if both pi and pk are honest, then xk ∈ {(“accept”, v), “reject”} (even
when pj is active).

Note that there is no agreement on the output of correct parties. Fur-
thermore, if pj is active and pi or pk is not honest, then pk might output
xk = (“accept”, v′) for v′ 6= v.

Proof. CORRECTNESS: If pj is correct, it broadcasts values in Step 1, which
are αik-consistent and hence accepted. If pj is actively corrupted, but both pi

and pk are honest, then pj does not know αik. Hence, for v′ 6= v, pj cannot



5.2 MPC with General Adversaries 65

produce a value y′k where (v′, y′k, zk) are αik-consistent, except with negligible
probability.
ROBUSTNESS: It follows from inspection that the protocol does not abort.

5.2 MPC with General Adversaries

Our protocol for general adversaries is based on [HMZ08], which is an adap-
tation of the perfectly secure protocol of [Mau02, BFH+08] to the statistical
case. For a generic protocol construction, it is sufficient to consider two pa-
rameters (cf. Section 4.1): First, the state that is held in the protocol is defined
in terms of a parameter that influences the secrecy. This parameter is the shar-
ing parameter S, a collection of subsets of P that defines which party obtains
which values. Second, the reconstruct protocol is expressed in terms of an ad-
ditional parameter determining the amount of error correction taking place.
This parameter is the robustness parameter R. In contrast to the perfect case,
here we need to consider both active and passive corruption. Therefore, the
robustness parameter is a monotone collection of pairs (D, E) of subsets of P
where D ⊆ E : If all errors can be explained with an adversary (D, E) ∈ R,
the errors are corrected and the protocol continues; otherwise it aborts. This
implies that the protocol aborts only if the actual adversary is not in R. Such
aborts are global, i.e., if some subprotocol aborts, the entire protocol execution
halts.

5.2.1 A Parametrized Protocol for General Adversaries

In the following, we present the parametrized subprotocols for general ad-
versaries and analyze them with respect to correctness, secrecy, and robust-
ness. Fairness is discussed in Section 5.2.2. As a first step, we introduce
group commitments which are a generalization of IC signatures that allow even
passively-corrupted parties to reliably verify signatures even without an hon-
est majority. We then use these group commitments to construct a verifiable
secret-sharing scheme, and describe how to perform computations on shared
values.

5.2.1.1 Group Commitments

As a first step, we introduce the notion of group commitments, which is a pair
of protocols GROUPCOMMIT and GROUPREVEAL. GROUPCOMMIT allows a



66 Protocols with Statistical Security

group G to commit to a value v on which they agree (while providing secrecy
with respect to the remaining parties P \G), and GROUPREVEAL allows them
to reveal this value to the remaining parties. Our definitions and protocols for
group commitments are based on the IC signatures introduced in Section 5.1.

Definition 6 (Group Commitment). A group G is group-committed (or simply
committed) to a value v, denoted by 〈〈v〉〉G , if for all pairs (pi, pj) ∈ G × G, v is
IC-signed with 〈v〉i,j .

Note that a default group commitment 〈〈v〉〉G can be generated given that all
parties in P know the value v. Furthermore, if all parties in G are actively
corrupted, then any values held by correct parties constitute a valid group
commitment. Additionally, group commitments inherit linearity from the un-
derlying IC signature scheme.

Protocol GROUPCOMMIT : Given a set G of parties that agree on a value v,
compute a valid group commitment 〈〈v〉〉G on v.

1. For each pair (pi, pj) ∈ G × G invoke IC-SIGN on v with signer pi and
intermediary pj .

2. If any invocation of IC-SIGN outputs ⊥, all parties output ⊥. Other-
wise, each party outputs the concatenation of the outputs of the invo-
cations of IC-SIGN.

Figure 5.3: The statistically secure Group Commit protocol for a
group G for general adversaries.

Lemma 18. Given a set G of parties that agree on a value v. If all parties in G are
correct (i.e. G ∩ D∗ = ∅), GROUPCOMMIT correctly computes a valid group com-
mitment 〈〈v〉〉G on v while providing secrecy with respect to the remaining parties
P \G. Otherwise, GROUPCOMMIT either correctly computes a valid group commit-
ment 〈〈v〉〉G on v, or all parties in P output ⊥. GROUPCOMMIT is always secret and
robust.

Proof. SECRECY and ROBUSTNESS follow immediately by inspection. For
CORRECTNESS, we first have to show that if the protocol outputs a group
commitment, then all signatures held by correct parties pj are for the value
v. This follows immediately from the fact that IC-SIGN always results either
in a correct signature 〈v〉i,j or in ⊥, even when the signer or the intermediary



5.2 MPC with General Adversaries 67

are actively corrupted. Second, if all parties in G are correct (i.e., in all invo-
cations of IC-SIGN, both the signer and the intermediary are correct), then it
follows from the properties of IC-SIGN that it never outputs ⊥.

If a group G is committed to a value v (e.g. if the GROUPCOMMIT pro-
tocol resulted in a valid group commitment and did not output ⊥), the
GROUPREVEAL protocol reveals the value v to all parties in P . During the
protocol run, the adversary might be able to provoke conflicts that depend
on the sets D∗ and E∗ of corrupted parties. Therefore, we introduce a pa-
rameter R, which is a monotone collection of pairs (D, E) of subsets of the
player set, where D ⊆ E : Whenever all conflicts in a given situation can be
explained with an adversary (D, E) ∈ R, the corresponding values are ig-
nored (corrected), and the protocol proceeds; otherwise it aborts. Note that
GROUPREVEAL is the only subprotocol that might abort. All other protocols
abort only if they use GROUPREVEAL as a subprotocol. Therefore, it is suffi-
cient to discuss agreement on abort only for this protocol.

We emphasize that the conflicts in GROUPREVEAL do not only depend on
the set D∗ of actively corrupted parties, but also on the set E∗ of passively
corrupted parties, due to their inability to reliably verify IC-signatures. That
means, in this protocol, even passive corruptions have a strong impact on
correctness (and robustness).

Lemma 19. Given the robustness parameter R, the commitment group G, and a
group commitment 〈〈v〉〉G for a value v, GROUPREVEAL reveals v to all parties. The
protocol is correct if G 6⊆ D∗ and

∀(D, E) ∈ R : G \D 6⊆ D∗ ∨ (G 6⊆ E ∧ P \E 6⊆ D∗) ∨ (G 6⊆ E∗ ∧ P \E∗ 6⊆ D).

The protocol is robust if additionally (D∗, E∗) ∈ R, and always guarantees agree-
ment on abort.

Proof. CORRECTNESS: Consider an actual protocol execution with correct
value v and an adversary corrupting (D∗, E∗). Denote with {Vu} the resulting
collection of subsets of P in Step 3.

First, we show that given the precondition G 6⊆ D∗, we have(
P \ (V⊥ ∪ Vv) ⊆ D∗

)
∧

(
G ⊆ E∗ ∨ P \ Vv ⊆ E∗

)
.

The precondition G 6⊆ D∗ implies that there is at least one correct party pi ∈ G.
In Step 1, this pi broadcasts its value ui(= v) and invokes IC-REVEAL on the
signatures 〈v〉j,i for pj ∈ G. It follows from the properties of IC-REVEAL
that all correct parties accept all these signatures. Hence, all correct parties in
P \ G accept the value ui(= v), and broadcast either v or ⊥ in Step 2, but not



68 Protocols with Statistical Security

Protocol GROUPREVEAL : Given the set G and a group commitment 〈〈v〉〉G ,
reveal v to all parties.

1. For each party pi ∈ G:

(a) pi broadcasts v. Denote the broadcasted value with ui.

(b) For each party pj ∈ G: Invoke IC-REVEAL on 〈v〉j,i (i.e., pi opens
all signatures it holds from parties pj ∈ G on v).

(c) A party pk ∈ P \ G accepts ui if all invocations of IC-REVEAL
output (“accept”, ui).

2. For each party pk ∈ P \ G:

(a) If pk accepted at least one value in Step 1(c), and all accepted
values are the same, then set uk to this value. Else set uk := ⊥.

(b) pk broadcasts uk.

3. Let Vu denote the set of parties that broadcasted u in Step 1(a) or 2(b),
respectively. If ∃(D, E) ∈ R and a value v′, such that

P \ (V⊥ ∪ Vv′) ⊆ D ∧
(
G ⊆ E ∨ P \ Vv′ ⊆ E

)
then output v′. Else abort.

Figure 5.4: The statistically secure Group Reveal protocol for a
group G for general adversaries.

a wrong value, i.e. P \ (V⊥ ∪ Vv) ⊆ D∗. Furthermore, either G ⊆ E∗, or there
is an honest party pj ∈ G. In the latter case, an actively corrupted pi ∈ G can
only forge the signatures 〈v〉j,i towards passively corrupted parties. Hence, it
is guaranteed that all honest parties pk broadcast the correct value uk = v in
Step 2, and we have P \ Vv ⊆ E∗.

Second, we show that given the precondition in the lemma, the protocol
execution under consideration does not output an (incorrect) value v′ 6= v,
i.e., for all v′ 6= v and (D, E) ∈ R the condition in Step 3 is violated. To arrive
at a contradiction, assume that for some v′ 6= v and (D, E) ∈ R it holds that(

P \ (V⊥ ∪ Vv′) ⊆ D
)
∧

(
G ⊆ E ∨ P \ Vv′ ⊆ E

)
. (I)

From above, we have that(
P \ (V⊥ ∪ Vv) ⊆ D∗

)
∧

(
G ⊆ E∗ ∨ P \ Vv ⊆ E∗

)
. (II)

Furthermore, by assumption we have that the precondition in the lemma is
fulfilled. We split the proof according to which or-term of the second part of
this precondition is fulfilled for the given (D, E):



5.2 MPC with General Adversaries 69

Case G \ D 6⊆ D∗: Since P \ (V⊥ ∪ Vv′) ⊆ D (I) and G ⊆ P , we have G \ (V⊥ ∪
Vv′) ⊆ D. It follows by inspection of the protocol that G and V⊥ are
disjoint. Hence we have G \ Vv′ ⊆ D. Analogously, it follows from
P \ (V⊥ ∪ Vv) ⊆ D∗ (II) that G \ Vv ⊆ D∗. Therefore we have that
G ⊆ D ∪ D∗, which is a contradiction to G \ D 6⊆ D∗.

Case G 6⊆ E ∧ P \ E 6⊆ D∗: Since G 6⊆ E , we haveP\Vv′ ⊆ E (I). Furthermore,
we have that P \ (V⊥ ∪ Vv) ⊆ D∗ (II). It follows by inspection from the
protocol that V⊥, Vv′ , and Vv are pairwise disjoint. Hence, we have that
P ⊆ D∗ ∪ E , which is a contradiction to P \ E 6⊆ D∗.

Case G 6⊆ E∗ ∧ P \ E∗ 6⊆ D: This proof is identical to the previous case, with
the only difference that (D∗, E∗) is swapped with (D, E) and v with v′.

ROBUSTNESS: In the proof of correctness, we have shown that(
P \ (V⊥ ∪ Vv) ⊆ D∗

)
∧

(
G ⊆ E∗ ∨ P \ Vv ⊆ E∗

)
.

Hence, given the correctness condition and (D∗, E∗) ∈ R, it follows imme-
diately that the condition in Step 3 is fulfilled for the correct value v and
(D∗, E∗), i.e. that the protocol terminates without abort.

Since the abort decision is based only on broadcasted values, we always have
AGREEMENT ON ABORT (cf. Section 2.3.2).

5.2.1.2 The Underlying Verifiable Secret Sharing Scheme

The state of the protocol is maintained with a sum-sharing, where each party
holds several summands. Furthermore, for each summand si, the group of
those parties that hold si is group-committed to it.

Definition 7 (S-Sharing). A value s is S-shared for sharing specification S =
(S1, . . . , S`) if

1. there are values s1, . . . , s`, such that s1 + . . . + s` = s,

2. for all i, every (correct) party pj ∈ Si holds the summand si, and

3. each group Si is committed to si with a group commitment 〈〈si〉〉Si .

A sharing specification S is E-secret if the summands held by the parties in
E are statistically independent from the secret, and D-permissive if the sum-
mands held by the parties in P \ D uniquely define the secret.

Lemma 20. An S-sharing is E-secret if ∃Si ∈ S : Si ∩ E = ∅, and D-permissive if
∀Si ∈ S : Si \ D 6= ∅.



70 Protocols with Statistical Security

Proof. Secrecy follows from the fact that E lacks at least one summand si, and
from the secrecy of group commitments. Furthermore, given that ∀Si ∈ S :
Si \D 6= ∅, each summand si is held by at least one party in P \D. Hence, the
secret s is uniquely defined by s = s1 + . . . + s`.

The share protocol takes as input a secret s from a dealer, and outputs an
S-sharing of s (see Figure 5.5).

Protocol SHAREGA
S : Given input s from the dealer, compute an S-sharing

of this value.

1. The dealer chooses uniformly random summands s1, . . . , s` such that
s =

∑`
i=1 si, where ` = |S|. Then, for each Si ∈ S, the dealer sends si

to every party pj ∈ Si.

2. For all Si ∈ S: Every party pj ∈ Si sends si to every other party in Si.
Then, every party in Si broadcasts a complaint bit, indicating whether
it observed an inconsistency.

3. For all Si ∈ S, for which no inconsistency was reported,
GROUPCOMMIT is invoked to compute 〈〈si〉〉Si .

4. The dealer broadcasts each summand si for which either an inconsis-
tency was reported (Step 2), or the output of GROUPCOMMIT was ⊥
(Step 3). The players in Si accept this summand, and a default group
commitment is used. If the dealer does not broadcast a summand si,
the parties use si = 0 with a default group commitment.

5. Each party pj outputs its share {si | pj ∈ Si} together with its part of
the group commitments.

Figure 5.5: The statistically secure share protocol for general adver-
saries.

Lemma 21. Let S be the sharing specification. On input s from the dealer,
SHAREGA

S correctly, secretly and robustly computes an S-sharing. If S is D∗-
permissive, and if the dealer is correct, the sharing uniquely defines the secret s.

Proof. SECRECY: Given a correct dealer, the summands distributed in the first
step are consistent. In the remaining protocol run, no additional information
is revealed to the adversary: A summand si is broadcasted only if a party



5.2 MPC with General Adversaries 71

pj ∈ Si reported an inconsistency, or GROUPCOMMIT outputs ⊥. Yet, this oc-
curs only if one of the parties in Si is actively corrupted, i.e., when the adver-
sary knew si already beforehand. Furthermore, it follows from the properties
of GROUPCOMMIT that secrecy is maintained during its invocations.
CORRECTNESS: First, we have to show that the protocol outputs a valid S-
sharing. Due to the bilateral checks, any inconsistency in the summands held
by correct parties is detected in Step 2 and resolved in Step 4. Furthermore, it
follows from the properties of GROUPCOMMIT that in Step 3, either a correct
group commitment is computed, or all parties output ⊥. In the latter case,
a default (and hence correct) group commitment is used (Step 4). Therefore,
the output is a valid S-sharing. Second, we have to show that if S is D∗-
permissive and if the dealer is correct, then the shared value equals the input
of the dealer. A correct dealer always responds on reported inconsistencies
with the original summands. Hence, the unique value defined by the sharing
is the secret s.
ROBUSTNESS: It follows from inspection that the protocol does not abort.

For the public reconstruction14 of a shared value (Figure 5.6), we use the fact
that there is a group commitment for each summand of the sharing. These
commitments allow to reliably reveal each summand using GROUPREVEAL.

Protocol PUBLIC RECONSTRUCTIONGA
S : Given an S-sharing of some value

s, reconstruct s to all parties.

1. For each summand si, invoke GROUPREVEAL on 〈〈si〉〉Si
.

2. Each party outputs the secret s = s1 + . . . + s`.

Figure 5.6: The statistically secure public reconstruction protocol for
general adversaries.

Lemma 22. Given the sharing specification S, the robustness parameter R, and
an S-sharing of some value s, PUBLIC RECONSTRUCTIONGA

S reconstructs s to all
parties. The protocol is correct if

∀(D, E) ∈ R, S ∈ S : S 6⊆ D∗ ∧(
S \ D 6⊆ D∗ ∨ (S 6⊆ E ∧ P \ E 6⊆ D∗) ∨ (S 6⊆ E∗ ∧ P \ E∗ 6⊆ D)

)
and robust if additionally (D∗, E∗) ∈ R.

14Private reconstruction can be reduced to public reconstruction using a blinding technique as
discussed in Section 2.3.3.



72 Protocols with Statistical Security

Proof. Given the condition for correctness in the lemma, all invocations of
GROUPREVEAL are correct. The same holds for robustness. Then, all security
properties follow directly from the security of GROUPREVEAL.

5.2.1.3 Addition, Multiplication, and Random Values

Linear functions (and in particular additions) can be computed locally, since
S-sharings and group commitments are linear. In particular, given sharings
of a and b, and a constant c, one can easily compute sharings of a + b, ca,
and a+ c. Computing a shared random value can be achieved by letting each
party pi share a random value ri, and computing a sharing of r = r1 + . . .+rn

(see Section 2.3.3).

For the multiplication of two values a and b, we adapt the protocol from
[HMZ08] by using our modified share and reconstruct protocols (Figure 5.7).
The multiplication protocol exploits the fact that ab =

∑`
i=1

∑`
j=1 aibj : For

each aibj , one party that knows ai and bj computes vij = aibj , shares it, and
proves that the sharing contains the correct value. Then, the parties compute
the linear function described above on these sharings. In order to prove that
the sharing contains the correct value, the corresponding party provides a
zero-knowledge proof by invoking ABC-PROOFGA

S on sharings of ai, bi, and
vij . If this proof is not accepted, this party (the prover) is actively corrupted,
and the summands ai and bj can be reconstructed without violating secrecy.
This zero-knowledge proof requires that ai and bj are S-shared, which we
achieve by invoking GROUPSHAREGA

S , a subprotocol that allows to share in-
dividual summands.

Lemma 23. Given the sharing specification S, the robustness parameter R, and S-
sharings of a and b, MULTIPLICATIONGA

S computes an S-sharing of the product
c = ab. The protocol is correct if ∀S, S′ ∈ S : S ∩ S′ 6= ∅ and

∀(D, E) ∈ R, S ∈ S : S 6⊆ D∗ ∧(
S \ D 6⊆ D∗ ∨ (S 6⊆ E ∧ P \ E 6⊆ D∗) ∨ (S 6⊆ E∗ ∧ P \ E∗ 6⊆ D)

)
,

robust if additionally (D∗, E∗) ∈ R, and always secret.

Proof. The condition ∀S, S′ ∈ S : S ∩ S′ 6= ∅ implies that every value aibj

can be computed by at least one party. Furthermore, given the condition for
correctness in the lemma, all subprotocols are correct. The same holds for
robustness. All subprotocols are always secret. Given these observations, it
follows by inspection that the protocol is secure.



5.2 MPC with General Adversaries 73

Protocol MULTIPLICATIONGA
S : Given [a] and [b], compute [c] for c = ab.

1. For each pair Si, Sj ∈ S, let pij denote the party with the smallest
index in Si ∩ Sj .

(a) pij computes vij = aibj and invokes SHAREGA
S on it, resulting in

[vij ].

(b) Invoke GROUPSHAREGA
S on 〈〈ai〉〉Si and 〈〈bj〉〉Sj both with dealer

pij , resulting in [ai] and [bj ].

(c) Invoke ABC-PROOFGA
S on [ai], [bj ], and [vij ] with prover pij . If

the proof is rejected, invoke PUBLIC RECONSTRUCTIONGA
S on [ai]

and [bj ], and use a default S-sharing of vij := aibj .

2. The parties (distributively) compute the sum of all sharings [vij ], re-
sulting in a sharing of c = ab.

Figure 5.7: The statistically secure multiplication protocol for gen-
eral adversaries.

The GROUPSHAREGA
S subprotocol (Figure 5.8) allows to reshare summands:

Given a group Si of parties that is committed to a value si with a group com-
mitment 〈〈si〉〉Si and a dealer p ∈ Si, the protocol GROUPSHAREGA

S computes
an S-sharing [si] of the value si, given that at least one party in Si is correct.

Lemma 24. Given the sharing specification S, the robustness parameter R, a group
Si ∈ S, a group commitment 〈〈si〉〉Si , and a dealer p ∈ Si, GROUPSHAREGA

S com-
putes [si]. The protocol is correct if Si \ D∗ 6= ∅ and the subprotocols are cor-
rect against (D∗, E∗). Furthermore, it guarantees secrecy and/or robustness against
(D∗, E∗) whenever the subprotocols provide the corresponding guarantee against
(D∗, E∗).

Proof. CORRECTNESS: Since Si \ D∗ 6= ∅, there is at least one correct party
that observes any inconsistency and complains. Hence, the shared value is
correct. SECRECY: In Step 3, si is publicly reconstructed only if either p or
some pj ∈ Si is actively corrupted. Hence, the adversary knew the value
already before. ROBUSTNESS: It follows from inspection that the protocol
does not abort.

Next, we present a subprotocol that allows a prover p to prove that a given
sharing [c] contains the product of the values of two other given sharings



74 Protocols with Statistical Security

Protocol GROUPSHAREGA
S : Given a group Si ∈ S, a group commitment

〈〈si〉〉Si
, and a dealer p ∈ Si, compute [si].

1. p invokes SHAREGA
S on si, resulting in [si].

2. For each pj ∈ Si: Invoke PRIVATE RECONSTRUCTIONGA
S on [si] for pj .

If the reconstructed value is not si, pj broadcasts “reject”. Otherwise,
it broadcasts “accept”.

3. If some pj ∈ Si broadcasted “reject”, invoke GROUPREVEAL on 〈〈si〉〉Si ,
and use a default sharing of si.

4. Each party outputs its share of [si], and p outputs the vector of sum-
mands of [si].

Figure 5.8: The statistically secure group share protocol for general
adversaries.

[a] and [b] (Figure 5.9). The protocol is along the lines of the protocol in
[CDD+99].

Lemma 25. Given are the sharing specification S, the robustness parameter R,
and S-sharings [a], [b], and [c], where prover p knows a, b, and c. Assume that
the subprotocols are correct against (D∗, E∗). If p is correct and c = ab, then
ABC-PROOFGA

S outputs “accept”. If c 6= ab, then ABC-PROOFGA
S outputs “re-

ject” (with overwhelming probability). Furthermore, the protocol guarantees secrecy
and/or robustness against (D∗, E∗) whenever the subprotocols provide the corre-
sponding guarantee against (D∗, E∗).

Proof. CORRECTNESS: If the dealer is correct and c = ab, then it follows by
simple arithmetic that all sub-proofs are accepted. It remains to show that if
c 6= ab, then at least one sub-proof is rejected with overwhelming probability.
We first show that if z = 0 for any two challenges r and r′ where r 6= r′,
then we must have c = ab: If z = 0 for r and r′, then a(rb + b′) − cr − c′ =
a(r′b + b′) − cr′ − c′. This can be written as ab(r − r′) = c(r − r′). Since,
r 6= r′, it follows that c = ab. Hence, if c 6= ab, then the sub-proof is accepted
for at most one challenge. Since an actively corrupted prover does not know
the challenges from correct parties in advance, an incorrect c is detected with
overwhelming probability.
SECRECY: The only values revealed during the protocol are b′′ and z. If p is
correct, then b′′ is perfectly blinded by b′, and z = 0.



5.2 MPC with General Adversaries 75

Protocol ABC-PROOFGA
S : Given [a], [b], and [c], where prover p knows a,

b, and c, check whether c = ab.

1. For each party pj ∈ P , carry out a sub-proof:

(a) p chooses a uniformly random b′, computes c′ = ab′, and invokes
SHAREGA

S on both b′ and c′, resulting in [b′] and [c′].

(b) pj broadcasts a uniformly random challenge r.

(c) Compute [b′′] = r[b] + [b′] and invoke
PUBLIC RECONSTRUCTIONGA

S on [b′′].

(d) Compute [z] = b′′[a] − r[c] − [c′] and invoke
PUBLIC RECONSTRUCTIONGA

S on [z].

(e) If z = 0 the sub-proof is accepted. Otherwise, it is rejected.

2. If any of the sub-proofs was rejected, output “reject”. Otherwise out-
put “accept”.

Figure 5.9: The statistically secure protocol for proving that c = ab
for general adversaries.

ROBUSTNESS: It follows from inspection that the protocol does not abort.

5.2.1.4 The Security of the Generalized Protocol from [HMZ08]

Considering the security of the subprotocols described above, we can derive
the security of the parametrized protocol, denoted by πS,R

S :

Lemma 26. Given the sharing specification S and the robustness parameter R, the
protocol πS,R

S guarantees correctness if

∀(D, E) ∈ R, S, S′ ∈ S : S ∩ S′ 6= ∅ ∧ S 6⊆ D∗ ∧(
S \ D 6⊆ D∗ ∨ (S 6⊆ E ∧ P \ E 6⊆ D∗) ∨ (S 6⊆ E∗ ∧ P \ E∗ 6⊆ D)

)
Furthermore, the protocol guarantees secrecy if additionally ∃S ∈ S : S ∩ E∗ = ∅,
and/or robustness if additionally (D∗, E∗) ∈ R. It always guarantees agreement on
abort.

Proof. πS,R
S provides a certain security guarantee against (D∗, E∗) if all sub-

protocols (cf. Lemmas 18, 19, and 21 to 25) and the sharing (cf. Lemma 20)



76 Protocols with Statistical Security

provide this guarantee against (D∗, E∗). For each guarantee, it can easily be
verified that the condition in the lemma implies the corresponding conditions
in the mentioned lemmas.

5.2.2 Main Result

The following theorem states the optimal bound for statistically secure reac-
tive MPC for general adversaries with both mixed adversaries and hybrid
security. We show that the bound is sufficient for MPC by providing param-
eters for the generalized protocols described above. In the following section,
we prove that the bound is also necessary.

Theorem 3. In the secure channels model with broadcast and general adver-
saries, statistically secure reactive MPC among n ≥ 2 parties with respect to
(Zc,Zs,Zr,Zf ), where Zr ⊆ Zc and Zf ⊆ Zs ⊆ Zc, is possible if

∀(·, Es), (·, Es′) ∈ Zs, (Dr, Er) ∈ Zr, (Dc, Ec) ∈ Zc :

Es ∪ Es′ 6= P ∧ Es ∪ Dc 6= P ∧(
Dc ∪ Dr ∪ Es 6= P ∨ (Es ∪ Er 6= P ∧ Dc ∪ Er 6= P)

∨ (Es ∪ Ec 6= P ∧ Dr ∪ Ec 6= P)
)

∨ Zs = {(∅, ∅)}.

This bound is tight: If violated, there are (reactive) functionalities that cannot be
securely computed.

Proof. The necessity of the bound in the theorem is proven in Section 5.2.3.
To prove that the bound is also sufficient, we first note that if Zs = {(∅, ∅)},
there is no secrecy requirement, and we can directly use the trivial non-secret
protocol described in Section 4.1.2. Otherwise, we employ the protocol πS,R

S
described in Section 5.2.1. We set S := {Es | (·, Es) ∈ Zs} and R = Zr ∪ Zf .

We apply Lemma 26 to derive correctness, secrecy and robustness: Given
the bound in the theorem, the choice of the structures S and R, and the fact
that (D∗, E∗) is an element of the corresponding adversary structure, it is easy
to verify that the condition for each property is fulfilled. In particular, note
that the correctness condition is also fulfilled for (D, E) ∈ Zf : Using that
Zf ⊆ Zs, we have that Es ∪ E ⊆ Es ∪ Es′ 6= P (for some Es′) and Dc ∪
E ⊆ Dc ∪ Es 6= P (where the inequalities follow from the second line of the
condition in the theorem). This implies the condition for correctness.



5.2 MPC with General Adversaries 77

By our choice of R, we have Zf ⊆ R. Hence, for (D∗, E∗) ∈ Zf the
protocol is robust, and the adversary cannot abort.

5.2.3 Proofs of Necessity

In this section, we prove that the bound in Theorem 3 is necessary, i.e. if vio-
lated, MPC is impossible.15 The bound is violated if

Zs 6= {(∅, ∅)} ∧
∃(·, Es), (·, Es′) ∈ Zs : Es ∪ Es′ = P (1)

∨ ∃(·, Es) ∈ Zs, (Dc, ·) ∈ Zc : Es ∪ Dc = P (2)
∨ ∃(·, Es) ∈ Zs, (Dr, Er) ∈ Zr, (Dc, Ec) ∈ Zc : (3)

Dc ∪ Dr ∪ Es = P ∧ (Es ∪ Er = P ∨ Dc ∪ Er = P)
∧ (Es ∪ Ec = P ∨ Dr ∪ Ec = P)

We split this condition according to which OR-term is fulfilled:

Case (1): Assume that Zs 6= {(∅, ∅)} ∧ ∃Es, Es′ : Es ∪ Es′ = P . Due to
monotonicity, we can assume that Es and Es′ are disjoint and (since
n ≥ 2) non-empty. In this case, impossibility of MPC follows from
[RB89, Kil00].

Case (2): Assume that Zs 6= {(∅, ∅)} ∧ ∃Es,Dc : Es ∪ Dc = P . Due to mono-
tonicity, we can assume that Es and Dc are disjoint. Furthermore, since
Zs 6= {(∅, ∅)}, we can assume that Es is non-empty. If Dc is empty, we
have Es = P , which is covered by the previous case. Otherwise, impos-
sibility of MPC can easily be derived from the impossibility of IT secure
commitments: Trivially, the impossibility holds for |Dc| = |Es| = 1. All
other cases can be reduced to the 2-party case by having each of the two
parties emulate the parties in Dc and Es, respectively.

Case (3): Assume that Zs 6= {(∅, ∅)} ∧
∃(·, Es) ∈ Zs, (Dr, Er) ∈ Zr, (Dc, Ec) ∈ Zc :
Dc ∪ Dr ∪ Es = P ∧ (Es ∪ Er = P ∨ Dc ∪ Er = P)

∧ (Es ∪ Ec = P ∨ Dr ∪ Ec = P).
Due to monotonicity, we can assume that the sets Es, Dr, and Dc are
disjoint, that Er = Dr ∪ Dc or Er = Dr ∪ Es, and that Ec = Dc ∪ Dr or

15The impossibility holds even when agreement on abort is not required.



78 Protocols with Statistical Security

Ec = Dc ∪ Es. Furthermore, we can assume that all these sets are non-
empty: Since Zs 6= {(∅, ∅)}, we have Es 6= ∅. If either Dr = ∅ or Dc = ∅,
we have a reduction to the commitment impossibility.

Now, impossibility of MPC can be derived from Lemma 27: This is
straight-forward for |Es| = |Dc| = |Dr| = 1. All other cases can be
reduced to the 3-party case by having each of the three parties emulate
the parties in Es, Dr, and Dc, respectively.

Reactive functionalities must be able to generate and hold a secret state (typ-
ically, this is achieved using a secret-sharing scheme). We prove that it is
impossible to generate a state in a specific 3-party setting. This proof is along
the lines of the proof in Section 4.1.4.1 for the setting with perfect security. In
contrast to the perfect setting, here we also need to consider the state genera-
tion. We extend the corresponding definition accordingly.

Definition 8 (State and State Generation). A state for n parties p1, . . . , pn is a
tuple (s1, . . . , sn) that defines a value r ∈ {0, 1,⊥}, where party pi holds si. A
protocol SHARE for state generation allows a dealer to generate a state for an
input bit s. Protocol SHARE must achieve

1. Secrecy: The corrupted parties obtain no information about the bit s. In
particular, the state information held by corrupted parties contains no
information about the bit s.

2. Correctness: The resulting state uniquely defines a value r, where
r ∈ {s,⊥} if the dealer is honest.

3. Robustness: The resulting state uniquely defines a value r ∈ {0, 1}.

Lemma 27. Given three parties A, B, and C. On input a bit s from dealer C,
the parties cannot generate a state (a, b, c) that defines s providing the following
guarantees:

1. Statistical secrecy in case of a passively corrupted A.

2. Statistical correctness and robustness in case of an actively corrupted B and
either passively corrupted A or passively corrupted C.

3. Statistical correctness (without agreement on abort) in case of an actively cor-
rupted C and either passively corrupted A or passively corrupted B.

Proof. Denote by TA the transcript observed by party A during SHARE, and let
a, b, and c be the resulting state information held by A, B, and C respectively.



5.3 MPC with Threshold Adversaries 79

To arrive at a contradiction, assume that (a, b, c) is a state generated by
SHARE on input s = 0 (i.e., due to completeness, it defines 0 with overwhelm-
ing probability). Due to secrecy in case of a passively corrupted A, for any a,
with overwhelming probability, there exist b′ and c′ such that (a, b′, c′) is a
state defining s = 1 with overwhelming probability.

Due to correctness and robustness in presence of an actively corrupted B,
the state (a, ·, c) defines the value 0 with overwhelming probability (where · is
a placeholder for an arbitrary state information held by B). Due to correctness
in presence of an actively corrupted C, the state (a, b′, ·) defines either 1 or ⊥
with overwhelming probability.

Consider the following attack by an adversary actively corrupting B and
passively corrupting A or C: The adversary behaves honest during SHARE,
with input s = 0. Denote the resulting state with (a, b, c). The adversary
knows the transcript TA of party A. As a consequence, he can compute b′

and c′ (with overwhelming probability due to completeness), and achieve
the state (a, b′, c).

However, with the same probability, this state could have been achieved
by an adversary actively corrupting C and passively corrupting A or B,
mounting an analogous attack: Again, the adversary behaves honest during
SHARE, but with input s = 1. Denote the resulting state with (a, b′, c′). As
in the previous case, the adversary knows the transcript TA of party A. As a
consequence, he can compute b and c (with overwhelming probability due to
completeness), and also achieve the state (a, b′, c).

Hence, the state (a, b′, c) must define both 0 and either 1 or ⊥ with over-
whelming probability, which is a contradiction.

5.3 MPC with Threshold Adversaries

In the perfect setting (Section 4.2), it was sufficient to use a model for graceful
degradation with simple thresholds (see Section 3.2). In the statistical setting,
it follows from the bound for general adversaries that incomparable maximal
adversaries exist: Consider the following example: Let n = 6 and tsp = 2.
It is possible to obtain correctness for (|D∗|, |E∗|) ≤ (2, 6) and (|D∗|, |E∗|) ≤
(3, 3), and robustness for (|D∗|, |E∗|) ≤ (1, 6) and (|D∗|, |E∗|) ≤ (2, 3) in the
same protocol. Yet, correctness and robustness cannot be guaranteed for
(|D∗|, |E∗|) ≤ (3, 6) and (|D∗|, |E∗|) ≤ (2, 6), respectively. Hence, this situation
cannot be captured using only a single pair of thresholds for each security
guarantee, and we need to consider multi-thresholds (see Section 3.3).



80 Protocols with Statistical Security

For (multi-)threshold adversaries, we proceed along the lines of the gen-
eral adversary case: We generalize the protocol of [FHM98, CDD+99] and
introduce the sharing parameter d (corresponding to S), and the robustness pa-
rameter E (corresponding to R). Since we consider multi-thresholds, the ro-
bustness parameter E is a list of pairs (ea, ep) where ea ≤ ep. For secrecy, it
follows from the bound in Theorem 3 that the actively corrupted parties D∗
are not relevant. Hence, there cannot be two incomparable maximal adver-
saries for secrecy, and it is sufficient to use a single threshold.

In this section, we assume that each party pi is assigned a unique and
publicly known evaluation point αi ∈ F \ {0}. This implies that the field F
must have more than n elements.

5.3.1 A Parametrized Protocol for Threshold Adversaries

In the following, we present the parametrized subprotocols and analyze them
with respect to correctness, secrecy, and robustness. We do not consider fair-
ness. The main result (including fairness) is discussed in Section 5.3.2. The
protocol is based on IC signatures as introduced in Section 5.1.

5.3.1.1 The Underlying Verifiable Secret Sharing Scheme

The state of the protocol is maintained with a Shamir sharing [Sha79] of each
intermediate result.

Definition 9 (d-Sharing). A value s is d-shared when (1) there is a polynomial
ŝ(x) of degree d with ŝ(0) = s, and every (correct) party pi holds a share
si = ŝ(αi), (2) for each share si, pi holds a share polynomial ŝi(y) of degree d
with ŝi(0) = si, and every (correct) party pj holds a share share sij = ŝi(αj),
and (3) for each share share sij , party pi holds a signature 〈sij〉j,i, and pj holds
a signature 〈sij〉i,j . We denote a d-sharing of s with [s], and the share si also
with [s]i. A sharing parameter d is tp-secret if the shares held by any set of at
most tp parties are statistically independent from the secret, and ta-permissive
if the shares of all but ta parties uniquely define the secret.

It follows from the linearity of Shamir sharings (i.e. a polynomial ŝ(x) with
ŝ(0) = s where each party pj ∈ P holds ŝ(αj)) and IC signatures, that d-
sharings are linear.

Lemma 28. A d-sharing is tp-secret if tp ≤ d, and ta-permissive if ta < n− d.



5.3 MPC with Threshold Adversaries 81

Proof. It follows directly from the properties of a polynomial of degree d and
the secrecy of IC-signatures that any set of at most d parties has no informa-
tion about the secret. Furthermore, ta < n − d implies that there remain at
least d + 1 parties whose shares uniquely define a share polynomial.

The share protocol takes as input a secret s from a dealer, and outputs a d-
sharing [s] (see Figure 5.10). Note that, in contrast to the corresponding share
protocol in the perfect setting (Figure 4.5), we preserve the second dimension
of g(x, y).

Lemma 29. Let d be the sharing parameter. On input s from the dealer, SHARETH
S

correctly, secretly, and robustly computes a d-sharing. If d is |D∗|-permissive, and if
the dealer is correct, the sharing uniquely defines the secret s.

Proof. SECRECY: It follows from the properties of a bivariate polynomial that
g(x, y) reveals no more information about s than the specified output. After
Step 1, the adversary does not obtain any additional information: In Step 4,
a value sij is broadcasted only if pi, pj or the dealer is actively corrupted,
i.e., the adversary knew the value already beforehand. Hence, the protocol
does not leak more information than the specified output, and thus always
provides secrecy.

CORRECTNESS: First, we have to show that the protocol outputs a valid d-
sharing. Due to the bilateral consistency checks, any inconsistency in the val-
ues held by correct parties is detected in Step 2 and resolved in Step 4. There-
fore, the values held by correct parties uniquely define a polynomial g′(x, y)
of degree d, which implies that g′(x, 0) and g′(αi, y) for all αi are of degree d.
Furthermore, it follows from the properties of IC-SIGN that in Step 3, either
a correct IC-signature is computed, or all parties output ⊥. In the latter case,
a default (and hence correct) IC-signature is used. Therefore, the output is
a valid d-sharing. Second, we have to show that if d is |D∗|-permissive and
if the dealer is correct, then the shared value equals the input of the dealer.
A correct dealer can always consistently answer all complains and accusa-
tions with the correct values. Hence, if d is |D∗|-permissive, the unique value
defined by the sharing is the secret s.

ROBUSTNESS: By inspection, the protocol does not abort.

The public reconstruction protocol16 (Figure 5.11) proceeds share-wise: For
each share si, first party pi broadcasts the share si together with the sharing

16Private reconstruction can be reduced to public reconstruction using a blinding technique as
discussed in Section 2.3.3.



82 Protocols with Statistical Security

Protocol SHARETH
S : Given input s from the dealer, compute a d-sharing [s]

of this value.

1. The dealer chooses a random (bivariate) polynomial g(x, y) with
g(0, 0) = s, of degree d in both variables, and sends to each party
pi ∈ P the (univariate) polynomials ki(y) = g(αi, y) and
hi(x) = g(x, αi).

2. For each pair of parties (pi, pj): pi sends ki(αj) to party pj , and pj

checks whether ki(αj) = hj(αi). If this check fails, it broadcasts a
complaint.

3. For all ki(αj), for which no inconsistency was reported, IC-SIGN is
invoked once with signer pj and intermediary pi to compute the sig-
nature 〈ki(αj)〉j,i, and once with signer pi and intermediary pj to com-
pute the signature 〈ki(αj)〉i,j .

4. The dealer broadcasts each value for which either an inconsistency
was reported (Step 2), or the output of IC-SIGN was ⊥ (Step 3), and a
default signature is used.

5. If some party pi observes an inconsistency between the polynomials
received in Step 1 and the broadcasted values in Step 4, it accuses the
dealer. The dealer answers the accusation by broadcasting both ki(y)
and hi(x). Now, if some other party pj observes an inconsistency be-
tween the polynomial received in Step 1 and these broadcasted poly-
nomials, it also accuses the dealer. This step is repeated until no ad-
ditional party accuses the dealer. For all broadcasted values, default
signatures are used.

6. If the dealer does not answer some complaint or accusation, or if the
broadcasted values contradict each other, the parties output a default
d-sharing of a default value (with default signatures).
Otherwise, each party pi outputs the share si := ki(0), the share poly-
nomial ŝi(y) := ki(y) with signatures 〈ŝi(αj)〉j,i (for j = 1, . . . , n), and
the share shares sji := hi(αj) with signatures 〈sji〉j,i (for j = 1, . . . , n).
The dealer outputs ŝ(x) := g(x, 0).

Figure 5.10: The statistically secure share protocol for threshold ad-
versaries.



5.3 MPC with Threshold Adversaries 83

polynomial ŝi(y), and opens the signatures on all share shares ŝi(αj). Second,
all parties broadcast their share shares sij , and open the corresponding signa-
tures. If active corruption took place, these two steps might produce conflicts
between certain parties. Note that these conflicts do not only depend on the
actively, but also on the passively corrupted parties, due to their inability to
reliably verify IC-signatures. If these conflicts can be explained with an ad-
versary corrupting (|D∗|, |E∗|) ≤ (ea, ep) for some (ea, ep) ∈ E, then the share
is accepted. Otherwise it is ignored. This technique allows also passively-
corrupted parties to reliably verify signatures and therefore reconstruct the
correct value. Finally, the secret is reconstructed using the accepted shares.
Note that PUBLIC RECONSTRUCTIONTH

S is the only subprotocol that might
abort. All other protocols abort only if they use PUBLIC RECONSTRUCTIONTH

S
as a subprotocol and the invocation thereof aborts. Therefore, it is sufficient
to discuss agreement on abort only for this protocol.

In the voting process, a “yes” means that party pi (the party currently reveal-
ing its share si) seems to be correct (which holds unless there are less than d+1
correct parties), and a “no” means that pi is clearly actively corrupted. A ⊥
means that the voter does not know which is the case, because there were two
or more inconsistent values with valid signatures. Note that a wrong value
with a valid signature may appear in case of an actively corrupted interme-
diary and either a passively corrupted signer or receiver.

Lemma 30. Given the sharing parameter d, the robustness parameter E, and a d-
sharing [s] of some value s, PUBLIC RECONSTRUCTIONTH

S reconstructs s to all
parties. The protocol is correct if |D∗| < n− d and

∀(ea, ep) ∈ E : |D∗| < n− d− ea ∨
(d + ep < n ∧ |D∗| < n− ep) ∨ (|E∗| < n− d ∧ |E∗| < n− ea).

Furthermore, it is robust if additionally (|D∗|, |E∗|) ≤ E, and always guarantees
agreement on abort.

Proof. CORRECTNESS: The protocol outputs a value only if at least d+1 shares
are accepted. Trivially, the output is correct if all accepted shares are correct,
i.e. when incorrect shares are not accepted. More precisely, we have to show
that for any incorrect share s′i 6= si and for each (ea, ep) ∈ E, the condition in
Step 1(d) is violated. In this proof, we distinguish three cases, depending on
which or-term of the condition in the lemma is fulfilled:



84 Protocols with Statistical Security

Protocol PUBLIC RECONSTRUCTIONTH
S : Given a d-sharing [s] of some

value s, reconstruct s to all parties.

1. For each party pi:

(a) pi broadcasts ŝi(y) and invokes IC-REVEAL on the signatures
〈ŝi(αj)〉j,i (j = 1, . . . , n) of all share shares.

(b) Each pj broadcasts its share share sij and invokes IC-REVEAL on
the corresponding signature 〈sij〉i,j .

(c) Voting: Each pk checks whether

i. the polynomial ŝi(y) broadcasted in Step 1(a) is consistent
with its share share, i.e. sik = ŝi(αk),

ii. the output of all invocations of IC-REVEAL in Step 1(a) was
“accept”,

iii. for all sij broadcasted in Step 1(b) either sij = ŝi(αj)17 or the
output of IC-REVEAL on the corresponding signature 〈sij〉i,j
was “reject”.

pk broadcasts “yes” if all checks succeed, “no” if check i. or
ii. fails, and ⊥ otherwise. Let a and r denote the number of par-
ties broadcasting “yes” and “no”, respectively.

(d) Decision: Accept si if
∃(ea, ep) ∈ E : r ≤ ea ∧ (ep + d ≥ n ∨ a ≥ n− ep).

Otherwise ignore si.

2. Output: If at least d + 1 shares are accepted, interpolate these shares
with a polynomial ŝ′(x) and output ŝ′(0). Otherwise abort.

Figure 5.11: The statistically secure public reconstruction protocol
for threshold adversaries.

i. Case |D∗| < n− d− ea:
In order to broadcast a wrong share s′i 6= si, an actively corrupted party pi

has to change the value of at least n−d share shares. At least n−d−|D∗| of
these share shares belong to correct parties that subsequently vote “no”,
i.e. r ≥ n− d− |D∗|. Since |D∗| < n− d− ea, this implies r > ea, and the
share is not accepted.

17That means, the value is consistent with the polynomial ŝi(y) broadcasted by the dealer in



5.3 MPC with Threshold Adversaries 85

ii. Case d + ep < n ∧ |D∗| < n− ep:
Since |D∗| < n − d, there are at least d + 1 correct parties. Hence, in
order to broadcast a wrong share s′i 6= si, an actively corrupted party pi

has to change the value of at least one share share belonging to a correct
party. In Step 1(b), this correct party broadcasts the correct share share
with a valid signature, and no correct party accepts the wrong share s′i,
i.e. a ≤ |D∗|. Since |D∗| < n− ep, we have a < n− ep. Since we also have
d + ep < n, the share is not accepted.

iii. Case |E∗| < n− d ∧ |E∗| < n− ea:
Since |E∗| < n− d, there are at least d + 1 honest parties. Hence, in order
to broadcast a wrong share s′i 6= si, an actively corrupted party has to
change the value of at least one share share belonging to an honest party,
and to create the signature on this (incorrect) share share. All honest
parties notice that this signature is not valid and reject, i.e. r ≥ n − |E∗|.
Since |E∗| < n− ea, we have r > ea, and the share is not accepted.

ROBUSTNESS: Given that the correctness condition holds, the protocol guar-
antees robustness if enough (i.e. d + 1) shares are accepted. Let (ea, ep) ∈ E
such that (|D∗|, |E∗|) ≤ (ea, ep). First, observe that if party pi is correct, then
r ≤ ea: All share shares and signatures broadcasted in Step 1(a) are correct
and valid. Therefore, no correct party votes “no”.

Second, if party pi is honest, then a ≥ n − ep: If some pj broadcasts a
contradicting (wrong) share share in Step 1(b), then the signature on this share
share is invalid for all honest parties. It follows from these two observations
above that shares from honest parties are always accepted.

Furthermore, if ep + d < n, then there are at least d + 1 honest parties
and the protocol does not abort. Otherwise, if ep + d ≥ n, then also shares
from passively corrupted parties are accepted (in addition to the shares from
honest parties). Since |D∗| < n − d there are always at least d + 1 correct
(honest or passively corrupted) parties and the protocol does not abort.

Since the abort decision is based only on broadcasted values, we always
have AGREEMENT ON ABORT (cf. Section 2.3.2).

5.3.1.2 Addition, Multiplication, and Random Values

Linear functions (and in particular additions) can be computed locally, since
d-sharings are linear: Given sharings [a] and [b], and a constant c, one can eas-
ily compute the sharings [a]+[b], c[a], and [a]+c. Computing a shared random

Step 1(a).



86 Protocols with Statistical Security

value can be achieved by letting each party pi share a random value ri, and
computing [r] = [r1] + . . . + [rn] (see Section 2.3.3). For the multiplication
of two shared values, we first describe a non-robust multiplication protocol,
which we then make robust using dispute control [BH06] and circuit random-
ization [Bea91].

Non-robust Multiplication. The product c of two d-shared values a and
b is computed as follows (Figure 5.12, [GRR98]): Each party multiplies its
shares ai and bi, obtaining vi = aibi. This results in a sharing of c with a
polynomial v̂(x) of degree 2d. We reduce the degree by having each party d-
share its value vi (resulting in [vi]), and employing Lagrange interpolation to
distributedly compute [v̂(0)], which is a d-sharing of the product c. In order
to prevent an active party from sharing a wrong value v′i 6= vi, each party
has to prove in zero-knowledge that vi = aibi by invoking ABC-PROOFTH

S on
share polynomials of ai, bi, and vi. If this proof is not accepted, the non-robust
multiplication protocol is aborted.

Protocol NR-MULTIPLICATIONTH
S : Given [a] and [b], compute [c] for c =

ab.

1. For each party pi:

(a) pi computes vi = aibi, and invokes SHARETH
S on vi, resulting in

[vi].

(b) Invoke ABC-PROOFTH
S on âi(x), b̂i(x), and v̂i(x) (where âi(x) and

b̂i(x) denote the share polynomials of ai and bi, respectively, and
v̂i(x) denotes the main polynomial of the sharing [vi]). If the
proof is not accepted, the protocol is aborted.

2. All parties distributively compute the Lagrange interpolation on
[v1], . . . , [vn] for c = v(0), and output the resulting [c], i.e.,
[c] =

∑
λi[vi] for Lagrange coefficients λi.

Figure 5.12: The statistically secure, non-robust multiplication pro-
tocol for threshold adversaries.

Lemma 31. Given are the sharing parameter d, and d-sharings of a and b. If 2d < n

and the subprotocols are correct against (|D∗|, |E∗|), NR-MULTIPLICATIONTH
S ei-

ther outputs a correct d-sharing of the product c = ab, or it aborts. It aborts only
if some party deviates. Furthermore, it is secret against (|D∗|, |E∗|) whenever the
subprotocols are secret against (|D∗|, |E∗|).



5.3 MPC with Threshold Adversaries 87

Proof. In Step 2, the parties interpolate a polynomial of degree 2d using n
evaluation points. Since 2d < n, this interpolation computes the correct re-
sult. Given this observation, it follows by inspection that the protocol is as
secure as the subprotocols.

The ABC-PROOFTH
S subprotocol (Figure 5.13) allows a prover p to prove that

for three shared values a, b, and c it holds that c = ab. For this subprotocol, it
is sufficient that the values are shared with a simple Shamir sharing, i.e., there
is a polynomial â(x) with â(0) = a that is known to p, and each party pj ∈ P
holds â(αj) (for b and c analogously). The protocol is along the lines of the
protocol in [CDD+99].

Protocol ABC-PROOFTH
S : Given polynomials â(x), b̂(x), and ĉ(x) of degree

d that are known to party p, and where each party pj ∈ P holds â(αj), b̂(αj),
and ĉ(αj), check whether ĉ(0) = â(0)b̂(0).

1. For each party pi ∈ P , carry out a sub-proof:

(a) p chooses a uniformly random b′, computes c′ = ab′, and invokes
SHARETH

S on both b′ and c′, resulting in sharings [b′] and [c′] with
main polynomials b̂′(x) and ĉ′(x), respectively.

(b) pi broadcasts a uniformly random challenge r.

(c) Assisted reconstruction:
i. p computes and broadcasts the polynomials b̂′′(x) = rb̂(x) +

b̂′(x) and ẑ(x) = b′′â(x)− rĉ(x)− ĉ′(x), where b′′ = b̂′′(0).
ii. Each pj broadcasts a complaint bit indicating whether

b̂′′(αj) 6= rb̂(αj)+b̂′(αj) or ẑ(αj) 6= b′′â(αj)−rĉ(αj)−ĉ′(αj). If
any party complains, output “fail” (and stop the execution).

(d) Verification: If ẑ(0) = 0 then the sub-proof is accepted. Otherwise
it is rejected.

2. If any of the sub-proofs was rejected, output “reject”. Otherwise out-
put “accept”.

Figure 5.13: The statistically secure protocol for proving that c = ab
for threshold adversaries.



88 Protocols with Statistical Security

Lemma 32. Given are the sharing parameter d, and shared polynomials â(x),
b̂(x), and ĉ(x) of degree d that are known to party p. If ĉ(0) = â(0)b̂(0) and no
party deviates, the protocol outputs “accept” (completeness). If |D∗| < n − d and
ĉ(0) 6= â(0)b̂(0), then, with overwhelming probability, ABC-PROOFTH

S does not
output “accept” (correctness). Furthermore, the protocol is secret against (|D∗|, |E∗|)
whenever the subprotocols are secret against (|D∗|, |E∗|).

Proof. COMPLETENESS: It follows from inspection and simple arithmetic that
if ĉ(0) = â(0)b̂(0) and no party deviates from the protocol description, the
protocol outputs “accept”.

CORRECTNESS: If any (correct) party detects an inconsistency and complains
(Step 1.c.ii), the protocol outputs “fail”. Otherwise, since |D∗| < n − d

(i.e. there are at least d + 1 correct parties), both b̂′′(x) and ẑ(x) are correctly
computed. In that case, it follows along the lines of the proof in the case
for general adversaries that if ĉ(0) 6= â(0)b̂(0), then the proof is rejected with
overwhelming probability.

SECRECY: The only values revealed during the protocol are the polynomials
b̂′′(x) and ẑ(x). If p is correct, then b̂′′(x) is perfectly blinded by b̂′(x), and
ẑ(0) = 0.

Robust Multiplication. We make the above protocol robust in two steps
(Figure 5.14): First, using dispute control [BH06], we repeatedly invoke
NR-MULTIPLICATIONTH

S on two random values x and y until the subpro-
tocol succeeds. Dispute control is based on the fact that complete protocols
abort only if some party deviates from the protocol description, which leads
to a detectable dispute with other parties. By keeping track of these disputes,
the protocol can be adjusted to limit the number of repetitions. Second, we
use circuit randomization [Bea91] to compute [c] = [ab] = (a− x)(b− y) + (a−
x)[y] + (b− y)[x] + [xy]. Given shared values x, y, and z where z = xy, this is
a linear computation with two public reconstructions of (a− x) and (b− y).

Lemma 33. Given the sharing parameter d, the robustness parameter E, and
d-sharings of a and b, MULTIPLICATIONTH

S computes a d-sharing of the prod-
uct c = ab. The protocol guarantees correctness and/or secrecy against
(|D∗|, |E∗|) whenever the subprotocols provide the corresponding security guaran-
tee against (|D∗|, |E∗|). Furthermore, it is robust against (|D∗|, |E∗|) whenever
PUBLIC RECONSTRUCTIONTH

S is robust against (|D∗|, |E∗|).



5.3 MPC with Threshold Adversaries 89

Protocol MULTIPLICATIONTH
S : Given [a] and [b], compute [c] for c = ab.

1. Create sharings [x] and [y] of random values x and y.

2. Invoke NR-MULTIPLICATIONTH
S on [x] and [y] to compute [z] for

z = xy.

3. If NR-MULTIPLICATIONTH
S succeeded, then invoke

PUBLIC RECONSTRUCTIONTH
S on [a− x] and [b− y], and compute

and output [c] = (a− x)(b− y) + (a− x)[y] + (b− y)[x] + [z].

4. If NR-MULTIPLICATIONTH
S did not succeed, then

(a) Each party pi ∈ P broadcasts its randomness and all mes-
sages it has received during the creation of [x] and [y], and
NR-MULTIPLICATIONTH

S . Then, each party retraces the execu-
tion of these steps locally to detect disputing parties.18

(b) Repeat the protocol, where (1) private channels between any two
disputing parties are replaced with broadcast channels, and (2)
parties that are in dispute with all other parties are simulated lo-
cally on default randomness, and messages towards these parties
are broadcasted.

Figure 5.14: The statistically secure, robust multiplication protocol
for threshold adversaries.

Proof. The protocol is repeated until NR-MULTIPLICATIONTH
S succeeds. In

the repetitions where NR-MULTIPLICATIONTH
S does not succeed, correctness

and secrecy of [x], [y], and [z] do not need to be maintained. In the repe-
tition where NR-MULTIPLICATIONTH

S succeeds, we have z = xy and there-
fore also c = ab. Furthermore, when a private channel is replaced with a
broadcast channel because of a dispute, at least one of the two correspond-
ing parties was actively corrupted. Therefore, the secrecy of the subprotocols
is maintained. Furthermore, since disputing parties communicate via broad-
cast channels, each found inconsistency constitutes a new dispute. Hence, the
protocol is repeated at most n2 times.

18Two parties are in dispute if one party claims to have received a message from the other
party that is incorrect according to the preceding protocol execution.



90 Protocols with Statistical Security

5.3.1.3 The Security of the Parametrized Protocol

Considering the security of the subprotocols described above, we can derive
the security of the parametrized protocol, denoted by πd,E

S :

Lemma 34. Let d be the sharing parameter, and E be the robustness parameter, the
protocol πd,E

S guarantees correctness if d < n− |D∗|, 2d < n, and

∀(ea, ep) ∈ E : |D∗| < n− d− ea ∨
(d + ep < n ∧ |D∗| < n− ep) ∨ (|E∗| < n− d ∧ |E∗| < n− ea).

Furthermore, the protocol guarantees secrecy if additionally |E∗| ≤ d, and/or ro-
bustness if additionally (|D∗|, |E∗|) ≤ E. It always guarantees agreement on
abort.

Proof. πd,E
S provides a certain security guarantee against (|D∗|, |E∗|) if all sub-

protocols (cf. Lemmas 29 to 33) and the sharing (cf. Lemma 28) provide this
guarantee against (|D∗|, |E∗|). For each guarantee, it can easily be verified
that the condition in the lemma implies the corresponding conditions in the
mentioned lemmas.

5.3.2 Main Result

The following theorem states the optimal bound for statistically secure reac-
tive MPC for multi-threshold adversaries with both mixed adversaries and
hybrid security. We show that the bound is sufficient for reactive MPC by
providing parameters for the generalized protocols described above. Neces-
sity follows directly from the corresponding proof for general adversaries.

Theorem 4. In the secure channels model with broadcast and multi-threshold adver-
saries, statistically secure reactive MPC among n ≥ 2 parties with multi-thresholds
T c, T s, T r, and T f , where T f ≤ T s ≤ T c and T r ≤ T c, is possible if

∀(tca, tcp) ∈ T c, (tra, trp) ∈ T r, (·, tsp), (·, tsp′) ∈ T s :(
tsp + tsp

′ < n ∧ tsp + tca < n ∧(
tca+tra+tsp < n ∨ (tsp+trp < n∧tca+trp < n) ∨ (tsp+tcp < n∧tra+tcp < n)

))
∨ T s = {(0, 0)}.

This bound is tight: If violated, there are (reactive) functionalities that cannot be
securely computed.



5.4 Summary 91

Proof. The necessity of the bound in the theorem follows directly from the
corresponding proof for general adversaries. To prove the sufficiency of
the bound, we first note that if T s = {(0, 0)}, then there is no secrecy
requirement, and we can directly use the trivial non-secret protocol de-
scribed in Appendix 4.1.2. Otherwise, we employ the parametrized proto-
col πd,E

S described in Section 5.3.1.3 with d := t̃sp and E := T r ∪ T f , where
t̃sp = max{tsp | (·, tsp) ∈ T s}.

We apply Lemma 34 to derive correctness, secrecy and robustness: Given
the bound in the theorem, the choice of the parameters d and E, and the
fact that (|D∗|, |E∗|) is below the corresponding threshold, it is easy to verify
that the condition for each property is fulfilled. In particular, note that the
correctness condition is also fulfilled for (ea, ep) ∈ T f : Using that T f ≤ T s,
we have d + ep ≤ 2t̃sp < n and ea + ep ≤ tca + d < n (where the inequalities
follow from the second line of the condition in the theorem with tsp = tsp

′ = t̃sp).

For fairness, note that T f ≤ E. Hence, for (|D∗|, |E∗|) ≤ (tfa , tfp) the proto-
col is robust, and the adversary cannot abort.

5.4 Summary

We have provided statistically secure MPC protocols with graceful degrada-
tion of both security and corruptions. As in the perfect setting, the protocols
are strict generalizations of existing protocols in the literature. Furthermore,
we prove the tightness of the bounds achieved by our protocols.

These results provide insights into the relations between passive corrup-
tion and different security requirements. In particular, the bounds quantify
the impact of passively corrupted parties on all security guarantees. We have
shown that, in the statistical setting, passively corrupted parties play a sig-
nificant role for all security guarantees, and not only for secrecy, which is in
contrast to the perfect setting. Consider the following example: Let n = 4,
tca = 2, tcp = 2, tra = 1, trp = 2, and tsp = 1. For this choice of thresholds,
the construction in this paper provides a protocol that is correct and robust
(given that the adversary remains below the corresponding thresholds). Yet,
we show that it is impossible to construct a protocol that tolerates a single
additional passive corruption.

Furthermore, in addition to the known tradeoff between different security
guarantees like robustness and correctness in the perfect setting, we obtain a



92 Protocols with Statistical Security

novel tradeoff between active and passive corruptions even when only con-
sidering a single security guarantee.

Finally, we introduced Group Commitments as a new primitive, which
might be of independent interest. This primitive allows a group to first com-
mit to a value on which they agree (while providing secrecy with respect to
the remaining parties), and then to reveal this value at a later point in time
to the remaining parties. In this work, we show how information-theoretic
signatures in VSS schemes can be replaced with this primitive such that also
passively corrupted parties can reliably verify the revealed secret.



Chapter 6

Protocols with
Computational Security

For the construction of our protocols with computational security, we use
again the same approach as in the information-theoretical settings: We first
design parametrized protocols and analyze them with respect to correctness,
secrecy, fairness, and robustness. Then we deduce bounds on the security
guarantees, and prove that these bounds are tight.

In [IKLP06], the authors present a protocol for reactive MPC in the active
world that provides full security up to a first threshold t, and correctness
and secrecy up to a second threshold s, given that t < n/2 and s + t < n.
We extend this protocol with fairness and security against mixed adversaries,
while at the same time removing the restriction that robustness can only be
guaranteed against a corrupted minority.

In contrast to the information-theoretical settings, here we additionally
consider non-reactive MPC. In their seminal paper [GMW87], the authors
provide two different protocols, one for passive security against up to t < n
corruptions, and one for active security against up to t < n

2 corruptions. In
[IKLP06], these two protocols are combined into a single protocol, which is
secure against an adversary that either passively corrupts any number of par-
ties or actively corrupts a minority of the parties. This combined protocol is
only applicable for non-reactive functions, and it is proven that this combina-
tion is impossible for reactive MPC.



94 Protocols with Computational Security

Here, we present an MPC protocol (for non-reactive functions) with a dy-
namic tradeoff between active and passive corruptions. As [IKLP06], the pro-
tocol provides the best possible security level in presence of a purely passive
adversary (namely t < n) as well as in presence of a purely active adversary
(namely t < n/2). In addition, the protocol also tolerates mixed adversaries
that corrupt some parties actively and some other parties passively, as long
as at most k parties are corrupted actively and at most n − k − 1 parties are
corrupted in total. Note that k need not be known, as it is not a parameter of
the protocol.

In order to construct the protocols for both reactive and non-reactive MPC,
we introduce the notion of gradual verifiable secret sharing (VSS). In contrast
to traditional VSS, a gradual VSS reduces the number of adversaries against
which secrecy is guaranteed during reconstruction in a step-wise fashion, and
at the same time increases the number of adversaries against which robust-
ness is guaranteed. By that, if the reconstruction of a secret aborts, secrecy
against many adversaries is still guaranteed.

In Section 6.1 we introduce the notion of gradual VSS. Then we provide
protocols for both non-reactive and reactive MPC (Sections 6.3 and 6.4, re-
spectively), each for both general and threshold adversaries. Our protocols
are based on the protocol from [GMW87], which we outline in Section 6.2.

6.1 Gradual Verifiable Secret Sharing

We first briefly review the standard definition of verifiable secret sharing
(VSS) schemes. Then, we define a new property for VSS schemes introducing
the notion of gradual reconstruction.19 Finally, we present schemes for both
threshold and general adversaries that achieve the new requirements.

6.1.1 Definitions

The following definition captures the standard, well-known properties of ver-
ifiable secret sharing.

Definition 10 (VSS). A Verifiable Secret Sharing (VSS) scheme allows a desig-
nated party (the dealer) to share a value s among all parties, such that these

19This notion should not be confused with the notion of gradual release of secrecy as intro-
duced by [Blu83].



6.1 Gradual Verifiable Secret Sharing 95

parties can jointly reconstruct the value. More formally, we say a pair of pro-
tocols SHARE and REC is a (Zs,Zr)-secure VSS if the following conditions are
fulfilled:

SECRECY: If (D∗, E∗) ∈ Zs, then in SHARE the adversary obtains no informa-
tion about s.

CORRECTNESS: After SHARE, the dealer is bound to a value s′. If the dealer is
correct, then s′ = s. Furthermore, in REC, either each (correct) party outputs
s′ or all (correct) parties abort.

ROBUSTNESS: The adversary cannot abort SHARE. If (D∗, E∗) ∈ Zr, then the
adversary cannot abort REC.

For (D∗, E∗) 6∈ Zr, this definition does not rule out that the reconstruction
protocol aborts even in an unfair way, where the honest parties do not learn
the secret but the corrupted parties do. In fact, most VSS schemes in the litera-
ture show this undesired behavior: When corrupted parties do not broadcast
their shares, still they learn the shares from the honest parties and can com-
pute the secret, but the honest parties do not obtain enough shares and abort.

Clearly, a certain level of unfairness cannot be avoided when secrecy and
robustness are to be guaranteed with respect to many corruptions. In partic-
ular, whenever a sharing scheme is secret with respect to some subset M ⊆ P
of the parties, then it cannot be robust with respect to the complement P \M
of this subset: When the parties in M have no information about the shared
value after SHARE, and the parties in P \ M do not participate in REC, then
the value cannot be reconstructed. Hence, the collection of subsets against
which a sharing is secret implicitly defines the collection of subsets that can
abort reconstruction (namely, the complements). In usual reconstruction pro-
tocols, all correct parties directly broadcast their entire shares, i.e., secrecy is
given up against all subsets at once, before robustness against a single subset
is achieved. This means that during reconstruction, any subset of parties that
can abort, can also abort in an unfair way. Our new definition below requires
that the transition from secrecy to robustness is gradual, one subset at a time,
where the order is specified by a list L of subsets of P against which secrecy
is guaranteed after SHARE. Then, whenever secrecy against a certain subset
is given up, robustness against the complement of this subset is immediately
obtained. So while processing the i-th element ofL, secrecy is still guaranteed
against all later subsets, and robustness is already gained against the comple-
ments of all earlier subsets. If the protocol aborts, all parties output the same
pair (B, i). The intuition behind this output is that the reconstruction pro-
ceeds along the list L, and was interrupted when revealing the secret to the



96 Protocols with Computational Security

parties in the i-th subset Li ∈ L by the parties in the complement of Li (= B)
not revealing the necessary information.20

Definition 11 (Gradual VSS). A (Zs,Zr)-secure VSS is gradual with respect
to a list L consisting of sets Es from Zs (i.e., ∀Li ∈ L : (∅, Li) ∈ Zs), if the
following conditions are fulfilled: If REC aborts, each (correct) party outputs
the same (B, i) with B 6= ∅ such that B ⊆ D∗, B ∪ Li = P , and the adversary
obtained no information about the secret if (D∗, E∗) ∈ Zs and E∗ ⊆ Lj for
some j > i (i.e., ∃Lj ∈ L, j > i : E∗ ⊆ Lj).21

Threshold Adversaries. These definitions can also be applied to (multi-)
threshold adversaries by replacing the adversary structures Zs and Zr with
(pairs of) thresholds (tsa, tsp) and (tra, trp), or more general, in a setting with
incomparable maximal adversaries (see Section 3.3), with multi-thresholds T s

and T r (i.e., secrecy of SHARE is required if (|D∗|, |E∗|) ≤ T s, and robustness
of REC if (|D∗|, |E∗|) ≤ T r). However, it turns out that the definition of a
gradual VSS can be simplified. In the threshold setting considered here, only
the number of passively corrupted parties influences secrecy. Hence, there is
a natural ordering of the adversaries, namely in decreasing size of tsp, and
we do not need an extra parameter for the ordering (i.e., we can omit the list
L). Instead of an index i, the protocol outputs a bound t stating directly the
maximal number of passively corrupted parties against which secrecy is still
maintained.

Definition 12 (Gradual threshold VSS). A (T s, T r)-secure VSS is gradual if
the following conditions are fulfilled: If REC aborts, each party outputs (B, t)
with B 6= ∅ such that B ⊆ D∗, |B|+ t + 1 ≥ n, and the adversary obtained no
information about the secret if (|D∗|, |E∗|) ≤ T s and |E∗| ≤ t.

6.1.2 A Gradual VSS for General Adversaries

We describe a gradual VSS scheme for general adversaries. This scheme is
based on [Mau02] extended with techniques from [HMZ08] and commit-
ments (e.g. [Ped91]). Note that the VSS scheme in [HMZ08] requires an honest
majority, which is not guaranteed in our setting. This construction results in
the scheme VSSSC = (SHARESC, RECSC) which takes as input a list of subsets of

20In this step, the secret would have been revealed only to those parties in Li that are not
covered by a later subset Lj , j > i.

21That means, all corrupted parties are covered by some set against which secrecy was not yet
given up.



6.1 Gradual Verifiable Secret Sharing 97

P , called sharing specification S = (S1, . . . , S`) where Si ⊆ P . For a sharing
of some value s, summands s1, . . . , s` with s1 + . . . + s` = s are chosen at
random, and each party pj ∈ Si obtains si and is committed to it.

Definition 13 (S-sharing). A value s is S-shared for sharing specification S =
(S1, . . . , S`) where Si ⊆ P , denoted by [s], if there are values s1, . . . , s`, such
that s1 + . . . + s` = s and, for all i, every (correct) party pj ∈ Si holds the
summand si, and is committed to it. A sharing specification S is E-secret if
the parties in E jointly cannot (efficiently) derive any information about the
secret from their shares, and D-permissive if the shares held by the parties in
P \ D uniquely define the secret.

If the sharing specification S is not clear from the context, we indicate it using
the notation [s]S .

Lemma 35. An S-sharing is E-secret if ∃Si ∈ S : Si ∩ E = ∅, and D-permissive if
∀Si ∈ S : Si \ D 6= ∅.

Proof. Secrecy follows from the fact that E lacks at least one summand si, and
from the hiding property of the commitment scheme. Furthermore, given
that ∀Si ∈ S : Si \ D 6= ∅, each summand si is held by at least one party in
P \ D. Hence, the secret s is uniquely defined by s = s1 + . . . + s`.

For the share protocol (Figure 6.1), we assume that commitments can be trans-
ferred by sending the opening information. This protocol is a straightforward
adaption of the protocol in [Mau02, HMZ08].

Lemma 36. Given a sharing specification S and input s, SHARESC correctly, secretly
and robustly computes an S-sharing [s]. If S is D∗-permissive, and if the dealer is
correct, the sharing uniquely defines the secret s.

Proof. CORRECTNESS: First, we have to show that the protocol outputs a valid
S-sharing. Since the commitments are binding, all correct parties pj ∈ Si

open ci to the same value in Step 2. Hence, the view of all correct parties is
consistent, which implies a valid sharing. Second, we have to show that if
S is D∗-permissive and if the dealer is correct, then the shared value equals
the input of the dealer. This follows immediately from the fact that a correct
dealer always responds on reported inconsistencies with the original sum-
mands. Hence, the unique value defined by the sharing is the secret s.

SECRECY: Given a correct dealer, a valid S-sharing is distributed in the first
step. In the remaining protocol run, no additional information is revealed to



98 Protocols with Computational Security

Protocol SHARESC : Given input s from the dealer, compute an S-sharing of
this value.

1. The dealer chooses uniformly random summands s1, . . . , s` with∑`
i=1 si = s, where ` = |S|. Then, for each si, he computes a com-

mitment ci together with opening information oi, sends oi to every
party pj ∈ Si, and broadcasts ci.

2. For each Si ∈ S: Every party pj ∈ Si broadcasts a complaint bit,
indicating whether oi opens ci to some value s′i.

3. For each share si for which an inconsistency was reported, the dealer
broadcasts the opening information oi, and if oi opens ci, all parties
in Si accept oi. Otherwise, the dealer is disqualified (and a default
sharing of a default value is used).

4. Each party pj outputs its share {(si, oi) | pj ∈ Si} and all commitments.

Figure 6.1: The computationally secure share protocol for general
adversaries.

the adversary: A summand si is broadcasted in Step 3 only if a party pj with
pj ∈ Si reported an inconsistency. Yet, such an inconsistency occurs only if
one of the parties in Si (or the dealer) is actively corrupted, i.e., when the
adversary knew the value already beforehand.

ROBUSTNESS: It follows from inspection that the protocol cannot be aborted.

This share protocol provides resilience even against a corrupted dealer. It
turns out that in our protocols, essentially only ideal functionalities need to
compute S-sharings. Trivially, given a value s, such an honest dealer can di-
rectly sample and distribute a correct sharing [s] without running SHARESC .
The (probabilistic) function that samples shares of some given input s is de-
noted by STATESC .

In Figure 6.2, we describe the reconstruction protocol for a single sharing.
Clearly, this protocol can be extended to reconstruct multiple sharings in par-
allel by executing the protocol on a vector of sharings, where an abort in one
instance implies an immediate abort (in the same round) for all instances.



6.1 Gradual Verifiable Secret Sharing 99

Protocol RECSC : Given an S-sharing of some value s, reconstruct s to all
parties.

1. Reconstruct each summand si one after another according to the or-
dering in S:

(a) Each party pj ∈ Si opens the commitment to si via broadcast.

(b) If at least one party correctly opened the commitments to its re-
spective share, the value of the party with the smallest index that
opened correctly is used. If no party opened the commitment
correctly, the protocol is aborted and each party outputs (B, i)
with B = Si.

2. Each party outputs the secret s = s1 + . . . + s`.

Figure 6.2: The computationally secure protocol for gradual recon-
struction for general adversaries.

Lemma 37. Given is an S-sharing [s] with ∅ 6∈ S. If ∀Si ∈ S : Si 6⊆ D∗, then
RECSC (robustly) outputs s to all parties. Otherwise, either it outputs s to all parties,
or it aborts and outputs (B, i) with B 6= ∅ such that B ⊆ D∗, Si ⊆ B, and the
adversary obtained no information about the secret if ∃Sj ∈ S, j > i : E∗ ∩ Sj = ∅.

Proof. CORRECTNESS: The only operation in the protocol is the opening of
commitments. Hence, given a correct sharing and the binding property of the
commitment scheme, incorrect parties cannot deviate without being detected.

ROBUSTNESS: To abort the reconstruction of some si, all parties pj ∈ Si must
refuse to correctly open their commitments. Since ∀Si ∈ S : Si 6⊆ D∗, there
is at least one correct party that correctly opens its commitment. Hence, the
protocol does not abort.

GRADUAL: The reconstruction aborts with (B, i) only if the reconstruction of
si failed. In that case, all parties in Si refused to correctly open their commit-
ments, and therefore B = Si ⊆ D∗. It follows from inspection that Si ⊆ B,
and since ∅ 6∈ S, we have B 6= ∅. Furthermore, if ∃Sj ∈ S, j > i : E∗ ∩ Sj = ∅,
the adversary has no information about sj (and hence about s) since the re-
construction of sj did not yet start.

The following corollary summarizes Lemma 35 (S-sharing), Lemma 36
(SHARESC) and Lemma 37 (RECSC):



100 Protocols with Computational Security

Corollary 3. Given a sharing specification S with ∅ 6∈ S , VSSSC is a (Zs,Zr)-
secure, gradual (with respect to a list L) VSS where

• (D∗, E∗) ∈ Zs if ∃Si ∈ S : Si ∩ E∗ = ∅,

• (D∗, E∗) ∈ Zr if ∀Si ∈ S : Si 6⊆ D∗, and

• L = S (with S = (S1, . . . , Sl) for Si ∈ S).

As a matter of course, given a list L and a secrecy structure Zs, it is straight-
forward to derive a sharing specification S such that the resulting scheme is
gradual with respect to L and provides secrecy against adversaries from Zs:
Select the (maximal22) sets Es from Zs, and prepend these sets to L. Then,
choose S to be the component-wise complement of this extended list.

6.1.3 A Gradual VSS for Threshold Adversaries

We describe a gradual VSS scheme for threshold adversaries based on the
standard Shamir sharing scheme [Sha79], and extended with (homomorphic)
commitments to provide verifiability (e.g. [Ped91]). To obtain the gradual
property, summands s1, . . . , sd with s1 + . . . + sd = s are chosen at random
and, rather than the secret itself, these summands are shared, where sum-
mand si is shared with degree i. Then, during reconstruction, the summands
are reconstructed one by one, in decreasing order of the sharing degree. We
assume that each party pi is assigned a unique and publicly known evalua-
tion point αi ∈ F \ {0},23 and that the commitments are homomorphic and
transferable by sending the opening information. This construction results in
the scheme VSSd

C = (SHAREd
C, RECd

C) for parameter d.

Definition 14 (d-sharing). A value s is d-shared, denoted by [s], if there are
values s1, . . . , sd, such that s1+. . .+sd = s and, for all i ∈ {1, . . . , d}, there is a
polynomial ĝi(x) of degree i with ĝi(0) = si, and every (correct) party pj holds
a share sij = ĝi(αj) and is committed to it. A sharing degree d is tp-secret if
up to tp parties jointly cannot (efficiently) derive any information about the
secret from their shares, and ta-permissive if the shares of all but ta parties
uniquely define the secret.

Lemma 38. A d-sharing is tp-secret if tp ≤ d, and ta-permissive if ta < n− d.

22A set Es is maximal in Zs if there is no other set Es′ in Zs with Es ⊂ Es′ (cf. Section 2.2.2).
Note that it is not mandatory to choose only maximal sets here.

23This implies that the field F must have more than n elements.



6.1 Gradual Verifiable Secret Sharing 101

Proof. The summand sd is shared with degree d. Therefore, it follows directly
from the properties of a polynomial of degree d and the hiding property of
the commitments that any set of at most d parties has no information about
the secret. Furthermore, ta < n − d implies that there remain at least d + 1
parties whose shares uniquely define a share polynomial.

The sharing protocol from [Ped91] can be extended in a straightforward way
to compute such a d-sharing. For this protocol (Figure 6.3), we assume that
commitments can be transferred by sending the opening information.

Protocol SHAREd
C: Given input s from the dealer, compute a d-sharing of

this value.
1. The dealer chooses uniformly random summands s1, . . . , sd with∑d

i=1 si = s.

2. For i ∈ {1, . . . , d}:

(a) The dealer chooses a random polynomial gi(x) of degree i with
gi(0) = si, and computes and broadcasts (homomorphic) com-
mitments of the coefficients of gi(x).

(b) For each share sij = gi(αj), each party locally computes a com-
mitment cij (using the homomorphic property), and the dealer
sends the corresponding opening information oij to party pj .
Then, pj broadcasts a complaint bit, indicating whether oij opens
cij to some value s′ij .

(c) For each share sij for which an inconsistency was reported, the
dealer broadcasts the opening information oij , and if oij opens
cij , pj accepts oij . Otherwise, the dealer is disqualified (and a
default sharing of a default value is used).

3. Each party pj outputs its share
(
(s1j , o1j), . . . , (sdj , odj)

)
and all com-

mitments.

Figure 6.3: The computationally secure share protocol for threshold
adversaries.

Lemma 39. Given a parameter d and input s, SHAREd
C correctly, secretly, and ro-

bustly computes a d-sharing [s]. If d is |D∗|-permissive, and if the dealer is correct,
the sharing uniquely defines the secret s.



102 Protocols with Computational Security

Proof. CORRECTNESS: First, we have to show that the protocol outputs a valid
d-sharing. Trivially, in Step 2.a, any (well-formed) commitments broadcasted
by the dealer are correct. In Step 2.b, commitments to all shares are com-
puted locally by each party directly from the commitments to the coefficients
broadcasted in Step 2.a. Hence, all (correct) parties have a consistent view
with correct commitments. In Steps 2.b and 2.c, due to the binding property
of the commitments, the adversary cannot distribute inconsistent opening in-
formation without being detected. Hence, the sharing is correct (or the dealer
is disqualified and a default sharing is used). Second, we have to show that if
d is |D∗|-permissive and if the dealer is correct, then the shared value equals
the input of the dealer. A correct dealer can always consistently answer all
complains with the correct values. Hence, if d is |D∗|-permissive, the unique
value defined by the sharing is the secret s.

SECRECY: The commitments are computationally hiding. Therefore, the ad-
versary obtains no information in Step 2.a of SHAREd

C. Furthermore, the open-
ing information distributed in Step 2.b corresponds to a valid d-sharing. Fi-
nally, in Step 2.c, the adversary obtains no additional information: Whenever
a value is broadcasted, the adversary knew this value already beforehand.

ROBUSTNESS: By inspection, the share protocol does not abort.

The share protocol provides resilience even against a corrupted dealer. It
turns out that in our protocols, essentially only ideal functionalities need to
compute d-sharings. Trivially, given a value s, such an honest dealer can di-
rectly sample and distribute a correct sharing [s] without running SHAREd

C.
The (probabilistic) function that samples shares of some given input s is de-
noted by STATEd

C.

The reconstruction protocol for a single sharing is described in Figure 6.4.
As in the setting with general adversaries, the extension to multiple sharings
is straightforward.

Lemma 40. Given is a d-sharing [s] for d < n. If |D∗| < n − d, then RECd
C

(robustly) outputs s to all parties. Otherwise, either it outputs s to all parties, or it
aborts and outputs (B, t) with B 6= ∅ such that B ⊆ D∗, |B| + t + 1 ≥ n, and the
adversary obtained no information about the secret if |E∗| ≤ t.

Proof. CORRECTNESS: The only operation in the protocol is the opening of
commitments. Hence, given a correct sharing and the binding property of the
commitment scheme, incorrect parties cannot deviate without being detected.



6.1 Gradual Verifiable Secret Sharing 103

Protocol RECd
C : Given a d-sharing of some value s, reconstruct s to all par-

ties.
1. For i = d down to 1:

(a) Each party pj opens the commitment to its share sij via broad-
cast.

(b) If at least i + 1 parties correctly opened the commitments to their
respective shares, each party locally interpolates gi(x) and com-
putes si = gi(0). Otherwise, the protocol is aborted and each
party outputs t = i−1 and the set B of parties that did not broad-
cast correct opening information.

2. Each party outputs s = s1 + . . . + sd.

Figure 6.4: The computationally secure protocol for gradual recon-
struction for threshold adversaries.

ROBUSTNESS: To abort the reconstruction of some si, at least n − i ≥ n − d
parties must refuse to correctly open their respective commitments. Hence,
for |D∗| < n− d, the protocol is robust.

GRADUAL: The reconstruction aborts with (B, t) only if the reconstruction of
st+1 failed. In that case, strictly less than t + 2 parties opened their commit-
ments correctly. Therefore, |B| > n−(t+2), i.e. |B| ≥ n−(t+1). Furthermore,
since d < n, we have that t < n − 1, and hence |B| > 0, i.e., B 6= ∅. Clearly,
B ⊆ D∗, since only active parties do not open their commitments correctly.
Furthermore, if |E∗| ≤ t, the adversary has no information about st since the
reconstruction of st did not yet start.

The following corollary summarizes Lemma 38 (d-sharing), Lemma 39
(SHAREd

C) and Lemma 40 (RECd
C):

Corollary 4. Given a parameter d < n, VSSd
C = (SHAREd

C, RECd
C) is a (T s, T r)-

secure, gradual VSS where (|D∗|, |E∗|) ≤ T s if |E∗| ≤ d, and (|D∗|, |E∗|) ≤ T r if
|D∗| < n− d.



104 Protocols with Computational Security

6.2 The Protocol of [GMW87]

Our results are based on the protocol from [GMW87].24 We briefly review the
protocol description. For details, we refer the interested reader to the original
work. The protocol is constructed in two steps: A first protocol provides
security only against passive adversaries. Then, in a second step, a compiler
is used to make the passive protocol secure also against active adversaries.

6.2.1 The Passive Protocol

The protocol proceeds in three phases: input, computation (addition and
multiplication), and output. During the input phase, each party shares its
input with an n-out-of-n XOR-sharing. This sharing is linear, hence additions
and linear functions can be computed locally. For multiplication, a protocol
for oblivious transfer is used. Finally, to reconstruct the output, each party
broadcasts its corresponding share.

This protocol provides secrecy against t < n passively corrupted parties.
It is crucial for the secrecy of the protocol that all parties choose their ran-
domness according to the protocol description. Otherwise, a party can break
secrecy during the protocol for oblivious transfers. In contrast, correctness
and robustness are independent from the choice of the randomness.

The original protocol considers only Boolean circuits, i.e., each party pro-
vides its input as single bits. However, any ideal functionality can be con-
verted into a Boolean circuit in a straightforward way.

6.2.2 The Active Protocol

To make the above passive protocol secure also against active corruptions, it
is modified using a compiler. A first, simpler version of the compiler provides
only security with abort for t < n actively corrupted parties (i.e., correctness
and secrecy against t < n corrupted parties, and, in case of an abort, each
correct party outputs the same non-empty set B ⊆ D∗). A second, extended
version of the compiler provides a trade-off between secrecy and robustness.

24[GMW87] provides only stand-alone security. If UC security is required, the protocol of
[CLOS02] can be used analogously.



6.2 The Protocol of [GMW87] 105

6.2.2.1 The Compiler for Security with Abort.

The idea behind the first compiler is to force all parties to follow the proto-
col description using commitments and zero-knowledge proofs: Before the
protocol starts, each party commits to its input. Furthermore, a coin-toss pro-
tocol is carried out among all parties to generate a random tape (to be used
in the passive protocol) for each party in such a way, that the party is also
committed to it.

Then, during the protocol execution, for each message, the sender has to
attach a zero-knowledge proof that the messages is correct with respect to
its inputs, randomness, and the messages received so far. For this purpose,
all messages have to be broadcasted such that they are known to and can be
checked by all parties. Secrecy of messages is guaranteed using public-key
encryption.

We denote this protocol by GMW. As stated in [GMW87], it provides secu-
rity with abort for t < n corrupted parties. However, it can easily be seen that
correctness (but not secrecy) can also be achieved for t = n corrupted par-
ties. In particular this holds also in the setting with mixed adversaries where
some parties are actively and all remaining parties are passively corrupted.
This follows from the fact that each party has to prove the correctness of the
messages it sends using a zero-knowledge protocol. Given instant random-
ness (i.e., randomness generated only when needed, cf. Section 2.2.1), even
the challenges of passively corrupted parties are unpredictable to the adver-
sary (note that these challenges are used in the compiler, not in the passive
protocol, and are hence not part of the predetermined random tape). If all
parties are passively corrupted (and at least one party even actively), the ad-
versary can choose all random tapes (for the passive protocol) during their
generation before the protocol execution. As mentioned above, this does not
affect correctness (or robustness). Concerning agreement on abort, note that
the abort decision is based only on broadcasted values. Hence, either all cor-
rect parties abort, or all correct parties continue (cf. Section 2.3.2).

The fact that secrecy cannot be achieved if all parties are passively cor-
rupted can be shown e.g. by means of plaintext-aware encryption [BR94,
BP04]: Plaintext-awareness guarantees that no efficient algorithm can com-
pute a valid ciphertext without being aware of the corresponding plaintext.
To prove impossibility of MPC in a setting where all parties are passively
corrupted, consider the functionality that samples a public-secret-key pair
(pk , sk) (for a plaintext-aware encryption scheme), encrypts a random mes-
sage c = Enc(pk ,m), and outputs (pk , c). Assume that there is a protocol



106 Protocols with Computational Security

that implements this functionality and provides secrecy against any number
of corrupted parties. That means, in particular, the adversary obtains no in-
formation about the message m. Now, an algorithm could (locally) simulate
such a protocol execution and output (pk , c) without being aware of m. This
is a contradiction. Hence, under any assumption that implies the existence
of plaintext aware encryption (e.g., the knowledge of exponent assumption
[Den06]), secret MPC cannot be achieved when all parties are passively cor-
rupted.

6.2.2.2 The Compiler for Full Security.

The above compiler does not provide robustness, not even against a single
corrupted party. In the second compiler, to achieve a certain level of robust-
ness, each party additionally shares its input using a (Zs,Zr)-secure VSS
(thereby sacrificing some secrecy). Furthermore, the random tape (for the
passive protocol) for each party is jointly generated such that it is also shared
according to the VSS. As soon as a party deviates during the protocol execu-
tion, the inputs and the random tape of this party are reconstructed, and each
party locally simulates the aborted party.

The original description in [GMW87] considers only VSS with a threshold
of n/2. However, it is easy to see that any VSS can be used. The resulting
protocol inherits the robustness and secrecy properties of the corresponding
VSS, while leaving the correctness properties unchanged (the same holds for
the simplified protocol in [Gol04, p. 735]).

This construction provides correctness for any number of corrupted par-
ties, secrecy if (D∗, E∗) ∈ Zs, and robustness if (D∗, E∗) ∈ Zr. Furthermore,
if the protocol is aborted, then each party outputs the same non-empty set
B ⊆ D∗. This implies in particular that we always have agreement on abort.

This protocol can be used for both threshold and general adversaries, de-
pending on the VSS it is instantiated with. When we instantiate this protocol
using VSSSC (Section 6.1.2), we denote the resulting protocol by GMWS , and
when using VSSd

C (Section 6.1.3) with GMWd. Note that for this extension of
GMW, a standard, non-gradual VSS would be sufficient.

6.3 Non-Reactive Multi-Party Computation

Our protocol for non-reactive MPC for both threshold and general adver-
saries is based on an idea from [IKLP06]: Given the function f and the inputs



6.3 Non-Reactive Multi-Party Computation 107

x1, . . . , xn, the protocol first distributedly computes y = f(x1, . . . , xn) using a
correct and secret, but non-robust MPC protocol. Yet, instead of y itself, this
MPC protocol outputs a sharing of y that was computed according to some
VSS scheme. Then, the parties reconstruct this sharing.

In [IKLP06], two (maximal) adversaries are considered: One, that actively
corrupts a minority of the parties, and one that passively corrupts any num-
ber of parties. The output y is shared with a VSS for a threshold t < n/2.
Then, whenever the non-robust MPC protocol aborts (i.e., the active adver-
sary is present), the computation of y = f(x1, . . . , xn) is repeated with a ro-
bust MPC protocol, which provides security against an actively corrupted
minority. Yet, in a more general setting with mixed adversaries, where a ma-
jority of the parties might be passively, and in addition some parties even
actively corrupted, this solution becomes insecure: The adversary can abort
the non-robust protocol during the output phase. Then, he might already
have learned y, and repeating the computation would violate security.

In contrast, by using a gradual VSS scheme to share y (cf. Section 6.1),
our protocols achieve stronger security guarantees. Given a set of actually
(actively) cheating parties, a gradual VSS allows to maintain as much secrecy
as possible. Then, in case of an abort during the reconstruction, the cheaters
are identified and eliminated, and if the gradual VSS still guarantees enough
secrecy,25 the computation of y = f(x1, . . . , xn) is repeated using again the
same MPC protocol among the remaining parties. Otherwise, the execution
halts.

We use GMW (see Section 6.2.2.1) to implement the ideal functionality com-
puting f and then a sharing of the result y. This protocol provides correctness
for up to t = n, and secrecy for t < n corrupted parties. Due to these specific
security guarantees, this protocol can be used for both threshold and general
adversaries.

6.3.1 Non-Reactive MPC for General Adversaries

In the setting with general adversaries, we use the gradual VSS scheme in-
troduced in Section 6.1.2 for a given sharing specification S. In fact, we
only require the reconstruction protocol RECSC and the (probabilistic) func-
tion STATESC that, given a value y, samples shares of y according to VSSSC .

25The protocols are described with respect to a robustness parameter rather than a secrecy
parameter as suggested here. It turns out that this simplifies the description and the proof.



108 Protocols with Computational Security

Furthermore, the protocol receives as parameter a (monotone) robustness pa-
rameter R ⊆ 2P indicating which subsets of actively corrupted parties the
protocol can eliminate (and then repeat the run) without violating security. A
party is eliminated by removing the party from P , and from all entries in S
and R.

Protocol for non-reactive MPC: Given is a function f .
1. Employ GMW to first compute y = f(x1, . . . , xn), where xi is the input

from party pi, then evaluate STATESC on y, and finally output to each
party its corresponding share, resulting in [y]. If GMW aborts with a set
B of active cheaters, repeat with P = P \ B and S and R reduced
accordingly.

2. Invoke RECSC on [y]. On abort with a set B of active cheaters: If B ∈ R,
then repeat the whole protocol with P = P \ B and S and R reduced
accordingly. Otherwise, halt the execution.

3. Output y.

Figure 6.5: The computationally secure protocol for non-reactive
MPC for general adversaries.

Lemma 41. Given a function f , a sharing specification S with ∅ 6∈ S, and a
robustness parameter R, the protocol for non-reactive MPC computes f in pres-
ence of an adversary corrupting (D∗, E∗). The protocol always guarantees cor-
rectness and agreement on abort. Furthermore, it is robust if D∗ ∈ R, secret if
∃Si ∈ S : Si ∩ E∗ = ∅ and

∀Si ∈ S : Si 6⊆ D∗ ∨ ∃Sj ∈ S, j > i : Sj ∩ E∗ = ∅ ∨ Si 6∈ R,
and fair if ∃Si ∈ S : Si ∩ E∗ = ∅ and

∀Si ∈ S : Si 6⊆ D∗ ∨ ∃Sj ∈ S, j > i : Sj ∩ E∗ = ∅.

Proof. CORRECTNESS follows trivially by inspection, and since the abort de-
cision is based only on broadcasted values, we always have AGREEMENT ON
ABORT (cf. Section 2.3.2).

ROBUSTNESS: Since D∗ ∈ R and B ⊆ D∗, the protocol is repeated (with
P = P \ B) until it succeeds. Since B is non-empty, the protocol is repeated
at most n times.

SECRECY: Since ∃Si ∈ S : Si ∩ E∗ = ∅ (which in particular implies that
E∗ 6= P), both GMW and the output [y] (Corollary 3) are secret. Hence, the



6.3 Non-Reactive Multi-Party Computation 109

adversary obtains no information about the inputs, outputs, or intermediate
results in Step 1. Given the output, Steps 2 and 3 are independent from the
inputs and intermediate results. Therefore, if the protocol does not abort, se-
crecy is maintained. Yet, secrecy may be violated if the adversary can force
a repetition of the protocol after learning the output.26 If the protocol aborts
in Step 2 with (B, i), we have that B ⊆ D∗ and B ∪ Li = P . Since L = S
(Corollary 3), this implies Si ⊆ B ⊆ D∗. Then, it follows from the second part
of the condition in the lemma that

∃Sj ∈ S, j > i : Sj ∩ E∗ = ∅ ∨ Si 6∈ R.
If ∃Sj ∈ S, j > i : Sj ∩ E∗ = ∅, the adversary did not obtain any information
about y (Corollary 3), and the protocol can be repeated without violating se-
crecy. Otherwise, if Si 6∈ R, then B 6∈ R and the protocol is aborted, i.e. the
adversary learned at most one output value.

The proof of FAIRNESS is along the lines of the proof of secrecy, and is
therefore omitted.

Given Lemma 41, we can derive a tight bound for non-reactive MPC with
general adversaries:

Theorem 5. In the secure channels model with broadcast and general adversaries,
computationally secure non-reactive MPC among n ≥ 2 parties with respect to
(Zc,Zs,Zr,Zf ), where Zr ⊆ Zc and Zf ⊆ Zs ⊆ Zc, is possible if

∃ordering of Zs :(
∀(·, Es

i ) ∈ Zs :
(
∀(Dr, ·) ∈ Zr : Dr ∪ Es

i 6= P
)

∨(
∀(Ds

k, ·) ∈ Zs, k ≤ i : Ds
k ∪ Es

i 6= P
)

∧ ∀(Df
k , ·) ∈ Zf , (·, Es

i ) ∈ Zs, k ≤ i : Df
k ∪ E

s
i 6= P

)
∨ Zs = {(∅, ∅)}

This bound is tight: If violated, there are (non-reactive) functionalities that cannot be
securely computed.

Proof. To prove sufficiency, we first note that if Zs = {(∅, ∅)}, there is no se-
crecy requirement, and we can directly use the trivial non-secret protocol de-
scribed in Section 4.1.2. Otherwise, we use the protocol described in Fig-
ure 6.5 with R = {R | (R,R) ∈ Zr}, and S = (Es

i | (∅, Es
i ) ∈ Zs) (main-

taining the order of Zs). It follows from the condition in the theorem that
∀(∅, Es

i ) ∈ Zs : Es
i 6= P , and hence ∅ 6∈ S.

26In that case, the adversary may learn two evaluations of f for different inputs.



110 Protocols with Computational Security

CORRECTNESS and AGREEMENT ON ABORT are always guaranteed, and RO-
BUSTNESS follows directly from the choice of R.

SECRECY: Given is that (D∗, E∗) ∈ Zs. It follows immediately from the choice
of S that ∃Si ∈ S : Si ∩ E∗ = ∅. Furthermore, let i be an arbitrary index in Zs.

Case (1): ∀(Dr, ·) ∈ Zr : Dr∪Es
i 6= P . Given the choice of S, we then have

∀(Dr, ·) ∈ Zr : Si 6⊆ Dr, and given the choice of R, we have Si 6∈ R.

Case (2): ∀(Ds
k, ·) ∈ Zs, k ≤ i : Ds

k ∪ Es
i 6= P . Since Zs is monotone, there

is an index j such that (D∗, E∗) = (Df
j , Ef

j ). We distinguish whether j ≤ i or
j > i: If j ≤ i, then it follows from the assumption that P \Es

i 6⊆ D∗, i.e., given
the choice of S, that Si 6⊆ D∗. If j > i, then given the choice of S we have that
∃Sj ∈ S, j > i : Sj ∩ E∗ = ∅.

FAIRNESS: The ordering of Zs implies an ordering of Zf . Hence, this proof is
along the lines of the proof of secrecy, and is therefore omitted.

Now, we prove that the bound in the theorem is also necessary, i.e. if violated,
(non-reactive) MPC is impossible. The proof is inspired by [HMZ08]. The
bound in the theorem is violated if

∀orderings of Zs :(
∃(·, Es

i ) ∈ Zs :
(
∃(Dr, ·) ∈ Zr : Dr ∪ Es

i = P
)

∧(
∃(Ds

k, ·) ∈ Zs : k ≤ i ∧ Ds
k ∪ Es

i = P
)

(1)

∨ ∃(Df
k , ·) ∈ Zf , (·, Es

i ) ∈ Zs : k ≤ i ∧ Df
k ∪ E

s
i = P

)
(2)

∧ Zs 6= {(∅, ∅)}

Case (1). We first consider the case where Zs 6= {(∅, ∅)} and
∀orderings of Zs,∃(·, Es

i ) ∈ Zs :(
∃(Dr, ·) ∈ Zr : Dr ∪ Es

i = P
)

∧
(
∃(Ds

k, ·) ∈ Zs : k ≤ i ∧ Ds
k ∪ Es

i = P
)
.

We can assume that Dr ⊆ Ds
k (due to monotonicity), and that all three sets

are non-empty: If Ds
k = ∅ or Dr = ∅, we have Es

i = P , and if Es
i = ∅, we have

Ds
k = Es

k = P . In both cases, MPC is impossible as stated in Section 6.2.2.1.
Assume there is a protocol for such non-emptyDr, Ds

k and Es
i . Every protocol

defines an ordering in which the sets Es (for (·, Es) ∈ Zs) learn the result.27

The assumption states that for every ordering of Zs, there are indices k ≤ i
such that Ds

k ∪ Es
i = P and Dr ∪ Es

i = P . Assume that the parties in Es
k learn

27I.e., when the parties in Es jointly hold enough information to be able to efficiently recon-
struct the result.



6.3 Non-Reactive Multi-Party Computation 111

the result in round `. Now, the adversary corrupts (D∗, E∗) = (Ds
k, Es

k), and
has the parties in Dr ⊆ Ds

k stop sending any messages in and after round `.
The remaining parties are covered by Es

i . Hence, after round `−1 they do not
yet hold enough information to efficiently reconstruct the result (i.e., the state
of the computation is lost). Yet, the adversary does learn the result. Since
robustness (and correctness) must be guaranteed against Dr, the protocol ex-
ecution has to be repeated. However, it cannot be guaranteed that the parties
in Dr provide the same input (e.g., their inputs might be replaced with de-
fault values). In that case, the adversary learns the results for two evaluations
of the function, which constitutes a violation of secrecy.

As an example, consider the following (generalized OT-) functionality:
Each party pi inputs three bits: a

(i)
0 , a

(i)
1 , and b(i) (with default input a

(i)
0 =

a
(i)
1 = b(i) = 0). Let d = b(1) ⊕ . . . ⊕ b(n). The output is y = (a(1)

d , . . . , a
(n)
d ).

The adversary lets one actively corrupted party input b = 1, and all others
b = 0. Then, with the attack described above, the adversary learns both y0 =
(a(1)

0 , . . . , a
(n)
0 ) and y1 = (a(1)

1 , . . . , a
(n)
1 ), which clearly is a violation of secrecy.

Case (2). Now we consider the case that Zs 6= {(∅, ∅)} and

∀orderings of Zs,∃(Df
k , ·) ∈ Zf , (·, Es

i ) ∈ Zs : k ≤ i ∧ Df
k ∪ Es

i = P.

We can assume that the sets Df
k and Es

i are non-empty: If Df
k = ∅, we have

Es
i = P , and if Es

i = P , we have Df
k = P , i.e., Es = P for some Es. In

both cases, MPC is impossible as stated in Section 6.2.2.1. Assume there is a
protocol for such non-empty Df

k and Es
i . Every protocol defines an ordering

in which the sets Es (for (·, Es) ∈ Zs) learn the result.28 The assumption states
that for every ordering of Zs (which is also an ordering for Zf ⊆ Zs), there
are indices k ≤ i such that Df

k ∪ Es
i = P . Assume that the parties in Ef

k learn
the result in round `. Now, the adversary corrupts (D∗, E∗) = (Df

k , Ef
k ), and

has the parties in Df
k stop sending any messages in and after round `. The

remaining parties are covered by Es
i . Hence, after round ` − 1 they do not

yet hold enough information to efficiently reconstruct the result, while the
adversary does learn the result. This constitutes a violation of fairness.

6.3.2 Non-Reactive MPC for Threshold Adversaries

In the setting with threshold adversaries, we use the gradual VSS scheme
described in Section 6.1.3 with degree d = n − 1. In fact, we only require

28I.e., when the parties in Es jointly hold enough information to be able to efficiently recon-
struct the result.



112 Protocols with Computational Security

the reconstruction protocol RECn−1
C and the (probabilistic) function STATEn−1

C
that, given a value y, samples shares of y according to VSSn−1

C . Furthermore,
the protocol receives a robustness parameter e stating the number of actively
corrupted parties that the protocol can eliminate (and then repeat the run)
without violating security. A set of parties is eliminated by removing the
parties from P and reducing n and e accordingly.

Protocol for non-reactive MPC: Given is a function f .
1. Employ GMW to first compute y = f(x1, . . . , xn), where xi is the input

from party pi, then evaluate STATEn−1
C on y, and finally output to each

party its corresponding share, resulting in [y]. If GMW aborts with a set
B of active cheaters, repeat withP = P\B, n = n−|B|, and e = e−|B|.

2. Invoke RECn−1
C on [y]. On abort with a set B of active cheaters: If

|B| ≤ e, then repeat the whole protocol with P = P \ B, n = n − |B|,
and e = e− |B|. Otherwise, halt the execution.

3. Output y.

Figure 6.6: The computationally secure protocol for non-reactive
MPC for threshold adversaries.

Lemma 42. Given a function f and a robustness parameter e, the protocol for non-
reactive MPC computes f in presence of an adversary corrupting (|D∗|, |E∗|). The
protocol always guarantees correctness and agreement on abort. Furthermore, it is
robust if |D∗| ≤ e, secret if |D∗| + |E∗| < n or |E∗| < n − e, and fair if
|D∗|+ |E∗| < n.

Proof. CORRECTNESS follows trivially by inspection.
ROBUSTNESS: Since |D∗| ≤ e and B ⊆ D∗, the protocol is repeated (with
P = P \ B) until it succeeds. Since B is non-empty, the protocol is repeated
at most n times.
SECRECY: Since |D∗| + |E∗| < n or |E∗| < n − e, we have in particu-
lar that |E∗| ≤ n − 1. Hence, both GMW and the output [y] (Corollary 4) are
secret, and the adversary obtains no information about the inputs, outputs,
or intermediate results in Step 1. Given the output, Steps 2 and 3 are inde-
pendent from the inputs and intermediate results. Therefore, if the protocol
does not abort, secrecy is maintained. Yet, secrecy may be violated if the
adversary can force a repetition of the protocol after learning the output.29

29In that case, the adversary may learn two evaluations of f for different inputs.



6.3 Non-Reactive Multi-Party Computation 113

If the protocol aborts in Step 2 with (B, t), we have that |B| + t + 1 ≥ n.
On the one hand, if |D∗| + |E∗| < n, then since B ⊆ D∗ we directly have
t + 1 ≥ n − |B| ≥ n − |D∗| > |E∗|, i.e., |E∗| ≤ t and secrecy is maintained.
On the other hand, if |E∗| < n − e, then we make a further distinction: If
|E∗| ≤ t, then again secrecy is maintained. Otherwise, if |E∗| ≥ t + 1, we ob-
tain |B| ≥ n− (t+1) ≥ n−|E∗| > e and the protocol aborts, i.e. the adversary
learns at most one output value.

The proof of FAIRNESS is along the lines of the proof of secrecy, and is
therefore omitted. Finally, since the abort decision is based only on broad-
casted values, we always have AGREEMENT ON ABORT (cf. Section 2.3.2).

Given Lemma 42, we can derive a tight bound for non-reactive MPC with
threshold adversaries:

Theorem 6. In the secure channels model with broadcast and multi-threshold adver-
saries, computationally secure non-reactive MPC among n ≥ 2 parties with thresh-
olds T c, T s, T r, and T f , where T f ≤ T s ≤ T c and T r ≤ T c, is possible if((

∀(tsa, tsp) ≤ T s, (tra, ·) ≤ T r : tra + tsp < n ∨ tsa + tsp < n
)

∧
(
∀(tfa , tfp) ≤ T f : tfa + tfp < n

))
∨ T s = {(0, 0)}

This bound is tight: If violated, there are (non-reactive) functionalities that cannot be
securely computed.

Proof. To prove sufficiency, we first note that if T s = {(0, 0)}, there is no se-
crecy requirement, and we can directly use the trivial non-secret protocol de-
scribed in Section 4.1.2. Otherwise, we use the protocol described in Fig-
ure 6.6 with e = t̂ra, where t̂ra is the maximal tra value in T r.

CORRECTNESS and AGREEMENT ON ABORT are always guaranteed, and RO-
BUSTNESS follows directly from the choice of e.

SECRECY: Since (|D∗|, |E∗|) ≤ T s, we immediately have that
|D∗|+ |E∗| < n ∨ ∀(tra, ·) ≤ T r : tra + |E∗| < n.

Then, it follows from the choice of e that |D∗|+ |E∗| < n ∨ e + |E∗| < n.

FAIRNESS: Since (|D∗|, |E∗|) ≤ T f and ∀(tfa , tfp) ≤ T f : tfa + tfp < n, we
immediately have |D∗|+ |E∗| < n.

The proof of necessity follows directly from the corresponding proof for gen-
eral adversaries.



114 Protocols with Computational Security

6.4 Reactive Multi-Party Computation

For our protocols for reactive MPC, we adapt an idea from [IKLP06] and mod-
ify the given functionality F as follows: For each output y, instead of the
value itself, it outputs a sharing of y that was computed according to some
VSS scheme. Then, to obtain the output, the parties reconstruct this sharing.

In contrast to [IKLP06], we use a gradual VSS scheme for the modification
of F . The gradual property allows to provide fairness beyond robustness. In
fact, we only require the (probabilistic) function STATE that, given a value y,
samples shares of y according to the gradual VSS scheme. We modify F such
that it invokes STATE on each output value y, and then outputs the shares of y

(instead of y itself). When we modifyF using VSSSC (Section 6.1.2), we denote
the resulting functionality by FS , and when using VSSd

C (Section 6.1.3) with
Fd.

To implement the (modified) functionality F , we use the MPC protocols
described in Section 6.2.2.2, i.e., GMWS for the setting with general adversaries
and GMWd for the threshold setting. These protocols receive as parameter a
(Zs,Zr)-secure VSS, and then provide correctness for any number of cor-
rupted parties, secrecy if (D∗, E∗) ∈ Zs, and robustness if (D∗, E∗) ∈ Zr.
Furthermore, if the protocol is aborted, then each party outputs the same
non-empty set B ⊆ D∗.

6.4.1 Reactive MPC for General Adversaries

In the setting with general adversaries, we use the gradual VSS scheme intro-
duced in Section 6.1.2 with a sharing specification S for the modification of
F , resulting in FS , and with a sharing specification S ′ within GMW, resulting
in GMWS

′
. That means, each output y is shared with an S-sharing, resulting in

[y]S .

Lemma 43. Given a functionality F , and sharing specifications S and S ′ with
∅ 6∈ S and with ∅ 6∈ S ′, the protocol for reactive MPC implements F in presence
of an adversary corrupting (D∗, E∗). The protocol always guarantees correctness
and agreement on abort. Furthermore, it is secret if ∃Si ∈ S ′ : Si ∩ E∗ = ∅, robust
if ∀Si ∈ S ′ : Si 6⊆ D∗ and ∀Si ∈ S : Si 6⊆ D∗, and fair if ∃Si ∈ S ′ : Si ∩ E∗ = ∅
and

∀Si ∈ S :
(
Si 6⊆ D∗ ∨ ∃Sj ∈ S, j > i : Sj ∩ E∗ = ∅

)
.



6.4 Reactive Multi-Party Computation 115

Protocol for reactive MPC: Given is a functionality F .

1. Invoke GMWS
′

implementing FS .

2. On each output [y]S , invoke RECSC . If it aborts, halt the execution.
Otherwise, output y.

Figure 6.7: The computationally secure protocol for reactive MPC
for general adversaries.

Proof. CORRECTNESS follows trivially by inspection, and SECRECY and RO-
BUSTNESS follow immediately from Corollary 3. Since the abort decision is
based only on broadcasted values, we always have AGREEMENT ON ABORT
(cf. Section 2.3.2).

FAIRNESS: Since ∃Si ∈ S ′ : Si ∩ E∗ = ∅, it follows from Corollary 3 that
the adversary obtains no information in Step 1. Furthermore, if the recon-
struction of an output value aborts with (B, i), the gradual property guaran-
tees that B ⊆ D∗ and B ∪ Li = P . Since L = S (Corollary 3), this implies
Si ⊆ D∗. Then, it follows from the second part of the condition in the lemma
that ∃Sj ∈ S, j > i : Sj ∩ E∗ = ∅. That means that the adversary did not
obtain any information about y and fairness is preserved.

Given Lemma 43, we can derive a tight bound for reactive MPC with general
adversaries:

Theorem 7. In the secure channels model with broadcast and general adver-
saries, computationally secure reactive MPC among n ≥ 2 parties with respect to
(Zc,Zs,Zr,Zf ), where Zr ⊆ Zc and Zf ⊆ Zs ⊆ Zc, is possible if(

∀(·, Es) ∈ Zs, (Dr, ·) ∈ Zr : Dr ∪ Es 6= P

∧ ∃an ordering of Zf ,∀(Df
k , ·), (·, Ef

i ) ∈ Zf , k ≤ i : Df
k ∪ E

f
i 6= P

)
∨ Zs = {(∅, ∅)}

This bound is tight: If violated, there are (reactive) functionalities that cannot be
securely computed.

Proof. To prove sufficiency, we first note that if Zs = {(∅, ∅)}, there is no
secrecy requirement, and we can directly use the trivial non-secret proto-
col described in Section 4.1.2. Otherwise, we use the protocol described



116 Protocols with Computational Security

in Figure 6.7 with S ′ := (Es | (·, Es) ∈ Zs) (with an arbitrary order), and

S :=
(
Ef

i | (·, Ef
i ) ∈ Zf

)
(maintaining the order of Zf ). It follows from the

condition in the theorem that ∀(∅, Es) ∈ Zs : Es 6= P , and hence ∅ 6∈ S ′. Since
Zf ⊆ Zs, we also have ∅ 6∈ S.

CORRECTNESS and AGREEMENT ON ABORT are always guaranteed, and SE-
CRECY follows immediately from the choice of S ′.

ROBUSTNESS: Since (D∗, E∗) ∈ Zr and ∀(·, Es) ∈ Zs, (Dr, ·) ∈ Zr :
Dr ∪ Es 6= P we have that ∀(·, Es) ∈ Zs : D∗ ∪ Es 6= P , i.e. ∀(·, Es) ∈ Zs :
P \ Es 6⊆ D∗. Then it follows from the choice of S ′ that ∀Si ∈ S ′ : Si 6⊆ D∗.
Since Zf ⊆ Zs, we immediately also have ∀Si ∈ S : Si 6⊆ D∗.

FAIRNESS: Given is that (D∗, E∗) ∈ Zf . Since Zf ⊆ Zs, we have that
∃Si ∈ S ′ : Si ∩ E∗ = ∅. Furthermore, since Zf is monotone, there is an
index j such that (D∗, E∗) = (Df

j , Ef
j ). Let i be an arbitrary index in Zf . If

j ≤ i, then it follows from the condition in the theorem that P \ Ef
i 6⊆ D∗, i.e.,

given the choice of S, that Si 6⊆ D∗. Otherwise, if j > i, then given the choice
of S we have that ∃Sj ∈ S, j > i : Sj ∩ E∗ = ∅.

Now, we prove that the bound in the theorem is also necessary, i.e. if vio-
lated, (reactive) MPC is impossible. The proof is inspired by [HMZ08]. The
bound in the theorem is violated if(

∃(·, Es) ∈ Zs, (Dr, ·) ∈ Zr : Dr ∪ Es = P (1)

∨ ∀orderings of Zf ,∃(Df
k , ·), (·, Ef

i ) ∈ Zf : k ≤ i ∧ Df
k ∪ E

f
i = P

)
(2)

∧ Zs 6= {(∅, ∅)}

Case (1). We first consider the case where Zs 6= {(∅, ∅)} and

∃(·, Es) ∈ Zs, (Dr, ·) ∈ Zr : Dr ∪ Es = P.

Since Zs 6= {(∅, ∅)}, we can assume that Es 6= ∅. Furthermore, if Dr = ∅,
we have Es = P , and MPC is impossible as stated in Section 6.2.2.1. Assume
there is a protocol for such non-empty Es and Dr. Then, the adversary cor-
rupts (D∗, E∗) = (Dr, Er) and has the parties in Dr stop sending messages.
Since the remaining parties are covered by Es, the state is lost and the com-
putation cannot be continued. Hence, robustness is violated.30

30Note that the proof in [IKLP06] considers only the threshold case, and only the special case
where tra ≤ tsp.



6.4 Reactive Multi-Party Computation 117

Case (2). Now, we consider the case that Zs 6= {(∅, ∅)} and

(∀orderings of Zf ,∃(Df
k , ·), (·, Ef

i ) ∈ Zf : k ≤ i ∧ Df
k ∪ E

f
i = P).

We can assume that the sets Df
k and Ef

i are non-empty: If either Df
k = ∅ or

Ef
i = ∅, we have Ef

i = P or Df
k = P , respectively. In both cases, we have

Es = P for some Es, and MPC is impossible as stated in Section 6.2.2.1.
Assume there is a protocol for such non-empty Df

k and Ef
i . Every proto-

col defines an ordering in which the sets Ef (for (·, Ef ) ∈ Zf ) learn the re-
sult.31 The assumption states that for every ordering of Zf , there are indices
k ≤ i such that Df

k ∪ E
f
i = P . Assume that the parties in Ef

k learn the result
in round `. Now, the adversary corrupts (D∗, E∗) = (Df

k , Ef
k ), and has the

parties in Df
k stop sending any messages in and after round `. The remain-

ing parties are covered by Ef
i . Hence, after round ` − 1 they do not yet hold

enough information to efficiently reconstruct the result, while the adversary
does learn the result. This constitutes a violation of fairness.

6.4.2 Reactive MPC for Threshold Adversaries

In the setting with threshold adversaries, we use the gradual VSS scheme
described in Section 6.1.3 with the same sharing degree d for both the modi-
fication of F , resulting in Fd, and within GMW, resulting in GMWd.

Protocol for reactive MPC: Given is a functionality F .
1. Invoke GMWd implementing Fd.

2. On each output [y], invoke RECd
C. If it aborts, halt the execution. Oth-

erwise, output y.

Figure 6.8: The computationally secure protocol for reactive MPC
for threshold adversaries.

Lemma 44. Given a functionalityF and a parameter d < n, the protocol for reactive
MPC implementsF in presence of an adversary corrupting (|D∗|, |E∗|). The protocol
always guarantees correctness and agreement on abort. Furthermore, it is secret if
|E∗| ≤ d, robust if |D∗| < n− d, and fair if |E∗| ≤ d ∧ |D∗|+ |E∗| < n.

31I.e., when the parties in Ef jointly hold enough information to be able to efficiently recon-
struct the result.



118 Protocols with Computational Security

Proof. CORRECTNESS follows trivially by inspection, and SECRECY and RO-
BUSTNESS follow immediately from Corollary 4. Since the abort decision is
based only on broadcasted values, we always have AGREEMENT ON ABORT
(cf. Section 2.3.2).

FAIRNESS: Since |E∗| ≤ d, it follows from Corollary 4 that the adversary ob-
tains no information in Step 1. Furthermore, if the reconstruction of an output
value aborts with (B, t), the gradual property guarantees that |B|+ t + 1 ≥ n
and B ⊆ D∗. Since |D∗|+ |E∗| < n, we then have t + 1 ≥ n− |B| ≥ n− |D∗| >
|E∗|, i.e. |E∗| ≤ t. Hence, the adversary did not obtain any information about
y and fairness is preserved.

Given Lemma 44, we can derive a tight bound for reactive MPC with thresh-
old adversaries:

Theorem 8. In the secure channels model with broadcast and multi-threshold adver-
saries, computationally secure reactive MPC among n ≥ 2 parties with thresholds
T c, T s, T r, and T f , where T f ≤ T s ≤ T c and T r ≤ T c, is possible if(

∀(tra, ·) ≤ T r, (·, tsp) ≤ T s : tra + tsp < n ∧ ∀(tfa , tfp) ≤ T f : tfa + tfp < n
)

∨ T s = {(0, 0)}

This bound is tight: If violated, there are (reactive) functionalities that cannot be
securely computed.

Proof. To prove sufficiency, we first note that if T s = {(0, 0)}, there is no se-
crecy requirement, and we can directly use the trivial non-secret protocol de-
scribed in Section 4.1.2. Otherwise, we use the protocol described in Fig-
ure 6.8 with d = t̂sp, where t̂sp is the maximal tsp value in T s. It follows from
the condition in the theorem that ∀(·, tsp) ≤ T s : tsp < n, and hence d < n.

CORRECTNESS and AGREEMENT ON ABORT are always guaranteed, and SE-
CRECY follows immediately from the choice of d.

ROBUSTNESS: Since (|D∗|, |E∗|) ≤ T r and ∀(tra, ·) ≤ T r, (·, tsp) ≤ T s :
tra + tsp < n, we have that ∀(·, tsp) ≤ T s : |D∗| + tsp < n. Then, it follows
from the choice of d that |D∗|+ d < n.

FAIRNESS: Given is that (|D∗|, |E∗|) ≤ T f . Since T f ≤ T s, we have that
|E∗| ≤ d. Furthermore, since ∀(tfa , tfp) ≤ T f : tfa + tfp < n, we immediately
have |D∗|+ |E∗| < n.

The proof of necessity follows directly from the corresponding proof for gen-
eral adversaries.



6.5 Summary 119

6.5 Summary

We have provided computationally secure MPC protocols with graceful
degradation of both security and corruptions, together with tight bounds,
for both general and threshold adversaries, as well as for both non-reactive
and reactive MPC. Our protocols strictly generalize and extend known results
from the literature. In particular, we improved over the work in [IKLP06] that
combines optimal results from the active and the passive world. Our proto-
cols distinguish not only whether or not active cheating occurs, but provide a
dynamic tradeoff between active and passive corruptions. Hence, we achieve
“the best of both worlds – and everything in between” with a single protocol.

To illustrate the gain in security guarantees, consider a setting with n = 10
parties. The protocol of [IKLP06] achieves full security for either 9 passively
and no actively corrupted parties (i.e., against (0, 9)), or against 4 actively
(and no additional passively) corrupted parties (i.e., against (4, 4)). Our pro-
tocol additionally guarantees full security against all of (4, 5), (3, 6), (2, 7),
and (1, 8).

Furthermore, we introduced the notion of gradual verifiable secret sharing.
This notion requires that, during reconstruction, secrecy is given up gradu-
ally, one subset at a time, while immediately establishing robustness against
the corresponding complement set. As a consequence, intuitively speaking,
the adversary might still abort the protocol, but does not automatically learn
the secret. This technique turned out to be very useful in the setting of both
non-reactive and reactive MPC to provide more flexible and therefore more
practical protocols.



120 Protocols with Computational Security



Chapter 7

Conclusions

We have provided the first MPC protocols with graceful degradation in mul-
tiple dimensions, namely graceful degradation of security, as well as graceful
degradation with respect to the corruption type. This covers all common se-
curity notions for MPC (correctness, secrecy, robustness, fairness, and agree-
ment on abort), as well as the most prominent corruption types (honest, pas-
sive, active). Furthermore, we consider both the model with general and the
model with threshold adversaries, for all three security levels (perfect, statis-
tical, and computational). The protocols are strict generalizations (and com-
binations) of hybrid-secure MPC and mixed adversaries. We derived tight
bounds for the existence of secure MPC protocols for the given settings, and
have shown that our protocols achieve these bounds.

For each security level (perfect, statistical, or computational), our proto-
cols provide fundamental insights in the field of MPC. In the perfect setting,
we have shown that there is a trade-off between the different security proper-
ties (correctness, secrecy, robustness, and fairness). Our bounds quantify this
trade-off, and point out how much resilience one has to give up on one prop-
erty, to achieve higher resilience for another property (the same observation
also holds for the statistical and the computational settings). Our results in
the statistical setting prove that, in a setting with mixed adversaries, passively
corrupted parties do not only have the evident impact on secrecy, but in par-
ticular also on correctness. This is in contrast to both the perfect and the com-
putational settings. In the computational setting, we find a dynamic trade-off
between active and passive corruptions in the threshold setting: Our proto-
cols are secure against several incomparable adversaries simultaneously. In



122 Conclusions

other words, the protocol does not depend on an assumption how many par-
ties the adversary corrupts actively and passively during the protocol execu-
tion, as long as the sum of the total number of corruptions plus the number
of active corruptions is less than the total number of parties.

To obtain a high degree of flexibility in our protocols, we parametrize the
constructions. This use of parameters also highlights how the different se-
curity properties are achieved on a technical level, which allows for a better
understanding of why the protocols are the way they are.

Solutions for the setting with general adversaries encompass all possible
adversary structures. Yet, these protocols are usually superpolynomial in the
number of parties. Therefore, protocols for the setting with threshold ad-
versaries are of more practical relevance. In this work, we provide the first
protocols allowing for multi-thresholds, a setting that is strictly more flexible
than single-thresholds. This constitutes a substantial step towards general
adversaries without losing efficiency in the number of parties.

Moreover, the use of multi-thresholds allows to unify two incomparable
models for combining active and passive corruption. In the first model, used
for example by [IKLP06], the adversary can corrupt parties either passively
or actively, but not both at the same time. Then, for each of the two corrup-
tion options, a maximally tolerable adversary is considered. In the second
model, used for example by [FHM98], the adversary can corrupt some par-
ties actively, and additionally some parties passively, at the same time. Yet,
their model only allows to consider a single maximally tolerable adversary.
By using multi-thresholds, we can provide a single protocol that subsumes
results for both models simultaneously.

We leave as open problems to consider additional security properties and
corruption types (e.g. fail-corruption), as well as to combine additional di-
mensions of graceful degradation (like, e.g., efficiency) with graceful degra-
dation of security and corruption types. Furthermore, for the perfect and
the statistical setting, we focus on reactive MPC. The bounds for non-reactive
MPC might be slightly weaker.

Also, in all our protocols, we assume that parties generate their random-
ness on the fly (“instant randomness”), which allows even passively cor-
rupted parties to e.g. choose random challenges that are unpredictable to the
adversary. It seems clear that, in the perfect setting, a fixed random tape does
not affect the security of the protocols. We leave as an open problem to find
tight bounds without this assumption for both the statistical and the compu-
tational setting.



Bibliography

[Bea89] Donald Beaver. Multiparty protocols tolerating half faulty pro-
cessors. In CRYPTO ’89, pages 560–572. Springer, 1989.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit ran-
domization. In CRYPTO ’91, pages 420–432. Springer, 1991.

[BFH+08] Zuzana Beerliova-Trubiniova, Matthias Fitzi, Martin Hirt, Ueli
Maurer, and Vassilis Zikas. MPC vs. SFE: Perfect security in a
unified corruption model. In TCC 2008, pages 231–250. Springer,
2008.

[BGP89] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards op-
timal distributed consensus (extended abstract). In FOCS ’89,
pages 410–415. IEEE, 1989.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Com-
pleteness theorems for non-cryptographic fault-tolerant dis-
tributed computation. In STOC ’88, pages 1–10. ACM, 1988.

[BH06] Zuzana Beerliova-Trubiniova and Martin Hirt. Efficient multi-
party computation with dispute control. In TCC 2006, pages 305–
328. Springer, 2006.

[Blu83] Manuel Blum. How to exchange (secret) keys (extended ab-
stract). In STOC ’83, pages 440–447. ACM, 1983.

[BP04] Mihir Bellare and Adriana Palacio. Towards plaintext-aware
public-key encryption without random oracles. In ASIA-
CRYPT 2004, pages 48–62. Springer, 2004.



124 Bibliography

[BPW04] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A
general composition theorem for secure reactive systems. In
TCC 2004, pages 336–354. Springer, 2004.

[BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryp-
tion. In EUROCRYPT ’94, pages 92–111. Springer, 1994.

[Can00] Ran Canetti. Security and composition of multiparty crypto-
graphic protocols. J. Cryptology, 13(1):143–202, 2000.

[Can01] Ran Canetti. Universally composable security: a new paradigm
for cryptographic protocols. In FOCS ’01, pages 136–145. IEEE,
2001.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty
unconditionally secure protocols. In STOC ’88, pages 11–19.
ACM, 1988.

[CDD+99] Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Martin
Hirt, and Tal Rabin. Efficient multiparty computations secure
against an adaptive adversary. In EUROCRYPT ’99, pages 311–
326. Springer, 1999.

[CDG88] David Chaum, Ivan Damgård, and Jeroen van de Graaf. Multi-
party computations ensuring privacy of each party’s input and
correctness of the result. In CRYPTO ’87, pages 87–119. Springer,
1988.

[Cha89] David Chaum. The spymasters double-agent problem: Multi-
party computations secure unconditionally from minorities and
cryptographically from majorities. In CRYPTO ’89, pages 591–
602. Springer, 1989.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai.
Universally composable two-party and multi-party secure com-
putation. In STOC ’02, pages 494–503. ACM, 2002.

[CW89] Brian A. Coan and Jennifer L. Welch. Modular construction of
nearly optimal Byzantine agreement protocols. In PODC ’89,
pages 295–305. ACM, 1989.

[DDWY93] Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. Per-
fectly secure message transmission. Journal of the ACM, 40(1):17–
47, 1993.



Bibliography 125

[Den06] Alexander W. Dent. The cramer-shoup encryption scheme is
plaintext aware in the standard model. In EUROCRYPT 2006,
pages 289–307. Springer, 2006.

[DS82] Danny Dolev and H. Raymond Strong. Polynomial algorithms
for multiple processor agreement. In STOC ’82, pages 401–407.
ACM, 1982.

[FHHW03] Matthias Fitzi, Martin Hirt, Thomas Holenstein, and Jürg
Wullschleger. Two-threshold broadcast and detectable multi-
party computation. In EUROCRYPT 2003, pages 51–67. Springer,
2003.

[FHM98] Matthias Fitzi, Martin Hirt, and Ueli Maurer. Trading correctness
for privacy in unconditional multi-party computation (extended
abstract). In CRYPTO ’98, pages 121–136. Springer, 1998.

[FHM99] Matthias Fitzi, Martin Hirt, and Ueli Maurer. General adversaries
in unconditional multi-party computation. In ASIACRYPT ’99,
pages 232–246. Springer, 1999.

[FHW04] Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger. Multi-
party computation with hybrid security. In EUROCRYPT 2004,
pages 419–438. Springer, 2004.

[FM98] Matthias Fitzi and Ueli Maurer. Efficient Byzantine agreement
secure against general adversaries. In DISC ’98, pages 134–148.
Springer, 1998.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play
any mental game or a completeness theorem for protocols with
honest majority. In STOC ’87, pages 218–229. ACM, 1987.

[Gol04] Oded Goldreich. Foundations of Cryptography, volume Basic Ap-
plications. Cambridge University Press, 2004.

[GRR98] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified
VSS and fast-track multiparty computations with applications
to threshold cryptography. In PODC ’98, pages 101–111. ACM,
1998.

[HLMR11] Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub.
Graceful degradation in multi-party computation. In ICITS 2011,
pages 163–180. Springer, 2011.



126 Bibliography

[HLMR12] Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub.
Passive corruption in statistical multi-party computation. In IC-
ITS 2012. Springer, 2012.

[HM97] Martin Hirt and Ueli Maurer. Complete characterization of
adversaries tolerable in secure multi-party computation. In
PODC ’97, pages 25–34. ACM, 1997.

[HMZ08] Martin Hirt, Ueli Maurer, and Vassilis Zikas. MPC vs. SFE: Un-
conditional and computational security. In ASIACRYPT 2008,
pages 1–18. Springer, 2008.

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank.
On combining privacy with guaranteed output delivery in se-
cure multiparty computation. In CRYPTO 2006, pages 483–500.
Springer, 2006.

[Kat07] Jonathan Katz. On achieving the ”best of both worlds” in secure
multiparty computation. In STOC ’07, pages 11–20. ACM, 2007.

[Kil00] Joe Kilian. More general completeness theorems for secure two-
party computation. In STOC ’00, pages 316–324. ACM, 2000.

[KLR06] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-
theoretically secure protocols and security under composition. In
STOC ’06, pages 109–118. ACM, 2006.

[Lam83] Leslie Lamport. The weak Byzantine generals problem. Journal
of the ACM, 30(3):668–676, 1983.

[LRM10] Christoph Lucas, Dominik Raub, and Ueli Maurer. Hybrid-
secure MPC: Trading information-theoretic robustness for com-
putational privacy. In PODC ’10, pages 219–228. ACM, 2010.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The
Byzantine generals problem. ACM Transactions on Programming
Languages and Systems, 4(3):382–401, 1982.

[Mau02] Ueli Maurer. Secure multi-party computation made simple. In
SCN ’02, pages 14–28. Springer, 2002.

[Ped91] Torben P. Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In CRYPTO ’91, pages 129–140.
Springer, 1991.



Bibliography 127

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and mul-
tiparty protocols with honest majority. In STOC ’89, pages 73–85.
ACM, 1989.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[Yao82] Andrew C. Yao. Protocols for secure computations (extended ab-
stract). In FOCS ’82, pages 160–164. IEEE, 1982.


