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Abstract

Online computation is both of theoretical interest and practical relevance as numerous
computational problems require a model in which algorithms do not know the whole input
at every time step during runtime. The established measurement for the output quality
of these online algorithms is the so-called competitive analysis, introduced by Sleator and
Tarjan in 1985. Similar to the decrease in accuracy we have to accept when efficiently
(i. e., in polynomial time) solving NP-hard problems, the competitive ratio describes what
we have to pay for not knowing the future.

In this thesis, we want to measure how much additional information is both necessary
and sufficient to escape from this dilemma, i. e., we want to understand what causes this,
for the majority of problems, vast amount of precision we lose due to facing an online
scenario. More specifically, we want to study the advice complexity of online problems,
which describes the amount of information online algorithms lack, causing them to fail
(compared to hypothetical offline algorithms that know all yet unrevealed parts of the
input from the start). In the model used throughout this thesis, we equip online algorithms
with an additional advice tape onto which an oracle, which sees the whole input before
the algorithm is executed, may write binary information. The algorithm can then use
these advice bits during computation. We call the minimum number of advice bits needed
to compute an optimal solution for some online problem the information content of this
problem. This information is what needs to be extracted from the instance in order to
overcome the drawback of not completely knowing it in advance. We know that there exist
well-studied online problems for which any solution computed by a deterministic online
algorithm is (asymptotically) half as good as the optimal solution, because it does not
know future input parts. However, a single bit of advice suffices to perform optimally. For
many other problems, measuring the information content proves to be a more complicated
task. Moreover, generalizing this idea, we study the tradeoff between obtaining high-
quality results (i. e., creating online algorithms with a reasonable competitive ratio) and
the number of advice bits both necessary and sufficient for this.

We study five online problems within the framework described above, the job shop
scheduling problem with two jobs and unit-length tasks, the disjoint path allocation prob-
lem, the k-server problem, the set cover problem, and the knapsack problem. It turns out
that online problems may behave very differently in terms of advice complexity. There are,
for instance, problems that achieve very good results with a constant number of advice
bits and other ones that, if given less advice than linear in the input size, are doomed
to fail. Specifically, we ask how many advice bits are necessary and sufficient to (i) be
optimal, (ii) to improve over purely deterministic strategies, or (iii) to be on par with
(or better than) randomized strategies.

Since we may look at computing with advice as supplying the best possible random
string for any input, we are particularly interested in the last point and the further rela-
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tion between advice and randomization. Obviously, lower bounds on the advice complexity
carry over to randomization and upper bounds on randomization carry over to computing
with advice. For some particular problems, we further show how to construct barely ran-
dom algorithms (i. e., randomized algorithms that only use a constant number of random
bits) from algorithms with advice. Also, we introduce an online problem for which we
study the combination of advice and randomization, showing how every additional advice
bit significantly improves the output quality.
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Zusammenfassung

Online-Berechnungen sind sowohl von theoretischem Interesse als auch von grossem Nutzen
für die Praxis, da viele Berechnungsprobleme eine Analyse erfordern, bei der die gesamte
Eingabe dem entsprechenden Algorithmus zur Laufzeit nicht bekannt ist. Um die Güte von
diesen Online-Algorithmen zu messen, wird meist die so genannte Competitive Analysis
verwendet. So wie die Approximationsgüte von Algorithmen für NP-schwere Probleme
angibt, was wir zahlen, um ein Problem effizient (in polynomieller Laufzeit) zu lösen, zeigt
die Competitive Ratio auf, welchen Preis wir dafür zahlen, die Zukunft nicht zu kennen.

In dieser Arbeit beschäftigen wir uns mit der Frage, was genau dieses Dilemma verur-
sacht, was also der Grund dafür ist, dass wir für eine grosse Anzahl der bekannten Probleme
in Kauf nehmen müssen, in Online-Szenarien Ergebnisse sehr schwacher Qualität zu er-
halten. Zu diesem Zweck untersuchen wir die Advice-Komplexität von Online-Problemen,
das heisst die Menge an Informationen, die Online-Algorithmen (verglichen mit hypo-
thetischen Offline-Algorithmen, die die gesamte Eingabe von Anfang an kennen) für die
entsprechenden Probleme fehlt, um bessere Ergebnisse zu erzielen. In dem Modell, das wir
hier betrachten, verfügen die Online-Algorithmen über ein Advice-Band, auf welchem ein
Orakel, dem die gesamte Eingabe bekannt ist, binäre Informationen über diese schreiben
kann. Diese Advice-Bits können dann vom jeweiligen Algorithmus während der Laufzeit
benutzt werden. Die Anzahl dieser Bits, die notwendig sind, um ein optimales Ergebnis zu
berechnen, nennen wir den Informationsgehalt des entsprechenden Problems, denn eben
genau diese Information über die jeweilige Eingabe muss bekannt sein, um den Nachteil zu
überwinden, mit dem Online-Algorithmen konfrontiert werden, weil sie nicht die gesamte
Eingabe kennen. Wir kennen Online-Probleme, für die deterministische Algorithmen Lö-
sungen berechnen, die (asymptotisch) doppelt so schlecht sind wie die optimale Lösung.
Allerdings reicht bereits ein einziges Bit an Information, um ein optimales Ergebnis zu
erzielen. Für viele andere Probleme ist die Analyse jedoch weitaus komplizierter. Ferner
interessiert uns eine Verallgemeinerung obiger Frage, nämlich, wie sich der Tradeoff zwi-
schen der sowohl benötigten als auch hinreichenden Anzahl an Advice-Bits und einer zu
erreichenden Competitive Ratio verhält.

Wir untersuchen hier fünf Online-Probleme in diesem Modell, das Job-Shop-Scheduling-
Problem mit zwei Jobs und Aufgaben mit Einheitslänge, das Disjoint-Path-Allocation-
Problem, das k-Server -Problem, das Set-Cover-Problem und das Rucksack-Problem. Es
zeigt sich, dass sich diese Online-Probleme zum Teil völlig unterschiedlich verhalten. Bei-
spielsweise existieren Probleme, die mit einer konstanten Anzahl von Advice-Bits sehr
gute Resultate ermöglichen und solche, die weiterhin nur schlechte Ergebnisse zulassen,
solange der entsprechende Algorithmus weniger Bits erhält als eine in der Eingabelänge
lineare Anzahl. Im Wesentlichen interessiert uns, wie viele Advice-Bits nötig und ausrei-
chend sind, um (i) optimal zu sein, (ii) besser zu sein als deterministische Strategien
oder (iii) genau so gut (oder sogar besser) zu sein als randomisierte Algorithmen.
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Da wir den Advice als die jeweils beste zufällige Wahl für jede Eingabe betrachten
können, ist der letzte Punkt von besonderem Interesse. Es ist offensichtlich, dass unte-
re Schranken für die Advice-Komplexität sich auf randomisierte Verfahren übertragen
und umgekehrt, dass obere Schranken für letztere Strategien ebenfalls gültig für Algorith-
men mit Advice sind. Für einige konkrete Probleme zeigen wir ferner, wie aus Advice-
Algorithmen Barely-Random-Algorithmen (also randomisierte Algorithmen, die nur eine
konstante Anzahl von Zufallsbits verwenden) konstruiert werden können. Desweiteren stel-
len wir ein Problem vor, für das wir eine Kombination aus zufallsgesteuerter Berechnung
und Advice entwerfen, wobei jedes weitere Advice-Bit, das der Algorithmus erhält, die
Qualität der Ausgabe wesentlich verbessert.
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“I never think of the future, it comes soon enough.”

Albert Einstein
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Chapter 1

Introduction

Many computational problems work in so-called online environments as their formulation
and analysis demand a model in which an algorithm that deals with such a problem
only knows a part of its input at any specific point during runtime. Typical examples
include various tasks of operating systems or problems that arise in the area of routing
and scheduling. These problems are referred to as online problems and the respective
algorithms are called online algorithms (we formally define these terms in Section 1.3).
In such an online setting, an online algorithm, denoted by A, has a huge disadvantage
compared to offline algorithms, i. e., algorithms that know the whole input at the beginning
of their computation. A has to make decisions at any time step i without knowing what
parts of input will be provided at step i + 1 and afterwards. Since A has to produce a
part of the final output in every step, it cannot revoke decisions it has already made.
Furthermore, these decisions can only be made by merely taking input chunks from time
steps 1 to i into account and possibly by applying some randomization.

The output quality of such an online algorithm is usually studied by competitive analysis
[38, 76, 88, 93], introduced by Sleator and Tarjan in 1985 [144]. Informally speaking, here,
the performance of A is measured by comparing it to that of an optimal offline algorithm,
although the existence of the latter one is purely notional.

On the downside, we are not really satisfied with investigating how much worse we
perform when not knowing the future. We want to get a deeper understanding of what we
are actually missing, and thus the central question of this thesis is the following one:

What is the crucial information that an online algorithm really lacks?

As we will see in Section 1.6, there exist well-studied problems for which only one additional
bit of information is sufficient to enable the construction of an optimal online algorithm
[63, 64]. However, without this single bit, no online algorithm can perform better than
twice as bad as the optimal offline solution. It is immediate that this does not hold in
general, and thus we are interested in a formal framework that allows us to classify online
problems according to how much information about the yet unrevealed input parts is
needed for solving them either optimally or with a specific competitive ratio. Considering
the second point, we are particularly interested in the best competitive ratios that are
known to be achievable with deterministic or randomized strategies without any additional
information.

We want to study the amount of information needed for an online algorithm to be
optimal or to produce high-quality output by using the advice complexity, which was
proposed by Dobrev, Královič, and Pardubská in 2008 [63]. To put it informally, this
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2 Chapter 1. Introduction

model can be seen as a cooperation of a deterministic online algorithm A and an oracle O,
which may passively communicate with A.

In this thesis, the oracle O, which has unlimited computational power, sees the whole
input in advance and writes binary information onto an advice tape before A starts process-
ing the input. Then, A may access these advice bits from the tape in a sequential manner,
just as a randomized algorithm would use its random tape (we study the similarities and
differences of these two concepts in Chapter 7). The advice complexity of A on an input I
is now defined as the number of advice bits A reads while processing this input (a formal
definition is given in Section 1.6). We consider the advice complexity as a function of the
input size n by taking the maximum value over all inputs of length at most n.

Besides asking for the amount of advice that is necessary and sufficient to compute a
high-quality solution, we also deal with the question of whether some small advice might
help to achieve a competitive ratio that is significantly better than the one of the best
known deterministic or randomized strategy. A large part of this thesis is devoted to the
study of some well-known online problems in the framework of advice complexity and to
comparing the results to each other. As randomization is often used to build algorithms
that produce high-quality output in expectation, we are particularly interested in relating
these two concepts.

1.1 This Dissertation

This thesis is organized as follows: In the remaining part of this chapter, we quickly recall
some mathematical foundations as well as the basic notations and established knowledge
about online computation and, in particular, competitive analysis. Afterwards, we for-
mally introduce the model we want to use throughout this dissertation and survey its
history. The subsequent five chapters are devoted to five particular online problems,
which are each introduced right before we give our results regarding their advice com-
plexity. Chapter 2 deals with a well-known scheduling problem, the job shop scheduling
problem with two jobs and unit-length tasks. This is followed by an investigation on a
specific routing problem, the disjoint path allocation problem, in Chapter 3. Chapter 4 is
devoted to a very generic problem, the so-called k-server problem, followed by the online
set cover problem in Chapter 5. The last problem, examined in Chapter 6, is an online
version of the knapsack problem. In Chapter 7, we want to relate the advice complexity to
randomization. First, we observe some general connection between both concepts; next,
using some of the techniques we have used to design algorithms with small advice, we build
barely random algorithms. To combine both approaches, we then introduce the so-called
boxes problem for which we build online algorithms with advice that also use randomness.
We conclude by pointing out further directions to follow, related work, and open questions
in Chapter 8.

Most of the results that are presented in this thesis have already been published.
(i) The results on the job shop scheduling problem were published in [108, 109]. (ii) The
advice complexity of the disjoint path allocation problem was studied in [35]. (iii) The
investigations on the k-server problem were published in [34]. (iv) The set cover prob-
lem was examined in [106]. (v) The knapsack problem was studied in [32]. (vi) The
results about the boxes problem were published in [26]. Technical reports can be found
in [31, 33, 36, 107, 110]. Some of the results were obtained together with the co-authors



1.2. Mathematical Foundations 3

of the papers just mentioned; theorems and lemmata obtained by these or other authors
are stated without any proof while citing the corresponding publication.

1.2 Mathematical Foundations

In this section, we want to fix some notation and briefly comprise some of the mathematical
basics we need in the following. For further reading, we point the reader to the standard
literature; a very sophisticated overview on combinatorics and discrete mathematics as
we use it here and far beyond is given in [80], the concept of randomized computation is
found in [88, 128].

As usual, by N we denote the set of natural numbers including zero, i. e., N =
{0, 1, 2, . . .}. The set of integers is denoted by Z = {. . . ,−2,−1, 0, 1, 2, . . .}, rational
numbers are fractions (ratios) of integers, i. e., Q = {a/b | a, b ∈ Z, b 6= 0}. The set of
real numbers is denoted by R; elements from R \Q are called irrational, because they are
characterized by the fact that they are no ratios. When restricting ourselves to positive
elements, we denote this by, e. g., Q+ and R+. For any set A, we denote the power set of
A by P(A), formally P(A) := {B | B ⊆ A}. For every positive real number that is not
an integer x, by bxc we denote the integer part (the floor) of x, and, complementing, by
dxe := bxc+ 1 we denote the ceiling of x, i. e., the next larger natural number; if x is an
integer, however, bxc = dxe = x. For every natural number n, we have

n∑

k=1

k =
n(n+ 1)

2
,

which was rediscovered by Gauss at the end of the 18th century.
Throughout this thesis, by e we denote the Eulerian number1 defined as

e := lim
n→∞

(
1 +

1

n

)n
= 2.7182 . . . .

As is the case for π = 3.1415 . . ., e is irrational, and we come across it in many applications
and phenomena in nature [121]. Our major interest for this constant is motivated by the
following inequality.

For any natural number n, we use Stirling’s approximation2 to get both upper and
lower bounds on the factorial of n, i. e., n! = 1 · . . . · n, obtaining

√
2πn

(n
e

)n
< n! <

√
2πn

(n
e

)n(
1 +

1

11n

)
. (1.1)

Note that, for any n ≥ 2, it directly follows that
(

1 +
1

11n

)√
2πn

(n
e

)n
≤ 1.05 ·

√
2πn

(n
e

)n
, (1.2)

which we use to get a simpler upper bound on n! from time to time.
Moreover, for some of the following proofs, we need some basic combinatorics. By

(
n

k

)
:=

n!

k!(n− k)!

1 Leonhard Euler, b15.04.1707, d18.09.1783, Swiss mathematician.
2 James Stirling, b05.1692, d05.12.1770, Scottish mathematician.



4 Chapter 1. Introduction

we denote the number of possibilities to choose a k-element subset from a set of n elements.
This number is called the binomial coefficient, and we observe that

n!

k!(n− k)!
=

∏k
i=1 (n− i+ 1)

k!
≤ nk

k!
. (1.3)

For any fixed n, the binomial coefficient is maximal for k = bn/2c; we call
(

n
bn/2c

)
the

central binomial coefficient.
Suppose that n is even, i. e., n = 2m for a natural number m. Using (1.1) and (1.3),

we obtain (
2m

m

)
≤ (2m)m

m!
<

(2m)m√
2πm

(
m
e

)m =

(
2em
m

)m
√

2πm
≤ 6m√

2πm
.

Note that, employing (1.1), a more careful analysis even yields

4m

2
√
πm

<

(
2m

m

)
<

4m√
πm

. (1.4)

The central binomial coefficient has an important characteristic: Due to Sperner’s theo-
rem3, for any set S of n elements and for any family F of subsets of S, the cardinality
of F is at most

(
n
bn/2c

)
given that no member of F is included in any other member of F

(i. e., F is subset-free) [145].
Consider two positive functions f(n) and g(n) in a variable n. To investigate the

asymptotic behavior of these functions, we use the Landau symbols4 O, o, Ω, ω, Θ [86],
e. g.,

f(n) ∈ O(g(n)) ⇐⇒ ∃ n0, c > 0 such that ∀ n > n0 : f(n) ≤ c · g(n).

When neglecting logarithmic factors for upper bounds, we use Õ instead of O (known as
the soft O notation).

As already mentioned, for some of our ideas we allow randomized computation. Let
E be the finite set of all unique elementary events that may occur during computation;
subsets of E are called events. For any event x ∈ P(E), we denote the probability that x
occurs by

Prob(x) =
∑

z∈x
Prob({z}).

For any elementary event y, we have Prob({y}) ≥ 0 and
∑

y∈E
Prob({y}) = 1.

A random variable X is a function that maps every elementary event to a value (e. g., a
real number), i. e.,

X : E → R.

For every c ∈ R, Prob(X = c) denotes the probability that X takes the value c. Further-
more, let RX := {d ∈ R | ∃ y ∈ E such that X(y) = d}; we denote the expected value of
X by

E[X] :=
∑

c∈RX

c · Prob(X = c).

3 Emanuel Sperner, b09.12.1905, d31.01.1980, German mathematician.
4 Edmund Landau, b14.02.1877, d19.02.1938, German mathematician.
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When analyzing randomized algorithms, we often use the following property of the ex-
pected value which is called linearity of expectation: For a, b ∈ R and any two random
variables Y and Z, we have [88]

E[aY + b] = aE[Y ] + b and E[Y + Z] = E[Y ] +E[Z]. (1.5)

To model some of the environments used in this thesis, we need to formally introduce
graphs. For more details, see the standard literature [61, 86, 151].

Definition 1.1 (Graphs). A graph G is a tuple (V,E), where V = {v1, . . . , vn} is a
non-empty set of vertices, E is a subset of {(vi, vj) | vi, vj ∈ V }, and e = (vi, vj) ∈ E is
called an edge from vi to vj, for vi, vj ∈ V . (i) If E = {(vi, vj) | vi, vj ∈ V, vi 6= vj},
we call G complete; (ii) furthermore, if, for all vi, vj ∈ V , from (vi, vj) ∈ E it follows
that (vj , vi) ∈ E, we say that G is undirected and denote the edge (vi, vj) by {vi, vj}.
In the following, let G be undirected. (iii) G = (V,E, c) is an edge-weighted (or simply
weighted) graph, where c : E → R+ is an edge-cost function. (iv) If we have that, for any
vi, vj, c({vi, vj}) = 0 is equivalent to vi = vj (identity of indiscernibles), and, for vi, vj,
and vk, c({vi, vj}) ≤ c({vi, vk}) + c({vk, vj}) (triangle inequality), we call c a metric cost
function and G a metric graph.

In some of the subsequent chapters (especially in Chapter 8), we expect the reader to
be familiar with computational complexity, the basic complexity classes, such as P and
NP, and the concept of NP-hardness (introductions to algorithmics and computational
complexity are given in, e. g., [58, 78, 82, 86, 87, 104, 131, 139, 143, 150]). Following
Church’s thesis5, we consider Turing machines6 [149] that halt on any input [87] to be
the formal description of algorithms. Cobham [56] and Edmonds [67] were the first to
consider computations that run in polynomial time efficient, and this point of view is
nowadays widely accepted [86]. A decision problem is a computational problem that is
answered by “yes” or “no”, e. g., “does the graph G contain a Hamiltonian cycle7?”. The
class NP contains all decision problems that can be solved (answered correctly) by means
of nondeterministic Turing machines in polynomial time, and P is the class of all such
problems that can even be solved by deterministic Turing machines in polynomial time.
A decision problem D is called NP-hard if it is (with respect to runtime) at least as hard
to solve as all other problems in NP [86]. If D is NP-hard and D ∈ NP, D is called
NP-complete (as introduced by Cook [57]). The probably most fundamental question in
theoretical computer science is whether NP = P or P ( NP. For an introduction on the
relation between P and NP, we refer the reader to the above literature.

Finally, throughout this thesis, for the ease of presentation, by log x we denote the
logarithm of x with base 2 and by lnx we denote the logarithm of x with base e.

1.3 Online Algorithms and Competitive Analysis

The term algorithm is well-defined: It is the formal description of a strategy, which always
has to produce a solution for a specific problem, formalized, as we just stated, by Turing
machines that always halt; it is probably the most basic concept of computer science.
In classical algorithmics (the “study of algorithms” [82]), we are interested in designing
5 Alonzo Church, b14.06.1903, d11.08.1995, American mathematician.
6 Alan Turing, b23.06.1912, d07.06.1954, English computer scientist.
7 William R. Hamilton, b04.08.1805, d02.09.1865, Irish mathematician.
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fast algorithms that create high-quality solutions for a large set of instances of specific
problems.

Conversely, as already pointed out, in numerous real-world applications, another chal-
lenge arises for the algorithm designer: In many situations, not the whole input is known
in advance, but it arrives piecewise in consecutive time steps. After every such time step,
a piece of output has to be created which must not be changed afterwards, i. e., the algo-
rithm has to compute definite parts of the output without knowing the whole input. We
call such situations online scenarios and the according strategies to cope with them online
algorithms. Typical examples include (i) many components of operating systems that
frequently interact with the user (the probably most prominent example in this class is the
paging problem [38, 88], which we introduce later in this section), (ii) various scheduling
problems, and (iii) routing problems (consider a network routing device with a limited
buffer capacity that has to maintain some quality of service, see, e. g., [50, 52]).

Detailed introductions to online computation are found in [6, 38, 76, 88, 93]. Let us
now formalize our ideas. In what follows, we focus on the goal to minimize some cost
function that is specified by the concrete problem at hand. It is straightforward to obtain
analogous definitions when studying maximization problems.

Definition 1.2 (Online Minimization Problem). An online minimization problem
consists of a set I of inputs and a cost function. Every input I ∈ I is a sequence of
requests I = (x1, . . . , xn). Furthermore, a set of feasible outputs (or solutions) is asso-
ciated with every I; every output is a sequence of answers O = (y1, . . . , yn). The cost
function assigns a positive real value cost(I,O) to every input I and any feasible output
O. For every input I, we call any feasible output O for I that has smallest possible cost
(i. e., that minimizes the cost function) an optimal solution for I.

For the sake of an easy notation, if the input is clear from the context, we omit I
and denote the cost of the solution O for I by cost(O). It is crucial to note that the
basic properties of algorithms, which separate them from arbitrary programs [87], are
not violated: Online algorithms halt on any finite input (which might be a prefix of a
potentially infinite instance) and they create output of some well-defined form.

The established measurement for the output quality of an online algorithm is the com-
petitive ratio [38, 76, 88, 93], i. e., the quotient of the cost of the solution the online
algorithm computes for a particular problem instance and the cost of an optimal (offline)
solution for this instance.

Definition 1.3 (Online Algorithm, Competitive Ratio). Consider an input I of an
online minimization problem. An online algorithm A computes the output sequence A(I) =
(y1, . . . , yn) such that yi is computed from x1, . . . , xi and y1, . . . , yi−1. We denote the cost
of the computed output by cost(A(I)). A is c-competitive if there exists a non-negative
constant α such that, for every I, we have

cost(A(I)) ≤ c · cost(Opt(I)) + α,

where Opt is an optimal offline algorithm for the problem. We also call c the competitive
ratio of A. If α = 0, then A is called strictly c-competitive; A is optimal if it is strictly
1-competitive.

We denote the competitive ratio of A on the instance I by comp(A(I)). Note that the
constant α in Definition 1.3 prevents the construction of lower bounds by creating instances
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for which the difference between the cost of an optimal algorithm and the online algorithm
is constant. The algorithms we construct are all strictly competitive which we will there-
fore not mention in the subsequent chapters. However, for some of the lower bounds
that we show, our analysis will be more careful. If we consider the c-competitiveness of
maximization problems, we require that cost(A(I)) ≥ 1/c · cost(Opt(I))− α.

Again, to obtain a less complicated notation, if I is clear from the context, by A := A(I)
[Opt := Opt(I)], we denote the solution computed by A [Opt] on the instance I. Also, note
that we use the terms algorithm and strategy interchangeably.

As usually done when studying online problems, we neglect the runtime of the con-
structed algorithms [38, 93], although the algorithms we design are ordinarily efficient
ones. When talking about competitive algorithms, commonly algorithms that achieve a
constant competitive ratio are meant. For a large number of online problems, however,
different parameters might come into play on which the ratio might heavily depend (e. g.,
the memory size that is associated with some online algorithm as we see in Section 1.3).
Classically, bounds with respect to these parameters are accepted, but it is not common to
measure the performance depending on the number of requests; algorithms that provably
do not obtain anything better than a competitive ratio that grows with the number of re-
quests are called not competitive [38]. In this thesis, we want to allow a more fine-grained
analysis, because, specifically in the framework we use, it makes a difference whether the
competitive ratio grows linearly or logarithmically in the input size. Thus, e. g., in Chap-
ter 3, we study two different variables the competitive ratio might depend on, one being
a parameter that is known to the algorithm in advance (which is classically done for this
problem [14]) and the other one being the number of requests. Additionally, for many
online problems, the number of requests is upper-bounded by some of these parameters,
as, e. g., is the case for the problems we study in Chapters 2 and 5.

The term competitive analysis is due to Karlin et al. [100]; as already mentioned, this
concept was introduced by Sleator and Tarjan in 1985 [144], although it was probably
used for the first time implicitly by Yao [153] in 1980 (see [38] for more details on the
history). Since its introduction, competitive analysis has been used to analyze numerous
online problems and algorithms designed to solve them. Let us again emphasize that
Opt is an offline algorithm that knows the whole input before it starts its computations
and therefore its existence is purely hypothetical. Consequently, this powerful knowledge
is something A does not possess; this is exactly the dilemma we are facing in online
computation. Informally speaking, we might therefore state the following:

The competitive ratio describes how much we pay for not knowing the future.

As already briefly mentioned before, in simple words, the following investigations aim at
capturing what it actually is we pay for. Again, we will find out that the answer varies,
depending on the problem we are looking at, from only missing a single bit of information
to a necessary amount of information that rapidly grows with the input size.

The Adversary: Modeling Hard Instances

When dealing with online problems [38, 88], we try to study an online algorithm’s perfor-
mance in terms of its output quality by means of a notional adversary denoted by Adv;
we suppose that Adv tries to construct input instances in a malicious way. To this end, we
assume that Adv knows in every time step what A will do and that it uses this knowledge
and A’s inability to foresee the future to harm it as much as possible.
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If we can prove the existence of an adversary Adv that, for some online problem P ,
creates an instance for which it can ensure that every online algorithm fails to be c-
competitive, we can conclude that there does not exist any c-competitive algorithm for P .

There are basically three different types of adversaries considered in the literature
[6, 19]: (i) the oblivious adversary, (ii) the adaptive online adversary, and (iii) the
adaptive offline adversary. The difference between an oblivious adversary and the two
adaptive types is the following: The oblivious adversary constructs an input instance before
an online algorithm A starts its computation, whereas adaptive adversaries react to the
decisions Amakes during runtime, which means they know the outcome of random decisions
that were made up to the corresponding time step. The adaptive online adversary then has
to produce the output in an online fashion, whereas the adaptive offline adversary creates
the output afterwards (thus acting optimally). While these three models are equally
powerful when talking about deterministic online algorithms (here, at the beginning of
the computation, A’s behavior is already fully determined), there may be huge differences
between them when we are dealing with randomized algorithms (see Section 1.4). The idea
to consider the three types of adversaries is due to Ben-David et al., and it was shown that,
when a randomized online algorithm plays against an adaptive offline adversary, random
computation does not help at all [19].

When dealing with deterministic or randomized online algorithms, we consider obliv-
ious adversaries only, which is justified by the following observation: Suppose we prove
the existence of such an adversary Adv for some problem such that Adv can ensure that
no deterministic strategy is better than c-competitive. This means that, for any deter-
ministic online algorithm A, there exists at least one input for which it is never better
than c-competitive. Then again, this input could be very natural and appear frequently
in practice. We may think of Adv as knowing A’s source code and thus being able to
anticipate how A reacts for any piece of input it is given. If we now consider a randomized
online algorithm R, Adv knows all its deterministic moves, when a decision based on ran-
domness is made, and with which probability R takes some specific action. However, Adv
does not know the outcome of this random decision. The key is to construct randomized
algorithms that, for every instance, behave well on average. For these algorithms there
is no particular bad input that always causes them to fail, but only for a few random
decisions. This means that, in practice, there do not exist instances that on average cause
R to produce bad output, but only occasionally.

When dealing with online algorithms with advice, we use a different type of adversary
we describe in Section 1.6; this adversary is discussed in more detail in Chapter 8.

Let us now give a short example to consolidate our intuition by reviewing some known
results on the well-studied paging problem [5, 38, 76, 88, 93].

The Paging Problem

As already mentioned, typical online scenarios are often met when dealing with operating
systems due to the frequent interaction with a user, who performs actions no algorithm
may foresee. One very important problem operating systems have to handle is the paging
problem [38, 88], Paging for short, which we describe in a very simplified way; a practical
view of the problem can be found in the standard literature [148].

The physical memory of a computer can be arranged in a hierarchy that starts at the
top with very fast but expensive kinds like the CPU’s registers and its caches, has slow
but cheap types of memory, such as the hard disc, at its bottom, and the random access
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Figure 1.1: Schematic view of Paging.

memory (RAM, often plainly called the physical or main memory) in between. In the
following, we focus on a memory hierarchy that consists of only two types of memory:
the physical memory and the much faster but therefore more expensive and thus smaller
cache.

The discrepancy in speed between the physical memory and the CPU is known as the
von Neumann bottleneck8. To use memory as efficiently as possible, the cache and the
physical memory are subdivided into so-called page frames of a fixed size s. Any program,
on the other hand, only works on a virtual memory that consists of logical pages, also
each of size s. The operating system then maps the logical pages to the page frames. If
a program wants to access a page that is currently not in the cache, but in the physical
memory only, we call this a page fault. In this case, the operating system has to select
some victim page frame from the cache, replace its content by the content of the requested
page, and update the mapping of the virtual pages to the page frames. Obviously, the
replaced logical page of the victim frame is no longer accessible in the cache. Selecting
the victim frame is the main task of a paging algorithm. A schematic view of Paging is
shown in Figure 1.1. In what follows, we give a formal description.

Definition 1.4 (Paging). Consider a sequence of integers representing requests to log-
ical pages I = (x1, . . . , xn), xi > 0. An online algorithm A maintains a buffer (content of
the cache) B = {b1, . . . , bK} of K integers, where K is a fixed constant known to A. Before
processing the first request, the buffer gets initialized as B = {1, . . . ,K}. If A receives a
request xi ∈ B, it creates the partial output yi = 0. However, if xi 6∈ B, a page fault
occurs, and A has to specify some victim bj, i. e., B := B \ {bj} ∪ {xi} and yi = bj. The
cost of the solution A = A(I) is the number of page faults, i. e., cost(A) = |{yi | yi > 0}|.

For this problem and for every online algorithm A, we can easily construct an adversary
Adv that harms A in the worst possible way while merely using one more page than A has
space to keep in the cache at one point in time. Consider Algorithm 1.1 which is due to
Sleator and Tarjan [144]. It is obvious that any deterministic online algorithm playing
against this adversary makes exactly one page fault per request, because it always has to
load the one page into the cache that it just removed from it. It remains to show that
there exists an optimal offline algorithm Opt that has a smaller cost: We observe that
the first page fault is inevitable. However, after that, there are K − 1 more requests and
8 John von Neumann, b28.12.1903, d08.02.1957, Austrian-Hungarian mathematician.
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Algorithm 1.1: Adversary for Paging
output “Request page with index K + 1”;
i := 1;
while i ≤ K − 1

j := index of page removed by A;
output “Request page with index j”;
i := i+ 1;

end

K + 1 pages in total. It follows that one of the initial pages, say page p, in the cache is
not requested. If Opt removes p to load the page with index K + 1 in the first time step,
it makes no additional page fault.

It is straightforward to generalize this idea and create an adversary that constructs
sequences of arbitrary length n such that any deterministic online algorithm makes a
page fault with every request [144]. On the other hand, Opt (more specifically, the al-
gorithm Min, introduced by Belady, that implements the offline strategy longest forward
distance [17]) only makes one page fault in every Kth step.

Theorem 1.5 (Sleator and Tarjan [144]). For any deterministic online algorithm A

for Paging, there exists an input I such that

comp(A(I)) =
cost(A(I))

cost(Opt(I))
≥ K,

where Opt is an optimal offline algorithm. ♦
We deal with Paging in the framework of advice complexity in Section 1.7.

1.4 Randomized Algorithms

One of the main concepts among the strategies which are used to produce high-quality
output (not only) in online computation is randomization. Here, we allow an online algo-
rithm R to roll dice from time to time and base some of its calculations on the outcome.
For the further study of randomized computation, we refer the reader to the standard
literature [88, 104, 128, 131]. Formally, randomized online algorithms can be defined as
follows; again, we focus on minimization problems.

Definition 1.6 (Randomized Online Algorithm). Consider an input I of an online
minimization problem. A randomized online algorithm R computes the output sequence
Rφ := Rφ(I) = (y1, . . . , yn) such that yi is computed from φ, x1, . . . , xi, where φ is the
content of a random tape, i. e., an infinite binary sequence, where every bit is chosen
uniformly at random and independently of all the others. By cost(Rφ(I)) we denote the
random variable expressing the cost of the solution computed by R on I. R is c-competitive
in expectation if there exists a non-negative constant α such that, for every I,

E[cost(Rφ(I))] ≤ c · cost(Opt(I)) + α,

where, as above, Opt is an optimal offline algorithm for the problem.

For the ease of presentation, we omit φ if it is clear from the context. Later, we
will point out some connections between randomized computation and computation with
advice in online scenarios.
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Fiat et al. showed that, for Paging, every randomized online algorithm is at best HK-
competitive in expectation [74], whereHK :=

∑K
i=1 1/i is called theKth harmonic number.

Moreover, there exist algorithms that achieve this ratio [1, 125]. Since HK is roughly lnK
[80] and we have seen that deterministic online algorithms are exponentially worse (see
Section 1.3), randomization improves the performance of online algorithms for Paging
drastically (as it is the case for many of the problems considered in the literature [38]).

Barely Random Algorithms

Generating random numbers might be expensive. We therefore are particularly interested
in so-called barely random algorithms, introduced in [136], that merely use a constant num-
ber of random bits, which is asymptotically minimal [38]. We construct such algorithms
for the job shop scheduling problem with two jobs and unit-length tasks (see Chapter 2)
and the simple online knapsack problem (see Chapter 6) in Section 7.1. For Paging, we
briefly explain how to use some insight we have gained from the construction of an online
algorithm with advice [35] to construct a barely random algorithm, as shown in [109].

1.5 Alternative Models

As we have seen in Section 1.3, for Paging, deterministic online algorithms are at a
disadvantage in the game against an oblivious adversary Adv. A similar situation is faced
when dealing with most of the online problems that were studied. It has been pointed out
that the idea of competitive analysis is not fine-grained enough as it is, in general, too
pessimistic [6, 18, 43, 64, 75, 93, 114]; in other words, many algorithms that perform very
well in practice are considered to be very weak with respect to competitive analysis.

The most straightforward approach to weaken the requirements on online algorithms
is to restrict the power of Adv. As for Paging, Theorem 1.5 states that no deterministic
online algorithm is better than K-competitive (a phenomenon which is referred to as the
triviality barrier [75]). However, in practice, the strategy least recently used (LRU [148])
achieves good results compared to, e. g., a simple first-in-first-out-strategy (FIFO); strong
evidence for this is given by Young [154], whereas it is not reflected at all by competitive
analysis, see, e. g., [39, 114]. It is thus not surprising that especially Paging was among
the first problems for which alternative models were proposed. Another reason is that it
seems reasonable to exploit one property of typical instances of this problem known as
locality of reference: In practice, the set of pages that are likely to be requested after some
particular request is rather small [142]; it is thus common to use prefetching. To formalize
this behavior, Borodin et al. developed so-called access graphs for the analysis of Paging
[39]. Every vertex vx of this graph corresponds to a page x that might be requested during
runtime. Moreover, for every page x2 that may be requested immediately after x1, vx1

and vx2
must be adjacent, see also [94]. The authors conjectured that, with respect to this

model, LRU is never worse than FIFO which was later proven by Chrobak and Noga [54].
Young introduced the concept of the loose competitive ratio for Paging [154]; a revised

version was then applied to a more general caching problem [156]. The concept is motivated
by the following two facts: (i) The actual ratio of the cost of A’s solution and the
optimum can be neglected as long as the computed solution has a small cost in an absolute
sense. (ii) For many online problems, the strength of Adv relies on the knowledge of some
parameter of the concrete problem (e. g., the cache size K for Paging) which means that
hard instances might only be hard for some very specific choices of K. Now, for ε, δ > 0,
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an online algorithm A is said to be (ε,δ,Kmax)-loosely c-competitive if, for a (1−δ)-fraction
of all possible values of K ∈ {1, . . . ,Kmax}, the cost of A is either less than ε · n or less
than c · cost(Opt) with cache size K.

Raghavan devised the notion of a statistical adversary [135]. In this model, Adv may
also create the input in an arbitrary fashion, but it must obey some conditions with
respect to the mean and the standard deviation of the input. These values might be
taken from a prior statistical analysis of the problem, thus providing a useful tradeoff
between worst-case analysis and practice, see also [51]. Koutsoupias and Papadimitriou
followed a similar approach when introducing the diffuse adversary [114] arguing that
facing complete uncertainty about the input distribution is highly unlikely. In their model
(which is a generalization of both the statistical adversary and the access graph model),
Adv chooses a worst-case distribution from a class of possible distributions on the inputs
that is known to A, see also [155].

Another approach to give an online algorithm A an advantage compared to the classical
model is to enable A to have some lookahead, i. e., to allow it to look into the future for
` time steps. However, consider Paging with lookahead `. Since the adversary we use
to model bad input instances knows A, it surely knows ` and may therefore proceed as
given by Algorithm 1.2 (see, e. g., [5, 114] and also [18] where Ben-David and Borodin
showed that lookahead does not help for the k-server problem which we will discuss in
Chapter 4 and which is a generalization of Paging). Clearly, A also fails to play against

Algorithm 1.2: Adversary for Paging with lookahead `
r := 1;
while r ≤ `+ 1

output “Request page with index K + 1”;
r := r + 1;

while i < K − 1
j := index of page removed by A;
r := 1;
while r ≤ `+ 1

output “Request page with index j”;
r := r + 1;

i := i+ 1;
end

this adversary.
Albers followed a different approach by introducing and using a so-called strong looka-

head that enables the algorithm to see ` pairwise distinct future requests [5]. This (more
powerful) knowledge about the future does indeed help for Paging: Let ` ≤ K−2. There
exists a deterministic online algorithm (basically a variant of the above mentioned strat-
egy LRU) with strong lookahead ` that is (K − `)-competitive, and this bound is tight;
additionally, it was shown that there exists a randomized online algorithm with strong
lookahead ` that achieves an expected competitive ratio of HK−` and that this bound is
tight up to a factor of 2 [5]. Moreover, introducing the concept of comparative analysis,
Koutsoupias and Papadimitriou studied the general power of algorithms with lookahead
compared to plain online algorithms [114]. For Paging, they showed that a lookahead of
` allows to improve the performance by a factor of min{K, `+ 1}.

Another idea is to use what is known as resource augmentation, which was introduced
in [97] (though used earlier implicitly [59]), see [59, 98, 133]. Here, A is compared to an
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offline algorithm that has some disadvantage concerning the resources available. In [95],
Iwama and Zhang used this relaxation of pure competitive analysis to study the online
knapsack problem; for this problem, we combine resource augmentation and computing
with advice in Chapter 6.

While resource augmentation allows the online algorithm to use more resources than
the optimal offline algorithm, the accommodating ratio, introduced by Boyar and Larsen,
restricts the allowed inputs in another way. Here, only those instances are permitted
for which an optimal algorithm would not have an advantage from having more resources
available than the online algorithm [42]. A relaxation leads to the accommodating function,
established by Boyar, Larsen, and Nielsen [43]: Consider some online problem with m
resources, e. g., the online bin packing problem with m bins [38]. An input x is called
a γ-sequence if, with a multiple γ of the resources available (e. g., with γ ·m bins), Opt
can satisfy all requests (e. g., pack all items into bins). If, for any such input, A achieves
a competitive ratio of c, we say that A is c-competitive on γ-sequences. Obviously, with
γ tending to infinity, all instances are allowed and this measurement is the competitive
ratio.

The term semi-online problem is widely used in the area of scheduling problems (an
introduction is given by Brucker [46], see Chapter 2) for frameworks in which some specific
property about the input is known in advance. Examples are the sum of all the processing
times of all jobs that arrive online, simply the fact that these processing times are non-
increasing, or the optimal makespan [66, 72, 84, 85, 102, 140].

A more detailed survey on the different refinements of competitive analysis that were
proposed since its establishment is given in [75], which is Chapter 17 of [76], and in
Chapter 3 of [65].

While also introducing an alternative model, our approach seems somewhat orthogonal
to all of the above. We do not give the algorithms some specific advantage, like a lookahead
or larger memory, but we are interested in the pure amount of information that is needed
to increase performance. In this sense, the advice complexity is a generalization of some of
the above concepts. Then again, to a great extent, these concepts aim at providing a more
realistic way to compare known algorithms to each other; the most prominent examples
are the aforementioned strategies LRU and FIFO for Paging and the large gap between
their performances in practice. Conversely, our goal is to construct new algorithms that
use additional information to perform well or to show that such algorithms do not exist for
some specific amount of information. Hence, we try to give insight into the hardness of the
problem itself under online considerations and not primarily into well-known strategies.

1.6 Advice Complexity

Before we elaborate and formalize the model used in this thesis, let us start with a straight-
forward example that has been first observed in [63, 64]. Consider the well-known ski rental
problem [38, 93], SkiRental for short.

Definition 1.7 (SkiRental). Suppose you want to go skiing, but you do not know in
advance for how many days this is really possible due to, e. g., the weather conditions. You
would like to maximize the number of days you ski; however, just in the morning of each
day you get a reliable weather forecast. As you do not own any skiing gear, you may either,
for every day, rent skis for unit cost 1, or buy the skis for cost k > 1.
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More on the problem can be found in [38]. The best-known randomized online algorithm
is due to Karlin et al. and it achieves an expected competitive ratio of e/(e− 1), which is
the best possible result against an oblivious adversary [99]; but let us focus on deterministic
strategies.

Obviously, it makes sense to buy the skis if you ski more than k days, otherwise, you
pay too much. Now we consider any deterministic online algorithm A and an adversary Adv
that is able to control the weather, that acts according to Algorithm 1.3, and (as discussed
in Section 1.3) that aims at boosting A’s cost compared to the one of an optimal solution.
Let us look at what happens if A plays against Adv: (i) If A decides to buy the skis on the

Algorithm 1.3: Adversary for SkiRental
output “Good skiing weather”;
while A has not bought the skis

output “Good skiing weather”;
while true

output “Bad skiing weather”;
end

first day with good weather, Adv causes all other days to be bad for skiing; in this case,
the competitive ratio of A is k. (ii) On the other hand, if A decides to buy the skis at day
k, it pays (k − 1) + k in total. The competitive ratio is therefore (2k − 1)/k, which tends
to 2, for k tending to infinity. (iii) If A buys the skis at day i < k, the competitive ratio
is 1 + (k − 1)/i ≥ 2. (iv) Finally, if A buys the skis at day j > k, its competitive ratio is
1 + (j − 1)/k ≥ 2. It follows that A cannot be better than 2-competitive; furthermore,
the above analysis implies that this bound is tight, i. e., there exists a 2-competitive online
algorithm, which is known as BreakEven, for SkiRental.

So what do deterministic strategies effectively lack that causes them to be twice as bad
as the optimal solution? Obviously, if A knew the whole input sequence in advance, it
could produce optimal output. However, this is not necessary. All that is needed is one
single piece of information that is as small as it gets, i. e., one bit, telling A to “buy” or
“rent” in advance. A then still has no clue about which days will have good or bad weather,
but the kernel of the missing information is very small; we can say that this one bit is all
the information we need to extract from the input.

In this example, the advice complexity of an optimal online algorithm (the informa-
tion content [89] of SkiRental) is smallest possible; it is 1. Let us summarize: Deter-
ministic online algorithms perform twice as bad as offline algorithms when dealing with
SkiRental, and, astonishingly, this high price is paid for merely not knowing one single
bit. In general, it can be a lot more involved to figure out what this crucial information
is.

The First Model of Advice Complexity

The advice complexity of online problems was introduced by Dobrev, Královič, and Par-
dubská in 2008 as a new measurement for online algorithms addressing the problems of
competitive analysis we described in Section 1.5 [63]. One of the motivations they had
in mind when establishing the following model was the communication between a base
station, which has powerful resources available, and a remotely controlled robot with very
limited capabilities. As an example, we may think of Cape Canaveral and some Mars
Rover. The authors were interested in bounding the relevant information that is needed
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for the robot to perform some predefined tasks; in particular, they investigated Paging
and DiffServ (short for differentiated services, see, e. g., [118]).

Two different modes of operation were proposed and studied that allow different ways
of communication between the base station, which was formalized by an oracle, and the
algorithm (robot).

The helper model. Here, we think of an oracle O that oversees A’s actions during run-
time. O may interact with the algorithm by giving some bits of advice in every time
step; this is done without a request for help by A. The crucial observation is that the
advice may be empty, which can also carry some piece of information and thus may
be exploited by the algorithm.

The answerer model. The second model is more restrictive in some sense as the algo-
rithm A has to explicitly ask O for advice in some time step. O then has to respond
with some advice string, i. e., it is not allowed to send an empty string, but still may
encode some extra information into the length of its answer.

In both models, it is assumed that A knows the length n of the input in advance. A more
detailed and formal description can be found in [64]. To get an understanding of how
to work within this framework, let us use a similar attempt to construct advice for some
online problem. We use the more powerful helper model and restrict ourselves to a specific
class of online problems.

Suppose that the online problem we are dealing with is defined in a way such that
A has to make at most one 0/1-decision in every time step (actually, this is a rather
natural restriction as this is the case for many different problems, e. g., Paging, as shown
in [64]). A solution is thus determined by a decision string S of length n that represents
the decisions made. Obviously, these decisions can be made correctly by an optimal offline
algorithm Opt that knows the whole input in advance.

As in [64], we suppose that A and O work synchronized, i. e., they share a common clock
and have agreed on a fixed length for the time steps (a very strong assumption, which is
one of the reasons why we change the model in Section 1.6). Additionally [64], we also
assume that A knows n in advance; moreover, the algorithms we construct are allowed
to do some bootstrapping, i. e., before the first time step, some extra bits may be sent
that are crucial for the further computations of A. However, we only allow this additional
number of bits to be a small constant. It follows that A and O can exploit empty advices
in a straightforward fashion: At the beginning, O sends one bit of advice to A indicating
whether a fixed optimal decision string S contains more ones or more zeros. Without loss
of generality, assume that there are more ones in S. O may then just send an arbitrary
bit in time steps where the decision 0 is made by an optimal algorithm according to S,
and nothing otherwise. It is clear that A will know exactly what to do and that at most
n/2 + 1 advice bits will be sent in total (see Figure 1.2 (a)).

We observe that it does not matter to A whether a 1 or a 0 is communicated in some
time step. We now show how to easily reduce the number of advice bits by simply using
the bits sent to encode S backwards (see Figure 1.2 (b)). It follows that (n− 2)/3 + 3 bits
of advice are sufficient in general.

Theorem 1.8. To enable an online algorithm A to produce an optimal solution, it suffices
to send a total of (n− 2)/3 + 3 bits, where at most one bit is sent in every time step, and
at most three additional bits are sent before the input is processed.
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S: 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 0
Sent: 0 0 0 0 0 0 0 0
(a) An example for a decision string S and the corresponding advice sequence.

S: 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 0
Sent: 00 0 1 1 0 1
(b) An example of how to further reduce the number of bits communicated.

Figure 1.2: An example communication exploiting empty strings.

Proof. Let n′ denote the largest number smaller than n that is divisible by 3. The last
n − n′ ≤ 2 bits of S are communicated to A at the beginning. Let S′ denote the prefix
of S of length n′. The oracle O then examines the first 2n′/3 bits of S′ and sends A the
bit that appears least frequently; afterwards, O uses the positions of these bits to send a
distinct suffix of S′ in reverse order. Recall that A knows n and thus n′/3. We distinguish
two cases.

Case 1. Suppose that there is exactly the same number of ones and zeros in the first two
thirds of S′. O may then choose one of the two and communicate its choice to A using
one bit. Since this bit appears exactly n′/3 times, it is possible to send exactly the
last third of S′. Thus, A uses at most (n − n′) + 1 + n′/3 ≤ (n − 2)/3 + 3 bits of
advice in this case.

Case 2. Without loss of generality, suppose that there are more ones than zeros in the
first two thirds of S′. O tells A that a bit is sent in every time step in which the
decision 0 has to be made according to S′. Since this number of zeros is strictly
smaller than n′/3, the last bit is sent after more than 2n′/3 time steps.
Consider time step 2n′/3+1, and assume that the lastm < n′/3 bits of S′ are already
known to A. A simply continues to decode the bits sent as in the first two thirds until
it realizes that it now knows n′/3 bits. Let m′ denote the number of zeros in the
last third of S′ that are not yet known to A. Clearly, we have m′ ≤ n′/3 −m and
therefore m+m′ ≤ n′/3. Hence, since A received m bits already and is given at most
m′ more bits, (n− n′) + 1 + n′/3 ≤ (n− 2)/3 + 3 advice bits are sufficient.

The claim follows. �

Up to this point, we have used some very simple ideas to show that it is sufficient to
send one bit of advice in every third time step on average to communicate S, allowing A

to be optimal. We now generalize this idea by discarding the constraint that at most one
bit is permitted to be sent in every time step.

Theorem 1.9. To enable an online algorithm A to produce an optimal solution, it suffices
to send a total of βn bits, for a constant β := 0.30104 and n tending to infinity, and a
constant number of bits before the input is processed.

Proof. Again, without loss of generality, let there be more ones than zeros among the first
(1− α)n bits of S, for a constant α := 0.519, and let z denote the number of these zeros.
Moreover, let β′ := 0.302 > β > β′′ := 0.301. We distinguish two cases depending on the
size of z; A is told which case to follow by one bit of advice at the beginning.

Case 1. Suppose that z < β′n−1
2 . In the following, we show how to send no more than

β′′n bits in total. By our assumptions, O has sent exactly z bits (which is at most
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0.151n− 1
2) when arriving at time step (1− α)n = 0.481n. Note that, at this point,

A already knows the last z bits, and thus n − (1 − α)n − z = 0.519n − z bits are
still required to be communicated. Let S′ be the corresponding string that is yet
unknown to A. Following Theorem 1.8, we know that 1

3(0.519n − z − 2) + 3 bits
suffice to communicate S′, and O is allowed to send another 0.301n− z bits. Observe
that

0.301n− z > 1

3
(0.519n− z − 2) + 3 ⇐⇒ z < 0.192n− 7

2
,

which is satisfied by z < β′n−1
2 = 0.151n− 1

2 < 0.192n− 7
2 , for every n ≥ 74.

Case 2. Suppose that z ≥ β′n−1
2 and thus z ≥ βn−1

2 . Moreover, by the definition of z, we
have that z ≤ (1−α)n

2 . For every n ≥ 6,

βn− 1

2
<

0.302n

2
− 1

2
<

0.481n

2
− 1 =

(1− α)n

2
− 1 <

(1− α)n

2
. (1.6)

Next, let us estimate how many ways there are to send βn bits during these z
time steps. First of all, there are exactly 2βn different binary strings of length βn.
Furthermore, for each of these strings, we may choose a different partitioning to
distribute them among z slots (i. e., time steps in which a 0 appears). However, we
are not allowed to send nothing in such a time step, because A still has to be told
that a 0 appears in S in this step as well. There are βn− 1 many positions at which
we may cut the string of length βn, and we have to cut it exactly z − 1 times to
distribute the bits among the (1−α)n

2 time steps in which a 0 occurs. Obviously, there
are exactly (

βn− 1

z − 1

)

possibilities to do this. Note that, since z ≤ (1−α)n
2 < βn, the above term is well-

defined. Our goal is to encode a bit string of length αn, or, in other words, 2αn many
possibilities, so we have to ensure that

2βn
(
βn− 1

z − 1

)
≥ 2αn. (1.7)

Informally speaking, this means that there have to be sufficiently many possibilities
in the first (1−α)n time steps to encode all binary strings of length αn using βn bits.
We can exploit that A can distinguish different cases due to different distributions of
the same βn-bit string over the time steps.

It remains to show that (1.7) holds for any z, for which βn−1
2 ≤ z ≤ (1−α)n

2 . Recall
our discussion about the central binomial coefficient in Section 1.2: We have that(
m
k2

)
<
(
m
k1

)
<
(
m
k

)
, for k2 > k1 > k = m/2. Thus,

(
βn− 1
βn−1

2

)
≥
(
βn− 1

z − 1

)
≥
(

βn− 1
(1−α)n

2 − 1

)
. (1.8)

Hence, the left-hand side of (1.7) has to be a lower bound on the number of possibil-
ities to send the βn bits which is a direct consequence of (1.6). We observe that, if
z decreases from (1−α)n

2 towards βn−1
2 , the left-hand side of (1.7) increases; a further

decrease is covered by case 1. We obtain

2βn
(

βn− 1
(1−α)n

2 − 1

)
≥ 2αn ⇐⇒ 1− α

2β
· 2βn

(
βn

(1−α)n
2

)
≥ 2αn
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and, by the definition of the binomial coefficient,

1− α
2β

· 2βn · (βn)!(
βn− (1−α)n

2

)
!
(

(1−α)n
2

)
!
≥ 2αn,

which is, employing Stirling’s approximation (see (1.1) and (1.2)), implied by

1−α
2β ·

√
βn · ββn

√(
β − 1−α

2

)
n
(
β − 1−α

2

)(β− 1−α
2 )n

√(
1−α

2

)
n
(

1−α
2

) (1−α)n

2 c
≥ 2(α−β)n,

for a constant c = 1.052 ·
√

2π. Taking the logarithm (we easily verify that both sides
of the above inequality are strictly positive), this is equivalent to

(α− β)n ≤ log(1− α)− log(2β) +
1

2
log(βn) + βn log β − 1

2
log

(
1− α

2
n

)

− 1− α
2

n log

(
1− α

2

)
− 1

2
log

((
β − 1− α

2

)
n

)

−
(
β − 1− α

2

)
n log

(
β − 1− α

2

)
− c′,

for some constant c′ = log c. Hence,

(α− β)n ≤ log(1− α)− log 2− 1

2
log β − 1

2
log n+ βn log β

− 1

2
log

(
1− α

2

)
− 1− α

2
n log

(
1− α

2

)
− 1

2
log

(
β − 1− α

2

)

−
(
β − 1− α

2

)
n log

(
β − 1− α

2

)
− c′

or, equivalently,

0 ≤
(
β log β − 1− α

2
log

(
1− α

2

)
−
(
β − 1− α

2

)
log

(
β − 1− α

2

))
n

− αn+ βn− 1

2
log n− 1 + log(1− α)− 1

2
log β − 1

2
log

(
1− α

2

)

− 1

2
log

(
β − 1− α

2

)
− c′

is a sufficient condition for (1.7) to hold. Next, let

γ(α, β) := β log β − 1− α
2

log

(
1− α

2

)
−
(
β − 1− α

2

)
log

(
β − 1− α

2

)
− α+ β.

We obtain the condition

0 ≤ γ(α, β)n+ log(1− α)

− 1

2

(
log(βn) + log

(
1− α

2

)
+ log

(
β − 1− α

2

))
− c′′, (1.9)

for a constant c′′ = c′ + 1 = log
(
1.052 ·

√
2π
)

+ 1. Since n is the leading term in this
expression, (1.9) holds for n tending to infinity if γ(α, β) > 0. An easy calculation



1.6. Advice Complexity 19

-0.0002

-0.00015

-0.0001

-5e-05

 0

 5e-05

 0.0001

 0.51  0.512  0.514  0.516  0.518  0.52  0.522  0.524  0.526

x

T
he

fu
nc

ti
on

γ
(x

,β
),

fo
r
β
=

0
.3
0
1
0
4

α
×

Figure 1.3: The function γ(x, β).

shows that this is true. To this end, let us treat γ as a function of possible values
x for α. Numerically solving gives that γ(x) := γ(x, β), where β is fixed as 0.30104
(as given by the lemma), has roots at x1 ≥ 0.51537 and x2 ≤ 0.52132, and is
positive between these values (see Figure 1.3); the actual maximum is obtained for
xmax ≈ 0.51834. Thus, γ(α, β) is indeed strictly positive, which implies that it is
sufficient to send 0.30104 bits per time step in this case.

This finishes the proof. �

We conclude that the model we used here allows for very powerful techniques reducing
the number of sufficient advice bits βn by almost 70 percent compared to the straightfor-
ward communication of the n-bit string S. Note that, in [64], following another approach,
it was even shown that roughly 0.2056 bits per time step are sufficient. However, to
achieve this, O(log n) bits need to be communicated before the first time step which was
not allowed here.

The New Model of Advice Complexity

Consider the two modes of operation from [64] as introduced in the last subsection. In the
helper model, the oracle actively communicates with A, sending an advice string whenever
necessary. As mentioned before, this way A also learns something about the input if
nothing is sent at all during some time step. This is not possible in the answerer model;
however, in both modes of operation, information may be encoded into the length of the
advice strings that are communicated by O. More specifically, as already observed in
[35, 68], we are dealing with advice over an alphabet {0, 1, $}, where $ marks the end of
an advice string supplied in one time step. Therefore, the two strings 0$10$ and 010$ may
be interpreted differently by A, but, when estimating the number of bits, they are only
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counted once as the binary string 010. In the helper model, we even allow strings of the
form $$0$. Moreover, in both models, the size n of the input is known to A in advance.

We argue that these facts bias the real information needed to compute a solution, and
we want to prevent such ways of encoding and measure the pure binary advice. Also, the
lack of knowing n often contributes to the hardness of online problems. It thus seems to
be inappropriate to neglect this fact if we want to understand the essence of what makes
these problems hard. Basically, there are two approaches to overcome this drawback that
were proposed independently in 2009.

Emek et al. used a model in which the online algorithm is restricted to reading only a
fixed number of advice bits in every time step [70], introduced in [68]. This means that A
gets a fixed number of d advice bits together with every request. The advice complexity
is then defined as d · n for inputs of length n. This model was applied to the k-server
problem (which, as already mentioned, we study in Chapter 4) and metrical task systems
(a famous further generalization of the latter problem, introduced by Borodin, Linial, and
Saks in [40], see also [38, 41, 93]).

In this thesis, we follow a different approach, introduced in [35]: The oracle sees the
whole input in advance and knows the online algorithm at hand. It then writes all in-
formation necessary to an advice tape that the algorithm uses as an additional resource
during runtime and that it may access sequentially. The advice complexity is then the
total number of bits accessed.

The following observation implies that our model is more general and more powerful
in this sense.

Observation 1.10. Algorithms studied within the model from [70] admit algorithms of at
least the same quality in our model (i. e., upper bounds carry over). On the other hand,
lower bounds shown in our model imply the same lower bounds in the former model.

We can consider online computation as a zero-sum game [146] between A and Adv [38].
When computing with advice, we introduce a third player O to this game that collaborates
with A. Adv knows both its opponents, constructs an input accordingly, after which O

inspects this input, prepares the advice tape, and finally A outputs a solution based on
Adv’s input and O’s advice. Let us define the model formally.

Definition 1.11 (Online Algorithm with Advice). Consider an input I of an online
minimization problem. An online algorithm A with advice computes the output sequence
Aφ := Aφ(I) = (y1, . . . , yn) such that yi is computed from φ, x1, . . . , xi, where φ is the
content of the advice tape, i. e., an infinite binary sequence. A is c-competitive with advice
complexity b(n) if there exists a non-negative constant α such that, for every n and for
any input sequence I of length at most n, there exists some φ such that

cost(Aφ(I)) ≤ c · cost(Opt(I)) + α

and at most the first b(n) bits of φ have been accessed during the computation of the
solution Aφ(I).

Although the advice complexity b(n) is a function of n, we will abbreviate the number
of advice bits by b to get an easier notation. We define the terms strict competitiveness
and optimal online algorithms with advice analogously to Definition 1.3. Moreover, online
algorithms with advice for maximization problems and their competitive ratio are defined
in the same way as for the deterministic (or randomized) case. Similar to the case of
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randomized online algorithms, we write A(I) [A] instead of Aφ(I) [Aφ] if φ is clear from
the context. If A accesses b bits of the advice tape during some computation, we say that
b advice bits are communicated to A or that A uses b bits of advice. The advice complexity
of A gives an upper bound on the number of communicated advice bits, depending on the
size n of the input. The game between the three parties in our model can be described as
follows.

1. Adv knows both the online algorithm A and the oracle O. Moreover, Adv knows the
number of advice bits b (which depends on the size of the input n) that A uses.

2. Using this knowledge, Adv constructs an input I for A.

3. O inspects I and prepares the advice tape with content φ.

4. A produces the output depending on both the input I and the advice φ, while ac-
cessing at most the first b bits of φ.

A schematic view of the model is depicted in Figure 1.4. Note that we can think of an
online algorithm A with advice as an algorithm that chooses, depending on the advice it
is given, from a set of deterministic strategies we denote by Alg(A).

Observation 1.12. Let A be an online algorithm that uses b bits of advice. Then Adv can
treat A as a set of 2b different deterministic online algorithms without advice. In particular,
Adv knows each of the 2b algorithms.

This observation allows us to use two different techniques to show lower bounds on
the number of advice bits required to obtain a certain output quality: (i) The hardness
can be shown by a combinatorial argument. Suppose that there is an online algorithm A

that uses b bits of advice. Thus, there must be an advice tape such that reading the first
b bits enables A to distinguish a class of relevant inputs such that A is able to achieve a
desired competitive ratio for all of them. The goal is then to show that there are different
inputs that cannot be distinguished sufficiently. Since Adv knows O, it also knows these
inputs. (ii) Using Observation 1.12, we can also do a direct proof. Here, we aim at
designing an adversary Adv that creates an input instance such that any deterministic
algorithm from Alg(A) fails to meet some required properties. This way, Adv basically
deals with all possible deterministic strategies at once. Note that, although it may seem
counterintuitive, these two points of view give Adv the same power (see Chapter 8).

For many of our techniques, we need to encode a natural number x that is at most n
on the advice tape. Clearly, we can bound the number of bits necessary to do this from
above by dlog(n+ 1)e. However, for us, x is usually non-zero, and we may therefore save
one bit by the following observation, which we employ implicitly in such cases.

Observation 1.13. Let x ∈ {1, . . . , n}. O writes x− 1 onto the advice tape using at most
dlog ne bits; A then decodes the number read, adding 1 to the result.

When bounding numbers from below (i. e., when giving lower bounds), we usually omit
the ceilings for the sake of a clearer notation. Furthermore, we often need to encode some
number x ∈ {1, . . . , n} in a self-delimiting way; the following observation enables us to do
this in a straightforward fashion.

Observation 1.14. Let x ∈ {1, . . . , n}, which means that we need m := dlog xe bits to
communicate x by encoding x − 1 on the advice tape (see Observation 1.13). Moreover,
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Figure 1.4: Schematic view of the model used in this thesis. For lines pointing from X to Y , a dotted line
means that X knows the algorithm or sequence Y and a dashed line indicates that X creates the sequence
Y . The solid lines pointing from A to the sequences I and φ mean that A uses them during runtime to
create the output.

suppose that A needs to know the end of the binary representation of x − 1 on the advice
tape for its further computations. We distinguish two cases depending on the size of x.

Case 1. Suppose that x− 1 = 0 or x− 1 = 1. In this case, the first bit of the advice tape
is 0 and the second bit encodes x− 1. Thus, two bits are read by A in total.

Case 2. Suppose that x − 1 ≥ 2 and thus m ≥ 2. Note that, since m is again strictly
positive, dlogme bits are sufficient to communicate m by encoding m − 1. Now, at
first, the length of m − 1 is written onto the advice tape using 2dlogme bits in the
following way: The bits belonging to the binary representation of m − 1 are written
on odd positions of the tape (the first bit on the advice tape is thus always 1), while
the even positions are 0 as long as the previous odd bit still belongs to the binary
representation of m − 1. Thus, a 1 at an even position marks the end of the binary
representation of m.

Obviously, A knows the length of m = dlog xe ≤ dlog ne afterwards and therefore x. To
sum up, at most

max{2, 2dlogdlog nee+ dlog ne}
advice bits are sufficient to be communicated to A in total. As we are usually interested in
large values of x, we only consider the second argument of the max-function (as the first
one is only valid for x = 1 and x = 2).

To clarify this idea, see Table 1.1; suppose that the number x = 65536 has to be encoded
on the advice tape in a self-delimiting way and that A knows that any potential number
to be encoded is strictly positive. As stated by Observation 1.14, O writes 65535 onto the
advice tape, using dlog 65536e = 16 bits. We assume that A does not know the length of
x in binary, but it does know that this length, again, is non-zero. Therefore, O first writes
the number 15 onto the advice tape using dlog 16e = 4 bits; it needs another 4 bits to
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x x− 1 m− 1 dlogme advice string
1 0 – – 0 0
2 1 – – 0 1
3 2 1 1 1 1 1 0
4 3 1 1 1 1 1 1
5 4 2 2 1 0 0 1 1 0 0
6 5 2 2 1 0 0 1 1 0 1
7 6 2 2 1 0 0 1 1 1 0
8 7 2 2 1 0 0 1 1 1 1
9 8 3 2 1 0 1 1 1 0 0 0
10 9 3 2 1 0 1 1 1 0 0 1
...

...
...

...
...

65536 65535 15 4 1 0 1 0 1 0 1 1︸ ︷︷ ︸
2dlogdlog xee

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1︸ ︷︷ ︸
dlog xe

...
...

...
...

...

Table 1.1: Encoding a number x in a self-delimiting way; binary numbers that are used by A to compute
the length of the binary representation of m− 1 are highlighted in gray.

make this first part of the advice string self-delimiting; the concrete string is also shown in
Table 1.1. Note that Observation 1.14 can be improved by iterating the same idea [117].
However, the bound given by Observation 1.14 is sufficient for our investigations.

When proving upper bounds on the advice complexity, we sometimes use the following
idea. Suppose the oracle needs to communicate some n-bit string to the algorithm, but
this string always contains only a few ones or only a few zeros; the next lemma describes
an efficient encoding of such strings.

Lemma 1.15. Consider an online algorithm A that, for every input instance, achieves
a competitive ratio of c while using some n-bit advice string that contains at most n/t
zeros or at least n − n/t zeros, where t > 2 is a fixed constant. Then, it is possible to
design an improved online algorithm B achieving the same competitive ratio c that knows
the parameter t and has an advice complexity of at most

min

{
n log

(
t

(t− 1)
t−1

t

)
,
n log n

t

}
+ 3 log n+O(1).

Proof. Let m be the number of all n-bit strings with at most n/t or at least n−n/t zeros.
To communicate any such string φ to the algorithm B, the oracle writes a number from
{0, . . . ,m − 1} onto the advice tape that indicates the position of φ in the lexicographic
ordering of all such possible strings. To do so, dlogme bits are sufficient. The algorithm,
however, needs to know n and t to be able to decode the advice; since t is always known
to the algorithm, it is sufficient to encode the value of n on the advice tape in a self-
delimiting way. Observation 1.14 states that at most 2dlogdlog nee + dlog ne bits suffice
for this. Hence (note that log n > 2dlogdlog nee, for n > 64),

2dlogdlog nee+ dlog ne+ dlogme = logm+ 2 log n+O(1)

bits of advice are sufficient to achieve c-competitiveness.



24 Chapter 1. Introduction

0 Number of zeros

N
um

be
r

of
st

ri
ng

s

n
t n− n

t n

Figure 1.5: Encoding strings with at most n/t or at least n− n/t zeros.

Now let us estimate the numberm of possible strings (see Figure 1.5). Since (t−1)n/t =
n− n/t and t > 2 (again, see Section 1.2 about the central binomial coefficient), we get

m ≤ 2

bn
t
c∑

i=0

(
n

i

)
= 2

(
n

0

)
+

bn
t
c∑

i=1

(
n

i

)
≤ 2 + 2

n

t

(
n

bnt c

)

and subsequently

logm ≤ log

((
n

bnt c

))
+ log n+O(1).

Substituting q := bn/tc and using Stirling’s approximation (we assume that q ≥ 1, other-
wise the claim is trivial), we get

log

((
n

bnt c

))
= log

((
n

q

))
= log

(
n!

q!(n− q)!

)

≤ log

( √
n · nn√

2πq(n− q)qq(n− q)n−q

)
+ log 1.05

≤ log

( √
n√

2πq(n− q)
· nn

qq(n− q)n−q

)
+O(1)

=
1

2
log

(
n

2πq(n− q)

)

︸ ︷︷ ︸
≤0

+ log

(
nn

qq(n− q)n−q
)

+O(1)

≤ log

(
nn

qq(n− q)n−q
)

+O(1).
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It is straightforward to verify that qq(n− q)n−q is decreasing in q, for q ∈ (0, n/2), so we
have

log

((
n

bnt c

))
≤ log

(
nn

(
n
t

)n
t (n− n

t )n−
n

t

)
+O(1)

= n log

(
n

(
n
t

) 1

t
(
n− n

t

)1− 1

t

)
+O(1)

= n log

(
n

(
n
t

) 1

t
(
n
t (t− 1)

) t−1

t

)
+O(1)

= n log

(
n

(t− 1)
t−1

t

(
n
t

) 1

t
(
n
t

) t−1

t

)
+O(1)

= n log

(
t

(t− 1)
t−1

t

)
+O(1),

which concludes the proof of the first claim of the lemma. To prove the second one, recall
that

(
n
q

)
≤ nq (see (1.3)), and thus

logm ≤ O(1) + log n+ log(nq) ≤ n

t
log n+ log n+O(1).

The lemma follows. �

We are now ready to talk about the advice complexity of a concrete online problem.
Again, as a starting point, we choose Paging.

1.7 Advice Complexity of the Paging Problem

In [35], Paging was one of the first problems that were studied within the framework of
advice complexity as we use it here (i. e., the model described in Section 1.6). In what
follows, let K denote the size of the cache as in Definition 1.4.

At first, using Lemma 1.15, it was shown that, to achieve a constant competitive ratio,
it suffices to use a number of advice bits that is linear in the input size n as already
indicated in the previous section.

Theorem 1.16 (Böckenhauer et al. [35]). There exists a c-competitive online algo-
rithm with advice for Paging with advice complexity

n log

(
c+ 1

c
c

c+1

)
+ 3 log n+O(1),

for every constant c ≥ 1. ♦

As a direct consequence, we obtain that, to achieve a constant competitive ratio c,
it suffices to read a constant number (smaller than 1) of advice bits on average with
every request (see Figure 1.6). More precisely, with n tending to infinity, we have that,
amortized, it is sufficient to read

log

(
c+ 1

c
c

c+1

)
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Figure 1.6: The competitive ratio and the number of advice bits sufficient per request.

advice bits per request (see Corollary 1 in [35]). Next, a lower bound on achieving a
competitive ratio that is close to 1 was given.

Theorem 1.17 (Böckenhauer et al. [35]). Let c be any constant such that 1 ≤ c ≤
1.25. For any online algorithm A with advice for Paging with a competitive ratio of c, at
least

1

2K − 2

(
1 + log(3− 2c)− (2c− 2) log

(
1

2c− 2
− 1

))
−O

(
1

n

)

advice bits are required per time step on average. The constant of the term O(1/n) depends
on K and the parameters c and α of A (as specified in Definition 1.3). ♦

With c tending to 1 and K tending to infinity, we see that the above bound tends to
1/2. To get a better lower bound on the number of bits necessary to obtain an optimal
result, the following result was shown.

Theorem 1.18 (Böckenhauer et al. [35]). Any optimal online algorithm with advice
for Paging needs to access at least

1

2K − 2
log

((
2K − 2

K − 1

))
−O

(
1

n

)
≥ 1− log(K − 1) + d

4(K − 1)
−O

(
1

n

)

advice bits per time step on average, for some constant d not depending on K; the constant
of the term O(1/n) depends on K. ♦

Note that the bound given in Theorem 1.18 tends to 1 with K and n tending to infinity
and is therefore tight (there is a trivial upper bound, as already mentioned). It was also
studied what can be done with small advice, i. e., which competitive ratio is reachable for
a constant number of advice bits used overall. The following result might be considered
rather surprising.
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Theorem 1.19 (Böckenhauer et al. [35]). Let d < K be a power of 2. There exists
an online algorithm with advice for Paging that uses log d advice bits and that achieves
a competitive ratio of

3 log d+
2(K + 1)

d
.

Furthermore, if only instances are considered that consist of K + 1 pages, the bound im-
proves by a factor of 2. ♦

Finally, the upper bound on inputs with K + 1 different pages from Theorem 1.19 was
complemented by the following theorem.

Theorem 1.20 (Böckenhauer et al. [35]). Consider the class of inputs with K + 1
possible pages and let d be a power of 2. Any online algorithm with advice for Paging
that uses at most log d advice bits for these inputs has a competitive ratio of at least
K/d−O(1/n). ♦

Let us interpret the above results. To achieve optimality, linear advice is sufficient, and
this bound is tight for large K. As we have seen in Section 1.3, deterministic strategies
cannot be better thanK-competitive. Interestingly, Theorem 1.19 states that merely 2 bits
of advice supplied in total suffice to strictly improve the competitive ratio to K/2 +O(1).
Furthermore, as we have pointed out in Section 1.3, randomized online algorithms can be
at most lnK-competitive. Theorem 1.19 yields that we are asymptotically on par with
using logK bits of advice, which allows for a competitive ratio of 3 logK +O(1).
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Chapter 2

Job Shop Scheduling

The first problem we are dealing with in terms of advice complexity is called job shop
scheduling ; a more detailed introduction and description can be found in [46, 78]. For this
class of problems, we are given a number of so-called jobs that each need to use some of
a set of given machines in some predefined order for some amount of time. The goal is to
schedule all jobs on the machines while minimizing the running time of the machine with
the highest load (called the makespan) by parallelizing as much of the work as possible.

In this chapter, we consider the following variant of job shop scheduling [35, 45, 88,
90, 126, 127], denoted by JSS. Let there be two jobs A and B, each of which consists of
m tasks. These tasks must be executed in sequential order, and each task needs to be
processed on a specific machine. There are exactly m such machines identified by their
indices 1, . . . ,m, and each job has exactly one task for every machine. Processing a task
takes exactly one time unit, and, since both jobs need every machine exactly once, we
may represent them as permutations πA and πB of {1, . . . ,m}. The meaning of such a
permutation is that the tasks must be performed in the order specified by it and that, for
every machine, the kth task must be finished before we may start with task k + 1. If,
in one time step, both jobs A and B ask for the same machine, one of them has to be
delayed. The cost of a solution is given by the total time needed by both jobs to finish
all tasks. As mentioned above, the goal is to minimize this time (the makespan). Let us
define the problem formally.

Definition 2.1 (JSS). Given two permutations πA = (p1, . . . , pm) and πB = (q1, . . . ,
qm), where pi, qj ∈ {1, . . . ,m}, for every i, j ∈ {1, . . . ,m}, an algorithm for JSS outputs
two injective functions fA and fB such that fA, fB : {1, . . . ,m} → {1, . . . , 2m}, fA(pi) <
fA(pj) [fB(qi) < fB(qj)] if and only if i < j, and fA(pi) 6= fB(qj) if pi = qj. The
permutations πA and πB arrive successively, i. e., only p1 and q1 are known at the beginning
and pi+1 [qj+1] is revealed after pi [qj] has been processed; the aim is to minimize the
makespan max{fA(pm), fB(qm)}.

While the general offline job shop scheduling problem is well known to be NP-hard
(shown by Garey, Johnson, and Sethi [79]), it is obvious that the considered special case is
efficiently solvable in an offline scenario; as we see in the following paragraph, we simply
need to calculate a shortest path on a sparse, directed, acyclic graph which can be done
in linear time [58].

We use the following graphical representation [45, 81, 88, 147], which was used for the
first time by Akers [4]. Consider an (m×m)-grid where we label the x-axis with πA and the

29
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y-axis with πB. The cell (pi, qj) models that, in the corresponding time step, A processes
a task on machine pi while B processes a task on qj . A feasible schedule for the induced
instance of JSS is a path that starts at the upper left-hand corner of the grid and leads
to the lower right-hand corner. It may use diagonal steps whenever pi 6= qj . However,
if pi = qj , both A and B ask for the same machine at the same time, and therefore one
of them has to be delayed. In this case, we say that A and B collide, and we call the
corresponding cells in the grid obstacles (see Figure 2.1). If the algorithm has to delay a
job, we say that it hits an obstacle and may therefore not make a diagonal step, but either
a horizontal or a vertical one. In the first case, B gets delayed, in the second case, A gets
delayed.

Observation 2.2. The following facts are well known [35, 88, 90].

(i) Since πA and πB are permutations, there is exactly one obstacle per row and exactly
one obstacle per column, for every instance.

(ii) It follows that there are exactly m obstacles overall, for every instance.

(iii) Every optimal solution has a cost of at least m, and thus every online algorithm is
2-competitive or better.

(iv) Every feasible solution makes exactly as many horizontal steps as it makes vertical
ones. We call the number of horizontal [vertical] steps the delay of the solution.

(v) The cost of a solution is equal to m plus the delay of the solution.

(vi) Hitting an obstacle causes an additional cost of at most 1 (in certain situations even
none) since one diagonal step can be simulated by exactly one horizontal and one
vertical step.

Let diag0 denote the main diagonal (from (1, 1) to (m,m)) in the grid. The diagonal
that has a distance of i from diag0 and lies below [above] it is denoted by diag−i [diagi].
Similar to [90], for any odd d, we consider a certain set of diagonal strategies

Dd :=

{
Di

∣∣∣∣ i ∈
{
−d− 1

2
, . . . ,

d− 1

2

}}
,

where Dj is the strategy to move to the starting point of diagj with j steps, to follow diagj
when possible, and to avoid any obstacle by making a horizontal step directly followed by
a vertical one (thus returning to diagj). Note that it is crucial for our analysis that the
algorithm returns to the diagonal even though there might be situations where it is an
advantage not to take the vertical step after the horizontal one.

In the following two sections, we give lower and upper bounds on the number of advice
bits needed to achieve a certain output quality. Doing so, we improve and generalize some
of the results obtained in [35].

2.1 Optimality

First, let us discuss the amount of information both sufficient and necessary for an online
algorithm to produce an optimal solution for JSS. Hromkovič et al. have proven the
following lemma [90].
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Figure 2.1: An example input with two jobs each of size 20 and the strategies D−3 and D2; obstacles are
marked by filled cells.

Lemma 2.3 (Hromkovič et al. [90]). For every instance of JSS, there exists an opti-
mal solution that has a cost of at most m+ d√m e. ♦

Using this result, the following theorem was shown in [35].

Theorem 2.4 (Böckenhauer et al. [35]). For JSS, there is an optimal online algo-
rithm with advice that uses at most 2d√m e advice bits for any instance. ♦

The strategy is to get one bit of advice for every obstacle that is hit indicating whether
to move horizontally or vertically to bypass it. Since we know that there always is an
algorithm which makes at most d√m e vertical and d√m e horizontal steps while hitting
at most 2d√m e obstacles, the claim follows. We now improve this upper bound by com-
pressing the advice strings.

Theorem 2.5. For JSS, there is an optimal online algorithm A with advice that uses at
most 2d√m e − 1

4 logm advice bits for any instance.

Proof. Indeed, there are 22d
√
m e possible strings of length 2d√m e out of which the oracle

provides one to the online algorithm thus using 2d√m e bits in the proof mentioned above.
If the solution can be represented by a shorter string, we just append zeros to obtain a
string of length 2d√m e. Recall that A knows m and therefore d√m e. The crucial part is
that all of these strings have a very nice structural property: due to Observation 2.2 (iv),
they contain as many ones as they contain zeros. From (1.4), it immediately follows that,
for a fixed m, there exist

(
2d√m e
d√m e

)
<

4d
√
m e

√
πd√m e
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such strings. Enumerating all possible strings in canonical order and then merely commu-
nicating the index of the specific string gives that it suffices to use

log

(
4d
√
m e

√
πd√m e

)
= d√m e · log 4− log

(√
πd√m e

)
≤ 2d√m e − 1

4
logm

bits of advice. �

Next, we give a lower bound on optimality.

Theorem 2.6 (Böckenhauer et al. [35]). For any ε > 0, at least
⌊√

16m+ 9− 11

8

⌋
=

√
m

2
− ε

advice bits are necessary to produce optimal output for any online algorithm with advice
for JSS. ♦

Using a similar technique as in the proof of this theorem, we improve the bound by a
factor of

√
2.

Theorem 2.7. Let ε > 0. Any online algorithm with advice for JSS needs to use at least√
m/2− ε advice bits to be optimal.

Proof. Let k be even and let m be a multiple of 2k + 13. Consider the instance shown
in Figure 2.2 that consists of three levels that are of sizes k + 1, 11, and k. Additionally,
there is one row and one column we need to place spare obstacles in what follows. Suppose
that exactly one out of the two light gray obstacles b1 and b2 is missing.

Obviously, there is an optimal solution that starts at the upper left-hand corner and
follows the main diagonal until it hits the first obstacle c that is in its way. Depending
on which one of the next two obstacles b1 and b2 is not present, it makes a horizontal or
a vertical step to avoid the present one. It then follows diag1 [diag−1] for exactly 5 steps
after which it hits another obstacle, which it bypasses by returning to the main diagonal.
Thereafter, it does not hit any other obstacle until it reaches the lower right-hand corner.
In total, the number of non-diagonal steps is exactly 2 (one horizontal and one vertical
step, see Figure 2.2).

We now construct an instance I that consists of

s :=
m

2k + 13

such sub-instances, which we call widgets in what follows. All these widgets are placed
consecutively on the main diagonal (i. e., for every widget, its main diagonal is a part of
the main diagonal of I) such that they do not overlap. For now, suppose that no optimal
solution can diverge from the main diagonal by more than k (which means it cannot leave
the gray field in Figure 2.2, which we call active zone). Obviously, an optimal solution for
I enters every widget at its upper left-hand corner and leaves it at its lower right-hand
corner, acting as described above in between. It follows that every optimal solution has a
delay of exactly s.

Consider a feasible solution B that acts optimally in the first i ≥ 0 widgets after which,
in widget i + 1, it hits, without loss of generality, b1. This means that B has to make
strictly more than two non-diagonal steps in this widget. Returning to the main diagonal
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Figure 2.2: The widget of size (2k + 13)× (2k + 13) used to prove Theorem 2.7 and an optimal solution
making one horizontal and one vertical step.

immediately (i. e., making a vertical step) results in being forced to make at least four
non-diagonal steps. Since B has to make 2 non-diagonal steps also in all following widgets,
it clearly is not optimal. The same holds if c is just bypassed by a horizontal step directly
followed by a vertical step.

Recall that B may not leave the active zone. The only remaining strategy is to get
further away from the main diagonal (again implying four non-diagonal steps in widget
i + 1) and to enter the following widgets at a diagonal different from, without loss of
generality above, diag0. Suppose that B moves to diag2 after hitting b1 which also causes
a total of four non-diagonal steps within widget i+1. After that, B may enter widget i+2
at diag2, diag4, or diag6. However, at least two non-diagonal steps are necessary within
it, and this obviously holds for all of the following widgets as well. The same observation
can be made for any other even diagonal with a distance of less than k from the main
diagonal. If B leaves the widget at an odd diagonal, it was forced to make one additional
non-diagonal step. Afterwards, it is able to pass level 1 in the next widget without making
a non-diagonal step. However, if it only makes one non-diagonal step at level 3, it leaves
widget i + 2 at an even diagonal, resulting in at least two non-diagonal steps in widget
i+ 3.

It remains to choose k such that, if any solution leaves the active zone, it cannot be
optimal. We conclude

m

2k + 13
+ 1 ≤ k ⇐⇒ m ≤ 2k2 + 11k − 13,

which is ensured if

k ≥
√
m

2
+

225

16
− 11

4
.
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Since k must be a natural number, we can safely set

k :=

⌈√
m

2
+

225

16
− 11

4

⌉
.

Thus, we get

s =
m

2
(⌈√

m
2 + 225

16 − 11
4

⌉)
+ 13

≥ m√
2m+ 225

4 + 19
2

=

√
m

2
− ε.

Until now, we did not talk about algorithms with advice. To this end, suppose that we
consider the class I of all possible inputs as constructed in the above way. Since, for
every widget, there are two possibilities (either b1 or b2 is missing), we have that |I| = 2s.
Furthermore, for every I ∈ I, there is one unique optimal solution, and for every two
different I, I ′ ∈ I, the corresponding optimal solutions are never the same.

Therefore, as a direct consequence of the pigeonhole principle, an optimal online algo-
rithm needs to read s bits of advice at least. �

2.2 Small Competitive Ratio

Intuitively speaking, we now show that there always exists a cheap solution close to the
main diagonal diag0, which implies that only a few bits of advice are necessary to achieve
a good result. In what follows, d is always a small odd constant which is independent of
the input size. Furthermore, let γ := d2/4− d; note that γ > −1.

Recall that we call the number of horizontal [vertical] steps of a solution its delay; the
cost of the solution is always equal to m plus its delay (see Observation 2.2 (v)). More
specifically, the delay of a diagonal strategy Di is |i| plus the number of obstacles on
diagi. If i ≥ 0, the strategy Di makes i horizontal steps to reach diagi and then a single
horizontal step for every obstacle on diagi. The argument for i ≤ 0 is similar, but using
vertical steps. Before we continue, we need the following lemma.

Lemma 2.8. There is a diagonal strategy in Dd that has a delay of at most dγ+m
d e.

Proof. As we have seen in Observation 2.2 (ii), there are exactly m obstacles in the whole
grid that represents the instance at hand. Towards contradiction, suppose that the claim
is wrong. Therefore, each of the considered strategies has a cost of at least m+dγ+m

d e+1.
This means that at least dγ+m

d e + 1 obstacles are on the main diagonal, at least dγ+m
d e

obstacles are on diag−1 and diag1, in general at least

⌈
γ +m

d

⌉
+ 1− i

obstacles have to be on diag−i and diagi, and finally

⌈
γ +m

d

⌉
− d− 3

2
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obstacles are on diag−(d−1)/2 and diag(d−1)/2. Hence, we get a total of

⌈
γ +m

d

⌉
+ 1 + 2

(d−1)/2∑

i=1

(⌈
γ +m

d

⌉
+ 1− i

)

≥ γ +m

d
+ 1 +

(
γ +m

d
+ 1

)
(d− 1)− 2

(d−1)/2∑

i=1

i

=

(
γ +m

d
+ 1

)
d− d2 − 1

4
= m+ d+

d2

4
− d− d2 − 1

4

obstacles, which is strictly more than m and thus contradicts our assumption. �

We are now ready to prove the following theorem.

Theorem 2.9. For every d, there exists an online algorithm Ad with advice for JSS that
reads dlog de advice bits and that achieves a competitive ratio of

1 +
1

d
+

d

4(m+ 1)
− d+ 1

d(m+ 1)
.

Proof. Let Ad know d and read dlog de bits in total that tell the algorithm which out of the
diagonal strategies from Dd to follow. As we have shown in Lemma 2.8, one out of these
strategies has a delay of at most dγ+m

d e. Note that, if the optimal solution has cost m, this
solution must take the main diagonal. But in this case, Ad is always optimal, because there
are no obstacles on diag0 and the corresponding delay is therefore 0. Hence, without loss
of generality, we may assume a lower bound of m+ 1 on the cost of the optimal solution.
To conclude from the above, we get a competitive ratio of Ad of at most

m+
⌈
d2/4−d+m

d

⌉

m+ 1
≤ m+ d2/4−d+m

d + 1

m+ 1
=
m+ m

d + d
4

m+ 1
= 1 +

1

d
+

d

4(m+ 1)
− d+ 1

d(m+ 1)

as we claimed. �

Figure 2.3 shows how the competitive ratio of Ad behaves depending on the number of
advice bits. In [90], it was shown that, for any ε > 0, any deterministic online algorithm
without advice cannot be better than (1 + 1/3− ε)-competitive. On the other hand, the
competitive ratio of Ad tends to 1 + 1/7 (recall that d is odd) with only 3 bits of advice,
for m tending to infinity. Hence, we can beat deterministic strategies with only very little
additional information. Recall that a similar result was shown for Paging in [35], as we
mentioned in Section 1.7.

In Theorem 2.9, we did not care about the uniformity of Ad for different values of d.
It is, however, not difficult to avoid the non-uniformity, i. e., to define a single algorithm
A that reaches a competitive ratio tending to 1 + 1/d, for any d. To do so, the oracle first
encodes the number dlog de on the advice tape; this has to be done in a self-delimiting
way. From Observation 1.14, it follows that at most 2dlogdlog dee additional advice bits
are sufficient to do so.

Corollary 2.10. There exists an online algorithm A with advice for JSS that achieves
a competitive ratio tending to 1 + 1/d with growing m with advice complexity dlog de +
2dlogdlog dee. �
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Figure 2.3: The competitive ratio of Ad depending on log d, for m tending to infinity.

It is not difficult to see that the analysis of the algorithm Ad is almost tight for every
d. To show this, we give a construction that blocks all diagonals the algorithm chooses
from. Following any of the blocked diagonals causes the algorithm to have a cost of at
least m+m/d, whereas an optimal solution has a cost of exactly m+ 1.

Theorem 2.11. For any d and any ε > 0, the competitive ratio of the algorithm Ad is not
better than 1 + 1/d− ε.
Proof. Let m and l be even. We now describe how to sufficiently delay every possible
diagonal strategy. Suppose we want to make sure that every strategy has a delay of at
least l. At first, we place l obstacles in the center of the main diagonal, i. e., in the cells
(m/2−l/2+1,m/2−l/2+1) to (m/2+l/2,m/2+l/2). For now, let us focus on the cells that
are in the lower right-hand quadrant of the (m×m)-grid. For each i ∈ {1, . . . , (d− 1)/2},
we create one block of obstacles; the block corresponding to i consists of l − i obstacles.
All of these obstacles are put on the ith diagonal above the main one, in consecutive rows,
just below the rows used by block i− 1. In particular, the obstacles of block 1 are located
in the cells (

m+ l

2
+ 2,

m+ l

2
+ 1

)
, . . . ,

(
m+ l

2
+ l,

m+ l

2
+ l − 1

)
,

the obstacles of block 2 are located in the cells
(
m+ l

2
+ l + 2,

m+ l

2
+ l

)
, . . . ,

(
m+ l

2
+ 2l − 1,

m+ l

2
+ 2l − 3

)
,

etc. Hence, we need to use l − i rows and l − i + 1 columns to build block i (the first
column of the block is empty since block i is on a different diagonal than block i− 1).

To be able to successfully build all of the blocks, we need at least

l

2
+ 1 + (l − 1) + 1 + (l − 2) + · · ·+ 1 +

(
l − d− 1

2

)
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Figure 2.4: A hard instance for D5.

columns. Clearly, if there are enough columns available, there are enough rows available
as well. Since we have exactly m/2 columns, we have to make sure that

m

2
≥ l

2
+

(d−1)/2∑

i=1

(1 + l − i)

⇐⇒ m

2
≥ l

2
+
d− 1

2
(1 + l)− d2 − 1

8

⇐⇒ l ≤ m+ d2+3
4 − d
d

.

We can ensure this by taking l to be the smallest even integer such that

l ≥ m+ d2+3
4 − d
d

− 2.

The same construction can be performed in the upper left-hand quadrant in a sym-
metric way. In every block, there is one free column. It remains to use the rows not used
by any block (nor by the obstacles in the main diagonal) to put a single obstacle in every
such free column. To do so, we use the upper right-hand and lower left-hand quadrant. It
is straightforward to observe that this is always possible, even without using any diagonal
neighboring the main one.

An example of this construction for m = 20, l = 4, and D5 is shown in Figure 2.4. It
is clear that any optimal solution has a cost of exactly m+ 1: An optimal solution follows
the main diagonal until the first obstacle is hit. Afterwards, it makes one vertical step and
follows the first diagonal below the main one (i. e., diag−1).

Ad calculates a solution with a delay of at least l, i. e., with a cost of at least

m+ l ≥ m+
m+ d2+3

4 − d
d

− 2 ≥ (m+ 1)

(
1 +

1

d

)
− 4− 1

d
+
d2 + 3

4d
.
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Figure 2.5: An example of how to place the obstacles in such a way that any deterministic algorithm
cannot make two consecutive diagonal steps as presented in [90].

Therefore, the competitive ratio of Ad on this instance is at least

(m+ 1)
(
1 + 1

d

)
− 4− 1

d + d2+3
4d

m+ 1
= 1 +

1

d
+
d2 − 16d− 1

4d(m+ 1)
≥ 1 +

1

d
− ε (2.1)

if m is large enough, which we can assume for infinitely many m. Finally, note that, if
d ≥ 17, (2.1) holds even if ε = 0. �

Up to this point, we have shown that, with a small constant number of advice bits, it
is possible to perform very well. Additionally, in Theorem 2.7, we have proven that, for
any arbitrarily small ε > 0,

√
m/2− ε advice bits are necessary to create optimal output.

This poses the question of whether we can be (1 + o(1))-competitive with reading a
constant number of advice bits, i. e., whether it suffices to use a constant number of bits
to get arbitrarily close to the optimal solution. In the following, we disprove this.

Theorem 2.12. For any ε > 0, any online algorithm with advice for JSS that reads b
advice bits cannot be better than

(
1 +

1

3 · 2b − ε
)
-competitive.

Proof. Recall that it is known that any deterministic online algorithm B for JSS has a
competitive ratio of at least 4/3 − ε, for any ε > 0 [90]. There exists an adversary that
can make sure that, while B has not yet hit a border, every second step of B is not a
diagonal one (which then, after some further estimations, results in a delay of at least
m/3): The intuitive idea is that, after every diagonal step of B, the algorithm reaches a
column and a row in which the adversary has not yet placed any obstacle; this idea is
shown in Figure 2.5. Furthermore, we already know that there always exists an optimal
solution with a cost of at most m+ d√m e as stated by Lemma 2.3.

For any online algorithm that reads b bits of advice and any ε > 0, we find some
(arbitrarily large)m and construct an input instance of sizem×m such that the algorithm
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A1

A2

A3

︸︷
︷︸

︸︷︷︸

δ

δ

Figure 2.6: A hard instance for A as used in the proof of Theorem 2.12, which uses the construction of
[90] (see Figure 2.5) 2b times.

has a delay of at least m
3·2b . Hence, the makespan of this algorithm is at least m

(
1 + 1

3·2b
)
,

and, since the optimal solution has a makespan of at most m + d√m e, the competitive
ratio of the algorithm cannot be better than

m
(
1 + 1

3·2b
)

m+ d√m e ≥ 1 +
1

3 · 2b − ε,

for any sufficiently large m.
In the following, let m be a multiple of 2b. Suppose that we are now dealing with any

online algorithm A with advice that reads b advice bits while processing an input of size
m. We impose another virtual grid on the (m×m)-grid, where each virtual cell consists of
m′×m′ original cells and m′ := m/2b. Let us now consider the 2b virtual cells on the main
diagonal (as shown in Figure 2.6). We call these cells blocks and label them S1, . . . , S2b .

Furthermore, similar to the proof of Theorem 2.7, we call all original cells that have a
deviation of at mostm′ from the main diagonal the active zone (marked gray in Figure 2.6).
Any algorithm that leaves this zone at any point makes at least m′ horizontal [vertical]
steps and thus has a delay of at least m′ > m

3·2b . We may therefore assume that the given
algorithm never leaves the active zone.

Following Observation 1.12, we may think of A as a set Alg(A) of 2b deterministic
algorithms A1, . . . , A2b we have to deal with. Without loss of generality, we may assume
that each of these algorithms makes a diagonal step whenever possible [35]. We assign each
deterministic algorithm Ai ∈ Alg(A) to exactly one block Si. Now we construct the input
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instance sequentially in a way such that all obstacles are located in some block Si. Note
that Si spans the rows and the columns m′i+ 1, . . . ,m′i+m′. Recall that pi denotes the
ith task of the first job and qi denotes the ith task of the second job. We thus construct
the input such that pm′i+1, . . . , pm′i+m′ , as well as qm′i+1, . . . , qm′i+m′ , are permutations
of the numbers m′i+ 1, . . . ,m′i+m′.

Assume that, so far, we have constructed S1, . . . , Si−1. Next, we define Si such that Ai
has a delay of at least m

3·2b , regardless of the content of any Sj , for j > i. Without loss of
generality, assume that Ai reaches the right border of Si−1 at distance δ above the main
diagonal; the case that Ai reaches the bottom border of Si−1 is analogous. Moreover, if
i = 1, we define δ := 0, since the first algorithm A1 starts at the top-left point of the main
diagonal. In the following, we show how to ensure that Ai has a delay that is sufficiently
large in block Si while ignoring Ai’s performance in all the other blocks.

Since there are no obstacles outside the blocks and we assume that Ai makes a diagonal
step whenever possible, Ai makes δ diagonal steps after leaving Si−1 until it reaches the
top border of Si, i. e., the upper left-hand corner of the cell (m′i+δ+1,m′i+1). We assign
the first δ tasks to the first job sequentially, i. e., pm′i+j := m′i+ j, for all j ∈ {1, . . . , δ}.

After Ai reaches the cell (m′i+ x,m′i+ y), the first m′i+ x tasks of the first job and
the first m′i+ y tasks of the second job must be assigned. In the sequel, we maintain the
invariant that, in such a situation, only numbers up to m′i+ max{x, y} are used for both
jobs. This invariant holds before Ai reaches the cell (m′i+ δ + 1,m′i+ 1).

When Ai reaches Si, we employ the strategy of [90] to ensure that every second step
of Ai is non-diagonal: At first, we assign

pm′i+δ+1 = qm′i+1 := m′i+ δ + 1,

thus creating an obstacle; therefore, the next step of Ai will be a non-diagonal one. When-
ever Ai makes a horizontal [vertical] step, we assign the smallest possible task as the next
task of the first [second] job. When Ai makes a diagonal step in cell (m′i + x,m′i + y),
thus reaching the upper left-hand corner of cell (m′i+ x+ 1,m′i+ y + 1), we assign

pm′i+x+1 = qm′i+y+1 := m′i+ max{x, y}+ 1.

Hence, we create an obstacle and force Ai to make another non-diagonal step. It is easy
to verify that we can always follow this strategy due to the validity of the invariant and
that the invariant is never violated.

We use this strategy until Ai reaches the right or bottom border of Si. Assume that
Ai makes h horizontal steps, v vertical steps, and d diagonal steps in this part of the
computation (i. e., in block Si). Since every diagonal step is followed by a non-diagonal
one and the first step is non-diagonal, we have h + v ≥ d. We now give a lower bound
on the total delay D of Ai on the constructed instance. Even though we have not yet
constructed Sj , for j > i, we can proceed, because our bound will not depend on them (as
we have mentioned before, we only consider the delay caused in block Si). Recall that the
total number of horizontal and vertical steps of Ai over the whole input must be equal,
and D is defined as exactly this number, see Observation 2.2 (iv). We distinguish two
cases depending on the relation between h and v.

Case 1. Suppose that h ≥ v. In this case, Ai reaches the right border of Si. Since Ai
entered Si in column m′i+ δ + 1, there were m′ − δ non-vertical steps, hence

m′ − δ = h+ d ≤ 2h+ v ≤ 3h.
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Therefore, h ≥ (m′−δ)/3. Since Ai leaves Si−1 at distance δ above the main diagonal,
it made at least δ horizontal steps before it entered Si. Thus, we can bound the total
number of horizontal steps of Ai, which is equal to D, by

δ + h ≥ m′ + 2δ

3
≥ m′

3
.

Case 2. Suppose that h < v. Assume that Ai leaves Si at distance δ′ above the bottom
border of Si; if Ai reaches the bottom border, δ′ = 0, otherwise δ′ > 0. Since Ai
made m′ − δ′ non-horizontal steps in Si, we have

m′ − δ′ = v + d ≤ 2v + h ≤ 3v

and v ≥ (m′ − δ′)/3. After leaving Si, Ai must make at least δ′ vertical steps to end
up at the main diagonal. Hence, the total number of vertical steps of Ai, which is
equal to D, can be bounded by

δ′ + v ≥ m′ + 2δ′

3
≥ m′

3
.

In both cases, Ai has a delay of at least m′/3. Therefore, after constructing all blocks Si
in the described way, we obtain an instance, for which every Aj ∈ Alg(A) has a makespan
of at least m+ m

3·2b as we claimed. �

Using this result, an easy calculation shows that the bound from Theorem 2.9 is tight
up to a multiplicative constant of

3 · 2b + 3

3 · 2b + 1
,

which tends to 1 for an increasing b.
In Section 7.1, we construct a barely random algorithm for JSS that basically uses the

same ideas as the algorithm Ad with advice we have designed in this chapter. Moreover,
in Section 7.2, we show that there exists a randomized online algorithm for JSS that does
not only perform well in expectation, but almost always.



42 Chapter 2. Job Shop Scheduling



Chapter 3

Disjoint Path Allocation

In this chapter, we consider a special type of network topology where the entities are
connected by one shared cable (i. e., we are dealing with a bus network as depicted in
Figure 3.1). In every time step, two entities request to establish a permanent connection
between each other. If this request is granted, all entities between these two are busy
maintaining the connection and are thus unable to be involved in any other connection.

Formally, the disjoint path allocation problem (DPA for short) is defined on paths; a
path of length m is a special graph (see Definition 1.1) P = (V,E) with m + 1 vertices
and m edges such that E = {{vi, vi+1} | i ∈ {1, . . . ,m}}. For the ease of presentation,
we denote P by (v1, vm); moreover, a subpath of (v1, vm) from the vertex vi to the vertex
vj is denoted by (vi, vj). For L + 1 entities, the above network is a path P = (v1, vL+1)
of length L. All connections in P have a capacity of 1. For DPA (as described in [38],
also referred to as the call admission problem on a path network), additionally a set of
subpaths of P is given. Each subpath (vi, vj) is a so-called call request, i. e., a request to
establish a permanent connection between the two endpoints vi and vj . If such a request
is satisfied, no inner entity of the path may be part of any other call. Therefore, a disjoint
path allocation is simply a set of edge-disjoint subpaths of P .

Definition 3.1 (DPA). Given a path P = (V,E), where V = {v0, . . . , vL} is a set of
entities, and a set P of subpaths of P , where |P| = n, DPA is the problem of finding a
maximum set P ′ ⊆ P of edge-disjoint subpaths of P . The subpaths P1, . . . , Pn ∈ P arrive
in an online fashion.

We assume that L is known to the online algorithm in advance, but that this is not
the case for n. Recall that, since DPA is a maximization problem, an online algorithm A

solving this problem is c-competitive if cost(Opt(I)) ≤ c ·cost(A(I))+α, for some constant

. . .

Figure 3.1: Schematic view of DPA.

43
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α and every input I; A is strictly c-competitive if α = 0 (see Definition 1.3). In the
following, we use the terms cost and gain interchangeably.

3.1 Deterministic Algorithms

By some simple observations, it is clear that any deterministic online algorithm A is not
better than strictly L-competitive [38]: An adversary Adv controlling P simply sends
P1 = (v0, vL) as the first part of the input. Discarding P1 results in Adv not sending any
other subpath, and therefore A always has to satisfy the first request. Adv now sends the
consecutive requests P2 = (v0, v1), P3 = (v1, v2), . . . , PL+1 = (vL−1, vL), none of which can
be satisfied. Obviously, an optimal offline algorithm would discard P1 in this case and
satisfy all L requests P2 to PL+1. Note that there are exactly L + 1 = n requests for
this input, and A is therefore also not better than strictly (n− 1)-competitive. This lower
bound is tight: Consider a simple greedy algorithm G that always satisfies the first request
given and then any other request possible.

Lemma 3.2. The online algorithm G is both (n− 1)-competitive and L-competitive.

Proof. Since G always satisfies at least one request, we merely need to consider cases in
which an optimal offline algorithm grants strictly more than n−1 requests to prove (n−1)-
competitiveness. However, this is only the case if no subpath of the input intersects with
any other subpath, but in this case G is optimal.

To prove that G is L-competitive, note that G satisfies at least one request, but no
solution can grant more than L requests. �

Up to this point, we have only talked about strict competitiveness. Indeed, the above
argument for the lower bounds does not directly carry over to general competitiveness
(recall our discussion about α from Section 1.3). Suppose that, following the above strat-
egy, the adversary sends the first request, A does not satisfy it, and no second request is
therefore sent. Since we allow an additive constant α, setting c = 1 and α = 1 gives

1 = cost(Opt(I)) ≤ c · cost(A(I)) + α = 1 · 0 + 1,

which means that, by this definition, A might still be 1-competitive. However, we can
easily extend the above idea and prove the following lemma.

Lemma 3.3. No deterministic online algorithm for DPA can be better than (n−O(1))-
competitive.

Proof. Consider any c-competitive deterministic online algorithm A for DPA. By definition,
there exists a fixed constant α such that cost(Opt(I)) ≤ c · cost(A(I)) + α.

Let β := α+ 1. Moreover, for any n, let L = β · n (recall that, in this case, the graph
has β · n+ 1 vertices). We consider a set of inputs that consist of two phases. In phase 1,
there are β consecutive edge-disjoint requests

P1 = (v0, vn), P2 = (vn, v2n), . . . , Pβ = (v(β−1)n, vL)

of length n = L/β each. If A does not satisfy the request Pi, then Pi+1 is requested, and
in the following, no requests intersecting with Pi are made. It directly follows that, in
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Figure 3.2: An example input for the algorithm B.

this case, Opt satisfies Pi. Therefore, if A does not satisfy any of the requests above, Opt
satisfies them all. Observe that

cost(Opt(I)) ≤ c · cost(A(I)) + α

now gives β ≤ c · 0 + α which is a direct contradiction. A therefore has to satisfy at
least one of the first β requests. After A satisfies this request (let this be the ith one),
we immediately start with phase 2. By the same idea as above, in this case, we extend
the input by n − i consecutive requests of length 1, all of which cannot be granted by
A, because they are covered by the path A has just chosen to satisfy. It follows that Opt
satisfies n− 1 requests, whereas A merely satisfies one request. As a result, we have

n− 1 = cost(Opt(I)) ≤ c · cost(A(I)) + α = c+ α

yielding
c ≥ n− (1 + α) = n−O(1)

as we claimed. �

To finish the discussion about comparing the concept of general competitiveness to the
one of strict competitiveness, we now describe a simple online algorithm that, for every α,
achieves a competitive ratio of d L

α+1e, whereas we have already seen that, when talking
about strict competitiveness, there is a tight lower bound of L. Consider an algorithm B

that acts according to Algorithm 3.1.

Algorithm 3.1: Algorithm B for DPA

divide the input into α+ 1 segments, each of length at most d L
α+1e;

if any request intersects with more than 1 segment
discard;

else
satisfy greedily;

end

Lemma 3.4. The online algorithm B is d L
α+1e-competitive.

Proof. Let I be any input instance of DPA. It is clear that there can be at most α disjoint
requests that are in more than one segment and that are at the same time taken by an
optimal algorithm Opt. Consider any of the remaining cost(Opt(I))− α requests that are
granted by Opt. Each of them is made in some segment, and thus there is some request
satisfied in this segment by B. Since the length of one segment is at most d L

α+1e, we can
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account at most that many requests satisfied by Opt to a single request satisfied by B.
Hence, we have

cost(Opt(I))− α ≤
⌈

L

α+ 1

⌉
cost(B(I))

as we claimed. �

An example input and B’s strategy on this input are shown in Figure 3.2: The black
vertices mark the network. Suppose the requests arrive in the order given from left to
right and row after row. Here, L = 15, α+ 1 = 5, and d L

α+1e = d15
5 e = 3. The algorithm B

satisfies the requests 2, 3, and 4 and none else, whereas Opt satisfies the requests 1, 2, 3, 5, 6,
and 7.

Next, we want to study both lower and upper bounds on the number of advice bits
needed by online algorithms to obtain a specific competitive ratio. To do so, we first have
to introduce a special class of input instances on which we base some of our proofs.

3.2 The Class I of Inputs

For some of the following proofs in this chapter, we consider input instances as depicted
in Figure 3.3 (a). For every natural number h, we define the class Ih (I :=

⋃
h∈N Ih) in

the following way. Every element of Ih consists of h+ 1 so-called levels. Level 1 consists
of two edge-disjoint consecutive requests that split the line network into two parts of the
same size. In general, two disjoint consecutive requests on level i + 1 do the same with
one of the intervals from level i. This is iterated until two requests of size 1 appear on
level h + 1. Figure 3.3 (a), for instance, shows an input from I3. It is obvious that any
optimal algorithm satisfies exactly one interval on the first h levels, allowing it to satisfy
both on level h+ 1. In this example, an optimal strategy is to satisfy the second request
on level 1 and level 2, the first request on level 3 and therefore being able to satisfy the
two requests on level 4. Note that, if an algorithm diverges from this strategy at some
point, it is not able to satisfy any more requests for this instance afterwards.

We may represent an optimal solution for any input sequence as described above by
a path from the root to a leaf in a complete binary tree T of height h with its root on a
notional level 0 (see Figure 3.3 (b)). The 2h leaves of T represent the 2h different inputs
of the class Ih. Let Opt denote such an optimal path for some input instance from Ih; we
say that an optimal algorithm Opt makes moves according to this path. For an arbitrary
online algorithm A that satisfies one request on level i, we say that A makes the correct
decision on this level if it also acts according to Opt . Conversely, if A satisfies one interval
not according to Opt or satisfies both requests, we say that A makes the wrong decision on
level i; in this case, we say that A is out (after level i). Furthermore, for every i and an input
instance Ih ∈ Ih, let costi(A(Ih)) denote the overall number of requests satisfied by A up to
level i. If A is out after level i, this means that, for every j ≥ i, costj(A(Ih)) = costi(A(Ih)),
and obviously we have cost(A(Ih)) = costi(A(Ih)). Let correct(A) [wrong(A)] denote the
set of time steps in which A makes the correct [wrong] decision. Since making the wrong
decision can only happen once (because A is out afterwards), the overall gain of A is

cost(A(Ih)) ≤ |correct(A)|+ 2 · |wrong(A)| ≤ |correct(A)|+ 2, (3.1)

which directly implies that, for an optimal algorithm Opt, cost(Opt(Ih)) = h+ 2.
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Level 1

Level 2

Level 3

Level 4

x0,1

x1,1

x1,2

x2,1

x2,2

x2,3

x2,4

(a) An example input from the class I3. (b) T and an optimal solution.

Figure 3.3: An example input of DPA.

3.3 Bounds with Respect to the Number of Requests

First, it was shown that DPA is a hard online problem even for randomized algorithms [35]:
Let R be any randomized online algorithm and let E[cost(R(I))] denote the overall number
of requests satisfied by R in expectation (see Definition 1.6). The following theorem states
that R is at least (n/4−O(1))-competitive.

Theorem 3.5 (Böckenhauer et al. [35]). For every randomized online algorithm R for
DPA, there exists an input I such that E[cost(R(I))] ≤ 2, whereas an optimal solution
satisfies at least n/2 requests. ♦

The proof uses the class I of inputs introduced in the previous section. Note that the
above theorem was also proven independently by Caragiannis et al. in a different setup
dealing with computing independent sets in disc graphs in an online fashion [47].

Let us now present the main result of this chapter by showing a lower bound on the
number of advice bits needed to achieve a particular competitive ratio.

Theorem 3.6. For any online algorithm with advice for DPA, at least

n+ 2

2c
− 2

advice bits are required to achieve a strict competitive ratio of c.

Proof. As described in the previous section, let Ih ∈ Ih be an input instance of DPA and
let T denote the corresponding binary tree. Furthermore, let A be an online algorithm
with advice that reads b < h bits from the advice tape for any input Ih.

Obviously, b bits of advice allow A to distinguish between 2b different inputs whereas
there are actually 2h inputs in Ih. Applying the pigeonhole principle gives that some advice
string φ is used for at least 2h−b different instances. For the ease of presentation, let us
call the corresponding leaves in T sinks. Let xi,k (where k ∈ {1, . . . , 2i} for i ∈ {0, . . . , h})
denote the vertices of T on level i and let ξi,k denote the number of sinks reachable from
xi,k. A makes a unique decision on every level i+ 1 that depends only on the advice string
φ and the input at hand, which is uniquely described by xi,k. In the sequel, we show that
there exists a sink whose corresponding input is hard for A.
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Assume that we have already constructed some prefix of the input that corresponds
to some vertex xi,k. Consider the behavior of A for the constructed input prefix xi,k and
advice φ. We distinguish the following cases depending on the behavior of A on level i+ 1.

Case 1. Suppose that A satisfies one request on level i + 1. In this case, we have
costi+1(A(Ih)) = costi(A(Ih)) + 1. Without loss of generality, let A satisfy the left
request. Note that xi+1,2k−1 is the left child of xi,k and xi+1,2k is the right child of
xi,k. We distinguish two subcases.

1. If ξi+1,2k = 0, we are forced to extend the input to xi+1,2k−1 since the advice
string φ is already fixed.

2. If ξi+1,2k ≥ 1, we extend the input to any sink in the subtree of xi+1,2k, i. e., A
satisfies the left request on level i + 1, but we have just chosen the input such
that the optimal algorithm satisfies the right request. As a result, A is out after
processing the request on level i+ 1.

Case 2. Suppose that A satisfies both requests on level i + 1. It then follows that
costi+1(A(Ih)) = costi(A(Ih)) + 2, but A is out after that since it is not able to
satisfy anymore requests henceforth; so we extend the input to any sink.

Case 3. Suppose that A satisfies no request on level i + 1. It immediately follows that
costi+1(A(Ih)) = costi(A(Ih)), but on the other hand, A is able to satisfy any request
on the next level. We extend the constructed input to xi+1,k′ such that

ξi+1,k′ = max{ξi+1,2k−1, ξi+1,2k},

i. e., we choose the subtree of xi,k that contains the larger number of sinks.

Suppose that case 1.1 occurs d times and that f ∈ {0, . . . , h} is the largest number
such that A is not out after processing the request on level f . Note that, while processing
the first f requests, only the cases 1.1 and 3 occurred, because otherwise, A is already out
after processing level f . We have that ξ0,1 ≥ 2h−b, and case 3 occurred exactly f −d times
on the first f levels. Whenever case 3 occurred, the number of sinks in the subtree of the
processed input prefix decreased by at most one half. Whenever case 1.1 occurred, the
number of sinks did not decrease at all. Hence, after processing level f , there are at least

2h−b ·
(

1

2

)f−d
= 2h−f+d−b

and at most 2h−f sinks. This gives
b ≥ d, (3.2)

which formally proves the intuitive idea that at least one advice bit is needed for every
decision that increases the number of granted requests and also allows A not to be declared
out.

Observe that an optimal algorithm is able to satisfy exactly n/2 + 1 requests (one on
every level up to level h and both on level h + 1). However, A makes exactly d correct
decisions, so, due to (3.1), it satisfies at most d + 2 requests. We can now give a lower
bound on the strict competitive ratio c that depends on the number of advice bits b. By
the definition of the strict competitive ratio, we get that

comp(A(Ih)) = c ≥
n+2

2

d+ 2
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Figure 3.4: The number of advice bits necessary depending on c and n.

and thus
d+ 2 ≥ n+ 2

2c
. (3.3)

Finally, (3.2) and (3.3) easily imply

b+ 2 ≥ n+ 2

2c
,

which means that at least (n + 2)/(2c) − 2 bits of advice are necessary to be strictly
c-competitive. �

The relation between the strict competitive ratio achievable and the number of advice
bits that are at least required is shown in Figure 3.4. Note that, by setting c = 1, we
immediately get a lower bound on the advice complexity for achieving an optimal solution.

Corollary 3.7. For any online algorithm with advice, at least

bopt =
n− 2

2

advice bits are required to compute an optimal solution for DPA. �

Clearly, an upper bound on the number of advice bits sufficient to produce an optimal
solution is n, i. e., one bit is given for every request indicating whether it is part of the
solution or not. Next, we provide an upper bound on the advice complexity sufficient to
obtain a given competitive ratio c. We do so by presenting an online algorithm with advice
for DPA, whose advice complexity is only a factor of log n away from the lower bound of
Theorem 3.6 for large c; moreover, the bound is asymptotically tight for any constant c.

Theorem 3.8. For every c, there exists a c-competitive online algorithm with advice for
DPA that reads at most

min

{
n log

(
c

(c− 1)
c−1

c

)
,
n log n

c

}
+ 3 log n+O(1)

advice bits.
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Phase 2

Figure 3.5: An example input of DPA.

Proof. Consider a very simple online algorithm A with advice that reads one advice bit per
request and that satisfies this request if and only if this bit is 1. Since the optimal solution
for any instance of length n has a cost of at most n, communicating an advice string with
at most n/c ones (i. e., at least n − n/c zeros) is sufficient to achieve a competitive ratio
of c. Hence, using Lemma 1.15 for t := c implies the claim of the theorem. �

The previous theorem also shows that O
(
(log n)2

)
advice bits are sufficient to obtain a

competitive ratio asymptotically better than the one any randomized algorithm is able to
achieve. Indeed, to get a competitive ratio of c = n/ log n, O

(
(log n)2

)
advice bits suffice.

3.4 Bounds with Respect to the Size of the Line Network

Instead of considering the number of requests, we can also take the size of the input line
network as a basis for measuring the advice complexity; as we have stated in Section 1.3,
this is what is classically done. In the following, we show that, also with respect to this
measure, a linear number of advice bits is required for computing an optimal solution for
DPA.

Theorem 3.9. Any online algorithm with advice needs to read at least L/2 advice bits to
achieve optimality.

Proof. Let L be even. Consider the following set of inputs which basically consist of two
phases similar to the proof of Lemma 3.3. In the first L/2 time steps (phase 1), the paths
P1 = (v0, v2), P2 = (v2, v4), . . ., PL/2 = (vL−2, vL) are requested. Phase 2 consists of
L/2 rounds. Every round j may either be empty (no request is made) or it contains two
consecutive requests Pj1 and Pj2 such that Pj1 and Pj2 are edge-disjoint subpaths of Pj .
For L = 16, an example is shown in Figure 3.5.

Obviously, for any j, the requests Pj1 and Pj2 can only be granted if Pj has been
discarded before. Since phase 1 is always the same for all inputs, different inputs can be
represented by a bit vector (b1, . . . , bL/2) of length L/2, where bj indicates whether Pj1
and Pj2 are requested or not for this input. Clearly, any online algorithm A has to behave
differently for every string to achieve optimality in any case. The pigeonhole principle
then directly implies that at least L/2 advice bits are necessary to distinguish all cases. �

As we have seen in Theorem 3.5, randomization does not help for DPA with respect
to the number of requests n. However, a randomized online algorithm R with an expected
competitive ratio of dlogLe was given by Awerbuch et al. [14]. It is easy to see that it is
sufficient to encode all random decisions made by R as advice to enable an online algorithm
A with advice to be at least as good; in such a case, A makes exactly the same decisions as
R (see Chapter 7). The idea of R is to cluster the line network into dlogLe different groups
of possible requests and only accept calls that are within a certain group (this principle
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is called classify and randomly select [38]). Since the only time randomness is employed
is when the group is chosen, it suffices to communicate a number between 1 and dlogLe
to be as good as R. We conclude this chapter with the following straightforward remark
(recall that L is known to any online algorithm).

Corollary 3.10. There exists a dlogLe-competitive online algorithm AL with advice for
DPA, which uses at most dlogdlogLee advice bits. �

Finally, let us point out that the network topology considered in this chapter is very
simple, and thus the lower bounds given carry over to more complex ones that are gener-
alizations of paths, i. e., trees. Moreover, it is obvious that we can employ the same ideas
when talking about ring-networks (i. e., when we identify the first and the last node of the
line).
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Chapter 4

The k -Server Problem

The k-server problem (k-Server) is certainly one of the most generic and famous online
problems. It has been introduced by Manasse, McGeoch, and Sleator in 1988 [120]. We
are given a graph G withm vertices and k so-called servers that are able to move along the
edges of G. In every time step, a vertex is requested, and this request must be answered by
moving some server to this vertex, incurring some cost that is specified by a cost function
associated with G. As already pointed out, k-Server is a generalization of Paging [38]:
For any instance of Paging with cache size k and m potential pages, we can construct a
complete graph with m vertices and set all edge costs to 1. The positions of the k servers
then correspond to the content of the cache in every time step.

k-Server has been thoroughly studied; for a survey we refer to [6, 38, 93], an in-depth
introduction is given by Koutsoupias [111]. In [120], it has been conjectured that there
exists a k-competitive deterministic online algorithm for k-Server, which continues to
be one of the most famous open problems in theoretical computer science (known as the
k-server conjecture). So far, the best known deterministic algorithm is due to Koutsou-
pias and Papadimitriou and it achieves a competitive ratio of 2k − 1 [112] (and a strict
competitive ratio of 4k − 2 [69]). Moreover, if the input graph is a tree, there is a k-
competitive algorithm [53]. As for employing randomization, it is conjectured that there
exists a Θ(log k)-competitive randomized online algorithm (known as the randomized k-
server conjecture [111], RKSC for short). Very recently, it was shown by Bansal et al. that
there is a randomized online algorithm that is Õ

(
(logm)3(log k)2

)
-competitive in expec-

tation [16]. This algorithm improves over the one from Koutsoupias and Papadimitriou if

m ∈ o
(

2(2k)
1

3+ε

)

and its competitive ratio is polylogarithmic in k if m is polynomial in k. While this
does not hold for large graphs with respect to k, we may still consider the RKSC almost
proven. Intriguingly, before that, there was no randomized online algorithm known that
is better than the deterministic one from [112]. Some connections between the RKSC and
the advice complexity are discussed in Chapter 7.

Let us now formally define the problem studied in this chapter.

Definition 4.1 (k-Server). Let G = (V,E, d) be a complete undirected metric weighted
graph as in Definition 1.1, where V is a (not necessarily finite) set of vertices, E is a set
of edges, and d : E → R is a metric cost function. Furthermore, we are given a set of
k servers, which are located at some of the vertices of G. Let Ci ⊆ V be the multiset of

53



54 Chapter 4. The k -Server Problem

vertices occupied by servers in time step i; a vertex occupied by j servers occurs j times
in Ci. We also call Ci the configuration at time step i. Then, a vertex vi is requested and
some servers may be moved yielding a new configuration Ci+1. The request vi is satisfied
if, after this movement of servers, some server is located at vi, i. e., if vi ∈ Ci+1. The
distance between two configurations C1 and C2 is given by the unique cost of a minimum-
weight matching between C1 and C2.

k-Server is the problem to satisfy all requests v1, . . . , vn while minimizing the sum of
the distances between all pairs of consecutive configurations.

Although Definition 4.1 allows to place several servers at the same point, it is easy to
see that this is not necessary; we can modify any online algorithm for k-Server such that
it never moves more than one server to one vertex in a way such that this modification
does not increase the cost of any solution computed by this algorithm.

A solution for an instance of k-Server is a sequence of configurations, and, between
two configurations, an arbitrary number of servers can be moved. However, sometimes
it is convenient to restrict ourselves to so-called lazy algorithms [38] that move at most
one server in response to each request. Due to the triangle inequality, this can be done
without loss of generality, as any algorithm for k-Server can be transformed into a lazy
one without increasing the cost of any solution it produces [38]. It is easy to see that,
for the case of lazy algorithms, the solutions can be uniquely described as a sequence of
servers used to satisfy individual requests. Throughout this chapter, we assume that all
algorithms we deal with are lazy. However, in Section 4.3, we construct an algorithm that
is consistent with the above definition of laziness, but that may move the unique server
used in one time step back to its original position afterwards.

replacemen

v1 v2 v3

s1 s2

Figure 4.1: A hard instance for G; the squares mark the starting positions of the servers.

Note that a simple greedy algorithm G is arbitrarily bad already for 2-Server; there
exists a well-known hard instance [38]. Suppose there are three vertices v1, v2, and v3

such that d({v1, v2}) < d({v2, v3}) and d({v1, v3}) is as large as possible; the server s1

is initially placed at v1 and s2 is placed at v3 (see Figure 4.1). The first request is v2.
G moves s1 to satisfy it, whereas Opt uses the server s2. Adv then requests v1 and v2

alternatingly. While Opt does not move any other server for all of these requests, G has to
use s1, which leads to paying d({v1, v2}) in every time step. Nevertheless, in Section 4.3,
we design an algorithm that partially follows the greedy approach and, making use of the
advice supplied, is able to restrict the harm done by greedy moves.

4.1 Lower Bound on Optimality

At first, we again focus on the number of advice bits needed to obtain an optimal solution.
More specifically, we show that, if an online algorithm A with advice is optimal, there exist
instances for which A needs to read large advice together with every request. First, we give
a bound for inputs with k requests, which we generalize for instances of arbitrary length
afterwards. For the following construction, note that any graph with a cost function d that
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maps edges to values 1 and 2 only trivially obeys the triangle inequality and is therefore
metric.

Lemma 4.2. For any k ∈ N, there exists an instance of k-Server with k requests in
total, for which any online algorithm A with advice needs to read at least k(log k−c) advice
bits to be optimal, for some constant c < 1.443.

Proof. Let k ∈ N and let G = (U ∪W,E, d) be a complete bipartite graph with a metric
cost function d : E → {1, 2}, where U = {u1, . . . , uk} and W = {w1, . . . , w2k}. Since
|W | = 2k, we can define a bijective function Set : W → P(U) that maps every vertex from
W to a unique subset of vertices from U . We define the edge costs as follows: for u ∈ U
and w ∈W , let

d({u,w}) :=

{
2 if u ∈ Set(w)

1 otherwise.

Additionally, since formally any instance of k-Server has to contain a complete weighted
graph, we define the costs of all edges from (U ×U)∪ (W ×W ) to be 2. We call edges of
cost 1 cheap and edges of cost 2 expensive. A schematic view of the constructed graph for
k = 4 is shown in Figure 4.2. Let Gi ⊆W denote the vertices from W that correspond to
subsets of U with exactly i elements, i. e., Gi = {w ∈W | |Set(w)| = i}. It follows that

|Gi| =
(
k

i

)
.

We construct a class of instances I ′ in the following way. An instance I ∈ I ′ consists of a
graph G as above, where every vertex of U is covered by a single server, and a sequence
(x0, . . . , xk−1) of requests such that, for j ∈ {0, . . . , k − 1},

1. xj ∈ Gj and

2. Set(xj) ⊆ Set(xj+1).

Intuitively speaking, the first requested vertex is the unique vertex from W with only
cheap edges to U . Every following request has exactly one more expensive edge than the
one before; the requests are chosen in such a way that the set of expensively connected
vertices from U is extended by one vertex in every time step.

In what follows, to get an easier notation, let us identify the vertices from U with their
indices. We may represent I as a permutation πI of {1, . . . , k} in the following way:

πI(j) := Set(xj) \ Set(xj−1), for j ∈ {1, . . . , k − 1}, i. e., πI(j) = yj ∈ U,
πI(k) := U \ {πI(j) | j ∈ {1, . . . , k − 1}}.

In other words, πI(j) denotes that vertex from U that is connected to the requested vertex
via an expensive edge from request xj on. The unique optimal solution Opt for I with
a cost of exactly k can also be described by πI in the following way. For every j, Opt
satisfies the jth request xj−1 by moving one server from some vertex from U , in particular
from the vertex πI(j), to the requested vertex from W , via a cheap edge. It is easy to
see that there is no solution with a cost of less than k, since all the servers start in U ,
all requests are different vertices from W , and every edge has cost of at least 1. To see
why Opt is indeed the unique optimal solution, consider an offline environment where an
optimal offline algorithm Opt receives the whole input at once and may satisfy the requests
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s1 s2 s3 s4

u1 u2 u3 u4

G1

G2
G3

G0

G4

Edge of cost 2

Edge of cost 1

Figure 4.2: An example input of 4-Server as used in the proof of Lemma 4.2. Note that, for the ease of
presentation, not all edges are shown completely.

in an arbitrary order. It does so in the opposite order the requests are made: The last
vertex requested is from the group Gk−1 and there is one unique vertex πI(k) connected
to it with a cheap edge. The vertex that was requested before is from Gk−2. Due to our
construction, it also has a cheap edge to πI(k) and to a second vertex πI(k−1), so that Opt
now uses this second edge. Following this strategy, it is immediately clear that Opt uses
exactly k edges of cost 1 and that its strategy is the only one being not more expensive
than k.

Since we may represent any instance from I ′ by a unique permutation of {1, . . . , k},
we need to distinguish k! different cases. It remains to show that we also need a unique
advice string for every input to be solved optimally by any online algorithm A with advice.
Towards contradiction, let I1 and I2 be two different inputs from I ′, and suppose that
A is optimal for both of them. However, for the same advice string φ, the algorithm A

behaves deterministically. Let us take the algorithm’s point of view: In time step 1, the
only vertex from G0 is requested, and A uses some server to satisfy this request. Then, in
time step 2, it is revealed whether this was a good choice, i. e., whether the server at πI(1)
was used to serve the first request optimally. After that, the algorithm chooses a second
server to move and again, in time step 3, it is revealed whether this was a good choice,
and so on. Suppose that the corresponding permutations of I1 and I2 differ at position
j for the first time. This means that, in time step j − 1, the algorithm has to make two
different choices for the different inputs. But since it reads the same prefix of the input
up to this point and furthermore uses the same advice string, it has to behave in the same
way. This directly implies that A cannot be optimal for both I1 and I2. We conclude
that we need a different advice string for every instance and therefore log(k!) advice bits.
Using Stirling’s approximation (see (1.1)), we get

log(k!) ≥ log

(
√

2πk

(
k

e

)k)
=

1

2
(log(2π) + log k) + k(log k − log e) ≥ k(log k − c),

where c = log e < 1.443, which concludes our proof. �

Now we generalize this statement in the following theorem, where we deal with an
unbounded number of requests. The idea is to use two graphs as in the proof of Lemma 4.2
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Figure 4.3: The graph used in the proof of Theorem 4.3; the lines mark the optimal trajectories of the
servers.

and to connect them in a special manner. The optimal solution is forced to act in a unique
way on each of these two graphs alternatingly, and any wrong step within any of the two
cannot be compensated later.

Theorem 4.3. The number of advice bits necessary to allow any online algorithm A with
advice to be optimal on every instance of k-Server can be bounded from beneath by
n
(

1
2 log k − 1

2c
)
, for some constant c < 1.443.

Proof. We create a class of instances I as follows (see Figure 4.3). Suppose we take two
disjoint graphs (U1 ∪W1, E1, d1) and (U2 ∪W2, E2, d2) as used for constructing instances
from I ′ in the proof of Lemma 4.2; the groups G1,i and G2,i are thus defined as above.
We then connect all vertices from W1 to the vertices from U2 = {u2,1, . . . , u2,k} such that,
for j ∈ {0, . . . , k − 1}, the edges from G1,j to u2,j+1 have cost 1 and all other edges have
cost 2. The vertices from W2 are connected to the vertices from U1 = {u1,1, . . . , u1,k} in
the same way. All other newly added edges are assigned cost 2. Let there be n requests
in total and let n be a multiple of 4k. At the beginning, the servers are located at the
vertices from U1. For any instance from I, the first k requests are vertices from W1 that
correspond to a permutation π1 as in the proof of Lemma 4.2. After that, there are k
consecutive requests from U2, where each of the vertices is requested exactly once. Next,
k vertices fromW2 are requested according to some permutation π2 followed by k requests
of the k vertices from U1. We continue in this fashion until we have made n requests in
total. Each such input can be written as

π1, u2,1, . . . , u2,k, π2, u1,1, . . . , u1,k, π3, u2,1, . . . , u2,k, π4, . . . , πn/(2k), u1,1, . . . , u1,k,

where π2i−1 is a subset of the vertices fromW1 and π2i is a subset of the vertices fromW2,
for i ∈ {1, . . . , n/(2k)}. We call the 4k consecutive requests from W1, U2, W2, and U1 a
round. These instances have an optimal solution Opt that, whenever moving servers from
U1 [U2] to W1 [W2], acts according to the corresponding permutation and that moves the
unique server that is located in G1,j [G2,j ] to u2,j+1 [u1,j+1] when moving servers from W1

[W2] to U2 [U1].
We now show that Opt is indeed the unique optimal solution. Towards contradiction,

suppose that there exists a solution A that differs from Opt while not being worse than
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Opt . Clearly, Opt has cost 1 in every time step. Let us first show that there are no time
steps in which A may have cost 0, i. e., in which it does not move any server. By the
construction of the inputs, the same vertex is not requested twice within the same round.
This means that, if in some round a server already resides at some vertex that is now
requested, this server was not moved since the last round (recall that we only consider
lazy algorithms). Without loss of generality, suppose that this server is positioned at some
vertex from W1. We know that Opt used this server to satisfy a request from U2, W2, and
U1 afterwards, which each causes cost 1. Instead, A uses a server that is already located
at some vertex from U2 to satisfy some request from U2 yielding cost 2 in this time step,
because all edges from U2 to U2 have cost 2. The same applies to at least one request from
W2 and U1, and therefore A saved cost 1, but paid 6 instead of 3 after one round is over.
For A, it thus follows that it also moves exactly one server per time step, which causes it
to pay cost 1. Now let i denote the first time step in which A deviates from Opt .

For the ease of presentation, we only consider the following two cases. All other cases
are handled analogously.

Case 1. Suppose that Opt moves a server from U1 toW1 in time step i. If A uses a server
fromW1 to satisfy this request, A pays 2 instead of 1 which, as we just showed, cannot
be compensated afterwards. Due to Lemma 4.2, we already know that, if A chooses
a server from U1 other than the one taken by Opt , this also causes cost 2 eventually.
Since i is the first time step in which the two solutions differ, it follows that no servers
are located in U2 or W2. Thus, this case leads to a contradiction to the optimality
of A and hence cannot occur.

Case 2. Suppose that Opt moves a server from W1 to U2 in time step i. Using a server
located in U2 again causes cost 2. Moreover, observe that there is only one unique
group G1,j in W1 that is connected to u2,j+1 with edges of cost 1. Since A and Opt
acted identically up to this point, before the first request from U2 arrived in this
round, they both positioned exactly one server at each group G1,k. It directly follows
that, if A uses a different server than Opt , it again pays 2 instead of 1. Similar to
case 1, no servers may be located in U1 or W2.

Since there is one unique optimal solution that needs to act according to the permuta-
tions π1, . . . , πn/(2k), by the same argumentation as in the proof of Lemma 4.2, it directly
follows that at least

n

2k
log(k!) ≥ n

2
(log k − c)

bits of advice are necessary in total to be optimal, for c = log e; this implies that, amor-
tized, at least

1

2
log k − 1

2
c

advice bits are necessary in every time step. �

Note that, if we allow the graph to have an unbounded size, it is easy to construct a
lower bound of n(log k − log e) by branching the graph infinitely often: If A served the
first k requests according to the corresponding permutation π1, all k servers are located at
unique vertices that we use as the starting positions for the next k requests corresponding
to a permutation π2 and so on. To prevent A from being able to anticipate any requests
by inspecting the graph, we need to do this construction for any possible set of starting
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Figure 4.4: A generalization of Theorem 4.3 for infinite graphs.

positions, which causes an exponential branching with every additional k requests. The
first two rounds (without branches that are not used) are shown in Figure 4.4.

The lower bounds presented in this section directly carry over to the model of [70],
where the number of advice bits used per time step is fixed (see Section 1.6). Further-
more, [70] contains an upper bound of log k bits per request. Hence, the lower bound from
Theorem 4.3 is essentially tight up to a factor of 2.

4.2 Upper Bound for the Euclidean Plane

In this section, we consider the subproblem of k-Server where the underlying metric
space is the two-dimensional Euclidean plane, i. e., the distance between any two vertices
p = (px, py) and q = (qx, qy) is given by

d({p, q}) := ‖p− q‖ =
√

(px − qx)2 + (py − qy)2.

For this case, we propose a simple algorithm A with advice that achieves a constant com-
petitive ratio while using a linear number of advice bits; in particular, the algorithm reads
a constant number of bits with every request.

Let us fix a parameter b such that the algorithm uses b bits of advice per request. A

works as follows: If the requested point is r = (rx, ry), it divides the plane into 2b disjoint
segments S1, . . . , S2b with their origin in r and with an angle of 2π/2b each. Then A reads b
bits of advice that identify the segment Si in which the server used by an optimal solution
for this time step is located; it serves the request greedily with the closest server from Si.
To show that A achieves a constant competitive ratio, we first prove the following technical
lemma we need in the analysis.

Lemma 4.4. For 0 < α ≤ π/4, let C(α,R) be the region of the Euclidean plane C(α,R) :=
{(r cosϕ, r sinϕ) | 0 < ϕ ≤ α, 0 < r ≤ R}. For any point p ∈ C(α,R), let

f(p) :=
‖p‖

R− ‖[R, 0]− p‖ ,

where ‖v‖ is the Euclidean length of v. Then f(p) is maximized over the region C(α,R)
for pmax = (R cosα,R sinα) and f(pmax) = 1

1−2 sin(α2 )
.
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Proof. The situation described by the lemma is illustrated in Figure 4.5 (a). Consider any
point p ∈ C(α,R) such that p = (r cosϕ, r sinϕ). Then

f(p) =
r

R−
√

(R− r cosϕ)2 + (r sinϕ)2
=

r

R−
√
r2 − 2Rr cosϕ+R2

.

For 0 < α ≤ π/4, f(p) is increasing in ϕ, and the maximum is attained for ϕ = α. For the
remainder of the proof, let us thus set ϕ = α and treat f(p) as a function of r only. We
immediately get that the roots of the denominator of f(p) are r1 = 0 and r2 = 2R cosα.
Note that cos(π/4) = 1/

√
2 > 1/2 and, since 0 < α ≤ π/4, f(p) is continuous for

r ∈ 〈0, R〉. Let us substitute X :=
√
r2 − 2Rr cosα+R2. Taking the derivative, we get

f ′(p) =
R−X + r 1

2

(
r2 − 2Rr cosα+R2

)− 1

2 (2r − 2R cosα)

(R−X)2

=
R−X + r

(√
r2 − 2Rr cosα+R2

)−1
(r −R cosα)

(R−X)2

=
R−X +X−1(r2 −Rr cosα)

(R−X)2
=
X(R−X) + r2 −Rr cosα

X(R−X)2

=
XR− r2 + 2Rr cosα−R2 + r2 −Rr cosα

X(R−X)2
= R

X + r cosα−R
X(R−X)2

. (4.1)

Clearly, R and the denominator of (4.1) are always positive; therefore, it is sufficient
to show that

X =
√
r2 − 2Rr cosα+R2 > R− r cosα,

which is equivalent to (note that R− r cosα is non-negative)
√
r2 − r2(cosα)2 > 0. (4.2)

Since r2(1 − (cosα)2) is strictly positive, (4.2) is always true. As a result, we have that
f(p) is increasing in r as well. Finally, note that cos(2β) = 1− 2(sinβ)2 [44]; thus, we get

f((R cosα,R sinα)) =
‖(R cosα,R sinα)‖

R− ‖(R, 0)− (R cosα,R sinα)‖

=
R

R−
√
R2(1− cosα)2 +R2(sinα)2

=
1

1−
√

(sinα)2 + (cosα)2 + 1− 2 cosα

=
1

1−
√

2(1− cosα)

=
1

1−
√

2
(

1− 1 + 2
(
sin
(
α
2

))2)

=
1

1−
√

4
(
sin
(
α
2

))2 =
1

1− 2 sin
(
α
2

)

as we claimed. �
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Figure 4.5: (a) Illustration of Lemma 4.4. (b) A segment as used by A.

Now we are ready to analyze the competitive ratio of A.

Theorem 4.5. Let b ≥ 3 and A be defined as above. For any instance I = (C, r1, . . . , rn)
and any solution B, the cost of A on I is at most q · cost(B), where

q :=
1

1− 2 sin
(
π
2b

) ,

i. e., A is q-competitive using b bits of advice per request.

Proof. Let us adopt the following notation: As in Definition 4.1, a configuration C is a
multiset of k points that are occupied by the servers. A configuration Cp1 7→p2 is obtained
from C by moving a server from p1 ∈ C to p2. An instance of the problem is a configuration
and a sequence of requests (points); the length of the instance is the number of requests.
We restrict ourselves to lazy algorithms, therefore, as already noted, a solution of an
instance is a sequence of servers. To describe a server that is used to satisfy a certain
request, it is sufficient to specify the point occupied by this server. Thus, the solution can
be described by a sequence of points as well.

Let B serve the ith request ri by a server located at si, incurring a cost of di = ‖si−ri‖.
For the first request, A uses b bits of advice to specify the segment of angle α = 2π/2b

around r1 in which s1 is located and moves the closest server in this segment, say s′, to r1,
incurring a cost of a ≤ d1. Hence, after the first request, B leads to a configuration Cs1 7→r1 ,
whereas A is in a configuration Cs′ 7→r1 ; this situation is illustrated in Figure 4.5 (b).

The proof is done by induction on n. If n = 1, the cost of A is a ≤ d1 = cost(B).
Let n > 1 and let ri be the first request that is served by s′ in B. Consider the instance
I ′ = (Cs′ 7→r1 , r2, . . . , rn); the sequence (s2, . . . , si−1, s1, si+1, . . . , sn) is a solution for I ′ with
a cost of at most c+

∑n
i=2 di, where c is the distance between s1 and s′ (see Figure 4.5 (b)).

By induction, the cost of A on I ′ is at most q · (c +
∑n

i=2 di), and therefore the cost of A
on I is at most

a+ q ·
(
c+

n∑

i=2

di

)
.

Due to Lemma 4.4, we have that a ≤ q(d1 − c) and the claim follows. �
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Figure 4.6: The competitive ratio depending on the number of advice bits b per request.

Note that, with b tending to infinity, the competitive ratio of A converges to 1, see
Figure 4.6.

4.3 Upper Bound for the General Case

We now focus on the tradeoff between the number of advice bits and the competitive ratio
achievable in general metric spaces. As we have seen at the beginning of this chapter, a
simple greedy strategy is very bad for k-Server. However, in what follows, we construct
an algorithm with advice that follows a greedy strategy for some of the requests and that
is able to bound the harm done by these moves by using the advice tape from time to
time.

Theorem 4.6. For every b ≥ 2, there exists an online algorithm A with advice for k-
Server that uses b ·n advice bits for inputs with n requests and that achieves a competitive
ratio of

2

⌈dlog ke
b− 1

⌉
≤ 2

(
1 +

1

b− 1

)
+

2

b− 1
log k.

Proof. At first, let us fix the algorithm A. With every request, A reads one bit of advice
called a control bit. If this bit is 0, A satisfies the request greedily with the nearest server.
Afterwards, this server is returned to its original position before the next request. If the
control bit is 1, A reads the next dlog ke bits. These bits specify which server should be
used to satisfy the request. After the request is satisfied, the server is left at its new
position.

We prove that, for every input instance, there exists an advice string such that A has
a competitive ratio of

c := 2

⌈dlog ke
b− 1

⌉
.
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Furthermore, A uses at most b · i advice bits while processing the first i requests. Let
us give some intuition first: The greedy moves may be cheap at the very beginning of
an instance, but they can cause some additional cost later that might propagate in the
subsequent time steps (as we have seen at the beginning of this chapter). However, in our
model, we may from time to time stop this propagation by specifying the server that is
used by an optimal algorithm. We show that we can amortize the steps in which costs
propagate in such a way that the total cost is not too high.

Consider any input instance I consisting of n requests r1, . . . , rn. Let S(0) be an
optimal solution for I; assume that S(0) satisfies the request ri with cost ci. We construct
a sequence S(1), . . . ,S(n) of feasible solutions for I sequentially, together with a sequence
of advice tapes φ(1), . . . , φ(n), such that the following properties hold.

1. Let j ≤ i. S(i) satisfies the request rj with cost c(i)
j which is at most twice the sum

of some request costs of S(0), i. e.,

c
(i)
j ≤ 2

∑

l∈D(i)
j

cl,

where D(i)
j is some subset of {1, . . . , n}. We call the jth step of S(i) a dead step.

Similarly, we call the set D(i)
j dead set and the cost c(i)

j dead cost.

2. Let j > i. Similar to the previous case, S(i) satisfies the request rj with cost c(i)
j

which is at most once the sum of some request costs of S(0), i. e.,

c
(i)
j ≤

∑

l∈D(i)
j

cl,

where D(i)
j is some subset of {1, . . . , n}. We call the jth step of S(i) a live step.

Similarly, we call the set D(i)
j live set and the cost c(i)

j live cost.

3. Let i be arbitrary but fixed. For every j, the request cost cj contributes to at most
c/2 costs c(i)

l , i. e., j belongs to at most c/2 sets D(i)
l .

4. Let i be arbitrary but fixed. For every j, the request cost cj contributes to at most
one live cost c(i)

l , i. e., j belongs to at most one set D(i)
l , where l > i.

5. Consider any live step j of S(i) (i. e., j > i). The request rj is satisfied by S(i) by
moving a single server to the vertex rj without any other moves (i. e., the moved
server is left at rj).

6. For any j ≤ l and any i, the sets D(i)
j and D

(i)
l are either disjoint or D(i)

j ⊆ D
(i)
l .

Note that the disjointness of live sets is already guaranteed by property 4.

7. Consider an arbitrary i. The algorithm A, given the advice φ(i), processes the first i
requests in the same way as S(i).

It is not difficult to see that properties 1–3 ensure that, for any i, the total cost of S(i)

does not exceed the total cost of S(0) multiplied by 2 · c/2. Property 7 ensures that A,
given the advice φ(n), processes all requests in the same way as S(n), hence A achieves a
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competitive ratio of c. In the sequel, we show how to construct the sequence of solutions
S(1), . . . ,S(n), as well as the sequence of advice tapes φ(1), . . . , φ(n). Afterwards, we analyze
how many advice bits are necessary for this construction.

We define S(i) and φ(i) inductively. Each φ(i) contains some finite defined prefix followed
by arbitrary (undefined) bits. For i = 0, the defined prefix of φ(0) is empty. It is easy to
see that S(0) and φ(0) satisfy properties 1–7; it is sufficient to define D(0)

j := {j}, for all j.
Assume that S(i−1) and φ(i−1) are defined. We obtain S(i) by applying a few modifi-

cations to S(i−1). In particular, the first i− 1 steps of S(i) are always identical to S(i−1).
The live ith step of S(i−1) needs to be transformed into a dead ith step of S(i). While
doing so, some other live steps might be changed as well. The advice tape φ(i) is obtained
by taking the defined prefix of φ(i−1) and appending the information necessary for A to
perform the ith step in the same way as S(i) does. We distinguish two cases.

Case 1. For any l ∈ D
(i−1)
i , there are less than c/2 sets D(i−1)

j containing l. Assume
that, in S(i−1), the request ri is satisfied by moving a server from the vertex v to
ri (property 5 ensures that this is always the case). In S(i), we replace this step by
a greedy step, i. e., the request ri will be satisfied by the closest server located at
the vertex w, and the server will be returned to w afterwards. Since we took the
closest server, c(i)

i ≤ 2c
(i−1)
i , hence it is sufficient to define D(i)

i := D
(i−1)
i . The next

steps of S(i) can be defined to be identical to the steps of S(i−1) until the solution
S(i−1) uses the server located at ri to satisfy some request rj . Since there is no server
located at ri in S(i), we need to modify this step: In S(i), the request rj is satisfied
by moving the server from v to ri and then to rj . This is possible, because the server
at v was not used after the request ri in S(i−1). The cost c(i)

j of such a move is at

most c(i−1)
i + c

(i−1)
j , hence it is sufficient to define D(i)

j := D
(i−1)
i ∪D(i−1)

j (note that
property 4 applied for S(i−1) ensures that this union is disjoint). All remaining steps
of S(i) are the same as in S(i−1).

It is easy to see that properties 1, 2, and 5 hold for S(i). After transforming S(i−1)

into S(i), only the elements from D
(i−1)
i occur in more sets. Therefore, due to the

assumption of this case, property 3 holds. Since, due to property 4 applied for
S(i−1), no element of D(i−1)

i is in D(i−1)
l , for any l > i, and since D(i)

i is not a live set,
property 4 holds for S(i) as well. Since property 4 holds for S(i), property 6 could be
violated only if D(i)

j was no superset of some D(i)
l , for l ≤ i. This, however, cannot

happen, because D(i)
j ⊆ D

(i)
i and property 6 holds for S(i−1).

To satisfy property 7, it is sufficient to extend the advice φ(i−1) by a single bit: a
control bit 0.

Case 2. Some element of D(i−1)
i is contained in c/2 sets D(i−1)

j . In this case, the solution
S(i) is defined to be exactly the same as S(i−1). Hence, properties 1–6 trivially hold.
In order to satisfy property 7, we extend the advice φ(i−1) by 1+dlog ke bits: a control
bit 1 followed by dlog ke bits describing which server should be used to satisfy the
request ri. Note that, in this case, no element l ∈ D(i)

i occurs in any live set D(i)
j .

Furthermore, l cannot reappear later, i. e., l does not occur in any D(i′)
j , for i′ ≥ i

and j > i.
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Figure 4.7: The number of advice bits per time step depending on c and k.

Properties 1–7 ensure that A, given the advice φ(n), solves I correctly with a competitive
ratio of c. It remains to analyze the length of the advice used by A.

The construction of the advice tapes easily implies that A, given the advice φ(i), accesses
only the defined prefix of φ(i) during the first i steps of computation. Next, we show that
the defined prefix of φ(i) has a length of at most i · b.

It is easy to see that φ(i) contains exactly i control bits. Consider any block of dlog ke
consecutive non-control bits appearing in φ(i). These bits were created in case 2 when
performing the jth step of induction (i. e., when S(j) and φ(j) were created). This, however,
means that some element of D(j−1)

j occurs in c/2 − 1 sets D(j−1)
l (l < j). For any such

l, case 1 occurred for the lth step of induction (as noted in case 2, if that case occurred,
no element of D(l)

l = D
(j−1)
l would occur in D(j−1)

j , a contradiction). Hence, to any block
of dlog ke consecutive non-control bits appearing in φ(i), we can injectively assign c/2− 1
induction steps where no non-control bits were created. The fact that the assignment is
injective is guaranteed by property 6 and the fact that elements in a set D(j−1)

j handled
in case 2 cannot reappear later. Equivalently, we can injectively assign c/2 control bits to
every block of dlog ke non-control bits. As a result, there are at most

i · dlog ke
c
2

= i · 2dlog ke
2
⌈
dlog ke
b−1

⌉ ≤ i · dlog ke
dlog ke
b−1

= i(b− 1)

non-control bits in φ(i). To sum up, φ(i) contains at most i(b− 1) + i = i · b defined bits,
and thus A uses at most n · b advice bits in total. �

Theorem 4.6 implies the following corollary about the sufficient number of advice bits
to achieve some specific competitive ratio.

Corollary 4.7. For every c > 2, there exists a c-competitive online algorithm A with
advice for k-Server that uses at most

1 +
2(1 + log k)

c− 2

advice bits per time step. �
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Figure 4.7 shows how the sufficient number of advice bits behaves with respect to c
and k. We have proven Theorem 4.6 in the model of an advice tape. Nevertheless, the
result of this theorem can easily be adapted to the model with a fixed number of advice
bits received with every request, as used in [70] (see Section 1.6): Consider the advice tape
created in the proof of Theorem 4.6. Let us separate this tape into two bit sequences, one
containing only control bits, the other one containing non-control bits only. Afterwards,
we interleave these sequences, always taking b− 1 non-control bits followed by one control
bit to create a single b-bit advice message. A then reads b− 1 non-control bits with every
message and stores them into a FIFO data structure. Afterwards, it reads the control bit;
if this bit is 1, dlog ke bits are extracted from the FIFO queue. The proof of Theorem 4.6
ensures that there are always sufficiently many bits stored in the queue when a control bit
1 arrives.

Finally, note that Theorem 4.6 improves the result of [70] exponentially: With b advice
bits per request, the feasibility of achieving a competitive ratio of kΘ( 1

b ) was proven in [70],
whereas Theorem 4.6 shows the existence of an online algorithm A with advice that achieves
a competitive ratio of

comp(A(I)) ≤ log
(
kΘ( 1

b )
)

on any instance I. A further discussion of the consequences of Theorem 4.6 is given in
Chapter 7.



Chapter 5

The Set Cover Problem

In the offline set cover problem, we are given a ground set X of n elements and a family
S of m sets that each contain some of those elements. The objective is to find a smallest
possible number of members of S such that their union covers all elements of X. In
the weighted version of the problem, every member of S is associated with a positive
weight; here, we aim at minimizing the sum of all weights of the members that are chosen.
The set cover problem is a very old and famous optimization problem [86, 150]. The
corresponding decision problem is among Karp’s 21 NP-complete problems1: As one of
the first computational problems in the literature, it was proven to be NP-complete by
Karp in 1972 [101], which implies that the set cover problem is NP-hard (for the relation
between the two problems and the concept of threshold languages, see, e. g., [86]). Since
then, the problem has been extensively studied; it is well known [55, 96, 119] that the
straightforward greedy approach achieves an approximation ratio of Hn (the nth harmonic
number, see Section 1.4), and, intriguingly, this bound is essentially tight as shown by
Feige [73].

Alon et al. studied the set cover problem in an online environment [8]; this variant was
introduced in [7]. Here, X and S are known to any online algorithm in advance, but only
a subset of X is actually requested during runtime, and these requests arrive online. After
each such request j, an online algorithm has to specify a member of S that contains j if
it is not yet included in the sets that were chosen before.

In the following, we consider the online version of the unweighted set cover problem,
SetCover for short, introduced and studied by the authors. As always, let us start with
the formal definition.

Definition 5.1 (SetCover). Given a ground set X of size n, a set of requests X ′ ⊆
X, and a family S ⊆ P(X) of size m, a feasible solution for SetCover is any subset
{S1, . . . , Sk} of S such that

k⋃

i=1

Si ⊇ X ′.

The aim is to minimize k, i. e., to use as few sets as possible. The elements of X ′ arrive
successively one by one in consecutive time steps. An online algorithm solves SetCover
if, immediately after each yet uncovered request j, it specifies a set Si such that j ∈ Si.

Note that Alon et al. constructed a deterministic O(logm log n)-competitive online
algorithm that even works for the weighted version of SetCover [8]. Also, the authors
1 Richard M. Karp, b03.01.1935, American computer scientist.

67
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gave a lower bound that almost matches the upper one for most values of m and n. In
the following, we give bounds on the advice complexity in both the size of the ground set
X and the size of the family S. Obviously, n = |X| is an upper bound on the number of
requests. Furthermore, note that we may assume that S does not contain any set that is a
subset of any other set from S. If this is not the case, sets that are contained in other sets
may be removed from the input by a preprocessing step; since the sets are unweighted, it
is never a disadvantage to prefer supersets. From this, it directly follows, due to Sperner’s
theorem (see Section 1.2), that we have

m = |S| ≤
(
n

bn2 c

)
:=N(n),

which implies that m may be exponential in n. However, due to the hardness of the vertex
cover problem [86], which is a sub-problem of SetCover, we know that also instances
where m ∈ O(n) may be hard in the offline case. This motivates the study of advice
depending on both n and m.

5.1 Bounds with Respect to the Size of the Ground Set

Let us again start by analyzing the advice complexity for calculating an optimal solution.
In the following, by a very easy argument, we show that a number of advice bits that is
linear in |X| is sufficient to create optimal output.

Theorem 5.2. There exists an optimal online algorithm A with advice for SetCover
that uses n− 1 advice bits.

Proof. The proof is straightforward. The oracle O simply writes the characteristic function
of X ′ on the advice tape, i. e., a 1 at position i if and only if the ith element from X is
contained in X ′. However, A knows one requested element from X before it has to take
any action. Thus, if the first element requested is j, the jth position is simply skipped on
the tape, i. e., not written down by O. �

Although the above algorithm is trivial, it is interesting to note that we are able to
complement this result with an almost matching lower bound. In other words, we now
show that a linear number of advice bits is also necessary to be optimal.

Theorem 5.3. At least log(N(n− 1)) > n− 1
2 log(n− 1)− 3 advice bits are necessary for

any online algorithm A with advice for SetCover to achieve optimality.

Proof. Let n be even. Consider the set family S that contains all subsets of X of size n/2;
clearly, there are exactly N(n) such sets. Now Adv requests n/2 items, starting with one
fixed item x1 (after which A has to start with choosing a member of S). It is clear that one
single member of S is sufficient to cover all requests. Since A knows that x1 is included in
the set it has to choose, there are (

n− 1

n/2− 1

)

remaining candidate sets. Observe that, since n is even, it holds that n/2 − 1 = b(n −
1)/2c. Consequently, there are exactly N(n− 1) sets left out of which A has to select one.
Therefore, A needs to distinguish between N(n − 1) different advices to distinguish this
many sets. If A reads strictly less than log(N(n − 1)) advice bits, this merely enables it
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to choose among strictly less than N(n − 1) strategies, which is equivalent to choosing
among this many deterministic algorithms (see Observation 1.12).

By the pigeonhole principle, there exist two distinct sets S1 and S2 (i. e., inputs that
both contain x1, but differ in at least one element) for which A chooses the same determin-
istic strategy A ∈ Alg(A). Clearly, A cannot be optimal in both cases. Finally, using (1.4),
we get

log(N(n− 1)) = log

((
n− 1

bn−1
2 c

))
≥ log

(
4(n−1)/2

2
√

(n− 1)π/2

)

= (n− 1)− log
(

2
√

(n− 1)π/2
)

> n− log
(√

8(n− 1)
)
− 1

> n− 1

2
log(n− 1)− 3,

which finishes the proof. �

The next question we are dealing with is how many bits of advice are necessary and
sufficient to achieve (strict) c-competitiveness.

Theorem 5.4. There exists a c-competitive online algorithm A with advice for SetCover
that uses at most n − ((c − 1)k + 1) + dlog ke + 2dlogdlog kee advice bits, where k is the
size of an optimal solution.

Proof. Suppose that an optimal solution Opt covers all |X ′| requests with k members
of S. Following Observation 1.14, the number k can be communicated to A in a self-
delimiting way using dlog ke + 2dlogdlog kee advice bits. Note that A may use at most
c · cost(Opt) = cost(Opt) + (c− 1)k sets to be c-competitive.

As in the proof of Theorem 5.2, O writes the characteristic function of X ′ onto the
advice tape. Recall that A knows the first element from X ′ that is requested before it has
to make any decision. Since A may use (c − 1)k additional sets in comparison to Opt , it
only needs to read the first n− (c− 1)k − 1 bits of advice, compute the optimal solution
Opt∗ for this sub-instance (which, of course, has a smaller cost than Opt) and take one
additional set for every requested element that is not already covered by Opt∗. �

Note that, for any k ≥ 5,

c ≤ ck + 1− k − dlog ke − 2dlogdlog kee

follows from
c ≥ k + log k + 2 log log k + 2

k − 1
,

which is true for any c ≥ 3. Together with Theorem 5.4, this implies the following corollary.

Corollary 5.5. Let I be some instance of SetCover such that any optimal solution uses
at least five sets to cover all requests. For any c ≥ 3, there exists a c-competitive online
algorithm A with advice for I that uses at most n− c advice bits. �

Next, generalizing the idea from the proof of Theorem 5.3, we show a lower bound
on the number of advice bits required for any online algorithm that achieves strict c-
competitiveness. To do so, we again consider an adversary Adv that plays against some
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online algorithm A with advice, i. e., against 2b deterministic algorithms at once (see Ob-
servation 1.12). Thus, similar to the proof of Theorem 2.12, Adv constructs one instance
that is hard for all algorithms A1, . . . , A2b ∈ Alg(A).

Theorem 5.6. Any online algorithm with advice for SetCover that reads at most
(

n− 1

c(c+ 1)
− c+ 2

c+ 1

)
log

(
c+ 1

c

)

advice bits is guaranteed to be worse than strictly c-competitive.

Proof. Let n be a multiple of c + 1. In the following, for any given c, S consists of all
possible sets of size n/(c + 1) in P(X). Similar to the previous discussion, an adversary
Adv chooses exactly n/(c+ 1) items such that there exists a unique optimal solution that
consists of exactly one set. Thus, a strictly c-competitive algorithm is allowed to choose c
sets at most.

Let A be an online algorithm that uses b bits of advice. We will determine a number
b such that all algorithms in Alg(A) fail to be strictly c-competitive, i. e., are forced to
choose at least c + 1 sets. To this end, Adv proceeds in rounds, where, in each round,
all algorithms from Alg(A) are forced to choose an additional set. Then again, as already
mentioned, there is an optimal solution that consists of only one single set for the whole
instance.

There are c + 1 rounds numbered 0, . . . , c. At the end of round i, Adv has to ensure
that all algorithms have chosen at least i+ 1 sets so far. In each time step, the algorithms
in Alg(A) are partitioned into those that already chose an additional set in the current
round (these algorithms are called out for this round) and those that did not yet choose
one additional set.

Adv creates an input instance I = (i1, . . . , in/(c+1)) that corresponds to exactly one set
in S. As in the proof of Theorem 5.3, the item i1 is fixed as x1 (in round 0, i. e., before A
produces any output) such that each algorithm in Alg(A) has to choose a set containing
x1. Subsequently, Adv enters round 1 and it chooses an item such that as many algorithms
from Alg(A) as possible are out for this round, because they do not have this item covered
yet. Adv continues in this fashion until, eventually, round 1 is finished since all algorithms
are out for this round; the other rounds work analogously.

Let p0 be 1 and let p1, . . . , pc be natural numbers such that Adv chooses pi elements to
finish round i, i. e., Adv chooses pi−pi−1 many items to force all algorithms in Alg(A) to be
out for round i. At the beginning of round r, there are, in total, 2b subsets of S that were
determined by the algorithms from Alg(A) each of which contains the items of the earlier
rounds. We can assume that there is no uncovered item; otherwise, Adv requests exactly
this one thus finishing round r. Clearly, we do not have to consider any algorithms that
already chose r + 1 sets in previous rounds. Therefore, Adv only deals with algorithms
that have chosen a total number of exactly r sets and thus at most rn/(c+1) items. From
these items, pr−1 are already fixed, because they were requested in previous rounds; hence,
there are rn/(c+ 1)− pr−1 items that may be requested to make one particular algorithm
out for round r. Summing over all 2b algorithms, the number of occurrences of all not yet
requested items is at most

2b ·
(

rn

c+ 1
− pr−1

)
.
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On the other hand, in the first time step of round r, Adv can choose from n− pr−1 items.
It follows that the average number of occurrences of one choosable item is at most

2b
(
rn
c+1 − pr−1

)

n− pr−1
.

Therefore, the least frequently covered item has already been covered by at most that
number of different algorithms in Alg(A); this is exactly the item ipr−1+1 that Adv chooses
in this time step. Since any algorithm is out for round r if it has chosen a family of sets
not containing this item, in the subsequent steps, we only have to focus on the remaining
algorithms in Alg(A).

More generally, Adv can reduce the number of algorithms that are not out for round r
by a fraction of

rn
c+1 − j
n− j

or more, for j ≥ pr−1, when requesting the (j + 1)th element of the instance I. Next, let
s ≤ rn/(c+ 1) + 1 be a natural number such that

2b
s−1∏

j=pr−1

rn
c+1 − j
n− j < 1. (5.1)

Then, it follows that pr ≤ s. Note that, since r < c+1, we know that n > rn/(c+1) ≥ s−1
holds in (5.1), thus the fraction is well-defined. Moreover, there exists s such that (5.1)
holds, e. g., s = rn/(c + 1) + 1. Therefore, the value of the left-hand side of (5.1) is at
most

2b
s−1∏

j=pr−1

rn
c+1

n
= 2b

(
r

c+ 1

)s−pr−1

. (5.2)

As a result, to satisfy (5.1), it is sufficient to choose s such that

2b
(

r

c+ 1

)s−pr−1

< 1

⇐⇒ log

((
r

c+ 1

)s−pr−1

)
< log

(
2−b
)

⇐⇒ b · 1

log(c+ 1)− log r
< s− pr−1.

Following this, we can safely set

s :=

⌊
b

log(c+ 1)− log r

⌋
+ 1 + pr−1. (5.3)

Clearly, Adv succeeds if it uses not more than n/(c+ 1) items in total, which means that

1 +

c∑

r=1

(pr − pr−1) ≤ n

c+ 1
. (5.4)

Since pr ≤ s, (5.4) is guaranteed by

1 +

c∑

r=1

(⌊
b

log
(
c+1
r

)
⌋

+ 1

)
≤ n

c+ 1
,
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which is implied by

b ·
c∑

r=1

1

log
(
c+1
r

) ≤ n

c+ 1
− c− 1 ⇐⇒ b ≤

n
c+1 − c− 1
∑c

r=1
1

log( c+1

r )

,

which again holds if

b ≤
n−c2−2c−1

c+1
c

log( c+1

c )
= (n− c2 − 2c− 1)

log
(
c+1
c

)

c2 + c
=

(
n− 1

c(c+ 1)
− c+ 2

c+ 1

)
log

(
c+ 1

c

)
.

It follows that, if b is smaller than claimed in the statement of the theorem, Adv can make
sure that any algorithm that uses b advice bits is worse than strictly c-competitive. �

Note that, for the instances we constructed in the proof of Theorem 5.6, there exists
a very simple deterministic online algorithm that achieves a competitive ratio of c + 1.
Clearly, it is sufficient to use c + 1 disjoint sets from S to cover all items from X. This
means that, for such instances, we observe a very interesting threshold: for being a little
better, we have to pay with using a linear number of advice bits instead of no advice at
all.

Due to the fact that
(

n− 1

c(c+ 1)
− c+ 2

c+ 1

)
log

(
c+ 1

c

)
∈ Ω(n),

for any constant c, we immediately obtain the following statement.

Corollary 5.7. Any online algorithm with advice that achieves a constant strict compet-
itive ratio c is required to use a number of advice bits that is linear in n. �

Therefore, the upper bound of Theorem 5.4 is tight up to a constant factor.

5.2 Bounds with Respect to the Size of the Set Family

In the previous section, we measured the advice complexity in the number n = |X| of
elements contained in the ground set. Now we look at SetCover from a different per-
spective by measuring the advice in the number m = |S| of given sets. As we discuss at
the end of this section, we obtain bounds that are not comparable with those presented
before.

First, let us consider the advice needed to create an optimal output. Encoding the
characteristic function of the sets that are used by an optimal solution immediately gives
the following result.

Theorem 5.8. There exists an optimal online algorithm A with advice for SetCover
that uses m bits of advice. �

As in the previous section, this very naive approach is asymptotically the best we can
hope for.

Theorem 5.9. Any online algorithm A with advice for SetCover needs to read at least

m log 3

3
− 2

advice bits to be optimal.
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Proof. For any m, let m′ denote the largest number that is smaller than or equal to m
and that is a multiple of 3, i. e., m′ ≥ m−2. Moreover, let |X| = n := 4m′/3. Adv chooses
X such that there are n/4 items y1, . . . , yn/4 and 3n/4 items xi,j , where i ∈ {1, 2, 3},
j ∈ {1, . . . , n/4}. After that, Adv defines S to contain exactly the following sets. For
k ∈ {1, . . . , n/4}, there are three sets {yk, x1,k}, {yk, x2,k}, and {yk, x3,k}. Since S has to
be of size m, Adv adds m−m′ many dummy sets to S that each contain one unique item
yj only, for j ∈ {1, . . . ,m −m′}; these sets are never considered by any optimal solution
(which A may assume, because they are subsets of other sets).

Next, Adv requests all items yi; hence, since each request has to be satisfied, A has to
fix n/4 sets to cover all items. After that, for every i, Adv requests one of the three items
x1,i, x2,i, and x3,i. Note that any combination leads to a distinct optimal solution that
consists of exactly m′/3 sets. This way, A has to correctly choose one out of 3m

′/3 possible
families as answers for the first m′/3 requests.

If, however, A uses less than log(3m
′/3) advice bits, there must be two identical advices

for two different sequences of correct answers (which again follows from the pigeonhole
principle). Thus, Adv can pick the one not chosen by the algorithm. Consequently, a lower
bound on the advice complexity is

log
(

3m
′/3
)
≥ m− 2

3
log 3 >

m log 3

3
− 2,

which is larger than m/2, for m tending to infinity. �

Let us now consider algorithms that aim at achieving c-competitiveness.

Theorem 5.10. For any c ≤ logm + 1, there exists a c-competitive online algorithm A

with advice for SetCover that uses at most

m− (c− 1)m

dlogme+ c− 1
+ 1

advice bits.

Proof. Suppose that Opt solves an arbitrary instance using exactly k sets. In the following,
let t := m/(dlogme + c − 1). First, we observe that, if k ≤ t, it clearly suffices to
communicate

m

dlogme+ c− 1
· dlogme = m− (c− 1)m

dlogme+ c− 1

bits to A to be optimal by writing the indices of all sets taken by Opt onto the advice tape.
Clearly, we need one additional bit to indicate that this is the case. Note that we do not
need to encode k into the advice, but we can pad the advice string by duplicating certain
sets instead.

We may therefore assume the other case, i. e., k > t. Suppose that, in this case, O again
writes the characteristic function of S onto the advice tape. As in the proof of Theorem 5.4,
A may use (c − 1)k ≥ (c − 1)t more sets than Opt to guarantee c-competitiveness. This
means that, if A reads the first m − (c − 1)t bits of the advice tape, it can act optimally
up to this point and may safely take one set for each remaining uncovered request. We
immediately verify that

m− (c− 1)t = m− (c− 1)m

dlogme+ c− 1
.

Finally, as above, the number k does not need to be communicated to A. Since m and c
are known to A by construction, no further advice is necessary. �
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Figure 5.1: The number of advice bits required depending on c and m.

We now give a lower bound on yielding strict c-competitiveness measured in m. This
way, we obtain a slightly better lower bound than the one that is directly implied by the
lower bound measured in n from the previous section.

Theorem 5.11. Any online algorithm A with advice for SetCover needs to read at least
(logm)/c− 1 advice bits to be strictly c-competitive.

Proof. Let A use b bits of advice and let γ := 2b. Adv constructs a ground set X that
consists of all words of lengths up to c (including the empty word λ) over an (γ + 1)-
ary alphabet. Every element S from S is uniquely defined by a word w(S) of length c.
Moreover, S contains all prefixes of w(S). Note that, by definition, λ is included in every
set.

Without loss of generality, we assume that, in what follows, no algorithm chooses more
than one set per request. Now, at first, Adv requests the element λ which causes every
algorithm from Alg(A) to choose one set from S. Every of these sets contains one element
of length 1. However, the (at most) 2b different choices left at least one such element x′

uncovered. Adv now requests an element of length 2 that has the prefix x′. It immediately
follows that every algorithm from Alg(A) has to choose a second set. Adv now inspects the
words of length 2 within these sets. There is at least one word x′′ (which has the prefix
x′) not covered and Adv uses it as a prefix to choose a word of length 3 which it requests
in what follows, etc.

In general, after i requests, all algorithms from Alg(A) used at least i sets, and thus
Adv can ensure that A used c sets in total after c requests, where all requested words are
increasing prefixes of a distinct word w of length c.

However, by construction, there again exists one set in S that covers all requests, which
is the unique optimal solution. We conclude that, in order to be strictly c-competitive,
b = log γ has to be chosen such that

m < (γ + 1)c ⇐⇒ m1/c − 1 < 2b,
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which can be ensured by choosing

b >
logm

c
− 1.

Hence, we may assume that b is at least (logm)/c− 1 as we claimed. �

The lower bound on the tradeoff between c and b is shown in Figure 5.1. Compare
these results to the ones measured in n from the previous section. As for optimality, in
Theorem 5.9, we had 4m/3 ≥ n ≥ 4(m− 2)/3 and thus m ≤ (3n + 8)/4 yielding a lower
bound of less than ((n + 3) log 3)/4, which is worse than the one of Theorem 5.3. On
the other hand, in the proof of Theorem 5.3, we had m = N(n), which means that it
merely gives a logarithmic lower bound in m, whereas Theorem 5.9 proves a linear lower
bound. If we look at the tradeoff between the advice bits and the competitive ratio c, in
Theorem 5.11, we clearly have m = (γ + 1)c and

n =

c∑

i=0

(γ + 1)i =
(γ + 1)c+1 − 1

γ
.

Thus, Theorem 5.11 yields a lower bound that is logarithmic in n and which is therefore
worse than the one of Theorem 5.6. Furthermore, inspecting the proof of this theorem,
we observe that here

m =

(
n

n/(c+ 1)

)
≥ (c+ 1)n/(c+1).

Hence, the bound of Theorem 5.11 is better with respect to m and c.
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Chapter 6

The Knapsack Problem

In the previous chapter, we studied SetCover which, in its offline version, is well-known
to be NP-hard. Another such problem is the knapsack problem [88, 103], whose decision
version is also among Karp’s 21 NP-complete problems [101]. Here, we are given a knap-
sack of some fixed capacity and a number of items that can be packed into this knapsack.
Every such item has both a weight and a value associated with it; in its simple version,
the value and the weight of each item are identified. The objective is to maximize the sum
of all values of items packed into the knapsack while not exceeding its capacity. There is
a pseudo-polynomial-time algorithm known that uses dynamic programming. Ibarra and
Kim used this approach to design a fully polynomial-time approximation scheme [88] for
the knapsack problem in [91]; thus, considering the hardness with respect to approxima-
tion, the knapsack problem is easier than the set cover problem, which is, as we already
know, not even approximable by a constant factor.

In the online version of the problem, denoted by Knapsack, the items arrive one after
another in consecutive time steps; after each item is offered to the algorithm, it has to
decide whether it packs the item into the knapsack or not. Formally, Knapsack is the
following maximization problem.

Definition 6.1 (Knapsack, SimpleKnapsack). Let I denote a sequence of n items
that are pairs of weights and values, i. e., I = (s1, . . . , sn), si = (wi, ci), where 0 < wi ≤ 1
and ci > 0, for i ∈ {1, . . . , n}. A feasible solution for Knapsack is given by any set of
indices S ⊆ {1, . . . , n} such that

∑
i∈S wi ≤ 1; the goal is to maximize

∑
i∈S ci. The items

are given in an online fashion. For each item, an online algorithm A must specify whether
it is part of the solution or not, as soon as it is offered.

In the simple version of Knapsack, denoted by SimpleKnapsack, each item has a
value smaller than 1 that is equal to its weight.

Since the value of an optimal solution for any instance of SimpleKnapsack is bounded
by the constant capacity 1 of the knapsack, we only consider strict competitiveness for
this problem (see Definition 1.3). Moreover, note that we use the terms weight and size
interchangeably.
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6.1 The Unweighted Case

At first, we consider the unweighted version SimpleKnapsack of the problem as presented
in Definition 6.1. Let us start by discussing deterministic online algorithms. The following
fact is well-known.

Theorem 6.2 (Marchetti-Spaccamela and Vercellis [122]). Any deterministic on-
line algorithm for SimpleKnapsack (and thus for Knapsack) without advice fails to be
competitive. ♦

Let us now consider an online algorithm G that implements a straightforward greedy
approach. This means that G takes any item while there is space left for it in the knap-
sack. Of course, this strategy also fails in general (as the last theorem implies), but for a
particular set of instances it works quite well as stated by the following observation.

Observation 6.3. Let I denote any instance of SimpleKnapsack where every item has
a weight of at most β. Then G achieves a gain of at least 1− β or it is optimal.

Indeed, if the sum of all weights is less than 1, G is optimal. Then again, if this is not
the case, the space in the knapsack that is not covered by G’s solution cannot be larger
than β.

Online Algorithms with Advice

Next, we study the number of advice bits both sufficient and necessary to produce optimal
output. As with the majority of the other problems that we have considered so far, there
is a linear upper bound; again, we use the characteristic function.

Theorem 6.4. For SimpleKnapsack, there exists an optimal online algorithm A with
advice that uses n advice bits.

Proof. For each of the n items, one bit of advice tells A whether this item is part of an
arbitrary, but fixed, optimal solution or not. �

This bound is tight as the next theorem shows.

Theorem 6.5. Any online algorithm with advice for SimpleKnapsack needs to read at
least n− 1 advice bits to be optimal.

Proof. For any n, consider the input 1/2, 1/4, . . . , 1/2n−1, s, where the item s is defined as

s := 1−
n−1∑

i=1

bi2
−i,

for some binary vector b = (b1, . . . , bn−1). Consider the first n− 1 items of the input. Any
two different subsets of these items have a different weight. From this, it directly follows
that, for any distinct value of b, there exists a unique optimal solution with gain 1. In
other words, when s is offered, there was one optimal choice for the algorithm.

If any online algorithm uses strictly less than n − 1 advice bits, it cannot distinguish
between all 2n−1 different inputs due to the pigeonhole principle. As a result, it computes
the same output for the first n − 1 items for two different instances and thus produces a
sub-optimal solution for at least one of them. �
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Next, let A1 be an online algorithm with advice that reads one advice bit. This bit
indicates whether there exists an item s within the input that has size > 1/2. If this bit
is 0, A1 acts greedily; if it is 1, A1 takes nothing until an item of size > 1/2 appears (and
anything else greedily afterwards).

Theorem 6.6. The online algorithm A1 for SimpleKnapsack is 2-competitive.

Proof. Suppose that there is no item of size > 1/2. In this case, the claim is implied
by Observation 6.3. However, if there exists an item of size > 1/2, the claim follows
immediately. �

This result seems counterintuitive. With merely one bit of advice and a straight-
forward approach we jump from an unbounded output quality (see Theorem 6.2) to 2-
competitiveness. However, any further increase of the number of advice bits does not help
until a logarithmic number is reached. A1 therefore reaches the best competitive ratio we
can hope for when dealing with any constant number of advice bits.

Theorem 6.7. Let b < blog(n − 1)c and ε > 0. No online algorithm A with advice for
SimpleKnapsack that uses b advice bits is better than strictly (2− ε)-competitive.

Proof. Let δ := ε/(4− 2ε) and let A read b bits of advice. Consider the class I of inputs
Ij , for j ∈ {1, . . . , n− 1}, of the form

1

2
+ δ,

1

2
+ δ2, . . . ,

1

2
+ δj ,

1

2
− δj , 1

2
+ δ, . . . ,

1

2
+ δ,

where the item of weight 1/2 + δ appears n − j − 1 times at the end of the instance, for
j ∈ {1, . . . , n − 1}. Obviously, since |I| > 2b, there are more inputs than strategies to
choose from, and thus there are two different inputs for one advice string. In order to be
optimal, A needs to take the jth and (j + 1)th item for the instance Ij , and hence this
choice is unique for every input from I. When dealing with Ij , for any other choice of
items, A achieves a gain of at most 1/2 + δ, leading to a strict competitive ratio of

1
1
2 + δ

= 2− ε

as we claimed. �

The competitive ratio that is achievable with respect to the number of used advice bits
now makes a second jump as stated by the following theorem.

Theorem 6.8. Let ε > 0. There exists an online algorithm A with advice for Simple-
Knapsack that achieves a competitive ratio of 1 + ε and that reads at most

⌈
3ε+ 3

ε

⌉
· dlog ne+ 2 ·

⌈
log

(⌈
3ε+ 3

ε

⌉
+ 1

)⌉
+ 2 · dlogdlog nee+ 1

advice bits.

Proof. Let δ := ε/(3+3ε). Suppose that there does not exist any item within the input of
size larger than δ which can be indicated using one bit at the beginning of the advice tape.
Then, by Observation 6.3, A may safely take sets greedily which leads to a competitive
ratio of

1

1− δ = 1 +
δ

1− δ = 1 +
ε

3 + 2ε
≤ 1 + ε.
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Now assume the contrary, i. e., there exist some items of size > δ. The oracle inspects the
optimal solution which consists of two disjoint sets of items S1 and S2, where S1 denotes
the set of i heavy items of size > δ and S2 contains j light items of size ≤ δ. Let s1

[s2] be the sum of all weights of the items in S1 [S2]. The indices of all heavy items are
written onto the advice tape using i · dlog ne bits. Moreover, we need to communicate
i which can be done using another dlogd1/δee bits. Since the sum of all weights of any
solution does not exceed 1, we clearly have i ≤ 1/δ, i. e., i is constant with respect to
n. For being able to decode the advice string, additionally the length dlog ne of such an
index has to be included in the advice in a self-delimiting form using 2dlogdlog nee bits
(see Observation 1.14).

Moreover, let the oracle encode a number k onto the advice tape such that

kδ ≤ s2 < (k + 1)δ.

Since A knows ε and therefore δ, it computes kδ and thus obtains a lower bound on s2,
i. e., the weight of the part of the solution that is due to the light items. Every such light
item is taken as long as their sum is below kδ. It is clear that k ≤ 1/δ due to s2 ≤ 1.
According to Observation 6.3, A packs at least as many items from S2 into the knapsack
such that their sum is not smaller than kδ − δ ≥ s2 − 2δ. Observe that, if there do not
exist any light items (i. e., S2 is empty), A is clearly optimal, because it takes all heavy
items. Thus, we may assume that there exists at least one light item and the optimal
solution takes it. Furthermore, if, under this assumption, the optimal solution would be
smaller than 1 − δ, it follows that it takes all light items. In this case, we set k := d1/δe
which again results in an optimal algorithm. We therefore assume the contrary, i. e., that
cost(Opt) ≥ 1− δ. Consequently, we get a competitive ratio of

s1 + s2

s1 + s2 − 2δ
≤ 1

1− 3δ
= 1 +

3δ

1− 3δ
= 1 + ε.

Since k is an integer from {0, . . . , d1/δe}, it can be encoded using dlog(d1/δe+ 1)e bits
(recall that, in Observation 1.13, we assumed that the number that is encoded is non-zero).
Note that the lengths of i and k do not need to be encoded in a self-delimiting way since
δ is known to A. The total number of advice bits used by the algorithm is thus at most

1 + i · dlog ne+ 2 ·
⌈

log

(⌈
1

δ

⌉
+ 1

)⌉
+ 2 · dlogdlog nee

≤ 1 +

⌈
3ε+ 3

ε

⌉
· dlog ne+ 2 ·

⌈
log

(⌈
3ε+ 3

ε

⌉
+ 1

)⌉
+ 2 · dlogdlog nee ,

which finishes the proof. �

Randomized Online Algorithms

As we have just seen (see Theorem 6.8), logarithmic advice helps a lot. We now show that
randomization is less powerful.

Theorem 6.9. No randomized online algorithm for SimpleKnapsack can be better than
strictly 2-competitive in expectation (independent of the number of random bits the com-
putation is based on).
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Proof. Let ε > 0. Consider the following class of inputs. At first, an item of weight ε is
offered. After that, either nothing else is offered or an additional item of weight 1.

Now consider any randomized online algorithm R that decides to use the first item with
non-zero probability p, because else its gain is obviously 0 on the instance consisting of
the item of weight ε only. If R takes the item, of course, it cannot use the second one if it
is offered. On the other hand, if R does not take the first item (with probability 1− p), it
does not have any gain if there is no second item. Now suppose that the second item is
offered; R then has a strict competitive ratio of

1

p · ε+ (1− p) · 1 .

Then again, if the second item is not offered, it has a strict competitive ratio of

ε

p · ε.

By equalizing the ratios [146], we get

1

(ε− 1) · p+ 1
=

1

p
⇐⇒ p =

1

2− ε.

Thus, R is not better than strictly (2− ε)-competitive in expectation. �

Surprisingly, in Section 7.1, we show that there is a barely random algorithm for
SimpleKnapsack that achieves an expected competitive ratio of 2 and that only uses
one random bit.

Resource Augmentation

In Section 1.5, we have, among others, described the idea of resource augmentation to
overcome some of the drawbacks online algorithms face. This model was used for Knap-
sack [95] as well as for many other online problems, see, e. g., [59, 98, 133]. Here, we
want to combine this concept with the one of using advice to investigate how much an
online algorithm benefits from having more resources available concerning the amount of
information sufficient to produce almost optimal output. More precisely, we now allow
an online algorithm A with advice to overpack the knapsack by some δ > 0, whereas the
optimal solution is merely allowed to fill it up to 1.

Theorem 6.10. Let 1/4 > δ > 0. There exists an online algorithm A with advice for
SimpleKnapsack that achieves a competitive ratio of 1 + 3 · δ/(1− 4δ) in the δ-resource-
augmented model, while using at most

⌈
2 log

⌈
1

δ

⌉
+

1

δ
· log

⌈
1

δ2

⌉⌉
+ 1

advice bits.

Proof. Consider any instance I and let Opt = Opt(I) denote an optimal solution computed
by an optimal offline algorithm Opt. Suppose that cost(Opt) ≤ 1/2. In this case, there is
obviously no item of size > 1/2, and a simple greedy strategy enables A to be optimal. We
fix the first advice bit to indicate whether Opt has size 1/2 or smaller and, in the further
analysis, assume the contrary.
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Similar to the proof of Theorem 6.8, let

Opt := {x1, . . . , xk} ∪̇ {y1, . . . , ym}

denote an optimal solution, where the heavy items xi have weights ≥ δ and the light items
yj have weights < δ; clearly, we have k ≤ 1/δ. A knows δ and is designed such that it
reads all the approximate sizes (computed by rounding down to the next multiple of δ2)
of all heavy items and the fraction of the knapsack that is filled using light ones from the
advice tape. Light items are taken greedily.

First, we show how the heavy items are encoded. To this end, let

xi := j such that j · δ2 ≤ xi < (j + 1) · δ2,

for every heavy item xi. All xis are sequentially written onto the advice tape and read by
A right after the first item is offered. Thus, if A is offered any item x′, it checks whether
the corresponding xi is part of the advice, i. e., if there exists xi such that δ2 · xi ≤
x′ < δ2 · (xi + 1). If so, x′ is packed into the knapsack as an element x′i corresponding
to xi; else it is discarded. In the former case, there exists xi that is part of Opt and
xi − δ2 < x′i < xi + δ2. Clearly, there are at most k different xis (as many as there are
corresponding heavy items) and each is at most of size 1/δ2. Hence, to communicate all
of these values, we need no more than

k · log

⌈
1

δ2

⌉
≤
⌈

1

δ
· log

⌈
1

δ2

⌉⌉

advice bits, which is constant with respect to n. However, to be able to decode the advice,
A needs to know k beforehand. The value of k can be written onto the advice tape in a self-
delimiting form using another 2dlog ke ≤ 2dlogd1/δee additional bits. The number of bits
needed to encode the elements xi can be calculated by A without any further knowledge.

Note that we have

−δ +

k∑

i=1

xi ≤
k∑

i=1

x′i ≤ k · δ2 +

k∑

i=1

xi ≤ δ +

k∑

i=1

xi,

which means that, for every heavy item, A chooses an item such that the algorithm uses
at most δ2 more space within the knapsack. Thus, the sum of the chosen heavy items uses
at most δ more space than the heavy items in Opt .

We distinguish two cases with respect to the size of an optimal solution.

Case 1. Suppose that cost(Opt) < 1 − δ. This directly implies that all light items are
part of the optimal solution, because otherwise Opt would not be optimal. A uses
at most δ more space for the heavy items than Opt , hence it takes all light items as
well. On the other hand, the sum of the weights of the heavy items chosen by A is
at least −δ +

∑k
i=1 xi, thus A has a gain of at least cost(Opt)− δ. It follows that

comp(A(I)) ≤ cost(Opt)
cost(Opt)− δ = 1 +

δ

cost(Opt)− δ ≤ 1 +
2δ

1− 2δ
≤ 1 +

3δ

1− 4δ
,

where the third inequality follows from the fact that cost(Opt) ≥ 1/2.

Case 2. Suppose that 1 − δ ≤ cost(Opt) ≤ 1. Let us now consider the light items. To
this end, let g := 1 −∑k

i=1 xi denote the space Opt is left with after packing all
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Figure 6.1: The gains of both Opt and A.

heavy items into the knapsack (see Figure 6.1). A does not know g, but calculates
the approximate value

g′ := 1−
k∑

i=1

(xi + 1)δ2.

It follows that g−δ ≤ g′ ≤ g. Note that both A and Opt have all light items available.
Now, for z ∈ {g, g′}, consider the instance I(z) shrunk to a knapsack capacity of z
and light items only, and let Opt(z) denote the corresponding optimal solution for
this instance. Since A acts greedily on I(g′), by Observation 6.3, it follows that A is
either optimal or has a gain of at least g′ − δ ≥ g − 2δ ≥ cost(Opt(g))− 2δ. On the
other hand, Opt obtains a gain of exactly cost(Opt(g)) on I(g). Thus,

comp(A(I)) =
cost(Opt)
cost(A(I))

≤ cost(Opt)
∑k

i=1 x
′
i + g′ − δ

≤ cost(Opt)
∑k

i=1 xi + g − 2δ

≤ cost(Opt)
∑k

i=1 xi + cost(Opt(g))− 3δ
=

cost(Opt)
cost(Opt)− 3δ

≤ 1 +
3δ

1− 4δ
,

which proves the claim.

The theorem follows. �

6.2 The Weighted Case

We now consider the general online knapsack problem, Knapsack, from Definition 6.1
where every item has both a weight and a value. However, our results only hold if we
restrict ourselves to instances where the values and weights can be represented within
polynomial space. More formally, for any item x, let w(x) be the weight of x, c(x) be the
value of x, and r(x) := c(x)/w(x) be the ratio of its value and weight. We assume that,
for every x, c(x) and w(x) are rational numbers, and their numerators and denominators
are bounded by 2p(n), for some fixed polynomial p(n).

First of all, we note that the lower bounds for SimpleKnapsack from Section 6.1 carry
over immediately, since we are now dealing with a generalization of the above problem.
Second, Theorem 6.4 also applies for Knapsack. As a next step, we show that, as long
as less than logarithmic advice is supplied, any online algorithm with advice fails to be
competitive.

Theorem 6.11. No online algorithm with advice for Knapsack that uses strictly less
than log n advice bits is competitive.
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Proof. Suppose that A reads k < log n advice bits which allows it to distinguish at most
2k different inputs. We construct a set I of n different instances as follows. Let γ := 2n

and let Is be the instance determined by the n items

(1, γ), (1, γ2), . . . , (1, γs), (1, 1), . . . , (1, 1), (1, 1),

for s ∈ {1, . . . , n} and I = {Is | 1 ≤ s ≤ n}. Obviously, since |I| > 2k, there are more
inputs than strategies to choose from, and therefore there are two different inputs for one
advice string. Let these two instances be Ii and Ij and assume i > j. The unique optimal
solution Opt for Ii [Ij ] fills the knapsack with the ith [jth] item yielding a gain of γi [γj ].

If A does not choose the jth item when it is given the instance Ij , its gain is at least a
factor of γ away from cost(Opt). In the following, we thus assume the contrary. Since A

cannot distinguish between Ii and Ij in the first j time steps (and it is given the same fixed
advice string), it also takes the jth item when it is given Ii. This results in a competitive
ratio of at least γi/γj ≥ γ, which finishes the proof. �

In the following, we show how to solve Knapsack almost optimally while using loga-
rithmic advice. It immediately follows that the bound from Theorem 6.11 is tight up to a
constant factor.

Theorem 6.12. Let ε > 0. There exists an online algorithm A with advice for Knapsack
that achieves a competitive ratio of 1 + ε using at most O(log n) advice bits.

Proof. Let δ := (
√

1 + ε− 1)/(2
√

1 + ε+ 1). Consider any optimal solution Opt and let

c′ := (1 + δ)blog1+δ(cost(Opt))c,

i. e., c′ is an approximation of cost(Opt) such that

cost(Opt)
1 + δ

< c′ ≤ cost(Opt).

Next, let x1, . . . , xk be all items in Opt with values of at least δ · c′. Since there are at
most cost(Opt)/(δ · c′) such items, we immediately get k ≤ (1 + δ)/δ.

Let S1 be an (offline) solution constructed as follows. At first, all heavy items x1, . . . , xk
are taken; then, the rest of the knapsack is filled using items that have values less than
δ · c′, which is done greedily by the ratio of their values and weights in descending order.
Consider S1 plus the item x that is the first one that did not fit into the knapsack in the
greedy phase of the construction of S1. Clearly, S1∪{x} has a higher cost than Opt . Since
c(x) ≤ δ · c′ ≤ δ · cost(Opt), we get that

cost(S1) ≥ (1− δ)cost(Opt).

Let y1, . . . , yl denote the items of S1 that are added in the greedy phase. Without loss of
generality, assume that r(y1) ≥ r(y2) ≥ · · · ≥ r(yl) and let

r′ := (1 + δ)dlog1+δ(r(yl))e,

i. e., r′ is an approximation of r(yl) such that

r(yl) ≤ r′ < r(yl) · (1 + δ).
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Let m be the largest number such that r(ym) ≥ r′, i. e., the items y1, . . . , ym have ratios
of at least r′ and all other items ym+1, . . . , yl have ratios between r′ and r′/(1 + δ). Let v
denote the space that is not occupied by x1, . . . , xk, y1, . . . , ym in S1, i. e.,

v := 1−
k∑

i=1

w(xi)−
m∑

i=1

w(yi).

Intuitively speaking, if we consider the part of S1 that consists of the items yi, for i > m,
we see that this is a solution for an “almost-unweighted” knapsack instance with knapsack
capacity v. Therefore, we can approximate it by a solution for SimpleKnapsack without
doing much harm. To this end, let

v′ := (1 + δ)blog1+δ vc,

i. e., v′ is an approximation of v such that
v

1 + δ
< v′ ≤ v.

Furthermore, let

{z1, . . . , zj} = S := {yi | yi ∈ {ym+1, . . . , yl}, w(yi) ≥ δ · v′},

i. e., z1, . . . , zj are all items from S1 that have a ratio of roughly r′ and whose weights are
at least a δ-fraction of v′. Since v′ > v/(1 + δ), there are at most (1 + δ)/δ such items.

Let

u := v −
j∑

i=1

w(zi)

denote the space not occupied by x1, . . . , xk, y1, . . . , ym, z1, . . . , zj and let

u′ := (1 + δ)blog1+δ uc,

i. e., u′ is an approximation of u such that
u

1 + δ
< u′ ≤ u.

Again, we consider an (offline) solution S2 that is constructed as follows. At first, all items

x1, . . . , xk, y1, . . . , ym, z1, . . . , zj

are taken. After that, we use all remaining items of weight less than δ · v′ and a ratio of at
least r′/(1 + δ); each of these items is greedily added to S2 if it fits into a reserved space
of size u′. We now show that

cost(S2) ≥ 1− 2δ

(1 + δ)2
cost(S1). (6.1)

To this end, consider two cases. If the greedy construction of S2 takes all possible items,
S2 contains all items included in S1 and (6.1) follows trivially. Therefore, we may assume
the contrary.

Obviously, the cost of S1 is at most

k∑

i=1

c(xi) +

m∑

i=1

c(yi) + v · r′ ≤
k∑

i=1

c(xi) +

m∑

i=1

c(yi) + v′ · (1 + δ) · r′.
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Algorithm 6.1: Algorithm A for Knapsack
for each item x

if x = xi, for some i, use;
else if c(x) ≥ δ · c′, discard;

else if r(x) ≥ r′ or x = zi, for some i, use;
else if r(x) < r′/(1 + δ) or w(x) ≥ δ · v′, discard;

else if total weight taken in this step ≤ u′, use;
else discard;

end

On the other hand, the cost of S2 is at least

k∑

i=1

c(xi) +

m∑

i=1

c(yi) + v′ · (1− 2δ) · r′

1 + δ
,

because all items z1, . . . , zj (summing up to v−u) get packed and the greedy step fills the
space that remains up to at least u′ − δ · v′ (see Observation 6.3). Every such item has a
ratio of at least r′/(1 + δ). Note that

u′ − δ · v′ + v − u ≥ (1− δ)v′ + u′ − u ≥ (1− δ)v′ − u′δ ≥ (1− 2δ)v′.

Thus, (6.1) is true.
Putting everything together, we finally get

cost(S2) ≥ 1− 2δ

(1 + δ)2
cost(S1) ≥ (1− 2δ)2

(1 + δ)2
cost(Opt) =

cost(Opt)
1 + ε

.

Let us now look at the number of advice bits sufficient to be communicated to A. At first,
O needs to encode n and k which can be done using not more than 2dlogdlog nee+2dlog ne
bits. Furthermore, since A knows δ, it suffices to read at most

⌈
log
⌊
log1+δ

(
2p(n)

)⌋⌉
≤ log

(
log
(
2p(n)

)

log(1 + δ)

)
+ 1 ∈ O

(
log
(
nd
))

advice bits to communicate c′, where d is the degree of the polynomial p(n). We immedi-
ately see that, to encode r′, v′, and u′, we also need at most O

(
log
(
nd
))

advice bits. The
indices of the items xi can be specified using k · dlog ne ≤ (1 + δ)/δdlog ne additional bits.
Similarly, the indices of the items zi can be communicated using j·dlog ne ≤ (1+δ)/δdlog ne
bits.

We conclude that at most O
(
log
(
nd
))

= O(log n) advice bits are needed in total. The
online algorithm A with advice works as shown in Algorithm 6.1 to construct S2 while
using the advice as specified above. �

Finally, note that the O notation in Theorem 6.12 hides a larger constant than the one
that we have for the unweighted case in Theorem 6.8.



Chapter 7

Advice and Randomization

In this chapter, we want to investigate some connections between computing with advice
and randomized computation. To this end, consider randomized online algorithms as given
in Definition 1.6. In both models, the algorithms we construct basically choose from a
set of deterministic strategies (see Observation 1.12). When using randomness, we choose
according to the output of some random source, when using advice, an oracle tells us
which strategy to choose for any instance. In this sense, the advice may be seen as the
best random string for every input. It is thus very simple to verify that, if there is a c-
competitive randomized algorithm R solving some online problem P using b random bits,
there also exists a c-competitive online algorithm A with advice that solves P with advice
complexity b. This fact can be used to propagate the lower bounds on advice complexity
to lower bounds on randomized algorithms that use a restricted number of random bits as
stated by the following observation.

Observation 7.1. If no online algorithm A with advice can achieve a competitive ratio of
c using b bits of advice for some online problem P , there cannot exist any c-competitive
randomized online algorithm R for P using b random bits. On the other hand, if there
exists a randomized online algorithm R that is c-competitive in expectation and that uses b
random bits, there also exists a c-competitive online algorithm using b bits of advice.

Hence, online problems for which a large number of advice bits is provably necessary
cannot be efficiently solved by randomized algorithms that use a small number of random
bits. The opposite direction does not hold, i. e., it is not always possible to transform
a well-performing online algorithm with advice into a well-performing randomized online
algorithm. For example, consider a (very artificial) problem of guessing a single bit: The
first request is always ‘?’, the second request is either 0 or 1, and all remaining requests
are ‘∗’. The algorithm must answer the request ‘?’ by 0 or 1 and all subsequent requests
by ‘∗’. The answer to ‘?’ always induces cost 1. Furthermore, if the reply is equal to
the second request, all subsequent requests induce cost 0, otherwise they induce cost 1.
Easily, an optimal solution has cost 1 and it can be reached with a single bit of advice. On
the other hand, any randomized algorithm, regardless of the number of random bits used,
cannot gain an expected cost better than n/2 for inputs of n requests, which yields an
expected competitive ratio of n/2. Thus, even problems that can be optimally solved with
one single bit of advice might not be efficiently solvable by randomized online algorithms.
Another example is SkiRental, although here the gap is not as large: As discussed in
Section 1.6, no randomized online algorithm can be better than e/(e − 1)-competitive

87
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against an oblivious adversary [99], whereas there exists an optimal online algorithm with
advice that only uses one advice bit.

Nevertheless, the ideas used to construct well-performing algorithms with advice may
sometimes be adapted for the randomized setting as well, as we will see in the next section.
Then again, supplying advice instead of random bits seems much more powerful, because
instead of talking about a good performance of all strategies at hand on average, we
only require the existence of one well-performing strategy; thus, it would not seem too
surprising if we could save some bits when computing with advice instead of allowing
randomization. In [34], the following theorem was proven, which basically confirms this
intuition for minimization problems. Note that, subsequently, we do not require any bound
on the number of random bits used by the original algorithm.

Theorem 7.2 (Böckenhauer et al. [34]). Consider an online minimization problem
P , where I(n) is the set of all possible inputs of length n and |I(n)| = I(n). Further-
more, suppose that there exists a randomized online algorithm R with a worst-case expected
competitive ratio of at most E. Then, for any fixed ε > 0, it is possible to construct a
deterministic online algorithm A with advice that uses at most

dlog ne+ 2dlogdlog nee+ log

(
log(I(n))

log(1 + ε)

)

advice bits and that achieves a competitive ratio of (1 + ε)E. ♦

The proof, using Lemma 1.15 and ideas from Yao’s minmax principle1 [152], shows
how to select, from all possible random strings the algorithm R may use, a few strings that
induce a good performance; these may then be supplied as advice. The resulting online
algorithm, however, does not necessarily work in polynomial time. Also, note that this
technique cannot be adapted to maximization problems in a straightforward fashion.

Anyway, the above result has an interesting implication for k-Server (see Chapter 4):
Recall that the RKSC states that, for any metrical space, there is a randomized online
algorithm with an expected competitive ratio of Θ(log k). As we have pointed out, this
bound is almost met for many reasonable instances since there exists a randomized online
algorithm with an expected competitive ratio that is polylogarithmic in k, for graphs of
size m, where m is polynomial in k [16]. For m vertices, there are obviously at most
mn different inputs of length n. (i) This implies that, according to Theorem 7.2, for
such graphs, there is an online algorithm with advice complexity O(log n+ log log(mn)) =
O(log n+ log(n logm)) = O(log n+ log(n · k)) = O(log n+ log k) that also admits a com-
petitive ratio that is polylogarithmic in k. Our results, however, grant a competitive ratio
of O(log k) only by using Ω(n) advice bits. Hence, our upper bound is still (almost) ex-
ponentially far away from the optimum. (ii) On the other hand, any lower bound on the
number of advice bits of the form ω(log n) on arbitrary (i. e., large) graphs would disprove
the RKSC on general inputs.

Another question might be whether Theorem 7.2 also holds if we neglect the strict
positiveness of ε, i. e., whether we can construct an online algorithm with advice that is
exactly as good as the original randomized algorithm R. A negative answer to this question
was given in [34] by introducing the following online problem.

Definition 7.3 (Winner-takes-all problem). The input is a sequence of requests x1 :=
0, x2, . . . , xn+1, where xi ∈ {0, 1}; a solution is a sequence y1, . . . , yn, where yi ∈ {0, 1}.
1 Andrew Chi-Chih Yao, b24.12.1946, Chinese computer scientist.



89

The cost of a given solution is 1 if yi = xi+1, for all i ∈ {1, . . . , n}, and 2 otherwise.
Hence, the optimal solution has cost 1 and all other solutions pay an extra penalty of 1.

We can now argue that the best possible randomized online algorithm guesses every bit
with equal probability, incurring an expected cost of 2− 1

2n [34]. On the other hand, any
online algorithm with advice that uses less than n advice bits has a worst-case performance
of 2, so n bits are needed to be on par with randomization. It follows that Observation 7.1
is tight.

Finally, we want to find some explanation for the behavior of algorithms with advice
when it comes to optimal output. To this end, we need the following observation about
randomized computation.

Observation 7.4. If, for some online problem P , there does not exist an optimal deter-
ministic algorithm, then there does not exist any optimal randomized algorithm for P ,
neither.

Proof. Assume the contrary, i. e., that there exists some optimal randomized online algo-
rithm R for P . For every random choice R makes, the output produced is thus optimal
for every instance. But then we can just simulate R with some fixed random string which
gives an optimal deterministic online algorithm for P . �

Therefore, for all problems that we might consider interesting, no optimal randomized
algorithms exist. However, note that Observation 7.4 does not hold if we do not speak
about optimality, but only about a competitive ratio that tends to 1 with growing input
size.

This might explain why, for many of the problems that we have considered in this thesis,
small advice merely helps up to a specific point. In particular, the advice complexity to
create optimal output is usually linear in the input size. However, if these problems
admit a well-performing randomized online algorithm, we can be as good using advice,
and often the advice complexity to achieve this is rather low. For JSS, it has been shown
that randomization is very powerful: There exists a randomized online algorithm that is
(1 + 1/

√
m)-competitive, which is almost optimal [88] (note that, in [90], a (1 + 4/

√
m)-

competitive randomized online algorithm was given by studying a more general setting);
the construction of this algorithm implies that we need at most logm + 1 advice bits
to be equally good [35, 126]. However, to be optimal, we need to make an exponential
jump to Ω(

√
m) advice bits, as we have seen in Chapter 2. When dealing with DPA and

measuring in the size of the line network, we also need a linear number of advice bits to be
optimal, but using knowledge from a well-performing randomized algorithm, we can create
good solutions with a small number of bits. An optimal online algorithm with advice for
SimpleKnapsack uses at least n − 1 advice bits, but with merely one bit of advice, we
can be 2-competitive (and one random bit also suffices to be 2-competitive in expectation,
as we will see in the next section).

In fact, many of the proof techniques we used for proving lower bounds on the advice
complexity for producing optimal output fail immediately, as soon as we relax the re-
quirements on the performance of the online algorithms just a little bit. For instance, for
k-Server, the technique we used in the proof of Theorem 4.3 does not work if we allow
the online algorithm to deviate from optimality only by some ε > 0, i. e., to use a few
edges of cost 2. Similarly, for JSS, we cannot assume anymore that the online algorithm
has to know which obstacles are missing in the widgets used in the proof of Theorem 2.7
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if it is allowed to use an additional constant number of steps compared to the optimal
solution.

7.1 Barely Random Algorithms

As we have already pointed out in Section 1.4, it might be expensive to generate random
numbers. Hence, we are interested in designing good randomized algorithms that use
as few random bits as possible. As we have seen, it is possible to measure the amount
of random bits needed by a randomized algorithm as a function of the input length, in
a similar way as time complexity, space complexity, or advice complexity is measured.
Randomized algorithms that use only a constant number of random bits, regardless of
the input size, are called barely random algorithms [38], introduced in [136]. The number
of random bits used by these algorithms is asymptotically minimal, thus they can be
considered the best algorithms with respect to the amount of randomness employed.

As we have seen in the last section, we cannot hope for a general technique to construct
barely random algorithms from algorithms with advice that use a constant number of
advice bits. Nevertheless, the proofs used to construct well-performing algorithms with
advice may sometimes be adapted to randomized computation. In this way, we obtain
some interesting results about barely random algorithms.

Job Shop Scheduling

As in Chapter 2, we consider the class Dd of diagonal strategies, for some odd constant
d ≥ 1. Consider a barely random algorithm Rd that randomly chooses a strategy from
this class using at most dlog de random bits. Our results from Section 2.2, together with
Observation 7.1, imply that we cannot obtain anything better than the competitive ratio
achieved by the online algorithm Ad with advice as described in Section 2.2. However, we
can get very close to Ad as the following theorem shows.

Theorem 7.5. The algorithm Rd achieves an expected competitive ratio of

1 +
1

d
+
d2 − 1

4dm
.

Proof. For every odd d, consider the following random variables X1, X2, X, Y : Dd → R,
where X1(Di) is the delay caused by the initial horizontal [vertical] steps made by the
strategyDi, X2(Di) is the delay caused byDi hitting obstacles, X(Di) := X1(Di)+X2(Di)
is Di’s overall delay, and Y (Di) := m + X(Di) is Di’s overall cost. Recall that D−j and
Dj make the same amount of non-diagonal (vertical or horizontal, respectively) steps at
the beginning. Since there are exactly m obstacles in total for every instance, we get

E[X2] =
1

d


X2(D0) + 2

(d−1)/2∑

i=1

X2(Di)


 ≤ m

d
,

and since X1(D0) = 0, we get

E[X1] =
1

d


X1(D0) + 2

(d−1)/2∑

i=1

X1(Di)


 =

2

d

(d−1)/2∑

i=1

i =
d2 − 1

4d
.
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Due to the linearity of expectation, it follows that

E[Y ] = m+E[X] = m+E[X2] +E[X1] ≤ m+
m

d
+
d2 − 1

4d
.

As a result, the expected competitive ratio of Rd is at most

(d+1)m
d + d2−1

4d

m
= 1 +

1

d
+
d2 − 1

4dm
,

as we claimed. �

Note that, if m increases, the expected competitive ratio of Rd tends to 1 + 1/d. The
bound of Theorem 7.5 is actually very close to the one shown for the corresponding online
algorithm Ad with advice in Theorem 2.9, but slightly worse. In fact, we can use the
proof of Theorem 7.5 as a probabilistic proof of an upper bound on the advice complexity
of JSS. On the other hand, we can apply Theorem 2.12 and Observation 7.1 to obtain
that, for any ε > 0, no randomized online algorithm that uses at most b random bits can
obtain a competitive ratio better than 1 + 1/(3 · 2b) − ε in expectation. Hence, barely
random algorithms for JSS cannot have a competitive ratio that tends to 1 with growing
m. This means they perform worse than the randomized algorithm from [88] (using an
unrestricted number of random bits), which can reach a competitive ratio that tends to 1
with increasing m.

The Simple Knapsack Problem

In Chapter 6, we have discussed the simple (i. e., unweighted) knapsack problem Simple-
Knapsack. We have given an online algorithm A1 with advice that is 2-competitive and
only uses one advice bit (see Theorem 6.6). At first, suppose we use the same algorithm,
but this time guess the advice bit. Obviously, this barely random algorithm, which we call
R′1, is 2-competitive with probability 1/2 and not competitive with the same probability,
i. e., 4-competitive in expectation. Considering R′1, this bound is tight as the next theorem
shows.

Theorem 7.6. The barely random algorithm R′1 for SimpleKnapsack cannot be better
than strictly 4-competitive in expectation.

Proof. Let 1/6 > ε > 0. Consider three items of sizes

1

2
− ε, 3 · ε, 1

2
− ε.

A greedy approach takes the first two items and therefore obtains a gain of 1/2 + 2 · ε,
whereas the algorithm that waits for an item of size ≥ 1/2 gains nothing. Thus, R′1 is
strictly c-competitive only for

c ≥ 1− 2 · ε
1
2 ·
(

1
2 + 2 · ε

)
+ 1

2 · 0
= 4 · 1− 2 · ε

1 + 4 · ε.

Since ε can be arbitrarily small, no strict competitive ratio better than 4 can be reached
in expectation. �
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Considering the results of the last subsection, we now know better, but still, intu-
itively it does not seem too surprising that, when it comes to such a small piece of in-
formation, randomization (the average over good and bad) is twice as bad as computing
with advice (always good). However, while this is right for this specific strategy, we get
the following: Remarkably, randomization and advice admit the same performance for
SimpleKnapsack when dealing with a small amount of either random or advice bits.

Theorem 7.7. There exists a barely random algorithm R1 for SimpleKnapsack that
achieves an expected competitive ratio of 2 and that only uses one random bit.

Proof. Consider the following deterministic online algorithms A1 and A2. A1 is the
straightforward greedy algorithm for SimpleKnapsack. A2 locally simulates A1 and
does not take any item until it realizes that an item just offered would not fit into A1’s
solution anymore. A2 then acts greedily starting from here. If the input consists of items
that, in the sum, have a weight less than the knapsack’s capacity, A1 is obviously optimal,
while A2 has a gain of 0. If, however, this is not the case, the gain of A1 plus the gain of
A2 is at least 1.

Let R1 choose between A1 and A2 uniformly at random. Obviously, one random bit
suffices to do that. We then immediately get that the expected gain of R1 is at least 1/2,
and the expected competitive ratio of R1 is thus at most 2. �

Note that the lower bound of 2 on the competitive ratio for online algorithms with
advice (see Theorem 6.7) also applies to the randomized case. Therefore, Theorem 7.7 is
tight. Let us relate Theorem 7.7 to our results from Chapter 6: With either one random
bit or one advice bit, we can (in expectation) achieve a competitive ratio of 2, and this
bound is tight. However, considering randomness, any additional random bit does not
help at all (see Theorem 6.9). As for computing with advice, there also is no improvement
until we get a logarithmic number of advice bits leading to an online algorithm that gets
arbitrarily close to an optimal solution. The above results imply that randomization and
advice are equally powerful when we consider a sub-logarithmic number of bits.

The Paging Problem

The third problem we focus on has already been introduced and discussed in Section 1.3.
Furthermore, in Section 1.7, we have briefly summarized the results from [35, 36] on the
advice complexity of Paging. One of the most intriguing results is given by Theorem 1.19,
which states that there exists an online algorithm A with advice that reads log b advice
bits and that has a competitive ratio of at most

3 log b+
2(K + 1)

b
+ 1,

where K is the buffer size of A (see Definition 1.4).
In [109], it was shown that the proof technique can be adapted to construct a barely

random algorithm for Paging. In the original proof, the existence of a good advice string
was shown by arguing that, on average, the advice strings are good for any instance;
this allows a direct argumentation about the expectation, which was used to prove the
following theorem.
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Theorem 7.8 (Komm and Královič [109]). Consider Paging with a buffer size of K
and let b < K be a power of 2. There exists a barely random algorithm for Paging that
achieves a competitive ratio of at most

3 log b+
2(K + 1)

b
+ 1

and that uses log b random bits, regardless of the input size. ♦

As stated in [109] and to the best of our knowledge, all randomized online algorithms for
Paging known so far that reach a competitive ratio of O(logK) use Ω(n) random bits for
inputs of length n, and no efficient barely random algorithm for Paging was known before.
The previous theorem shows that there exists a barely random algorithm for Paging that
only uses logK random bits and that reaches a competitive ratio of O(logK), which is
asymptotically equivalent to the best possible randomized algorithm [38].

We conclude that it seems worth searching for such randomized algorithms for problems
where a constant number of advice bits proves to be powerful.

7.2 Bounds with High Probability

So far, we have analyzed the performance of the randomized online algorithms we con-
structed by relating the expected gain to that of an optimal offline algorithm [88]. In this
section, we want to establish stronger statements of the following kind:

Not only are the random decisions made by some randomized online algorithm
good on average, but almost always.

In other words, we want to give bounds that are achieved with high probability, i. e., with a
probability that tends to 1 with growing input size. Once more, let us consider JSS. More
particularly, we want to revisit the randomized algorithm R from [88]. R chooses a strategy
from the set D2

√
m+1 = {D−√m, . . . , D√m} uniformly at random and, as mentioned, is

(1 + 1/
√
m)-competitive in expectation. We now show that R also computes a very good

solution with high probability.

Theorem 7.9. The randomized algorithm R is (1 + f(m))-competitive with high probabil-
ity, where f(m) ∈ ω(1/

√
m).

Proof. Consider the randomized online algorithm R as described above. Recall that Ob-
servation 2.2 (iii) states that the optimal solution has a cost of at least m. Let l be the
number of considered diagonals that cause R to have a cost of more than m(1 + f(m)).
Then, the probability that the computed solution has a cost of more than m(1 + f(m)) is

p :=
l

2
√
m+ 1

.

Let us have a closer look at R. The delay of any solution it computes is caused by two
things: the number i of horizontal [vertical] steps the algorithm makes at the beginning
to reach a diagonal with distance i from the main diagonal and the number of obstacles
hit. Since every obstacle that is hit is evaded by exactly one horizontal and one vertical
move, this causes an additional cost of exactly 1. Note that i is at most

√
m in any case.

Let l′ denote the number of diagonals that contain more than mf(m)−√m obstacles;
we call such diagonals expensive. By the above observation, any diagonal that causes a
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cost of more thanm+mf(m) must have more thanmf(m)−√m obstacles on it. It follows
that l ≤ l′ and hence p ≤ l′/(2

√
m + 1). We can now bound l′ from above as follows.

Easily, if l is maximally large, all of the m obstacles are distributed on the expensive
diagonals. Conversely, since there cannot be more than m obstacles for any instance, we
have m ≥ l′(mf(m)−√m) and therefore

l′ ≤ m

mf(m)−√m .

As a result, we get

p ≤
m

mf(m)−
√
m

2
√
m+ 1

=
m

(2
√
m+ 1)(mf(m)−√m)

=
1

(2
√
m+ 1)

(
f(m)− 1√

m

) .

Finally, since f(m) ∈ ω(1/
√
m), it immediately follows that p tends to 0 if m tends to

infinity, which finishes the proof. �

7.3 Amplification

When considering offline problems, we classify randomized algorithms according to their
error probability and the nature of the errors [88], e. g., we distinguish between Las Vegas,
one-sided error Monte Carlo, and two-sided error Monte Carlo algorithms. The main idea
behind this classification is that, if a randomized algorithm has an error probability that
is strictly less than 1/2, we may run this algorithm multiple times on the same input,
decreasing the error probability with every additional run [88]; this concept is known as
amplification.

It is crucial to note that the amplification method cannot be used in randomized online
computation, because online algorithms have to answer requests immediately and may not
change output they have already created. However, if we construct an online algorithm
using both advice and a random source, these restrictions may change. More precisely,
we can define two different types of oracles: (i) O does not know the output of any
random decision made by a randomized online algorithm R. Still, the advice might be
used to rule out some worst-case outputs for the concrete instance and thus improve R’s
performance. We call these random bits private random bits. (ii) In the second model,
O is more powerful and even anticipates the random decisions that are made by R during
runtime. In this case, we talk about public random bits.

In the following, we use public random bits, and we show that, in this model, ampli-
fication is indeed possible. Consider JSS and the algorithm from [88] together with our
results from the previous section.

Theorem 7.10. Let k be constant. There is a randomized online algorithm R with advice
and public random bits that uses 2k advice bits and that chooses an expensive diagonal
with probability less than 1/mk.

Proof. In the proof of Theorem 7.9, we have shown that an expensive diagonal is chosen
with probability at most

1

(2
√
m+ 1)

(
f(m)− 1√

m

) ,
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where f(m) ∈ ω(1/
√
m). Suppose we use public random bits to randomly choose a

diagonal from D2
√
m+1 (as defined in Section 7.2), and, after each such random choice, O

tells us whether this choice was good or bad by writing either a 0 or a 1 onto the advice
tape. If the decision was bad, we choose again; this is iterated at most d times, thus using
at most d advice bits. We immediately get that


 1

(2
√
m+ 1)

(
f(m)− 1√

m

)



d

≤ 1

mk

⇐⇒ d log


 1

(2
√
m+ 1)

(
f(m)− 1√

m

)


 ≤ log

(
1

mk

)

⇐⇒ k logm

log
(

(2
√
m+ 1)

(
f(m)− 1√

m

)) ≤ d,

which holds if
d ≥ k logm

log(
√
m)
⇐⇒ d ≥ 2k,

as we claimed. �

The above theorem implies the following statement.

Corollary 7.11. There is a randomized online algorithm with advice that uses public ran-
dom bits and four bits of advice and that chooses an expensive strategy with probability at
most 1/m2. �

A point of criticism of this model is that allowing public random bits is not adequate
to measure the advice complexity, because O is too powerful. In the next section, we use
the weaker model employing private random bits to study, at a concrete example, how
much advice may help randomized online algorithms to increase their performance in a
very generic setting.

7.4 The Boxes Problem

In this section, we want to study the tradeoff between randomization and advice for a
specific online maximization problem. To this end, we first investigate the power of ran-
domization by giving both (tight) lower and upper bounds and then boost the performance
by allowing the online algorithms at hand to additionally use advice. Let A be a random-
ized online algorithm that achieves some expected gain g on inputs of length n while using
b1 bits of advice and b2 private random bits. In simple words, in what follows we show
that, if A uses b′1 = b1 + 1 advice bits and b2 private random bits, it gets an expected gain
of g on inputs of length 2n. It therefore turns out that, for the following problem, with
any additional advice bit, A doubles its performance. Let us introduce the online problem,
denoted by (n, k)-Boxes, we deal with in the following.

Definition 7.12 ((n, k)-Boxes). There are n boxes b1, . . . , bn standing in a row, and
we know that all are empty except for k <

√
n boxes that stand next to each other and

that contain some expensive item each. An online algorithm A is allowed to open exactly
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k boxes of its choice aiming at opening as many full ones as possible. After A has opened
k boxes, the (remaining) positions of the non-empty boxes are revealed, and A’s gain is the
number of non-empty boxes it has opened.

Clearly, the optimal solution of (n, k)-Boxes always has gain k. We call the position
of the first full box the starting position; note that, for any instance of size n, there are
exactly n − k + 1 possible starting positions. Adv tries to hide the full boxes in such a
way that A’s gain is (in expectation and/or for any advice string) as small as possible.
At first, we can make the following straightforward observation about any deterministic
online algorithm without advice for (n, k)-Boxes.

Theorem 7.13. If n ≥ k(k + 1), Adv can ensure that no deterministic online algorithm
A has any gain.

Proof. Adv knows A’s deterministic strategy; however, for every box at some position i that
A opens, the number of starting positions to hide the k items is decreased by at most k.
The removed positions are those between i and i−k+ 1, where i ≥ k (see Figure 7.1); not
all of them exist if i < k. Hence, if A chooses boxes such that these intervals are disjoint,

A

. . .

Figure 7.1: A inspecting box b5 and the “forbidden” starting positions for Adv.

Adv is prevented from taking at most k2 starting positions. Accordingly, if n ≥ k2 + k,
Adv may hide the items in such a way that A is not able to find any full box at all. �

Thus, no deterministic algorithm is competitive if n ≥ k(k+1). In the next subsection,
we show the power of randomization for (n, k)-Boxes.

Randomization

Since we are interested in values for k and n that are in the above order and the situation
seems, as for the majority of problems we have studied in this thesis, desperate for any
deterministic online algorithm, we now consider randomized online algorithms. Which
box is chosen next may depend on which of the already opened boxes are full and on
the randomness that is available to the algorithm. So far, the randomized algorithms we
discussed used a random tape. As we have pointed out at the beginning of this chapter,
it is then possible to measure the amount of randomness (i. e., the number of random bits
used) as a function of the input size. Note that inputs for (n, k)-Boxes always have a
constant size since n and k are fixed. As we are interested (without loss of generality) in
randomized algorithms with a fixed upper bound on the running time, for any randomized
algorithm R solving (n, k)-Boxes, there is an upper bound r on the number of random
bits used by R.
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Since we want to investigate this problem in detail, in the sequel, we aim for a very
fine-grained analysis. As we know, if R is allowed to use b random bits, equivalently, it can
use a random number between 1 and 2b instead (see Observation 1.12). We generalize this
model by considering algorithms that get one random number drawn uniformly from the
set {1, . . . ,M}, where M is not restricted to be a power of two. Let Rand(M) denote the
set of randomized algorithms with randomness restricted to the uniformly random choice
of a number from {1, . . . ,M}.

If we fix an algorithm R, then the random variable Bs(R) denotes the number of full
boxes opened by R for the starting position s; E[Bs(R)] then is the expected number of full
boxes opened if Adv chooses the starting position s, and minsE[Bs(R)] is the worst-case
expected gain of R. If R is clear from the context, we abbreviate Bs(R) by Bs.

The following theorem gives a worst-case lower bound on the performance of any ran-
domized online algorithm R ∈ Rand(M) solving (n, k)-Boxes.

Theorem 7.14. For any randomized online algorithm R ∈ Rand(M) for (n, k)-Boxes,
there exists a starting position s (i. e., an input instance of (n, k)-Boxes), such that

1. if M < n−k+1
k2 , then E[Bs] = 0,

2. for any M , E[Bs] ≤ k2(k+1)
2(n−k+1) , and

3. if M = c(n− k + 1)/k2 with c ∈ [1, 2k/(k + 3)], then

(a) E[Bs] ≤ 2(k+ 3

2
)

M − 2(n−k+1)
M2k and also

(b) E[Bs] ≤ 2(c−1)
c2 · k3

n−k+1 + 3k2

c(n−k+1) .

Proof. The algorithm R gets a random number from {1, . . . ,M}, so it can behave in M
different ways, and each behavior occurs with probability 1/M . This is equivalent to
choosing one deterministic algorithm from a set {A1, . . . , AM} = Alg(R) uniformly at
random (which is a straightforward generalization of Observation 1.12). Recall that the k
full boxes start at some starting position, i. e., a position between 1 and n− k + 1.

1. Suppose that M < (n − k + 1)/k2. Basically, we now extend the idea from the
proof of Theorem 7.13. The number of starting positions that allow Adv to place
the obstacles in such a way that R does not find any item is n − k + 1 − (Mk2) >
n− k + 1− (n− k + 1) = 0, which implies the claim.

2. We can make a simple observation: Consider some specific (deterministic) algorithm
Ai ∈ Alg(R). There are at most k starting positions such that Ai opens a full box in
the first time step and gets at most k full boxes in total. Next, there are at most k
starting positions such that Ai opens an empty box in the first time step and a full
one in the second time step, and thus gets at most k − 1 full boxes in total, and so
on.
Assume that the starting position is p. Let Oi,p denote the number of empty boxes
opened by Ai until the first full box is found (or k if none) and let Oi,p := k − Oi,p
and Op := O1,p + · · ·+ OM,p. Clearly, Oi,p is an upper bound on the number of full
boxes opened by Ai in total, and Op/M is an upper bound on the expected number
of full boxes opened by R. Hence, taking s such that Os is minimal, the expected
number of full boxes opened by R for the starting position s is

E[Bs] =
1

M
Os =

1

M
min{O1, . . . , On−k+1}. (7.1)
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From the above observations, it follows that, for every deterministic strategy Ai, we
have

Oi,1 + · · ·+Oi,n−k+1 ≤ k2 + k(k − 1) + k(k − 2) + · · ·+ k =
k2(k + 1)

2
,

and accordingly, using (7.1) and the fact that the minimum of a set of numbers can
never be larger than its average, we get

E[Bs] ≤
1

M
·
∑

pOp

n− k + 1
=

1

M(n− k + 1)
·
∑

p

M∑

i=1

Oi,p

=
1

M(n− k + 1)
·
M∑

i=1

∑

p

Oi,p =
1

M(n− k + 1)
·
M∑

i=1

k2(k + 1)

2

=
1

M
· Mk2(k + 1)

2(n− k + 1)
=

k2(k + 1)

2(n− k + 1)
. (7.2)

3. Now let us consider values of M such that n−k+1
k2 ≤ M ≤ 2(n−k+1)

k(k+3) . The intuitive
idea of the remaining part of the proof is to choose a starting position such that it
induces a small gain for every deterministic strategy from Alg(R). Let g be such that
g ≤ k/M and g ≥ k+1

M − n−k+1
kM2 . We call a starting position p large if Oi,p ≥ gM ,

for some i, i. e., there is a single algorithm Ai that makes a large contribution to Op;
otherwise, we call this starting position small. Note that

g ≥ k + 1

M
− n− k + 1

kM2
⇐⇒ gM − 1 ≥ k − n− k + 1

Mk
,

which implies n − k + 1 ≥ Mk(k − bgMc). Moreover, g ≤ k/M easily implies
k − bgMc ≥ 0 and thus Mk(k − bgMc) ≥ 0. Hence, due to our assumptions on g,
we have that Mk(k − bgMc) ∈ [0, n− k + 1].

For any Ai, p is made large by Ai if Oi,p takes values between dgMe and k, which
leads to k − dgMe+ 1 ≥ k − bgMc different values. For any such value x, there are
at most k positions p such that Oi,p = x, and, since there are M algorithms in total
to consider, there are at most Mk(k−bgMc) large positions. Accordingly, there are
at least

n− k + 1−Mk(k − bgMc) ≥ 0

small positions.

In the following, let S denote the set of all small positions. Since no algorithm is
allowed to contribute strictly more than bgMc for these positions, we get that, for
any algorithm Ai,

∑

p∈S
Oi,p ≤ k(1 + 2 + · · ·+ bgMc) =

kbgMc(bgMc+ 1)

2

and consequently
∑

p∈S
Op ≤

MkbgMc(bgMc+ 1)

2
.
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In particular, there is some small position p (as above, we use that the minimum
cannot be larger than the average) with

Op ≤
MkbgMc(bgMc+ 1)

2|S| ≤ MkbgMc(bgMc+ 1)

2(n− k + 1−Mk(k − bgMc))

≤ MkgM(gM + 1)

2(n− k + 1−Mk(k − gM + 1))
, (7.3)

and, since E[Bp] = Op/M , there exists a starting position s such that

E[Bs] ≤
kgM(gM + 1)

2(n− k + 1−Mk(k − gM + 1))
. (7.4)

We now set

g :=
2
(
k + 3

2

)

M
− 2(n− k + 1)

M2k
=

2kM
(
k + 3

2

)
− 2(n− k + 1)

M2k
,

which satisfies our assumptions on g since

Mk2

M2k
≥ 2kM

(
k + 3

2

)
− 2(n− k + 1)

M2k
⇐⇒ Mk2 ≥ 2k2M + 3kM − 2(n− k + 1)

⇐⇒ 2(n− k + 1) ≥Mk(k + 3)

holds due to M ≤ 2(n−k+1)
k(k+3) , and

2kM(k + 3
2)− 2(n− k + 1)

M2k
≥ kM(k + 1)− (n− k + 1)

M2k

⇐⇒ 2kM

(
k +

3

2

)
≥ kM(k + 1) + (n− k + 1)

⇐⇒ M(k2 + 2k) ≥ n− k + 1

holds due to M ≥ n−k+1
k2 . Next, note that

g =
kgM(gM + 1)

2(n− k + 1−Mk(k − gM + 1))

⇐⇒ 1 =
kM(gM + 1)

2(n− k + 1−Mk(k − gM + 1))

⇐⇒ kM(gM + 1) = 2(n− k + 1)− 2Mk2 + 2M2kg − 2Mk

⇐⇒ 2Mk2 = 2(n− k + 1) +M2kg − 3Mk

⇐⇒ 2k =
2(n− k + 1)

kM
+Mg − 3

⇐⇒ 2k + 3 =
2(n− k + 1)

kM
+

2Mk
(
k + 3

2

)
− 2(n− k + 1)

Mk

⇐⇒ 2k + 3 = 2

(
k +

3

2

)

⇐⇒ k = k
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is always true, which, together with (7.4), implies that E[Bs] ≤ g. To finish the
proof, we choose M = c(n− k + 1)/k2, yielding

E[Bs] ≤
2k2
(
k + 3

2

)

c(n− k + 1)
− 2k3(n− k + 1)

c2(n− k + 1)2
=

2k2c
(
k + 3

2

)
− 2k3

c2(n− k + 1)

=
2(c− 1)

c2
· k3

n− k + 1
+

3k2

c(n− k + 1)

as we claimed.

The theorem follows. �

We now complement this lower bound by an upper bound that is tight up to a small
constant factor.

Theorem 7.15. Let M be an even number. There exists a randomized online algorithm
R ∈ Rand(M) for (n, k)-Boxes such that, for every starting position s,

1. if M ≥ 2n
k(k−1) , then E[Bs] ≥ 8

9 · k
3

2n − 1, and

2. if n−k+1
k2 < M ≤ 2n

k(k−1) , then E[Bs] ≥ 2k−2
M − 2n

M2k .

Proof. As we have mentioned, R is a probability distribution over Alg(R), where each
deterministic algorithm A ∈ Alg(R) gets chosen with the same probability 1/M . Every
algorithm A opens boxes within some interval of fixed length and performs a straightfor-
ward local search when a box is found, which enables A to find at least k − i full boxes
if an item is discovered in time step i. Moreover, consider an adversary Adv that tries to
hide the full boxes as well as possible from every algorithm in Alg(R) at once.

In the following, we focus on an equivalent problem to analyze the R’s performance.
We shrink the instance to an instance of size bn/kc, i. e., we compress k boxes into one
so-called hyper-box, thereby neglecting the last d = kbn/kc < k original boxes. There is
exactly one non-empty hyper-box that has a value of k − 1 at the beginning and whose
value is decreasing by one with every unsuccessful opening of a hyper-box (except for the
last step). The algorithm can open up to k hyper-boxes. When it opens the full hyper-box
in the jth trial, it achieves a gain of k − j if j < k, and a gain of 1 if j = k.

Next, we show that it is possible to reduce (n, k)-Boxes to its shrunk counterpart. To
this end, assume that we have an algorithm A′ for the shrunk version. We can construct an
algorithm A for (n, k)-Boxes as follows. Whenever A′ opens some hyper-box, A opens the
last box corresponding to this hyper-box. As soon as A finds some full box, it continues
with a local search. Consider any input instance for A, which is specified by the starting
position p. Then, A achieves at least the same gain as A′ running on an instance where the
hyper-box corresponding to p is full. Since p cannot be within the last k − 1 boxes, the
hyper-box corresponding to p exists. If A′ opens the full hyper-box, the starting position
is within distance k to the left of the box opened by A, therefore A opens a full box as well.
If this happens in time step j, the local search of A guarantees a gain of at least k − j if
j < k, and of 1 if j = k.

In the sequel, we provide a randomized online algorithm R that solves the shrunk version
of (n, k)-Boxes, thereby proving that an equally good algorithm for the original problem
exists. Consider some constant l ∈ {1, . . . , 2k − 1}. Starting with some hyper-box q, a
deterministic algorithm A ∈ Alg(R) opens k consecutive hyper-boxes until k empty hyper-
boxes are inspected or it finds the full hyper-box at the jth trial; as mentioned before,
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Figure 7.2: The worst-case gain within one interval assigned to the bn/kc hyper-boxes.

it gains k − j if j < k, and 1 if j = k. Next, we define the symmetric algorithm to A,
denoted by A ∈ Alg(R): A initially opens hyper-box q + l − 1 and then continues to open
k − 1 consecutive hyper-boxes left of q + l− 1 in reverse order until it arrives at s+ l− k
or finds the full hyper-box; A and A are called an algorithm pair, because they work on
the same interval.

Let us now bound the minimum of the total gain of the two algorithms within one
interval of length l. Clearly, if l = k, the gain is at least k − 1 for every hyper-box, and,
more general, if l = k+i, for −k < i < k, we get a gain of at least k−1−i = 2k− l−1 (see
Figure 7.2). Starting at the first hyper-box, we assign every of the M/2 algorithm pairs
to one interval of length l in such a way that, by allowing wrap-arounds, every hyper-box
is covered by exactly c intervals.

It follows that

E[Bs] ≥
c(2k − l − 1)

M

if we can guarantee a number of c wrap-arounds (see Figure 7.3); to do so, it clearly has
to hold that

M

2
· l ≥

⌊n
k

⌋
· c,

which can be guaranteed by satisfying

l ≥ 2cn

Mk
, (7.5)

and we obviously aim at minimizing l while satisfying (7.5). This means that we may set
l := d2cn/Mke yielding

E[Bs] ≥
c
(
2k −

⌈
2cn
Mk

⌉
− 1
)

M
≥ c

(
2k − 2cn

Mk − 2
)

M
=

2ck − 2c

M
− 2c2n

M2k
. (7.6)

We distinguish two cases according to the size of M .
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Case 1. Suppose that M ≥ 2n
k(k−1) . Let

δ :=
k3

2n
− k(16k − 8 + k2)

18n
.

In the following, we want to guarantee that

2ck − 2c

M
− 2c2n

M2k
≥ δ

and therefore
0 ≥ kδM2 − (2ck2 − 2ck)M + 2c2n (7.7)

to prove the bound we claimed. In other words, we have to show that there exists a
number of wrap-arounds c, for any M ≥ 2n

k(k−1) , such that (7.7) holds. To this end,
let us treat the right-hand side of (7.7) as a function in M , i. e., consider

f(M) :=

(
k4

2n
− k2(16k − 8 + k2)

18n

)
M2 − (2ck2 − 2ck)M + 2c2n.

We obtain
(

9k4 − k2(16k − 8 + k2)

18n

)
M2 − (2ck2 − 2ck)M + 2c2n = 0

⇐⇒ M2 − 18n(2ck − 2c)

8k(k2 − 2k + 1)
M +

36c2n2

8k2(k2 − 2k + 1)
= 0,

and thus it follows that f(M) has roots at

M1,2 =
9n(2ck − 2c)

8k(k − 1)2
±
√(

9n(2ck − 2c)

8k(k − 1)2

)2

− 9c2n2

2k2(k − 1)2

=
9cn(k − 1)

4k(k − 1)2
±
√(

9cn(k − 1)

4k(k − 1)2

)2

− 9c2n2

2k2(k − 1)2

=
9cn

4k(k − 1)
±
√

81c2n2

16k2(k − 1)2
− 9c2n2

2k2(k − 1)2

=
9cn

4k(k − 1)
±
√

9c2n2

16k2(k − 1)2
=

9cn

4k(k − 1)
± 3cn

4k(k − 1)
,

which gives M1 = 3
2 · nc

k(k−1) and M2 = 3 · nc
k(k−1) . Clearly,

f(M) =

(
M − 3

2
· nc

k(k − 1)

)
·
(
M − 3 · nc

k(k − 1)

)
≤ 0

is satisfied (and therefore (7.7)) if and only if

3

2
· nc

k(k − 1)
≤M ≤ 3 · nc

k(k − 1)
.

To show that we can cover all possible values of M for the right choice of c, note
that, for c = 1, we have
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Figure 7.3: The gain of R with wrap-around c = 2.

3

2
· n

k(k − 1)
≤ 2 · n

k(k − 1)
≤M,

and, for two consecutive values c′ and c′′ (i. e., for c′′ = c′ + 1), we have

3c′n

k(k − 1)
≥ 3nc′′

2k(k − 1)
=

3n(c′ + 1)

2k(k − 1)
⇐⇒ 2 ≥ c′ + 1

c′
,

which holds for any c′ ≥ 1. From (7.6) and (7.7), we get

E[Bs] ≥
2ck − 2c

M
− 2c2n

M2k
≥ k3

2n
− k(16k − 8 + k2)

18n
≥
(

1− 1

9

)
k3

2n
− 1.

Case 2. Now suppose that n−k+1
k2 < M ≤ 2n

k(k−1) . In this case, we do not have enough
randomness to do wrap-arounds. Thus, fixing c := 1 in (7.6), we immediately get

E[Bs] ≥
2k − l − 1

M
≥ 2k − 2

M
− 2n

M2k
.

The theorem follows. �

The intuitive idea behind the proof above is the following. With increasing M , as
long as M ≤ 2n

k(k−1) , the gain of R increases, because we can choose from more and more
deterministic strategies and shrink l. However, if M grows too much, the gain gets less,
and we start the wrap-around technique and thereby get a bound that does not depend
on M anymore. If M increases over some threshold, another wrap-around is made and
the intervals get decompressed a little. If M increases further, the intervals shrink until,
for some next threshold value, another wrap-around is made.

Up to this point, we have restricted ourselves to even values of M . However, a simple
observation resolves this issue.

Theorem 7.16. For any M and any randomized online algorithm R ∈ Rand(M), the
bounds from Theorem 7.15 hold up to a multiplicative factor of 1− 1/M .

Proof. Theorem 7.15 holds for any even M . Now if M is odd, R acts as above for any
random choice from {1, . . . ,M − 1}. In any of the cases, the expected gain X is the same
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as in Theorem 7.15. If M is chosen, R may open some arbitrary boxes. In this case, we
assume that the gain is 0. We therefore get a total expected gain of at least

(
1− 1

M

)
·X +

1

M
· 0

as we claimed. �

Observe that the above theorems provide us with two sharp thresholds on the amount
of randomness. If M < (n + k − 1)/k2, randomness does not help at all. On the other
hand, if M > 2n/(k(k−1)), which corresponds to roughly log n−2 log k random bits, any
further randomness does not help to improve the gain.

Randomized Online Algorithms with Advice

Next, we present the main result of this section by analyzing the tradeoff between ran-
domness and advice for (n, k)-Boxes. To this end, we consider online algorithms that
base their computations on both advice bits and private randomness (analogously to the
concept of private random bits as introduced in Section 7.3, i. e., the oracle does not know
the outcome of the random decisions). In essence, we prove that, for the same amount
of randomness, every additional advice bit allows us to find the same expected number of
full boxes within a sequence of roughly twice the length. This implies that, for instance,
the bound of 8

9 · k
3

2n − 1 on the expected number of opened full boxes from the first claim
of Theorem 7.15 can already be reached with a random number of roughly half the size.

To achieve this goal, we introduce the following notation. By F (n, k,M, b) we denote
the expected number of full boxes opened by the best algorithm that solves (n, k)-Boxes
with randomness M and b bits of advice.

Next, we generalize (n, k)-Boxes to (S, n, k)-Boxes, where S ⊆ {1, . . . , n− k+ 1}. In
(S, n, k)-Boxes, the starting position Adv chooses for the full boxes has to be picked from
the set S, otherwise it is identical to (n, k)-Boxes. An algorithm that solves (S, n, k)-
Boxes is called faithful if it only opens boxes whose positions are in S until the first full
box is encountered.

Lemma 7.17. For every algorithm A that solves (S, n, k)-Boxes with randomness M and
b advice bits, there exists a faithful algorithm A′ that also solves (S, n, k)-Boxes with ran-
domness M and b advice bits such that E[Bs(A

′)] ≥ E[Bs(A)], for every starting position s.

Proof. Suppose we are given A as stated by the lemma. The following strategy is carried
out by A′ until it finds the first full box: If A opens box bi, then A′ opens box bj with

j := max{s ∈ S | s ≤ i},

i. e., the next smaller box that is in S, or it opens no box at all if this maximum does not
exist. It is easy to see that A′ opens its first full box not later than A: Assume A opens
the first full box bi, then bp, bp+1, . . . , bi are all full, where p is the starting position of the
sequence chosen by Adv. Of course, p ∈ S and p ≤ j ≤ i. Afterwards, A′ opens the same
boxes as A, except for the case where A wants to open the box bj which was already opened
by A′. In this case, A′ opens bi; that way, A′ opens at least the same number of full boxes
as A. �

In the following, we relate the expected gain of (S, n, k)-Boxes to the one of (n, k)-
Boxes.
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Lemma 7.18. Let A be an algorithm that solves (S, n, k)-Boxes with randomness M and
no advice. Then minsE[Bs(A)] ≤ F (|S|+ k − 1, k,M, 0) + 1.

Proof. Due to Lemma 7.17, we can assume that A is faithful without loss of generality. We
now convert A into an algorithm A′ that solves (|S|+ k− 1, k)-Boxes with randomness M
and 0 advice bits such that minsE[Bs(A

′)] ≥ minsE[Bs(A)]− 1.
Let S = {p1, . . . , p|S|}, where p1 < p2 < · · · < p|S|. Let us further assume that A would

open boxes at positions pi1 , . . . , pik if we would report them all as empty. Then A′ opens
boxes at positions i1, . . . , ir until it finds the first full box bir ; afterwards, A′ continues with
local search.

Let i be a worst-case starting position for A′. As we have already discussed, the last
k−1 boxes cannot be starting positions. We therefore have i ≤ |S|+k−1− (k−1) = |S|.
We choose pi as the starting position for A. If A′ does not open a full box in the first r
rounds, then neither does A, because A is faithful and therefore only opens boxes from S.
By construction, any full box it finds this way corresponds to a full box A′ opens. �

We are now ready to prove the following two theorems that show the power of advice
for (n, k)-Boxes.

Theorem 7.19. F (n, k,M, b) ≤ F (d(n− k + 1)/2be+ k − 1, k,M, 0) + 1.

Proof. If an algorithm A solves (n, k)-Boxes with b advice bits, by the pigeonhole principle,
there is at least one advice string that is used for at least d(n−k+1)/2be different starting
positions; let S be the set of these starting positions. Then the algorithm A can be used
to solve (S, n, k)-Boxes without advice (but with randomness M). Hence, if A is optimal,
then F (n, k,M, b) ≤ minsE[Bs(A)] ≤ F (|S|+ k− 1, k,M, 0) + 1 by Lemma 7.18. Clearly,
F (n, k,M, b) is monotonically decreasing in n (if k, M , and b are fixed, Adv obtains
more positions to hide the boxes with growing n), and thus F (|S| + k − 1, k,M, 0) ≤
F (d(n− k + 1)/2be+ k − 1, k,M, 0). �

Theorem 7.20. F (n, k,M, b) ≥ F (d(n− k + 1)/2be+ k − 1, k,M, 0).

Proof. Consider an algorithm A for (n, k)-Boxes that uses b bits of advice. Again, there
are n − k + 1 possible starting positions for Adv. On the other hand, we may subdivide
these boxes into 2b groups of size ⌈

n− k + 1

2b

⌉

and encode the position of the group that contains the starting position using b bits.
Clearly, we can extend this interval by k−1 boxes which cannot contain a starting position.
Afterwards, A simulates an optimal algorithm A′ for an instance of this size. It directly
follows that A gains at least as much as A′. �

Combining our results regarding randomized computation with Theorems 7.19 and 7.20
immediately yields the following upper and lower bounds on the expected number of items
found by randomized online algorithms with advice.

Corollary 7.21. We can bound the function F from above as follows.

1. If M < dn−k+1
2b e/k2, then F (n, k,M, b) ≤ 1.
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Figure 7.4: The expected gain using randomness M and b bits of advice for n = 1000 000, k = 300,
different values of M , and up to two advice bits.

2. For any M ,

F (n, k,M, b) ≤ k2(k + 1)

2dn−k+1
2b e

+ 1.

3. If M = cdn−k+1
2b e/k2 with c ∈ [1, 2k/(k + 3)], then

F (n, k,M, b) ≤ 2(k + 3
2)

M
− 2dn−k+1

2b e
M2k

+ 1 and

F (n, k,M, b) ≤ 2(c− 1)

c2
· k3

dn−k+1
2b e

+
3k2

c · dn−k+1
2b e

+ 1.

�

Corollary 7.22. Let M be an even number. We can bound the function F from below as
follows.

1. If M ≥ 2(dn−k+1
2b e+ k − 1)/(k(k − 1)), then

F (n, k,M, b) ≥ 8

9
· k3

2 · dn−k+1
2b e+ k − 1

− 1.

2. If dn−k+1
2b e · 1

k2 < M < 2(dn−k+1
2b e+ k − 1)/(k(k − 1)), then

F (n, k,M, b) ≥ 2k − 2

M
− 2 · dn−k+1

2b e+ 2k − 2

M2k
.

�
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Note that these upper and lower bounds are almost tight. Obviously, Corollary 7.22
can easily be extended to the case of odd values of M using Theorem 7.16. A graphical
illustration of the connection between the amount of randomness, the number of advice
bits, and the expected number of full boxes that are opened is given in Figure 7.4.
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Chapter 8

Concluding Discussion

In this thesis, we have studied online problems within the framework of advice complexity.
This concept tries to measure the amount of information that we miss when computing
in an online environment, which prevents online algorithms from achieving results of high
quality (compared to offline algorithms). To this end, we used a model that is as generic as
possible, only describing the pure information necessary by means of an additional advice
tape. As we have seen, problems may behave very differently. We conclude by giving
some first ideas about how to extend this model to other fields of computer science in
Section 8.2, point to related work from different areas in Section 8.3, and finally try to
give some directions for further research in Section 8.4. However, before that, we want to
describe an important observation concerning our proof techniques that might be crucial
for further work.

8.1 A Note on the Model

In Section 1.6, we have formally introduced our model in a way such that the adversary
Adv knows the oracle O. For the ease of presentation, let us consider online minimization
problems and speak about strict competitiveness only. Our aim was to construct pairs of
algorithms and oracles that achieve a specific competitive ratio if the algorithm reads a
particular number of advice bits. Formally,

∃ (A, O) ∀ Adv creating I : cost(Aφ(I)) ≤ c · cost(Opt(I)).

When proving lower bounds, we usually showed that, for some advice string of some fixed
length, there exist different inputs within one class of inputs that cannot be distinguished
sufficiently to achieve some specific competitive ratio; this becomes very visible when we
show lower bounds on achieving optimality, e. g., in Theorem 4.3, where A has to know a
unique permutation. However, Adv must know the (at least) two inputs that correspond
to one advice string to cause A to fail when being given one of them, i. e., Adv has to know
how O prepares the advice strings to select the concrete input. Formally, what we show is
that

∀ (A, O) ∃ Adv creating I : cost(Aφ(I)) > c · cost(Opt(I)). (8.1)

Again, here, the oracle is fixed (i. e., known to Adv), and we show that, for every algorithm
and oracle, such an adversary exists.

Interestingly, in some of our proofs we are using an adversary that is seemingly weaker.
For instance, consider the proof of Theorem 2.12 where we were dealing with a lower bound
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on achieving c-competitiveness for JSS. Here, we subdivided the whole grid induced by
the input into sub-grids such that every algorithm from Alg(A) is assigned to one of them.
Note that these sub-grids do not interfere with each other. Therefore, Adv does not have
to know which advice string is given; it is sufficient that it knows how A behaves for all
possible advice strings. Thus, what we have really shown is that

∀ A ∃ Adv creating I such that ∀ O : cost(Aφ(I)) > c · cost(Opt(I)). (8.2)

The same argument is valid for the lower bound proofs of the set cover problem (see
Theorems 5.6 and 5.11). While it seems obvious that (8.2) is stronger than (8.1), we want
to point out that, as a matter of fact, both models are equally strong: Suppose that Adv
merely knows A and the number b of advice bits used (which, of course, depends on n).
Adv may then, for every I, proceed by using a procedure as shown in Algorithm 8.1 and
learn which one is the strongest advice for every input. It follows that there must exist
an oracle that constructs this optimal advice for every input, thus never being worse than
any other oracle on any input.

Algorithm 8.1: get_best_advice(I,b)
i := 1;
Best := A with advice 1;
while i ≤ 2b

Ai := A with advice i;
simulate Ai on I;
if cost(Ai(I)) ≤ cost(Best(I))

Best := Ai;
i := i+ 1;

output index of Best;
end

This way, Adv can determine the worst input for the best oracle. We therefore can
safely say that Adv, as we have used it in this thesis, is indeed oblivious (as defined in
Section 1.3), with the restriction that it knows the number of advice bits b supplied for the
online algorithm A with advice. Consequently, it does not matter which technique is used
for proving lower bounds, and it seems that it depends on the concrete problem which of
the two approaches is the better choice.

8.2 Extending the Model

In [89], Hromkovič, Královič, and Královič proposed to use advice complexity for a broader
set of scenarios to investigate what kind of information needs to be extracted from some
problem instance of a computational problem to solve it with respect to some measurement
(see also [34]): As we have Kolmogorov complexity1 [48, 105, 117] or Shannon’s concept
of entropy2 [141] to measure the information some string carries, it was suggested to use
advice complexity to specify the information that is hidden in some problem description
(the information complexity or information content [89]). It is clear that both of the
above mentioned concepts cannot provide such a measurement. As pointed out, in online
computation, the advice complexity measures what we lose for not knowing the future. A
1 Andrei N. Kolmogorov, b25.04.1903, d20.10.1987, Russian mathematician.
2 Claude E. Shannon, b30.04.1916, d24.02.2001, American mathematician.
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Computational problems

Decidable Not decidable

Compute online
Compute by
selfish agents Compute efficiently

..
.

..
.

..
.

..
.

..
.

Figure 8.1: Computational problems.

next step could be to study advice complexity in scenarios where other drawbacks, which
are implied by the model, can be compensated.

On the highest level, computational problems are subdivided into those that are not
solvable (i. e., undecidable problems, e. g., the halting problem [87], as shown by Turing in
1936 [149]) and the ones that are. Problems that are not decidable may be distinguished
further by the fact whether they are recursively enumerable, etc. Then again, when dealing
with problems that we can solve by means of Turing machines that halt on any given
input (i. e., algorithms), we are often still not completely satisfied by this circumstance. In
practical applications, we do not only want to know that a problem is solvable, but we also
want the solution to be computed in some specific framework while obeying some certain
rules. Thus, a number of restrictions may be imposed on the way of how the solutions to
these problems are obtained; let us only name a few (see Figure 8.1 for a sketch).

(i) Computing online. As discussed in this thesis, here, we are facing the fact that the
input arrives successively as it is the case for a large number of computational problems
encountered in practice. Classically, we use the competitive ratio to measure the hardness
of these problems. What we were aiming at, was to see how much information is both
necessary and sufficient to overcome bad results induced by the above restriction.

(ii) Restricting the allowed running time. As described in Section 1.2, we call algo-
rithms efficient if they run in polynomial time. Now let us consider our model of advice
for any offline decision problem [86, 87] (in NP or even beyond). It is immediately clear
that one single bit of advice is sufficient to produce optimal output. If the problem is in P,
trivially, no advice is needed to obtain an efficient algorithm by definition; if the problem
is NP-hard, however, one bit is also necessary, unless P = NP. This needs no further
investigation, still it is remarkable that, by the nature of this huge class of computational
problems, there are absolutely no differences in hardness in terms of advice complexity for
all problems that are NP-hard. Only one single bit is sufficient to be as efficient as for
any trivial computational problem. It gets more interesting, if we consider optimization
problems, i. e., problems, for which we want to find good solutions among a huge number
of feasible ones. As with decision problems, we are particularly interested in designing
algorithms that are efficient. In other words, we are not satisfied by the fact that, for
some optimization problem P , we are guaranteed to get a good solution eventually, but
we also want guarantees on the time it takes to get it. Here, the approximation ratio
takes the place of the competitive ratio in online scenarios. For NP-hard problems, we
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cannot hope to get an optimal solution in polynomial time, if P 6= NP. Thus, if we want
to work efficiently, we pay by only getting an approximate solution. Depending on the
problem, the quality of this solution might vary drastically. Analogously to what we did
when dealing with online problems, we may ask how much information is sufficient and
necessary to overcome this disadvantage, i. e., how much advice is needed to efficiently
compute an optimal solution (we give some more details in the next subsection).

(iii) Game-theoretic settings. When considering games, we are not dealing with one
central algorithm that processes the input, but are facing the fact that a number of selfish
agents compute the solution to a problem (see, e. g., [130, 146] for an introduction). Many
games admit so-called Nash equilibria3 in which no agent has an incentive to change
its strategy, given that the strategies of all other agents are fixed [129]. However, these
equilibria are not necessarily optimal considering the overall cost (usually referred to as the
social welfare). In 1999, Koutsoupias and Papadimitriou introduced the price of anarchy
as the ratio of a worst Nash equilibrium and the optimal solution of a game [113]. Similar
to the above scenarios, we may state that the price of anarchy tells us what we lose for not
computing the solution to a problem by one central algorithm that processes the whole
input, but by selfish agents. Again, we can ask whether advice helps in these environments.
We can propose different types of advice that might either be distributed over all agents
or that just forces a strict subset of agents to obey some strategies that are not necessarily
optimal for them, but increase the social welfare. This would require agents that act
selfishly as long as they are left alone, but that still obey commands given by a central
authority (i. e., the oracle O).

To sum up, the competitive ratio, the approximation ratio, and the price of anarchy are
tools that tell us what we lose in particular scenarios for satisfying some type of restriction;
they are all defined as the ratio of the cost achievable by obeying this restriction and the
optimal cost that we can, in general, only obtain when neglecting these restrictions (under
the assumption that P 6= NP for optimization problems). Advice may then be used to
measure the hardness of particular problems in a particular framework. As we briefly
discuss in Section 8.4, these concepts might also be combined.

Optimization

When considering optimization problems, we are given an instance of a computational
problem together with a set of feasible solutions (we do not want to give a formal definition
and refer to the standard literature [11, 86, 131, 150]). We are particularly interested in
studying optimization problems that are within the complexity class NPO [86].

Definition 8.1 (NPO). The class NPO contains all optimization problems P that have
the following properties.

(i) It is possible to efficiently verify whether a given string is an instance of P .

(ii) The size of any solution O for any instance I of P has a size that is polynomial in
the size of I; furthermore, it is possible to efficiently verify whether O is a solution
for I.

(iii) The cost function associated with P is computable in polynomial time.

3 John F. Nash, b13.06.1928, American mathematician.
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Now suppose that we construct algorithms to solve some NP-hard optimization prob-
lem P from NPO that have access to an advice tape with content φ, which was created
beforehand by an oracle that inspects the given input. An algorithm A with advice for P
then computes a solution O based on φ and I. Due to Definition 8.1 (ii), we have that any
solution has a size of at most p(n), for some polynomial p and with n being the size of I.
Thus, there exists a polynomial p such that all solutions for I are at most of size p(n). A
polynomial upper bound follows. The oracle writes the solution O onto the advice tape,
and A simply copies the content to its output tape. Note that, to do so, the advice has to
be given in a self-delimiting form, using, e. g., Observation 1.14.

Observation 8.2. For any optimization problem in NPO, polynomial advice suffices to
create optimal output.

For some problems, it is easy to see that linear advice is sufficient. For instance, consider
the maximum satisfiability problem, MaxSAT for short, formally defined as follows.

Definition 8.3 (MaxSAT). Given a set Φ = {F1, . . . , Fm} of m clauses over k Boolean
variables4 X(Φ) = {x1, . . . , xk}, find an assignment that maximizes the number of clauses
that evaluate to 1.

Obviously, an optimal assignment can be specified by O by using k advice bits, so we
get that the information content of MaxSAT is at most linear in the number of the given
variables. Since the length of the input n is larger than k, it follows that the number of
advice bits is at most linear in the input size. On the other hand, considering a lower
bound on the advice necessary to compute an optimal solution, we can make the following
general statement.

Observation 8.4. Let I be an instance of length n of some NP-hard optimization problem
P from NPO and let d be a constant. There is no efficient algorithm that computes an
optimal solution for I and that uses at most log(nd) bits of advice, unless P = NP.

Proof. Towards contradiction, suppose there exists an optimal algorithm A with advice that
runs in O(p1(n)) time, for some polynomial p1 of degree d1, and that uses at most log(nd)
bits of advice. We can then construct an exact algorithm B that simulates A on every
possible advice string and outputs the best feasible solution. To this end, B has to check,
for every possible advice string, whether the output of A is a feasible solution for I and, if so,
calculate its cost. Due to Definition 8.1 (ii) and (iii), both can be done, for one output, in
time O(p2(n)), for some polynomial p2 of degree d2. Since there are 2log(nd) = nd possible
advices of the above length, the running time of B does not exceed nd · (p1(n) + p2(n))
which clearly is in O(q(n)), for some polynomial q of degree d + max{d1, d2}. But this
contradicts the NP-hardness of P . �

The gap between the bounds stated by Observations 8.2 and 8.4 is rather large. For
some problems, including MaxSAT, we can, using stronger assumptions, even show lower
bounds f(n), for all f(n) ∈ o(n). The Exponential-Time Hypothesis (ETH), formally posed
by Impagliazzo and Paturi in 1999 [92], implies that there does not exist any algorithm
for 3-SAT that runs in time 2o(n) [77]. Since any exact algorithm for MaxSAT running in
sub-exponential time immediately yields a sub-exponential algorithm to decide any given
instance of 3-SAT, we get the following observation, using a similar argument as in the
proof of Observation 8.4.
4 George Boole, b02.11.1815, d08.12.1864, English mathematician.
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Observation 8.5. For MaxSAT, there is no efficient optimal algorithm that uses o(n)
bits of advice, unless the ETH fails.

Consequently, if we believe the ETH, the upper bound of linear advice for MaxSAT
is essentially (i. e., asymptotically) tight. Moreover, if the ETH is true, there are no opti-
mal sub-exponential algorithms, and thus no efficient optimal algorithms with sub-linear
advice, for a number of other problems, including maximum independent set, minimum
vertex cover, or maximum clique [77].

Reoptimization

It is remarkable how counterintuitive things may behave; for instance, in optimization,
there are problems which stay as hard even when given some seemingly very powerful
advice. In particular, we want to point to reoptimization. This concept is somewhat
incomparable to the one of advice complexity. Here, we are given some instance Inew of an
NP-hard optimization problem P together with a second instance Iold of P that differs
from Inew only locally (i. e., very slightly) and an optimal solution Optold for Iold. We
then want to answer how much knowing Optold helps us to efficiently obtain an optimal or
high-quality solution Optnew for the instance Inew of P given the additional information
(Iold,Optold). As a reoptimization variant of MaxSAT, we might, e. g., consider the
following problem DelMaxSAT where a variable is removed from the input set.

Definition 8.6 (DelMaxSAT). Given a triple (Inew, Iold,Optold), where Iold is an in-
stance of MaxSAT, Optold is an optimal solution for Iold, and Inew is obtained by re-
moving one variable from the variable set of Iold, the problem DelMaxSAT is to find an
optimal solution for Inew.

In the last subsection, we have seen that m advice bits are sufficient to produce optimal
output. Still, let us point out that, if we want to solve the problem optimally, the kind of
advice presented here is useless. This might contradict our intuition, since we are given
(for free) a seemingly very powerful piece of information together with the instance Inew

that we want to solve. We can easily prove that this knowledge does not help at all by
giving a straightforward reduction from the original problem.

Lemma 8.7. There is no efficient optimal algorithm for DelMaxSAT, unless P = NP.
Proof. Towards contradiction, suppose that there exists an optimal algorithm A for Del-
MaxSAT that runs in polynomial time. Let Φ :=Inew be any instance of MaxSAT. We
introduce a new variable x /∈ X(Φ) and add it to every clause from Φ. The obtained
instance, which we call Iold, is obviously trivial: an optimal solution Optold sets x = 1
and, without loss of generality, all other variables to 0, which means that all clauses are
satisfied. We set I := (Inew, Iold,Optold), which we can clearly do in linear time, and
run A on I. Clearly, we can adopt A’s output as an output for the original instance Φ
of MaxSAT and thus have just constructed an optimal polynomial-time algorithm for
MaxSAT, which contradicts its NP-hardness. �

Similar (more sophisticated) hardness proofs were given for reoptimization variants
of other optimization problems, e. g., for the shortest common superstring problem [22].
Many other problems on graphs have been investigated in terms of reoptimization, e. g.,
the metric traveling salesman problem [9, 13, 20, 24, 115], the metric traveling salesman
problem with deadlines [29, 30], and the Steiner tree5 problem [21, 25, 27, 157]. Further-
5 Jakob Steiner, b18.03.1796, d01.04.1863, Swiss mathematician.
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more, the knapsack problem [10] and different covering problems [23] were investigated
within this scope. In many cases, positive results were obtained like constructing a PTAS
for a reoptimization variant of a problem that is APX -hard. However, surprisingly, the
following was shown for the traveling salesman problem on general graphs: even if all
optimal solutions (in particular, exponentially many, thus using a large amount of advice)
are known, there still does not exist an efficient algorithm that achieves improved results
[28].

8.3 Related Work

The concept of using advice (in other words, using additional information) to study, clas-
sify, and evaluate problems and their hardness has been used in many settings different
from ours. In what follows, we only mention a few examples. Note that the oracles used
in these settings work differently from the ones in our model.

The question of how much additional information is sufficient to solve an otherwise
infeasible problem is exceedingly interesting, also in practice, in cryptography (for an
introduction, we refer to the standard literature, e. g., [60]). It is a well-known fact that
many of the cryptographic systems in use rely on the assumption that factoring, i. e., to
determine the prime factors of some composite number N ∈ N, is infeasible for large
numbers. For instance, the extensively used cryptographic system RSA6 [138] would be
considered broken if we would be able to efficiently factor large numbers; actually, it
might be easier to break RSA [2, 37], whereas for the cryptographic system Rabin7 [134],
it is even proven that it is as hard to break as factoring. Remarkably, it is not yet known
whether factoring is NP-hard. The decision version of the problem, i. e., given a composite
number N and a threshold t, decide whether N has a factor d ∈ {2, . . . , t}, obviously is
in NP. It is, however, conjectured to be neither in P nor NP-complete. Therefore, it
might be an NP-intermediate [11] problem (indeed, if P 6= NP, such problems do exist,
as shown by Ladner [116]), but there are no proofs for that conjecture up to this day.
Intriguingly, the problem to decide whether a given number is prime, denoted by Primes,
was proven to be in P by Agrawal, Kayal, and Saxena in 2002 [3].

In 1985, Rivest and Shamir studied how many advice bits are necessary to efficiently
factor an n-bit natural number N = p · q, where p and q are n/2-bit primes [137]. These
bits are supplied by an oracle O that correctly answers questions asked by the algorithm
by “yes” or “no”. The authors improved the trivial upper bound of n/2 to n/3+O(1). Ten
years later, Maurer significantly improved this result by showing that, for sufficiently large
n, n ·ε bits of advice suffice to construct a randomized polynomial-time algorithm, for any
ε > 0 [123]. Moreover, oracles for the Diffie-Hellman key exchange protocol8 (introduced
in [62]) were studied by Maurer and Wolf [124].

As we have pointed out in the previous section, our model is not suited to study
decision problems with given advice. However, there exist other approaches where oracles
are employed for a further exploration of decision problems and the classes P and NP
(comprehensive introductions are given in [11, 131]). Here, Turing machines are equipped
with an oracle that instantly answers questions concerning special decision problems; MSAT,
6 Ronald L. Rivest, b06.05.1947, American computer scientist;
Adi Shamir, b06.07.1952, Israeli computer scientist;
Leonard Adleman, b31.12.1945, American computer scientist.

7 Michael O. Rabin, b01.09.1931, Israeli computer scientist.
8 Martin E. Hellman, b02.10.1945, American electrical engineer;
Whitfield Diffie, b05.06.1944, American mathematician.
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for instance, is a Turing machine that can query an oracle for SAT asking whether some
Boolean formula is decidable, and it gets a correct answer immediately. The differences
to our model are obvious: The oracles considered do not create their answers depending
on the input, but give some general advice when queried. Let PO [NPO] be the class of
decision problems that can be decided by deterministic [nondeterministic] Turing machines
with an oracle O. In 1975, Baker, Gill, and Solovay showed that there exist oracles O1 and
O2 such that both PO1 = NPO1 and PO2 6= NPO2 [15]. This result is of great relevance as
it renders a large number of proof techniques for resolving the P vs. NP problem useless
(such approaches are called relativizing as they work both with and without oracles).

In Sections 7.3 and 7.4, we studied the collaboration of an oracle and a random source.
For decision problems, a similar idea is followed by interactive proof systems (see, e. g.,
[11, 86]). Here, a Turing machine M has access to both a random tape and a so-called
proof tape; M has random access to this proof tape. For some “yes”-instance I of length
n of a decision problem D (e. g., SAT), the proof tape contains a witness that proves
that I is indeed a “yes”-instance of D (e. g., an assignment of the variables such that
the given formula is true). M is also called a probabilistic verifier. The complexity class
PCP(f(n), g(n)) contains all decision problems that can be solved efficiently and with
high probability by a probabilistic verifier that accesses at most f(n) random bits and
g(n) bits of the proof tape. Clearly, P = PCP(0, 0) and NP = PCP(0,poly(n)), where
poly(n) denotes the class of all polynomials over N. The PCP theorem, proven by Arora
et al. in 1992 [12], states that NP = PCP(O(log n),O(1)), i. e., there is a probabilistic
verifier for any problem in NP that uses O(log n) random bits and that reads a constant
number of bits of the proof tape. The PCP theorem provides a strong technique for proving
lower bounds on the approximation ratio of optimization problems [12, 11, 86, 83], unless
P = NP.

Finally, we want to point to dynamic data structures, where, recently, the concept of
advice was also introduced and used as a lower bound technique [49, 132].

8.4 Further Research and Open Questions

Let us conclude with some suggestions for future work. First of all, many online prob-
lems have not yet been studied in terms of their advice complexity. Moreover, for the
problems that were already addressed, many upper and lower bounds are far apart. As
pointed out, for instance, there is quite some room for improvement for k-Server; as
recent results suggest, it seems likely that the upper bound of Theorem 4.6 might still
be drastically improved, at least for many instances [16]. Additionally, we do not know
any lower bound on achieving some competitive ratio c > 1. As for SetCover, there
remains an exponential gap between the lower bound (see Theorem 5.11) and the upper
bound (see Theorem 5.10) when measuring the advice complexity with respect to the size
of the set family S. For a large number of the problems studied, at least the constants for
many lower and upper bounds can be improved. Furthermore, we studied a rather special
class of job shop scheduling problems in Chapter 2. It would certainly be reasonable to
study more general settings (e. g., to have more than 2 jobs) that require more advice to
be solved near-optimally. Also, so far, a weighted version of SetCover has not yet been
investigated; in this thesis, we assumed that all members of S have a weight of 1. If we
allow arbitrary weights, we cannot assume anymore that supersets of sets are always taken
by any online algorithm to satisfy requests. This might lead to higher lower bounds.
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Some of the lower bounds (see Chapters 3 and 4) are only valid for strictly competitive
algorithms. A next step towards more general statements could be to obtain lower bounds
for non-strict competitiveness. This will probably require more complex arguments as it
does not allow for an optimal solution of constant size anymore.

As usual, we followed a concept of unconditional hardness [38] when analyzing online
algorithms neglecting their running time and focussing on what we lose for not knowing
the whole input. Nevertheless, the majority of these algorithms are in fact efficient; an
exception are the presented algorithms for SetCover. In Section 5.1, we encoded in-
formation about the actual input on the advice tape such that the algorithm still had to
compute the solution itself. Therefore, it was left with solving an NP-hard problem. On
the other hand, the upper bounds with respect to the size of S, presented in Section 5.2,
use information about the solution, and the resulting algorithms obviously run in polyno-
mial time. In general, it makes sense to analyze the advice complexity of efficient online
algorithms. Almost nothing is known about the comparison of online algorithms with
advice with unrestricted and restricted runtime, opening an interesting field for further
research.

In Section 7.4, we have introduced (n, k)-Boxes as a simple problem to extensively
study the cooperation of an oracle and a random source. However, so far, randomized on-
line algorithms with this kind of advice have not been investigated for any other problems.
More generally, it seems very interesting to investigate the relation between public and pri-
vate random bits in more detail and to search for online algorithms that produce good
solutions with high probability (see Section 7.2). In fact, results with high probability can
provide a valid alternative to the expected competitive ratio in online computation. More-
over, as shown in Section 7.1, for some problems, we might derive powerful barely random
algorithms from online algorithms with advice that use a constant number of advice bits.
This was, to the best of our knowledge, so far, only done for JSS, SimpleKnapsack,
and Paging, although it might prove to be a new approach for the construction of barely
random algorithms for a broader class of online problems (once more, let us stress that it
does not provide any general technique). Furthermore, it is easy to see that lower bounds
on the advice necessary carry over to the amount of random bits required to obtain some
specific output quality (see Chapter 7). A more general question, asking how many advice
bits we need instead of random bits to achieve the same competitive ratio, has already
been partly answered by Theorem 7.2. Then again, only minimization problems were
considered, and it is unclear whether such statements can also be made for maximization
problems. This tradeoff between advice and randomization seems to be of great theoretical
interest.

Before we have introduced our model, in Section 1.5, we have comprised some of the
measurements that were proposed as alternatives to the competitive ratio. As we have
already stated, some of these measurements aim at a somewhat different direction than
we do here as they do not try to give another way to classify the problems themselves,
but want to give a more realistic way to compare existing algorithms. Examples include
the access graph model to compare LRU and FIFO or the comparative ratio to compare
algorithms with lookahead to those that do not possess this feature. In Section 6.1, we
have shown that resource augmentation is very powerful with respect to advice complexity:
For SimpleKnapsack, instead of using a logarithmic number of advice bits, it suffices to
only use a constant number if we allow some small overpacking. It seems reasonable to
use this approach for the study of further alternative measures.
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Throughout this thesis, we have considered an adversary that knows the number b of
advice bits the online algorithm reads. It might be worth further research to investigate
how the model changes if we drop this strong requirement. Actually, b cannot be obtained
by merely studying the online algorithm, because it may depend on the advice itself.
Clearly, the lower bounds will get worse, but it is not clear to which extent.

Finally, as pointed out in the previous section, it is surely worth trying to extend the
model of advice in computation to a more general framework. An (admittedly rather
ambitious) long-term goal would be to prove general statements of the following form:

For the problem P , the crucial information that must be extracted from inputs
of length n in the framework W is b(n).

With our ideas from Section 8.2, we may even pose more general questions. We already
mentioned the study of efficient online algorithms with advice. Suppose we know that
there exists a c-competitive online algorithm with advice for an NP-hard problem P that
uses b bits of advice, but requiring exponential runtime. We may then investigate how
many further bits of advice we need to solve P efficiently. A similar idea would be to
combine two other fields; for instance, in [71], Engelberg and Naor have introduced online
games, i. e., problem definitions in which selfish agents work in an online environment.
Thus, we lose performance for two reasons. Here, we could study advice that is supplied
for both decreasing the price of anarchy and revealing yet unknown parts of the input.
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