
philippe wenk

L E A R N I N G T I M E - C O N T I N U O U S D Y N A M I C S M O D E L S
W I T H G AU S S I A N - P R O C E S S - B A S E D G R A D I E N T

M AT C H I N G
Diss. ETH No. 28730

diss . eth no. 28730

L E A R N I N G T I M E - C O N T I N U O U S D Y N A M I C S
M O D E L S W I T H G AU S S I A N - P R O C E S S - B A S E D

G R A D I E N T M AT C H I N G

A dissertation submitted to attain the degree of

doctor of sciences of eth zurich

(Dr. sc. ETH Zurich)

presented by

philippe wenk

born on 25 December 1991

MSc RSC, ETH Zürich

accepted on the recommendation of

Dr. Andreas Krause, examiner
Dr. Maurizio Filippone, co-examiner

Dr. Florian Dörfler, co-examiner
Dr. Stefan Bauer, co-examiner

19.12.2022

Philippe Wenk: Learning Time-Continuous Dynamics Models with Gaussian-
Process-based Gradient Matching, © 19.12.2022

doi: 10.3929/ethz-b-000591579

A B S T R A C T

Continuous-time dynamical systems form an important modeling class in
many scientific disciplines. Thus, combining them with a solid uncertainty
quantifying framework could enable important applications, including
guidance for data selection or for safety considerations. Nevertheless, un-
certainty quantification in continuous-time is notoriously difficult, both
theoretically and computationally. A key issue here is the computational
complexity and sometimes numerical instability of numerical integration.

In this thesis, we investigate alternatives to classical, numerical-integration-
based approaches to probabilistic inference for such systems, namely gradi-
ent matching. After a general introduction to gradient matching schemes,
we develop novel, Gaussian-process-based inference schemes that do not
rely on numerical integration. We start in a theoretical setting, where we can
guarantee that the underlying, data-generating process can be described by
specific models. In particular, the first models we consider are deterministic,
ordinary differential equations. Then, our inference algorithms are adapted
and scaled up. Ultimately, they are deployed in the context of a data set
containing real world measurements, in a case study where some of the
underlying assumptions are demonstrably violated. The resulting algorithm
is a compromise between pure gradient-matching-based and numerical-
integration-based techniques. While we still avoid numerical integration
during training, we observe that it can be helpful and necessary during
prediction.

By building on insights developed in the deterministic case, we then
conclude our work by studying the applicability of gradient matching to
stochastic differential equations. By restricting our work to linear diffusion
terms, we ultimately manage to develop a gradient matching algorithm
for this model class, even though sample paths of stochastic differential
equations are nowhere differentiable with probability 1.

v

Z U S A M M E N FA S S U N G

Zeitkontinuierliche dynamische Systeme sind eine wichtige Klasse von
Modellen für viele wissenschaftliche Disziplinen. Ein solider Ansatz zur
Quantifizierung von Unsicherheit in solchen Systemen könnte dadurch
zu vielen interessanten Anwendungen führen, z.B. bei der Auswahl von
zukünftigen Experimenten oder zur Zertifizierung von Sicherheitsüberle-
gungen. Dennoch ist die Quantifizierung von Unsicherheit in zeitkontinuier-
lichen Systemen sowohl theoretisch als auch rechnerisch sehr schwierig. Ein
Kernproblem ist dabei der hohe Rechenaufwand assoziiert mit numerischer
Integration, sowie dabei auftretende, numerische Probleme.

In dieser Arbeit untersuchen wir Alternativen zu klassischen, auf nume-
rischer Integration basierenden Ansätzen zur probabilistischen Inferenz
für solche Systeme, genannt Gradienten-Matching. Nach einer allgemeinen
Einführung in Gradienten-Matching-Verfahren entwickeln wir neuartige,
auf Gauss-Prozessen basierende Inferenzverfahren, die nicht auf numeri-
scher Integration beruhen. Wir beginnen in einem theoretischen Experi-
mentaufbau, in dem wir garantieren können, dass der zugrundeliegende,
datenerzeugende Prozess durch bestimmte Modelle beschrieben werden
kann. Die ersten Modelle, die wir betrachten, sind einfache, deterministi-
sche Differentialgleichungen. Aufbauend auf diese Betrachtungen erweitern
wir dann unsere Inferenzalgorithmen, bis sie schliesslich im Kontext eines
Datensatzes eingesetzt werden können, der reale Messungen enthält. Dies
führt zu einer Fallstudie, in der einige der zugrundeliegenden Annahmen
nachweislich verletzt werden. Der resultierende Algorithmus ist ein Kom-
promiss zwischen reinen Gradienten-Matching-Verfahren und Verfahren
mit numerischer Integration. Während wir die numerische Integration
beim Training noch vermeiden, stellen wir fest, dass sie bei der Vorhersage
tatsächlich hilfreich und notwendig sein kann.

Aufbauend auf den Erkenntnissen, die im deterministischen Fall entwi-
ckelt wurden, schliessen wir unsere Arbeit ab, indem wir die Anwendbar-
keit von Gradienten-Matching auf stochastische Differentialgleichungen
untersuchen. Durch die Beschränkung unserer Arbeit auf lineare Diffusions-
terme gelingt es uns, einen Gradienten-Matching Algorithmus für diese Mo-
dellklasse zu entwickeln, obwohl die einzelnen Pfade einer stochastischen
Differentialgleichung mit Wahrscheinlichkeit 1 nirgends differenzierbar
sind.

vii

A C K N O W L E D G E M E N T S

I would like to thank my two advisors, Andreas Krause and Stefan Bauer.
Their continuous support, expertise and motivation to continuously explore
new angles in more depth were a driving factor behind the success of this
thesis. Thank you for all the invaluable discussions over the years. Along
similar lines, I would like to thank Florian Dörfler for the many brilliant
discussions and interesting inputs, especially during the second half of my
Ph.D.. I would also like to thank Maurizio Filippone, who kindly agreed to
serve on my Ph.D. committee.

During this thesis, I had the privilege to work with many very talented
researchers. I am extremely grateful to all of my collaborators for the count-
less interesting discussion and invaluable inputs. In particular, I would like
to thank Gabriele Abbati and Lenart Treven, with whom close collabora-
tions resulted in joint first author publications. I am also grateful to had
the opportunity to, to various extent, collaborate and discuss ideas with
Bernhard Schölkopf, Michael Osborne, Joachim Buhmann, Alkis Gotovos,
Andrea Ianelli and Nico Gorbach.

During my PhD, I had the great pleasure of supervising many interesting
projects of talented master students. In particular, I would like to thank
Edoardo Caldarelli, Andreas Schlaginhaufen and Emmanouil Angelis, with
whom collaborations not only lead to many interesting inputs for my thesis,
but whose excellent work also lead to independent publications. I am also
grateful to had the opportunity and pleasure to work with Guanchun
Tong, Julian Roth, Eshref Özdemir, Gautam Sridhar, Camilla Casamento
Tumeo, Cédric Della Casa, Dimitar Dimitrov, Felix Schur, Robert Marks,
Felix Crazzolara, Luis Wyss and Martin Xu.

Beyond publications, I would like to thank everyone at ETH that con-
tributed both to my scientific development and the preservation of my
sanity. Here, I would especially like to thank my colleagues Max Paulus,
Andisheh Amrollahi, Alina Dubatovka, Djordje Miladinovic and Aytunc
Sahin. And of course, I would like to thank all members of LAS group
specifically and the machine learning group at ETH more generally. You
provided me with a unique working experience and I am glad that our
paths met.

I am also very grateful to Rita Klute and the administrative staff at ETH.
Even before my journey officially started, during the pandemic and in

ix

my final moments at ETH, your help and support was always immensely
appreciated.

I am happy to acknowledge institutions that have supported the research
in this dissertation, especially the Department of Computer Science at ETH
Zürich, the Max Planck ETH Center for Learning Systems (CLS), and the
ELLIS program.

Last but not least, I would like to thank my family and close friends. You
supported me in countless moments and I am forever grateful. You know
who you are.

x

C O N T E N T S

1 introduction and overview 1

1.1 Problem Setting 1

1.1.1 Ordinary Differential Equations 2

1.1.2 Stochastic Differential Equations 2

1.2 Numerical Integration vs Collocation Methods 3

1.2.1 Frequentist Parameter Inference 3

1.2.2 Bayesian Parameter Inference 4

1.2.3 Numerical Integration for SDEs 4

1.2.4 Avoid Numerical Integration Via Gradient Match-
ing 5

1.3 Outlook 6

2 the bayesian : fast gaussian-process-based gradient

matching 7

2.1 Introduction and Related Work 7

2.2 Problem Setting and Notation 8

2.3 GP-Based Gradient Matching - State Of The Art 9

2.3.1 Calculating Derivatives: Basic Modeling Choices 10

2.3.2 Merging the two Components Via the Product of Ex-
perts Heuristics 10

2.3.3 State of the Art Inference 12

2.3.4 Gradient Matching Without Product of Experts 13

2.4 Theory 13

2.4.1 Analysis Of The Product Of Experts Approach 13

2.4.2 Adapting The Original Graphical Model 14

2.4.3 Inference In The New Model 16

2.5 Hyperparameters and Preprocessing 16

2.5.1 Hyperparameter and kernel selection 17

2.5.2 Accounting for Normalization and Standardization 18

2.6 FGPGM - Fast Gaussian Process Based Gradient Match-
ing 20

2.7 Experiments 20

2.7.1 Benchmark Tasks 21

2.7.2 Evaluation 24

2.7.3 Sampling vs Variational Inference - Lotka Volterra 25

xi

xii contents

2.7.4 Beyond Locally Linear Dynamics - Protein Transduc-
tion 26

2.7.5 Investigating Smoothness Bias - FitzHugh-Nagumo 28

3 the frequentist : ode-informed regression 31

3.1 Problem Setting and Related Work 31

3.2 Methods 32

3.2.1 Notation 32

3.2.2 Generative Model 33

3.2.3 ODIN - ODE-Informed Regression 34

3.2.4 Derivative Observation Model 36

3.2.5 Remarks 36

3.3 Experiments 37

3.3.1 State and Parameter Inference 38

3.3.2 Model Selection 42

3.3.3 Linear Scaling in State Dimension 43

3.4 SLEIPNIR - Scaling to Bigger Datasets 43

3.4.1 Scaling standard GP Regression 44

3.4.2 Scaling GP regression with derivatives 45

3.4.3 Accurately Approximating Derivative Kernels 45

3.4.4 Accurately Approximating Posteriors for GP Regres-
sion with Observed Derivatives 51

3.4.5 Derivation 52

3.5 ODIN with SLEIPNIR - Risk Consistent Scaling 54

3.5.1 Derivation 55

3.6 Scaling Experiments 56

4 the practitioner : distributional gradient match-
ing 59

4.1 Background 60

4.1.1 Data 60

4.1.2 Problem 61

4.1.3 Motivation 61

4.2 Distributional Gradient Matching 62

4.2.1 Regularization by Matching Distributions over Gradi-
ents 63

4.2.2 Smoothing jointly over Trajectories with Deep Gaus-
sian Processes 63

4.2.3 Representing Uncertainty in the Dynamics Model via
the Reparametrization Trick 66

contents xiii

4.2.4 Comparing Gradient Distributions via the Wasser-
stein Distance 67

4.2.5 Final Loss Function 68

4.3 Experiments 69

4.3.1 Setup 70

4.3.2 Metric 70

4.3.3 Effects of Overparametrization 70

4.3.4 Single Trajectory Benchmarks 71

4.3.5 Prediction speed 72

4.3.6 Multi-Trajectory Benchmarks 73

4.3.7 Ablation study 73

4.3.8 Computational Requirements 74

4.3.9 Scaling to many observations or trajectories 75

4.4 Case Study: USHCN 78

4.4.1 The data set 78

4.4.2 Preparing the data set 80

4.4.3 Challenge of the data set 82

4.4.4 Including dynamics helps with extrapolation 85

4.4.5 Comparisons 88

4.4.6 Conclusion 91

5 the stochastic : adversarial and mmd-minimizing re-
gression 93

5.1 Introduction 93

5.1.1 Related Work 94

5.1.2 Our Work 95

5.2 Background 96

5.2.1 Deterministic ODE Case 96

5.2.2 Notation 97

5.3 Methods 98

5.3.1 Latent States Representation 98

5.3.2 Generative Model for Observations 99

5.3.3 Generative Model for Derivatives 101

5.3.4 Inference 102

5.3.5 Adversarial Sample-based Inference 103

5.3.6 Maximum Mean Discrepancy 104

5.4 Experiments 106

5.4.1 Setups 106

5.4.2 Evaluation 108

5.4.3 Locally Linear Systems 108

xiv contents

5.4.4 Non-Diagonal Diffusion 108

5.4.5 Dealing with Multi-Modality 109

6 summary 111

a appendix 113

a.1 Appendix to FGPGM 113

a.1.1 Proof of theorem 1 113

a.1.2 Additional Plots 114

a.2 Appendix to ODIN 116

a.2.1 ODEs Provide Useful Information 116

a.2.2 Median Trajectories 116

a.2.3 Kernel Approximation Error Bounds - Proofs 117

a.2.4 Kernel Approximation Additional Plots 133

a.2.5 GP Regression with Derivatives 134

a.2.6 Additional Empirical Evaluation GPR 140

a.2.7 Risk Approximation Error Bounds 148

a.2.8 Experimental Setups 156

a.2.9 Additional Empirical Evaluation SLEIPNIR 160

a.2.10 tRMSE vs Features 160

a.2.11 Learning Curves 164

a.3 Appendix to DGM 169

a.3.1 Dataset description 170

a.3.2 Implementation details of DGM 178

a.3.3 Bayesian NODE training 182

a.3.4 Additional experiments 187

a.4 Appendix to ARES/MARS 204

a.4.1 Parameter Estimation Lorenz ’63 204

a.4.2 Training Times 204

a.4.3 Densities for Ancestral Sampling of the SDE-Based
Model 204

a.4.4 Calculating the GP Posterior for Data-Based Ancestral
Sampling 206

bibliography 209

1
I N T R O D U C T I O N A N D O V E RV I E W

At the core of human consciousness lies the ability to model our environ-
ment and to reason about hypothetical actions counterfactually within these
models. In science and engineering, such models are routinely created and
deployed. In engineering in particular, the creation of such models is sum-
marized in the field of system identification [Lju98]. System identification
plays a crucial part in robotics and control, being a precursor to classical
control algorithms like linear quadratic Gaussian (LQG) control [AM07] or
more modern approaches like model predictive control (MPC) [GPM89].
Models for such applications can be grounded in physics, especially when
considering gray box models [Soh98]. However, despite physics being fun-
damentally time-continuous, most active research studies time-discrete
models. This mainly stems from the fact that time-continuous systems are
more difficult to handle, both from a computational and from a statistical
perspective [Zam+11]. This is especially true when we want to consider
uncertainty estimation, which is important, e.g., for active / reinforcement
learning algorithms [Set09] and important for reasoning about systems with
safety constraints [GF15].

Thus, in this thesis, we aim to reduce both the statistical and computa-
tional obstacles that arise when working with uncertainty quantification in
nonlinear, time-continuous systems. As a first step towards this ultimate
goal, we exclusively focus on autonomous, time-independent systems and
leave the study of other systems to future work.

1.1 problem setting

In particular, we will focus on learning models for time series data. A time
series data setD = {Dd}

Nd
d=0 consists of Nd tripletsDi :=

(
y(td),x(0)(d), td

)
,

consisting of an initial condition x(0), a time stamp td and an observation
y(td). It is assumed that the observation y(td) is created by initializing an
unknown dynamical system at time t = 0 with initial condition x(d)(0).
This system is then evolved until time td, at which a noisy observation of
the system state x(td) is taken to observe y(td). Usually, the observation

1

2 introduction and overview

noise is assumed to be i.i.d. Gaussian, while the structure of the underlying
system will change from chapter to chapter.

1.1.1 Ordinary Differential Equations

In Chapters 2, 3 and 4, the underlying dynamical system is given by an
ordinary differential equation (ODE) of the form

ẋ(t) = f (x(t),θ). (1.1)

Here, f is a parametric function with parameters θ. The parametric form
of f is assumed to be known, so the main goal of this learning task is to
infer the unknown parameters θ. For all algorithms, it is required that f
is globally uniform Lipschitz, so that unique solutions to the initial value
problem exist. It should be noted that this assumption is the bare minimum
necessary to have a meaningful problem definition. However, it is not par-
ticularly restrictive. Throughout Chapters 2, 3 and 4, we analyze traditional
parametric models, as one would find for example in systems biology. How-
ever, in Chapter 4, we also demonstrate that within this framework, we
can learn complicated neural dynamics models, where f is modelled as a
neural network.

1.1.2 Stochastic Differential Equations

In Chapter 5, we leave the deterministic framework of ODEs and present
an extension of the aforementioned algorithms to stochastic differential
equations (SDEs). To describe SDEs, we exclusively use the Itô-form

dx(t) = f (x(t),θ)dt +G(x(t),θ)dw(t). (1.2)

Again, x(t) denotes the time-dependent vector of states of the underlying
dynamical system and θ denotes the collection of all the parameters of the
model. The dynamics are now given by a drift function f , which represents
the deterministic part of the dynamics, as well as a matrix-valued diffusion
function G, which modulates a stochastic Wiener-process w(t) of the same
dimension as the state vector x. As before, the parametric form of f and
G is assumed to be known and the challenge of this task lies in inferring
appropriate parameters θ.

1.2 numerical integration vs collocation methods 3

1.2 numerical integration vs collocation methods

Independently of the underlying system, inferring suitable parameters θ
requires some mathematical relationship quantifying how the choice of
parameters influences the data generating process. To illustrate the problem,
we first present examples for both frequentist and Bayesian parameter
inference in the context of ODEs. We will then conclude by introducing
the high-level idea of gradient matching, which will form the core of all
algorithms presented in this thesis.

1.2.1 Frequentist Parameter Inference

Consider the ODE problem setting with dynamics as defined in Equation
(1.1). Assume we want to find optimal system parameters θ∗ by minimizing
the squared error of the observation fit, i.e.,

θ∗ = arg min
θ

Nd

∑
d=0
||y(td)− x(td)||2 , (1.3)

where

x(td) := x(0)(d) +
∫ td

0
f (x(τ),θ)dτ. (1.4)

To solve the optimization problem of Equation (1.3), we would ideally
have access to a closed-form expression of the map

(
x(0)(d), td,θ

)
7→

(x(td),∇θx(td)). Such a map would allow us to efficiently evaluate both
the loss and the gradient of the optimizaton problem. However, for most
(nonlinear) interesting systems, such closed-form solutions do not exist.
Thus, if gradient-based optimization should be deployed, one needs to find
a way to differerntiate through the integral of Equation (1.4).

In the literature, this problem has been intensively studied [Bar74; Ben79],
with the two most common approaches including calculating forward
sensitivities or backward sensitivities via the adjoint method [Pon+62;
Ma+21; Hou+12]. All of these classical approaches rely on propagating
augmented states through the integral of Equation (1.4), which can come
with its own numerical or computational challenges. However, as we will
demonstrate in Chapters 4 and 5, such integration-based methods struggle
in a stochastic or Bayesian setting.

4 introduction and overview

1.2.2 Bayesian Parameter Inference

In the Bayesian parameter inference setting, the goal is not just to obtain one
numerical value for θ∗, but to infer the whole posterior of the parameters
p(θ | D). For all but the simplest systems, calculating this posterior in
closed-form is impossible. A more sensible approach consists of using
Bayes’ rule to obtain

p(θ | D) ∝ p(θ)p(D | θ). (1.5)

Here, p(θ) is a prior, which is set before seeing training data. Its form is
usually chosen such that the posterior is easy to evaluate. Nevertheless,
especially if the parameters have some physical interpretation in the context
of the underlying system, it can be used to incorporate prior knowledge by
domain experts. Furthermore, p(D | θ) can be calculated using Equation
(1.4) in combination with a suitable observation model. Thus, the main
challenge of evaluating the posterior lies in calculating the normalization
constant of Equation (1.5). Again, there exists a plethora of approaches to
deal with this problem, including MCMC-based methods [Ma+21; RC11]
or variational approaches [BKM17]. However, all of them rely on tracing
the influence of the parameters θ on the states x through the integral of
Equation (1.4). This can be a key weakness, both from a computational and
from a numerical standpoint, as we will demonstrate in Chapter 4.

1.2.3 Numerical Integration for SDEs

Thus far, numerical integration of Equation (1.4) was shown to form a key
component of many state-of-the-art ODE parameter inference algorithms.
For SDEs, the equivalent step requires integrating Equation (1.2). Again,
there exist only closed-form solutions for very few systems. However,
numerical integration of Equation (1.2) is orders of magnitudes harder
compared to the deterministic case, especially as w(t) is the realization of a
stochastic process. Thus, even for fixed parameters θ, every path obtained
via a suitable integration scheme will only represent one realization of
Equation (1.2). Thus, a parameter inference scheme relying on numerical
integration might require many sample paths just to judge the quality of
one set of parameters. While we will discuss this problem in more detail in
Chapter 5, this further demonstrates the need for alternative methods, not
relying on numerical integration.

1.2 numerical integration vs collocation methods 5

1.2.4 Avoid Numerical Integration Via Gradient Matching

Starting with the spline-based approach introduced by Varah [Var82], a
family of gradient matching algorithms tries to avoid numerical integration
completely.

classical algorithms are parameter-centered To this end, we
leave the parameter-centered methodology of classical approaches. As an
example, consider parameter inference of ODEs. In a classical algorithm, we
first choose a parameter set θ. Then, we create the corresponding path x(t)
by numerically integrating Equation (1.4). This guarantees that we only
consider candidate paths that satisfy the underlying dynamics. From this
candidate pool, we then find the best path by choosing the one path that
fits the observations the best, e.g., via the optimization given by Equation
(1.3). In that sense, classical methods search the space of paths agreeing with
the dynamics, as parametrized by the parameters θ, for a path that fits the
observations well.

dynamics and states do not need to agree completely At first,
this seems like a reasonable proposition. Since we automatically enforce
agreement with the dynamics, we only have to care about data fit. However,
this viewpoint is overly optimistic. Since there are numerical approxima-
tions in every numerical integrator, the agreement with the dynamics will
always be up to some tolerance. Thus, we try to guarantee agreement with
the dynamics as much as possible, unconsciously prioritizing it over data
fit.

gradient matching methods are path centered Gradient match-
ing algorithms take a different viewpoint. Here, the key entity are the paths
x(t). As the classical approaches, we want to find a path that both fits
the observations well, but that also satisfies agreement with the dynamics.
Unlike the classical approaches though, we model the paths directly with
some interpolator. This interpolator is chosen to be differentiable, so that
at each time point, we can calculate x(t), i.e., the path itself, as well as
its derivatives ẋ(t). Given x(t), quantifying the data fit is usually straight
forward. Furthermore, pairs (x(ti), ẋ(ti) of state and derivatives allow for
calculating the agreement with the derivatives, by evaluating deviations
between the interpolator gradients ẋ(ti) and the corresponding dynam-
ics derivatives f (x(ti),θ). Clearly, the choice of ti allow us to control the

6 introduction and overview

desired accuracy of the evaluation of the agreement with the derivatives.
Furthermore, since we can clearly distinguish data fit from dynamics agree-
ment, they can be carefully balanced, potentially allowing for more effective
or more amenable optimization landscapes.

1.3 outlook

In the literature, there exist many different versions of gradient matching.
Given the high-level picture of the idea sketched in the previous section,
gradient matching algorithms can differ in the problem setting they analyze,
the choice of interpolation scheme or the inference method considered. In
this thesis, we will exclusively focus on developing new and extending
existing gradient matching schemes based on Gaussian process interpo-
lators. Most of the thesis concentrates on parameter inference for ODEs.
In Chapter 2, we discuss and extend the existing theory behind GP-based
gradient matching in a Bayesian context. In Chapter 3, some key concepts
and intuitions are analyzed in a frequentist context. Then, in Chapter 4,
all of these insights are combined and extended to obtain an algorithm
suitable for large, real world datasets with no or little expert knowledge
available. Finally, we conclude the thesis by demonstrating how gradient
matching methods can be deployed in the context of SDEs, i.e. how to match
gradients in a setting where the gradients of the sample paths exist with
probability 0. All chapters contain work that was created in collaboration
with colleagues and that has been published before. Chapter 2 is based on
[Wen+19], Chapter 3 on [Wen+20] and [Ang+20], the first part of Chapter 4

on [Tre+21] and Chapter 5 on [Abb+19].

2
T H E B AY E S I A N : FA S T G AU S S I A N - P R O C E S S - B A S E D
G R A D I E N T M AT C H I N G

In this chapter, we study the problem of Bayesian parameter inference for
parametric ordinary differential equations. This chapter is in large parts
based on [Wen+19], which is work that profited from numerous discussions
with and comments of its co-authors. Especially the theory and experiments
section of this chapter correspond in large parts to the original theory and
experiments section of [Wen+19], which was published as a conference
paper. Furthermore, the presentation of the benchmark systems was in
parts taken from [Wen+20] and slightly modified.

2.1 introduction and related work

The main motivation for the work presented in this chapter lies in the wide-
spread use of parametric models, e.g., in systems biology or neuroscience.
[BKS14; PBP18] In this context, a Bayesian estimate of the system’s param-
eter vector can give valuable insight about robustness or guide Bayesian
model selection. However, obtaining an estimate of the parameter’s pos-
terior can be computationally costly. Most nonlinear ODEs do not have a
closed form solution and thus, standard methods for statistical inference
need to numerically integrate the dynamics every time the parameters are
changed. This was the original motivation for the work of Calderhead,
Girolami, and Lawrence [CGL09], who pioneer the use of Gaussian-process-
based gradient matching. Their work builds on previous, spline-based
approaches [Var82; Ram+07], introducing the use of Gaussian processes
to obtain a fully probabilistic model suitable for Bayesian inference with
final uncertainty estimates. To match the derivatives of dynamics model
and GP, Calderhead, Girolami, and Lawrence [CGL09] propose to use a
product of experts heuristic (PoE). This heuristic has become state of the
art, being reused by the later extensions by Dondelinger et al. [Don+13]
and Gorbach, Bauer, and Buhmann [GBB17]. However, it is also criticized
in the work of Wang and Barber [WB14], who propose a different mod-
eling paradigm. However, Macdonald, Higham, and Husmeier [MHH15]
later demonstrated that the paradigm of Wang and Barber [WB14] suffers

7

8 the bayesian : fast gaussian-process-based gradient matching

from theoretical inconsistencies. While this establishes the PoE heuristics
as the only remaining alternative, a similar theoretical analysis for the PoE
approach has thus far been missing.

The need for such an analysis is further demonstrated by another pe-
culiarity. Gorbach, Bauer, and Buhmann [GBB17] introduce a mean field
variational inference approach to significantly reduce the run time of the
Markov chain Monte Carlo schemes (MCMC) deployed by Calderhead,
Girolami, and Lawrence [CGL09] and Dondelinger et al. [Don+13]. How-
ever, in addition to the expected significant decrease in run time, they also
report a significant increase in accuracy.

The work presented in this chapter aims to tackle both of these chal-
lenges. First, the PoE heuristic is analyzed, which leads to the discovery of
theoretical inconsistencies in most state of the art approaches. These theo-
retical inconsistencies are then mitigated by proposing a new theoretical
framework, replacing the PoE heuristic completely. In a subsequent analysis,
the accuracy improvements of Gorbach, Bauer, and Buhmann [GBB17] are
found to be rooted in neither theory nor model, but in a careful choice of
hyperparameters. This insight is combined with the new theoretical frame-
work to develop a novel algorithm. The resulting algorithm improves state
of the art algorithms in terms of accuracy and robustness, while providing
a more computationally efficient sampling scheme that reduces its run time
by roughly 35%.

2.2 problem setting and notation

In the following, we start by formalizing the problem. and giving an
overview of related work, state-of-the-art methods and highlight on a
high level the main contributions of our work in the context of Gaussian-
process-based gradient matching.

As introduced in Section 1.1.1, we consider dynamical systems of the
form

ẋ(t) = f (x(t),θ). (2.1)

To keep the notation as simple as possible, we present all theory in the
context of one-dimensional dynamical systems and thus drop the bold
vector notation used in Equation (1.1) for the state vector x(t) and its
derivative. This does not restrict the applicability of our algorithm, since
the contributions of multiple state dimensions could just be modelled
independently, ultimately just summing up the corresponding terms in the

2.3 gp-based gradient matching - state of the art 9

final objective. This is exactly the strategy deployed in the experiments in
Section 2.7

Again, to keep the notation as simple as possible, we consider data
coming from only one trajectory and thus, when describing our dataset,
drop the dependence on the initial condition that we introduced in Section
1.1. This does not restrict the applicability of our algorithm, since the
contributions of multiple trajectories could just be modelled independently.

Throughout this chapter, we will use some vector notation. First,

t := [t1, . . . , tNd] (2.2)

denotes the vector of all observation times. Similarly,

x := [x(t1), . . . , x(tNd)] (2.3)

and
ẋ := [ẋ(t1), . . . , ẋ(tNd)] (2.4)

denote the true state and its true derivative at those times. Finally, the
observations are summarized in the vector

y := [y(t1), . . . , y(tNd)]. (2.5)

These observations are assumed to have been created by distorting the true
states x with i.i.d, additive Gaussian noise ε(ti) ∼ N (0, σ2), i.e.,

y(ti) = x(ti) + ε(ti), i = 1, . . . , Nd, (2.6)

or equivalently
p(y | x, σ) = N (y | x, σ2I). (2.7)

2.3 gp-based gradient matching - state of the art

As mentioned in the previous chapter, gradient matching schemes aim
to calculate two different values for ẋ, one purely data-centered, and one
involving the parametric system dynamics. While there is a lot of debate on
how to match these derivatives and on what algorithms to use for inference,
all state of the art, Gaussian-process-based gradient matching schemes
share the same core, a Gaussian process employed as a smoother.

10 the bayesian : fast gaussian-process-based gradient matching

2.3.1 Calculating Derivatives: Basic Modeling Choices

The purpose of this Gaussian process smoother is to build a regression
model mapping the time points to the corresponding state values. For
this, one needs to choose an appropriate kernel function kφ(ti, tj), which is
parametrized by the hyperparameters φ. Both, the choice of kernels as well
as how to fit its hyperparameters is discussed in Section 2.5.

Once the kernel and its hyperparameters are fixed, the covariance matrix
Cφ, whose elements are given by Cφ(i, j) = k(ti, tj), can be constructed
and used to define a standard zero mean Gaussian process prior on the
states,

p(x | φ) = N (x | 0,Cφ). (2.8)

As differentiation is a linear operation, the derivative of a Gaussian
process is again a Gaussian process. Using probabilistic calculus, this fact
leads to a distribution over the derivatives conditioned on the states at the
observation points:

p(ẋ | x,φ) = N (ẋ | Dx,A). (2.9)

Additionally, a second model to obtain a distribution over the derivatives
can be constructed by using the information provided by the differential
equations. For known states and parameters, one can calculate the deriva-
tives using equation (1.1). A potential modeling mismatch between the
output of the ODEs and the derivatives of the GP model is accounted for
by introducing isotropic Gaussian noise with standard deviation γ, leading
to the following Gaussian distribution over the derivatives:

p(ẋ | x,θ, γ) = N (ẋ | f (x,θ), γI). (2.10)

Thus, we have obtained two different generative models for the deriva-
tives, summarized by Equations (2.9) and (2.10). The statistical dependencies
of these models are further visualized in Figure 2.1.

2.3.2 Merging the two Components Via the Product of Experts Heuristics

The main goal of gradient matching is to use the observations y, only
present in the GP model, to infer the parameters θ, only present in the ODE
model. However, combining the two models is not straight forward. In both
models, the states x and the state’s derivatives ẋ are present as random
variables.

2.3 gp-based gradient matching - state of the art 11

φ

xẋ y

σ

(a) Gaussian Process Model

ẋx

γθ

(b) ODE Model

Figure 2.1: Visualization of the modelled dependencies of the two base compo-
nents of Gaussian-Process-based gradient matching.

For the states, a quick solution can be found. In the ODE model, x has
only one child node and no parents. This is due to the fact that in the ODE
model, we just condition on a not further specified distribution over x. To
combine the two models, the most natural choice for the distribution over
x in the ODE model is just to choose whatever distribution comes from
the GP model. Thus, the two nodes representing x in the GP and the ODE
models can be merged with no adaptations necessary.

Unfortunately, the derivatives are dependent variables in both models.
Thus, handling them is not as straight forward, since we are now dealing
with a random variable with two different distributions. Calderhead, Giro-
lami, and Lawrence [CGL09] thus propose to deploy the product of experts
heuristic. The main idea of the product of experts, originally introduced
by Hinton [Hin02], is to infer the probability density of a variable by nor-
malizing the product of multiple expert densities. This makes it directly
applicable to this case, yielding

p(ẋ | x,φ,θ, γ) ∝ p(ẋ | x,φ)p(ẋ | x,θ, γ). (2.11)

The idea of this approach is that the resulting density only assigns high
probability if both experts assign high probabilities. Hence, it considers only
cases in which both experts agree. It is thus based on the intuition that the
true θ should correspond to a model that agrees both with the ODE model
and the observed data. While this is intuitively well-motivated, we will
show that the product of experts heuristic leads to theoretical difficulties
and offer an alternative in Section 2.4.

12 the bayesian : fast gaussian-process-based gradient matching

2.3.3 State of the Art Inference

Building on this generative model, various inference schemes have been
developed and analyzed.

Inference with Markov Chain Monte Carlo (MCMC)

Calderhead, Girolami, and Lawrence [CGL09] combine the product of
experts with equations (2.7), (2.8) and (2.9) and some suitable prior over
θ to obtain a joint distribution p(x, ẋ,θ,φ, σ | y). After integrating out
ẋ, which can be done analytically, since Gaussian processes are closed
under linear operators (and using some proportionality arguments), a sam-
pling scheme was derived that consists of two MCMC steps. First, the
hyperparameters of the GP, φ and σ, are sampled from the conditional dis-
tribution p(φ, σ|y). Then, a second MCMC scheme is deployed to infer the
parameters of the ODE model, θ and γ, by sampling from the conditional
distribution p(θ, γ|x,φ, σ).

Dondelinger et al. [Don+13] then reformulated the approach by directly
calculating the joint distribution

p(y,x,θ,φ, γ, σ) ∝

p(θ)N (x | 0,Cφ)N (y | x, σ2I)N (f (x,θ) | Dx,A+ γI), (2.12)

where the proportionality is meant to be taken w.r.t. the latent states x
and the ODE parameters θ. Here p(θ) denotes some prior on the ODE
parameters. This approach was named Adaptive Gradient Matching (AGM).

Inference Using a Mean Field Variational Approximation

The main idea of Variational Gradient Matching (VGM), introduced by
Gorbach, Bauer, and Buhmann [GBB17], is to substitute the MCMC infer-
ence scheme of AGM with a mean field variational inference approach,
approximating the density in Equation (2.12) with a fully factorized Gaus-
sian over the states x and the parameters θ. To obtain analytical solutions,
the functional form of the ODEs is restricted to locally linear functions that
can be written as

f (x,θ) = ∑
i

θi ∏
j∈Mi

xj where Mi ⊆ {1, ..., K}. (2.13)

As perhaps expected, VGM is magnitudes faster than the previous sampling
approaches. However, despite being a variational approach, VGM was

2.4 theory 13

also able to provide significantly more accurate parameter estimates than
both sampling-based approaches of Calderhead, Girolami, and Lawrence
[CGL09] and Dondelinger et al. [Don+13]. In Section Section 2.7, we provide
justification for these surprising performance differences.

2.3.4 Gradient Matching Without Product of Experts

Up to our knowledge, before the work presented in this chapter, there
was only one approach that tried to do Gaussian-Process-based gradient
matching without the product of experts formulation, namely the work of
Wang and Barber [WB14]. However, this approach had its own theoretical
problems, which were intensively discussed in [MHH15].

2.4 theory

In this section, we will present the main theoretical contributions of this
chapter. At the start of this section, we investigate the PoE heuristics. The
challenges arising from this heuristics are highlighted with two arguments,
one based on graphical models and one based on the original mathematical
derivation by Calderhead, Girolami, and Lawrence [CGL09]. To fix these
issues, we then provide a new graphical model and finally demonstrate
how to do inference in this new model.

2.4.1 Analysis Of The Product Of Experts Approach

As previously stated, Calderhead, Girolami, and Lawrence [CGL09], Don-
delinger et al. [Don+13] and Gorbach, Bauer, and Buhmann [GBB17] all use
a product of experts to obtain p(ẋ | x,φ,θ, γ) as stated in Equation (2.11).

φ

xẋ y

σγ

θ

(a) After Product of Experts

φ

x y

σγ

θ

(b) After Marginalizing Out ẋ

Figure 2.2: The product of experts approach illustrated with graphical models.
After marginalization of ẋ, the parameters θ we would like to infer
are independent of the observations y.

14 the bayesian : fast gaussian-process-based gradient matching

Figure 2.2 depicts what is happening if the product of experts approach
is applied in the gradient matching framework. Figure 2.2a depicts the
graphical model after the two models have been merged using the product
of experts heuristic of Equation (2.11). Using the distribution over x of the
Gaussian process model represented in Figure 2.1a as a prior for the x in
the ODE response model represented in Figure 2.1b, effectively leads to
merging the two nodes representing x. Furthermore, the product of experts
heuristic implies by its definition that after applying Equation (2.11), ẋ is
only depending on x, φ, θ and γ.

In the graphical model in Figure 2.2a, the problem is already visible.
The ultimate goal of merging the two graphical models is to create a
probabilistic link between the observations y and the ODE parameters
θ. However, the newly created connection between these two variables is
given via ẋ, which has no outgoing edges and of which no observations are
available. Marginalizing out ẋ as proposed in the traditional approaches
consequently leads to the graphical model in Figure 2.2b. As there is no
directed path connecting other variables via ẋ, all the different components
are now independent. Consequently, the posterior over θ is now given by
the prior we put on θ in the first place.

This problem can further be illustrated by looking at the mathematical
derivations in the original paper of Calderhead, Girolami, and Lawrence
[CGL09]. After carefully calculating the omitted but necessary normal-
ization constants, the last equation in the third chapter is equivalent to
stating

p(θ, γ | x,φ, σ) =
∫

p(θ)p(γ)p(ẋ | x,θ, γ,φ, σ)dẋ. (2.14)

It is clear that this equation should simplify to

p(θ, γ | x,φ, σ) = p(θ)p(γ). (2.15)

Thus, one could argue that any links that are not present in the graphical
model of Figure 2.2b but found by Calderhead, Girolami, and Lawrence
[CGL09] and reused in Dondelinger et al. [Don+13] and Gorbach, Bauer,
and Buhmann [GBB17] were created by improper normalization of the
density p(ẋ | x,θ, γ,φ, σ).

2.4.2 Adapting The Original Graphical Model

Despite these technical difficulties arising from the PoE heuristic, the ap-
proaches provide good empirical results and have been used in practice,

2.4 theory 15

e.g., by Babtie, Kirk, and Stumpf [BKS14]. In what follows, we derive an
alternative model and mathematical justification for Equation (2.12) to pro-
vide a theoretical framework explaining the good empirical performance of
Gaussian-process-based gradient matching approaches, especially from Gor-
bach, Bauer, and Buhmann [GBB17], which uses only weak or nonexistent
priors.

σ φ

y x ẋ

θ F1 F2 γ

Figure 2.3: Alternative probabilistic model without PoE heuristic. Gray shaded
connections are used to indicate a deterministic relationship.

The graphical model shown in Figure 2.3 offers an alternative approach
to the product of experts heuristic. The top two layers are equivalent to a GP
prior on the states, the induced GP on the derivatives and the observation
model, as shown in Figure 2.1a.

The interesting part of the new graphical model is the bottom layer.
Instead of adding a second graphical model like in Figure 2.1b to account
for the ODE response, two additional random variables are introduced.
F1 is the deterministic output of the ODEs, assuming the values of x and

θ are given, i.e., F1 = f (x,θ). The deterministic nature of this equation is
represented as a Dirac delta function, as

p(F1 | x,θ) = δ(F1 − f (θ,x)). (2.16)

If the GP model were able to capture the true states and true derivatives
perfectly, this new random variable should be equivalent to the derivatives
of the GP, i.e., F1 = ẋ. However, to compensate for a potential model
mismatch and slight errors of both GP states and GP derivatives, this
condition is relaxed to

F1 = ẋ+ ε =: F2, ε ∼ N (0, γI). (2.17)

16 the bayesian : fast gaussian-process-based gradient matching

In the graphical model, this intuitive argument is encoded via the random
variable F2. Given the ẋ provided by the GP model, Gaussian noise with
standard deviation γ is added to create F2, whose probability density can
thus be described as

p(F2 | ẋ, γ) = N (F2 | ẋ, γI). (2.18)

The equality constraint given by equation (2.17) is represented in the graphi-
cal model by the undirected edge between F1 and F2. When doing inference,
this undirected edge is incorporated in the joint density via a Dirac delta
function δ(F2 −F1). Thus, the joint density of the graphical model repre-
sented in Figure 2.3 can be written as

p(x,ẋ,y,F1,F2,θ | φ, σ, γ) =

p(θ)p(x|φ)p(ẋ | x,φ)p(y|x, σ)p(F1 | θ,x)p(F2 | ẋ, γI)δ(F1 −F2).
(2.19)

2.4.3 Inference In The New Model

Given all the definitions in the previous section, inference can now be
directly performed without the need for additional heuristics. The result is
a theoretically sound justification of the formula that forms the basis of the
main results of Calderhead, Girolami, and Lawrence [CGL09], Dondelinger
et al. [Don+13] and Gorbach, Bauer, and Buhmann [GBB17]:

Theorem 1 Given the modeling assumptions summarized in the graphical model
in Figure 2.3,

p(y,x,θ,φ, γ, σ) ∝

p(θ)N (x | 0,Cφ)N (y | x, σ2I)N (f (x,θ) | Dx,A+ γI). (2.20)

The proof can be found in the supplementary material, Appendix A.1.1.

2.5 hyperparameters and preprocessing

Given the graphical model of Figure 2.3, we still need to determine how
to set up the Gaussian process, i.e., how to choose an appropriate kernel
kφ(ti, tj), including its hyperparameters φ, and values for the observation
noise’s standard deviation σ. In this section, we will give an overview of

2.5 hyperparameters and preprocessing 17

how this problem has been handled in the context of GP-based gradient
matching in the literature. Then, we will elucidate some practical aspects
that are crucial to the performance of our algorithm.

2.5.1 Hyperparameter and kernel selection

For both the hyperparameters φ and the functional form of k there ex-
ist many possible choices. Even though the exact choice might not be too
important for consistency guarantees in GP regression [CS07], this choice di-
rectly influences the number of observations that are needed for reasonable
performance. While there exist some interesting approaches to learn the
kernel directly from the data, e.g., the works of Duvenaud et al. [Duv+13]
and Gorbach et al. [Gor+17], these methods can not be applied due to the
very small number of observations of the systems considered in this paper.
As in previous approaches, the kernel functional form is thus restricted to
simple kernels with few hyperparameters, whose behaviors have already
been investigated by the community, e.g., in the kernel cookbook by Du-
venaud [Duv14]. Once a reasonable kernel is chosen, it is necessary to fit
the hyperparameters. To fit hyperparameters, the choice of an appropriate
scheme strongly depends on the amount of expert knowledge available.

No expert knowledge - Maximizing the data likelihood

For a Gaussian proces model it is possible to analytically calculate the
marginal likelihood of the observations y given the evaluation times t and
hyperparameters φ and σ [Ras04a], as

log(p(y | t,φ, σ)) = −1
2
yT(Cφ + σI)−1 − 1

2
log |Cφ + σI | − Nd

2
log 2π, (2.21)

where σ is the GPs estimate for the standard deviation of the observation
noise and Nd is the number of observations, as introduced at the beginning
of this chapter.

To fit the GP model to the data, Equation (2.21) can be maximized w.r.t.
φ and σ, without incorporating any prior knowledge. It is important to
note that this method is completely independent of the ODEs one would
like to analyze. The choice of hyperparameters will only depend on the
observations of the states y. Thus, it is the most agnostic way of fitting
hyperparameters. This is also the method we will deploy in FGPGM, for
reasons that will become clear later in this section.

Some expert knowledge available - Concurrent optimization

18 the bayesian : fast gaussian-process-based gradient matching

In AGM of Dondelinger et al. [Don+13], the hyperparameters are not
calculated independently of the ODEs. Instead, a hyperprior is defined
(i.e., a prior over the hyperparameters) and their posterior distribution is
determined simultaneously with the posterior distribution over states and
parameters by sampling from equation (2.12).

This approach has several drawbacks. As we shall see in section 2.7,
its empirical performance is significantly depending on the hyperpriors.
Furthermore, optimizing the joint distribution given equation (2.12) requires
calculating the inverse of the covariance matrices Cφ and A, which has to
be done again and again for each new set of hyperparameters. Due to the
computational complexity of matrix inversion, this is significantly slowing
down the inference of θ.

For these reasons, if strong prior knowledge about the hyperparameters
is available, it might be better to incorporate it into maximizing the data
likelihood. There, it could be easily be incorporated by including a hyper-
prior term to regularize the likelihood of Equation (2.21).

Reliable expert knowledge available - Manual tuning

In the variational inference approach of Gorbach, Bauer, and Buhmann
[GBB17], the hyperparameters are assumed to be provided by an expert.
If such expert knowledge is available, it should definitely be used since it
can improve the accuracy drastically. As we shall see in our experiments
in Section 2.7, this choice of hyperparameters is the main reason why the
variational approach was able to outperform the MCMC-based approaches.

2.5.2 Accounting for Normalization and Standardization

To provide a fairer comparison between VGM of Gorbach, Bauer, and
Buhmann [GBB17] and AGM of Dondelinger et al. [Don+13], the hyper-
parameter learning must involve an equal amount of expert knowledge.
The most natural choice would be the maximization of the data likelihood,
however, just maximizing the objective of Equation (2.21) using the prior
defined in Equation (2.8) will lead to bad results.

Zero mean observations

The main reason for that is the fact that the zero mean assumption in
equation (2.21) is a very strong regularization, especially for small data

2.5 hyperparameters and preprocessing 19

sets. Furthermore, as its effect directly depends on the distance of the true
values to zero, it will regularize differently for different state dimensions in
multidimensional systems, further complicating the problem. To alleviate
this problem, it is common to manipulate the observations such that they
have zero mean. [Ras04b]

This procedure can be directly incorporated into the joint density given
by equation (2.12). It should be noted that for multidimensional systems
this joint density will factorize over each state k, whose contribution will
be given by

p(x | y,θ,φ, γ, σ) ∝ N (x̃|0,Cφ)N (y | x, σ2I)N (f (x,θ) | Dx̃,A+ γI), (2.22)

where

x̃ := x− µy1.

using µy to denote the mean of the observations and 1 to denote a vector of
ones with appropriate length.

It should be noted that we cannot just substitute x̃ for x in Equation
(2.18), since the ODEs still need the original states x as inputs. While this
makes notation a bit cumbersome, normalization is of crucial importance.
In the simulations, this made a difference for all systems.

Standardized states

For multidimensional systems, normalization is not enough, since the
states of different dimensions might be different in magnitude. If one were
to use the same hyperparameters φ for all dimensions, then a deviation
(F −Dx̃) = 10−4 would contribute equally to the change in overall prob-
ability, independently of whether the states of this dimension x̃ are of
magnitude 10−8 or 103. Thus, small relative deviations from the mean of
states with large values will lead to stronger changes in the overall prob-
ability than large relative deviations of states with small values. This is
not a desirable property, which can be partially alleviated by calculating a
new set of hyperparameters for each state. However, this problem can be
completely nullified by standardizing the data y. Thus, the contribution of
one dimension is now given by

p(x |y,θ,φ, γ, σ) ∝ (2.23)

N
(

1
σy
x̃

∣∣∣∣0,Cφ

)
N
(

1
σy
y

∣∣∣∣ 1
σy
x, σ2I

)
N
(

1
σy
fk(x,θ)

∣∣∣∣ 1
σy
Dx̃,A+ γI

)
,

where
x̃ = x− µy1,

and σy is the standard deviation of the observations y.

20 the bayesian : fast gaussian-process-based gradient matching

2.6 fgpgm - fast gaussian process based gradient matching

After incorporating standardization and normalization into the preprocess-
ing, maximizing the marginal log likelihood of the observations can be used
to infer hyperparameters for VGM as well. Since this is a modification to
the expert-informed hyperparameter tuning scheme of the original publica-
tion, we call the modified algorithm MVGM. This should provide a fairer
comparison between the variational MVGM and the MCMC-based AGM.

However, MVGM is still outperforming AGM significantly in the experi-
ments shown in Section 2.7. This suggests that the concurrent optimization
of θ, x and φ suggested by Dondelinger et al. [Don+13] is hurting the
performance of the overall algorithm. Based on this insight, we propose
the sequential approach shown in Algorithm 1. In a first step, the Gaussian
process model is fit to the standardized data by calculating the hyperpa-
rameters via Equation (2.21). Then, the states x and ODE parameters θ
are inferred using a one chain MCMC scheme on the density given by
equation (2.12). Not that in the algorithmic description, we explicitly used
the variable k to denote the state dimension. Equations (2.12) and (2.21)
should thus be understood as a sum over the independent contributions of
each state dimension.

2.7 experiments

To demonstrate the empirical performance of the newly set up FGPGM, we
investigate its performance by benchmarking it against AGM and MVGM in
this section. For all experiments involving AGM, the R toolbox deGradInfer
[MD17] published alongside [Mac17] was used. The toolbox contains code
to run two experiments, namely Lotka Volterra and Protein Transduction.
Both of these systems are used in this paper, as they are the two standard
benchmark systems used in all previous publications. It should be noted
however that the applicability of FGPGM is not restricted to these systems.
Unlike AGM, FGPGM refrains from using hard to motivate hyperpriors
and our publicly available implementation can easily be adapted to new
settings.

All algorithms were provided with one hyperparameter. While the tool-
box of AGM had to be provided with the true standard deviation of the
observation noise, MVGM and AGM were provided with γ. The γ was
determined by testing eight different values logarithmically spaced between
1 and 10−4 and comparing the results based on observation fit.

2.7 experiments 21

Algorithm 1 Fast Gaussian Process Based Gradient Matching (FGPGM)
1: Input: y,f (x,θ), γ, NMCMC, Nburnin, t, σs, σp
2: Step 1: Fit GP model to data
3: for all k ∈ K do
4: µy,k ← mean(yk)
5: σy,k ← std(yk)
6: ỹ ← (yk −µk)/σy,k

7: Find φk and σk by maximizing p(ỹ | t,φk, σk) of Equation (2.21).
8: end for
9: Step 2: Infer x and θ using MCMC

10: S ← ∅
11: for i = 1→ NMCMC + Nburnin do
12: for each state and parameter do
13: T ← ∅

14:
Propose a new state or parameter value by adding a zero mean
Gaussian increment with standard deviation σs or σp.

15: Accept proposition based on the density of Equation (2.12).
16: Add current value to T .
17: end for
18: Add the mean of T to S .
19: end for
20: Discard the first Nburnin samples of S .
21: Return the mean of S .
22: Return: x,θ

To obtain a cleaner presentation, not all results are shown in the main
body of the text. Additional plots can be found in the appendix, Section
A.1.

2.7.1 Benchmark Tasks

In our experiments, we are using three systems, Lotka Volterra (LV), Protein
Transduction (PT) and FitzHugh-Nagumo (FHN). To guarantee a fair com-
parison, we follow the established parameter settings as adopted among
others by Calderhead, Girolami, and Lawrence [CGL09], Dondelinger et
al. [Don+13], Gorbach, Bauer, and Buhmann [GBB17] and Wenk et al.
[Wen+19], which we will introduce in the following.

22 the bayesian : fast gaussian-process-based gradient matching

Lotka Volterra

The Lotka-Volterra predator-prey model was originally introduced by Lotka
[Lot32] to describe population dynamics. It is a 2D system whose dynamics
are determined by the ODEs

ẋ1(t) = θ1x1(t)− θ2x1(t)x2(t) (2.24)

ẋ2(t) = −θ3x2(t) + θ4x1(t)x2(t). (2.25)

Using θ = [2, 1, 4, 1] and initial conditions x(0) = [5, 3], the system is in a
stable limit cycle with very smooth trajectories. The training data in this
case consists of 20 equally spaced observations on the interval [0, 2]. It
should be noted that the ODEs are linear in one state or parameter variable
if all other state and parameter variables are kept constant. In the context
of Gaussian process-based gradient matching, this means that the posterior
marginals of the parameters and states are Gaussian distributed, which
makes this system rather easy to solve. For the final data set, observations
are created by adding i.i.d. Gaussian noise to the simulated ground truth.
We investigate two cases, a low noise case with a noise standard deviation
of 0.1 and a high noise case with a noise standard deviation of 0.5. For each
case, an example is visualized in Figure 2.4.

Protein Transduction

(a) low noise - state 1 (b) low noise - state 2 (c) high noise - state 1 (d) high noise - state
2

Figure 2.4: Ground truth (red) and observations (black dots) of one example
of a low and a high noise dataset of the Lotka Volterra dynamics.
One data set contains 20 observations per state dimension of one
trajectory.

The Protein Transduction model was originally introduced by Vyshemirsky

2.7 experiments 23

and Girolami [VG07] to model chemical reactions in a cell. It is a 5D system
whose dynamics are described by the ODEs

Ṡ = −θ1S− θ2SR + θ3RS

ḋS = θ1S

Ṙ = −θ2SR + θ3RS + θ5
Rpp

θ6 + Rpp

ṘS = θ2SR− θ3RS − θ4RS

Ṙpp = θ4RS − θ5
Rpp

θ6 + Rpp
. (2.26)

The parameters and initial conditions of this system were set respectively to
θ = [0.07, 0.6, 0.05, 0.3, 0.017, 0.3] and x(0) = [1, 0, 1, 0, 0]. Due to the dynam-
ics changing rapidly at the beginning of the trajectories, the training data is
generated by sampling the system at t = [0, 1, 2, 4, 5, 7, 10, 15, 20, 30, 40, 50, 60, 80, 100].
We investigate two cases, a low noise case with a noise standard deviation
of 0.001 and a high noise case with a noise standard deviation of 0.01.

FitzHugh-Nagumo

The FitzHugh-Nagumo model was originally introduced by FitzHugh
[Fit61] and Nagumo, Arimoto, and Yoshizawa [NAY62] to model the activa-
tion of giant squid neurons. It is a 2D system whose dynamics are described
by the ODEs

V̇ = θ1(V −
V3

3
+ R) (2.27)

Ṙ =
1
θ1
(V − θ2 + θ3R). (2.28)

Using θ = [0.2, 0.2, 3] and initial conditions x(0) = [−1, 1], this system is
in a stable limit cycle. However, the trajectories of this system are quite
rough with rapidly changing lengthscales, which is a significant challenge
for any smoothing-based scheme. Furthermore, both V and θ1 appear
nonlinearly in the ODEs, leading to non-Gaussian posteriors. The dataset
for this case consists of 20 equally spaced observations on the interval
[0, 10].We investigate two cases, a low noise case with a signal-to-noise ratio
(SNR) of 100 and a high noise case with a SNR of 10. In the low noise case,
the observations are barely distinguishable from the ground truth, the high
noise case is visualized in Figure 2.5

24 the bayesian : fast gaussian-process-based gradient matching

(a) SNR 10 - state 1 (b) SNR 10 - state 2

Figure 2.5: Ground truth (red) and observations (black dots) of one example of a
low and a high noise dataset of the FitzHugh-Nagumo dynamics for a
SNR of 10. One data set contains 20 observations per state dimension
of one trajectory.

2.7.2 Evaluation

The main goal of system identification is to find a function that fits the
underlying ground truth. In the context of parameter inference, this means
that we should not necessarily directly compare inferred ODE parameters.
Instead, we propose to use the trajectory RMSE. For each parameter set,
this metric measures how well the associated trajectories fit the ground
truth. This provides a more natural quality measure, since RMSE in the
space of parameters are meaningless without taking parameter sensitivity
into account.

Definition 1 (Trajectory RMSE) Let θ̂ be the parameters estimated by an infer-
ence algorithm. Let t be the vector collecting the observation times. Define x̃(t) as
the trajectory one obtains by integrating the ODEs using the estimated parameters,
but the true initial value, i.e.

x̃(0) = x∗(0) (2.29)

x̃(t) =
∫ t

0
f (x̃(s), θ̂)ds (2.30)

and define x̃ element-wise as its evaluation at observation times t, i.e. x̃i = x̃(ti).
The trajectory RMSE is then defined as

tRMSE :=
1
N
||x̃− x||2, (2.31)

where ||.||2 denotes the standard Euclidean 2-norm.

2.7 experiments 25

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time

2.5

3.0

3.5

4.0

4.5

5.0

5.5

st
at

e
1

(a) AGM

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

st
at

e
1

(b) MVGM

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

st
at

e
1

(c) FGPGM

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time

1.0

1.5

2.0

2.5

3.0

3.5

st
at

e
2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time

1.0

1.5

2.0

2.5

3.0

3.5

st
at

e
2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time

1.0

1.5

2.0

2.5

3.0

3.5

st
at

e
2

Figure 2.6: States after numerical integration of the inferred parameters in the
high noise case of Lotka Volterra. Ground truth (red), median (black)
and 75% quantiles (gray) over 100 independent noise realizations.

2.7.3 Sampling vs Variational Inference - Lotka Volterra

Lotka Volterra is by far the easiest benchmark considered here. However,
it is the only standard benchmark satisfying Equation (2.13). Thus, it is
needed to obtain a comparison against the variational MVGM. In Figure 2.6,
we show the trajectories obtained by numerically integrating the inferred
parameters for AGM, MVGM and FGPGM, with quantiles taken over 100
independent noise realizations. Following Dondelinger et al. [Don+13] and
Gorbach, Bauer, and Buhmann [GBB17], a standard RBF kernel was used.

To obtain a more quantitive evaluation, we calculate the trajectory RMSE.
It is shown in Figure 2.7, with the relative improvement of FGPGM shown
in Table 2.1. In the next chapter, we will talk more about the comparison
with AGM where we show more experiments. A comparison between
FGPGM and AGM shows clearly a higher accuracy for the sampling-based
FGPGM. This seems to indicate that - once the hyperparameters are taken
out of the picture as tuning parameters - an MCMC-based approach might
still outperform variational inference in terms of accuracy. This is important
because, as we shall see in the next section, the functional form assumption
of Equation (2.13) is severely restricting the applicability of MVGM, as we
will see for the next benchmarks. Thus, FGPGM should be preferred if

26 the bayesian : fast gaussian-process-based gradient matching

State 1 State 2

0.05

0.10

0.15

0.20

R
M

S
E

AGM

MVGM

FGPGM

(a) low noise

State 1 State 2

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

R
M

S
E

AGM

MVGM

FGPGM

(b) high noise

Figure 2.7: Trajectory RMSE obtained by numerical integration and comparison
to the ground truth for Lotka Volterra. Boxplot with median (line),
50% (box) and 75% (whisker) quantiles over 100 independent noise
realizations.

accuracy or flexibility in terms of the functional form of the dynamics is
important.

AGM MVGM

LV low 35% 13%

LV high 62% 31%

Table 2.1: Median reduction of state RMSE of FGPGM compared to AGM and
MVGM as baseline on the Lotka Volterra system.

2.7.4 Beyond Locally Linear Dynamics - Protein Transduction

The protein transduction dynamics are a considerably harder benchmark.
Previous work claimed it to be only weakly identifiable [Don+13], a claim
we will come back to in Chapter 3. Due to its highly nonlinear terms,
MVGM can no longer be applied.

Thus, Figure 2.8 only shows the trajectory RMSE for AGM and FGPGM.
Table 2.2 again quantifies the relative improvements of FGPGM over AGM.
Finally, we compare the run time for both LV and PT in Figure 2.9. For all
experiments, in line with the original work by Dondelinger et al. [Don+13],
a sigmoid kernel was used.

FGPGM outperforms AGM both in terms of run time and in terms of
accuracy. This seems to suggest that the sequential hyperparameter fitting
scheme is not only improving computational efficiency, but also makes the
algorithm more robust, if no strong hyperparameters are provided.

2.7 experiments 27

S dS R Rs Rpp

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

R
M

S
E

AGM

FGPGM

(a) low noise

S dS R Rs Rpp

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
M

S
E

AGM

FGPGM

(b) high noise

Figure 2.8: Trajectory RMSE obtained by numerical integration and comparison
to the ground truth for Protein Transduction. Boxplot with median
(line), 50% (box) and 75% (whisker) quantiles over 100 independent
noise realizations.

AGM FGPGM
0

1

2

3

4

5

6

ti
m

e
(1

00
0s

ec
)

(a) run time LV

AGM FGPGM
0

5

10

15

20

25

30

ti
m

e
(1

00
0s

ec
)

(b) run time PT

Figure 2.9: FGPGM shows a clearly reduced run time compared to AGM, saving
roughly 35% of computation time.

28 the bayesian : fast gaussian-process-based gradient matching

AGM

PT low 50%

PT high 43%

Table 2.2: Median reduction of state RMSE of FGPGM compared to AGM on the
protein transduction system.

2.7.5 Investigating Smoothness Bias - FitzHugh-Nagumo

As can be seen in Figure 2.6, all GP-based gradient matching algorithms
converge to parameter settings where the trajectories are smoother than
the ground truth. While learning the hyperparameters in a pre-processing
step clearly reduces this effect for FGPGM and MVGM, there is still some
bias. If only few observations are available, the GP prior on the states tends
to smooth out part of the system dynamics. This "smoothing bias" is then
passed on to the ODE parameters in the gradient matching scheme.

To investigate the practical importance of this effect, we evaluate FGPGM
on the FHN system. Due to its highly nonlinear terms, the FHN system
has notoriously fast changing dynamics, as can be seen in Figure 2.5. To
account for the spikier behavior of the system, we used a Matérn52 kernel.
γ was set to 3 · 10−4.

As shown in Figure 2.10, the bias towards smoother trajectories is clearly
visible. However, FGPGM finds parameters that tightly hug the ground
truth. As to be expected, the smoothing bias gets smaller if more obser-
vations are added. Furthermore, increasing the SNR to a factor of 100 as
shown in Figure 2.11 leads to excellent accuracy, even if we reduce the
amount of observations to just 10. This is impressive, especially as FGPGM
is a hyper-prior free, statistical method.

2.7 experiments 29

(a) input sample (b) 20 observations (c) 40 observations (d) 100 observations

Figure 2.10: One input sample and median plots of the numerically integrated
states after parameter inference for the FHN system with SNR 10.
Ground truth (red), median (black) and 75% quantiles (gray) over
100 independent noise realizations. In the most left plots, the black
dots represent the noisy observations.

(a) 10 observations (b) 25 observations (c) 50 observations (d) 100 observations

Figure 2.11: Median plots of the numerically integrated states after parameter
inference for the FHN system with SNR 10. Ground truth (red),
median (black) and 75% quantiles (gray) over 100 independent noise
realizations.

3
T H E F R E Q U E N T I S T: O D E - I N F O R M E D R E G R E S S I O N

While FGPGM works better than the comparisons in the context of Bayesian
parameter inference, its performance still leaves some room for improve-
ment. It can be seen, e.g., in Figure 2.10, the parameters inferred by FGPGM
still exhibit some smoothing bias. Furthermore, in the theoretical derivations
of Section 2.4, the generative model still requires an ad-hoc observation
model with observation noise γ, which has to be tuned specifically for each
model.

In this chapter, we will revisit the problem of parameter inference from
a frequentist view point. Instead of aiming for posterior parameter dis-
tributions directly, we first aim for point estimates that are as accurate
as possible. This allows for a more concise formulation of the gradient
matching framework, where the ODEs are treated as a constraint instead of
an additional generative model. As a result, we develop an algorithm that
significantly improves empirical performance while getting rid of the last
hyperparameter that cannot be directly inferred from data, i.e. γ. While we
do not directly calculate uncertainties in this chapter, it should be noted
that this could in principle be done in a frequentist setting as well. Here,
one could deploy e.g. bootstrapping, which we suspect to be an efficient
tool especially in the context of larger data sets.

The work in this chapter is heavily based on a conference publication
[Wen+20] and an arxiv preprint [Ang+20], both of which were collaborations
with other researchers. Some text and most of the figures were reused with
permission to create this chapter.

3.1 problem setting and related work

In this chapter, we will exclusively consider the ODE-problem

ẋ(t) = f (x(t),θ), (3.1)

that was introduced in Section 1.1.1 and briefly discussed in Section 1.2.1.
As in the previous chapter, we will use a one-dimensional system to keep
the notation concise.

Introducing constraints via the derivatives for a regression model is not
a new idea. Lorenzi and Filippone [LF18] use this idea to regularize deep

31

32 the frequentist : ode-informed regression

σ

y x

φ

Figure 3.1: Generative model for standard Gaussian process regression. Given
kernel hyperparameters φ and observation noise standard deviation
σ, the probability densities for the states x and their noisy observa-
tions y are fully determined.

GP models, via a probabilistic constraint, that can also enforce inequality
constraints for probabilistic inference. In the frequentist context, González,
Vujačić, and Wit [GVW14] introduce this idea in the context of smoothers
based on reproducing kernel hilbert spaces (RKHs). Their approach was
later extended by Niu et al. [Niu+16] and applied to the ODE inference
problem. Their approaches are naturally faster than any other discussed
thus far that rely on MCMC and Gaussian processes. However, similar to
FGPGM, they rely on several trade-off parameters that need to be tuned
via cross-validation. In our experiments, we found that this is a key disad-
vantage in data-scarce environments.

Thus, our work is unique in the sense that we estimate both states and
parameters while learning all all hyperparameters directly from data. While
such hyperparameters are a nuisance for other algorithms that require
tuning via cross-validation, the hyperparameters of ODIN can be used to
indicate model-mismatch, as we shall demonstrate in our experiments.

3.2 methods

3.2.1 Notation

Throughout this chapter, we will use the notation introduced in Sections
2.2 and 2.3. In particular, we work with the observation noise standard
deviation σ, the state and derivative vectors x and ẋ, the observation vector
y, the time vector t, and the GP hyperparameters φ.

3.2 methods 33

σ

y x ẋ F

γφ

Figure 3.2: Generative model for GP regression with derivative observations F ,
for which we use a Gaussian observation model with variance γ. Due
to the GP prior, x and ẋ are jointly Gaussian with known probability
densities once the kernel hyperparameters φ are determined.

3.2.2 Generative Model

In standard GP regression, we choose a kernel with some hyperparameters
φ and then use the generative model shown in Figure 3.1. Similar to the
derivations of the generative model of FGPGM, this model is then extended
by using the conditional p(ẋ | x,φ) to include the state vector ẋ. Unlike
FGPGM however, we do not want to create a second generative model,
leading to an overdetermined model. Instead, we start by assuming that we
get access to some derivative observations

F =
[
F(t1, . . . , F(tNd)

]
(3.2)

at the same time locations as the state observations y. Similar to y, F is a
noisy version of the true derivatives of the dynamical system, distorted by
additive, i.i.d. Gaussian noise

F(ti) = ẋ(ti) + δ(ti), i = 1, . . . , Nd, (3.3)

where
δ(ti) ∼ N (0, γ). (3.4)

Not that the γ here is not the same γ we introduced in the previous
chapter. For FGPGM, γ was a slack parameter, that was necessary due to
the heuristic used to match the two generative models. Here, γ is used
as an observation noise standard deviation for the noise on the derivative
observations F . As of now, it is not tied to any ODE and just serves
the purpose of quantifying the noise present in the (as of now) fictitious
derivative observations F .

34 the frequentist : ode-informed regression

Given these modeling assumptions, we obtain the generative model
shown in Figure 3.2. To make notation more concise, we summarize the
above statements in the two conditional probability densities

p(ẋ | x,φ) = N (ẋ | Dx,A), (3.5)

with the matrices D and A being introduced in in Section 2.3, and

p(F | ẋ, γ) = N (F | ẋ, γI). (3.6)

3.2.3 ODIN - ODE-Informed Regression

To avoid the problems associated with the two probabilistic models of
traditional GP-based gradient matching, ODIN does not include the ODEs
via a separate generative model. Instead, they are introduced at inference
time in the form of constraints, essentially solving a constrained MAP
problem.

We start with the joint density of the Gaussian process described in
Figure 3.2, denoted by p(y,x, ẋ,F | σ, γ,φ). As a result of the Gaussian
observation model for F , ẋ can be marginalized out analytically, leading to

p(y,x,F | σ, γ,φ) = N (y | x, σ2I) N (x | 0,Cφ) N (F | Dx,A+ γI) (3.7)

Assuming fixed values for σ, φ and γ, this equation can be simplified by
taking the logarithm, discarding all terms that do not explicitly depend on
the states x and the derivative observations F and ignoring multiplicative
factors to obtain

R̃(x,F ,y) = ||x||2
C−1
φ

+ ||x− y||2σ−2I
+ ||F −Dx||2(A+γI)−1 , (3.8)

where ||u||2M := uTMu is the norm of the vector u weighted by a positive-
definite matrix M .

The key mechanism behind ODIN lies in how we obtain values for
F . In principle, F could be marginalized out to recover standard GP
regression. However, this is not desirable, as we would ignore the ODE
information. Instead, ODIN includes the ODEs as additional constraints
in the optimization problem: rather than keeping F completely flexible,
we assume the existence of a parameter vector θ that links the derivative
observations to the ODEs. More formally,

x,F = arg min
x,θ
R̃(x,F ,y) (3.9)

s. t. ∃θ with f (x(ti),θ) = Fi for all i. (3.10)

3.2 methods 35

As it turns out, these constraints can be incorporated in the optimization
problem by directly substituting F with the corresponding contribution
from the ODEs, leading to

x,θ = arg min
x,θ
R(x,θ,y), (3.11)

where R(x,θ,y) := R̃(x,f (x,θ),y).
This constitutes the key idea behind ODIN. Instead of providing direct

observations of the derivatives, we generate them via the ODEs after fixing
the ODE parameters θ.

Similarly to classical frequentist methods [Var82; Niu+16], R(x,θ,y)
penalizes divergence between the states x and the observations y, as well
as between the output of the ODEs, f (x,θ), and the derivatives estimated
by the regressing GP; the regularization term avoids overfitting. Indeed, the
representer theorem for derivatives [SHS01] shows close ties between the
two approaches.

However, in sharp contrast to frequentist approaches, all trade-off parame-
ters are naturally provided by the GP framework, once the hyperparameters
φ and noise levels σ and γ are fixed. As we will see later, the absence of
cross-validation for hyperparameter learning crucially improves accuracy
in sparsely observed systems.

Algorithm 2 ODIN−ODE− In f ormedRegression

1: Input: y(1), . . . ,y(K),f (x,θ)
2: Step 1: State-independent GP regression
3: for all k ∈ K do
4: Standardize time t and observations yk.
5: Fit φk and σk using empirical Bayes, i.e. maximize

p(y(k)|t,φk, σk).
6: Initialize xk using the mean µk of the trained GP.
7: end for
8: Step 2: ODE Information Incorporation
9: Initialize θ randomly.

10: Initialize γ1, . . . , γK = 1.0
11: Apply L-BFGS-B to solve the optimization problem (3.12) and obtain
x̂, θ̂, γ̂1, . . . , γ̂K.

12: Return: x̂, θ̂, γ̂1, . . . , γ̂K

36 the frequentist : ode-informed regression

3.2.4 Derivative Observation Model

Let us recall that we conceptually substitute the ODE outputs with deriva-
tive observations that are subjected to Gaussian noise, with variance γ. This
allows for an intuitive but meaningful interpretation: during and after train-
ing, the ODE outputs and the GP derivative estimates can deviate from the
ground truth and thus differ from each other. This divergence is accounted
for by γ. In classical GP-based approaches [Wen+19; Don+13; GBB17], γ is
treated as a random variable whose values are independent of the inference
procedure; sometimes it is fixed a priori [Wen+19; GBB17]. However, we
can expect that the divergence between ODEs and GP derivatives would
be larger in the early steps of training, while it should decrease when the
ODEs describe well to the ground truth. Thus, it is sensible to automatically
adapt γ to reflect the current quality of the estimates.

The ODIN framework can be adjusted to reflect this reasoning. To obtain
Equation (3.8), we implicitly assumed γ to be constant. If we rather treat it
as an optimization parameter, the objective of Equation (3.11) changes to

x,θ, γ = arg min
x,θ,γ

R(x,θ,y, γ) (3.12)

where
R(x,θ,y, γ) = R(x,θ,y) + log(det(A+ γI)). (3.13)

If γ is part of the optimization procedure, the contribution of the normal-
ization constant in Equation (3.7) can not be ignored when deriving the risk
appearing in Equation (3.13). In practice, similarly to the log-determinant
in standard GP regression, this term acts as an Occam’s razor by preventing
an excessive growth of γ if the GP derivatives and the ODE outputs differ
significantly.

The final ODIN routine is summarized as Algorithm 2.

3.2.5 Remarks

Throughout this work, we assume to have access to observations y that are
subjected to a Gaussian noise model with standard deviation σ. However,
the Gaussian noise assumption is only needed when deriving the term
||x− y||2

σ−2I
in R. Thus, it could be straightforward to accommodate for

alternative noise models by adjusting the corresponding term in the risk
formula. On the other side, things are less trivial for the Gaussian noise
model (with variance γ) for the derivative observations. In our work, we

3.3 experiments 37

use this assumption to marginalize ẋ analytically, a step that might not be
as straight forward for different noise models.

As demonstrates in the experiments section, in the case of perfect ODEs
(i.e. when we know the true parametric form a priori), γ can in principle be
set to zero; nevertheless, when that is not the case it provides an effective
mechanism for detecting model mismatch and helps with the challenging
problem of model selection.

3.3 experiments

ODIN GPR
0.01

0.02

(a) Lotka-Volterra

ODIN GPR
0.02

0.04

(b) FitzHugh-Nagumo

ODIN GPR

0.0004

0.0006

(c) Protein Transduction

Figure 3.3: RMSE of state estimates using vanilla GP regression and ODIN on
the benchmark systems (low noise case). While GPR can only access
the noisy observations y, ODIN considers the parametric form of
f(x,θ) (with no information about θ). This additional regularization
contributes towards more accurate estimations.

0.02

0.05

0.00

0.20

0.00

0.20

AGM RKG3 FGPGM ODIN
0.00

0.50

(a) Lotka-Volterra

RKG3 FGPGM ODIN
0.00

0.25

(b) FitzHugh-Nagumo

AGM RKG3 FGPGM ODIN
0.00

0.10

(c) Protein Transduction

Figure 3.4: Trajectory RMSE for parameter inference on the benchmark systems.
The top row shows the low noise case with σ = 0.1 for LV, SNR = 100
for FHN and σ = 0.001 for PT. The bottom row shows the high noise
case with σ = 0.5 for LV, SNR = 10 for FHN and σ = 0.01 for PT.

In this section, we demonstrate the versatility of ODIN and compare its
performance to various state-of-the-art methods. We start by comparing its
parameter inference capabilities on the three commonly used benchmark
systems introduced in Section 2.7.1: the Lotka-Volterra (LV) predator-prey

38 the frequentist : ode-informed regression

x5(t)

0 20 40 60 80 100

0.0

0.2

0.4

0.6

t

(a) AGM

x5(t)

0 20 40 60 80 100

0.0

0.2

0.4

0.6

t

(b) FGPGM

x5(t)

0 20 40 60 80 100

0.0

0.2

0.4

0.6

t

(c) ODIN

x5(t)

0 20 40 60 80 100

0.0

0.2

0.4

0.6

t

(d) RKG3

Figure 3.5: Comparison of the trajectories obtained by numerically integrating the
inferred parameters of the Protein Transduction system for σ = 0.01.
The solid blue line is the median trajectory, while for clarity we
shaded the area between the 25% and 75% quantiles. The orange
trajectory represents the ground truth.

model; the FitzHugh-Nagumo (FHN) neuronal model; the chemical protein
transduction (PT) system. In addition to state and parameter inference, we
show how ODIN can be used for model selection, a missing feature for
every comparison method here considered. Finally, we prove linear scaling
behavior of ODIN in the state dimension K by investigating its performance
on a high-dimensional, fourth benchmark system with up to 1000 states.

Wherever applicable, we will use the trajectory RMSE as comparison
metric, as introduced in Definition (1).

Similar to the evaluation in the previous chapter, we evaluate the robust-
ness of each algorithm w.r.t. different observation noise realizations. We
always run 100 repetitions for every experimental setting. In each repetition,
we keep the ground truth for states x∗ and parameters θ∗ fixed and only
sample the noise on y. Results are then reported as quantiles over these 100

runs.
To complement the Bayesian parameter inference benchmarks of Chapter

2, we additionally compare against the frequentist RKG3. As previously
mentioned in this chapter, its objectives are very closely related to ODIN
via the generalized representer theorem [SHS01], but it requires additional
cross-validation steps for trade-off parameters that come naturally in the
ODIN framework.

3.3.1 State and Parameter Inference

In the parameter inference setting, the true parametric form of the dynami-
cal system is assumed to be provided by a practitioner, derived through first
principles or expert knowledge. Thus, together with the noisy observations
y, we have access to the true parametric form ẋ = f (x,θ). The goal is

3.3 experiments 39

AGM RKG3 FGPGM ODIN
0.0

0.1

(a) θ5, σ = 0.001

AGM RKG3 FGPGM ODIN
0

1

2

(b) θ6, σ = 0.001

AGM RKG3 FGPGM ODIN
0.0

0.1

(c) θ5, σ = 0.01

AGM RKG3 FGPGM ODIN
0

1

2

(d) θ6, σ = 0.01

Figure 3.6: Parameter estimates for Protein Transduction for σ = 0.001 (a-b) and
σ = 0.01 (c-d). Showing median, 50% and 75% quantiles over 100

independent noise realizations. The dashed line indicates the ground
truth.

to recover the true states x and parameters θ∗ at observation time. While
smoothing is important, estimating θ∗ is of greater practical importance.

For all comparisons, implementations provided by the respective authors
are used. In accordance to the gradient matching literature, evaluations
include both a low and a high noise setting for every system.

As shown by Solak et al. [Sol+03], including direct observations of F
can improve the accuracy of GP regression. ODIN does not have access to
such observations, but it leverages the parametric form of the ODEs as a
regularizer when performing state inference. As can be seen in Figure 3.3,
this regularization actually improves the estimates of the states. This fact
motivates a key difference to [CGL09], who propose to first fit the states
using GPR and then perform gradient matching while keeping the states
fixed. In the following, we show how ODIN can learn reliable parameters,
improving the current state of the art in terms of accuracy and run time.

3.3.1.1 Accuracy

In Figure 3.4 we compare the trajectory RMSE for the three benchmark
systems. While the total tRMSE is an effective indicator for the overall
performance, we also include the state-wise tRMSE in the appendix. Unfor-

40 the frequentist : ode-informed regression

AGM[s] RKG3[s] FGPGM[s] ODIN[s]

LV, σ = 0.1 4548.0± 453.8 79.0± 19.0 3169.5± 90.1 13.4± 5.1

LV, σ = 0.5 4545.0± 558.5 76.5± 15.8 3187.5± 340.9 11.4± 5.1

FHN, SNR = 100 / 74.5± 14.3 8678.0± 482.7 5.8± 3.5

FHN, SNR = 10 / 77.5± 12.3 8677.0± 487.8 4.4± 3.8

PT, σ = 0.001 29776.5± 4804.7 469.0± 21.6 20291.5± 435.3 8.9± 1.5

PT, σ = 0.01 30493.0± 1470.4 480.0± 42.0 20437.0± 713.2 20.6± 3.75

Table 3.1: Median and standard deviation of computation time (in seconds) for
parameter inference over 100 independent noise realizations.

tunately, AGM was unstable on FitzHugh-Nagumo despite serious hyper-
prior tuning efforts on our side. We thus do not have any results for this
case. To help visualizing the raw numbers obtained by the tRMSE, we also
report in Figure 3.5 the trajectories obtained by numerically integrating
the inferred parameters. While here we report only one state for the high
noise case of Protein Transduction, a full set of plots can be found in the
appendix.

3.3.1.2 Run time

In Table 3.1, we list the median training times (in seconds) and the cor-
responding standard deviation of all algorithms on the three parameter
inference benchmark systems. It is evident (and not unexpected) that the
optimization-based algorithms ODIN and RKG3 are orders of magnitude
faster than the MCMC-based FGPGM and AGM. Furthermore, the need for
cross-validation schemes in RKG3 seems to increase its run time roughly
by an order of magnitude when compared to ODIN.

3.3.1.3 Identifiability

While both LV as well as FHN models are relatively simple, Protein Trans-
duction (PT) still represents a considerable challenge. Amongst others, both
Dondelinger et al. [Don+13] and Wenk et al. [Wen+19] claim that the two
parameters θ5 and θ6 are only weakly identifiable. However, a quick exper-
iment with different numerical values for those ODE parameters shows
that they are actually identifiable. Indeed, neither RKG3 and ODIN seem to
suffer from identifiability problems. For ODIN, this can be attributed to two
key differences, the inference scheme and the flexible γ. Both AGM and
FGPGM ultimately return the posterior mean of the parameter marginals.

3.3 experiments 41

In Figure 3.7, we show example marginals for fixed γ. While these distribu-
tions are Gaussian-shaped for Lotka-Volterra, they are much wilder for PT.
If we were to keep the γ fixed, ODIN would converge to an optimum in-
stead of an expectation, which might be more appropriate in a multi-modal
setting. However, ODIN does not keep γ fixed. Instead, its γ evolves during
optimization according to the quality of the current parameters estimation,
leading to an overall smoother inference. Consequently, the final parameter
estimates are significantly more accurate (see Figure 3.6). For AGM, while
the ratio between θ5 and θ6 is fairly stable and reasonably not far from the
correct number, the absolute parameter values have median magnitudes of
roughly 1012: thus they do not appear in this figure.

0.7 0.9 1.1
0

2

4

6

θLV
4 value

p
(θ

LV 4
|y

)

1 2 3 4
0.0

0.1

0.2

0.3

θPT
6 value

p
(θ

PT 6
|y

)

Figure 3.7: Parameter marginal distributions of θ4 of Lotka-Volterra and θ6 of
Protein Transduction for one sample rollout with fixed γ. While the
LV marginal is nicely Gaussian, the PT marginal is much wilder.

M1,1 M0,1 M1,0 M0,0

γ1 10−6 ± 0.00 3.01± 0.23 10−6 ± 0.00 3.03± 0.24

γ2 10−6 ± 0.04 10−6 ± 0.00 1.51± 0.31 1.53± 0.35

Table 3.2: Median and standard deviation of γ for different model misspec-
ifications of the Lotka-Volterra system and 100 independent noise
realizations.

3.3.1.4 Robustness

Besides accurate parameter estimates, ODIN also exhibits more contained
variance, especially compared to AGM and RKG3. This is a direct conse-
quence of the underlying GP structure, which enables efficient and stable

42 the frequentist : ode-informed regression

calculation of all parameters. Furthermore, a flexible γ seems to smooth
out the optimization surface, avoiding the rugged landscapes reported by
Dondelinger et al. [Don+13].

3.3.1.5 Priors

While in a Bayesian inference setting it is common to introduce a prior over
θ, our graphical model in Figure 3.2 does not treat θ as a random variable.
In a practical setting, we might not even know the parametric form of the
ODEs: it thus seems quite difficult to justify the use of a prior. However,
it should be noted that our framework can easily accommodate any prior
without major modifications. An additional factor p(θ) in Equation (3.7)
directly leads to an additional summand − log(p(θ)) in Equation (3.13).
From a frequentist perspective, this could be interpreted as an additional
regularizer, similarly to LASSO or ridge regression. Since all other sum-
mands in Equation (3.13) grow linearly with the amount of observations N
and the prior contribution stays constant, the regularization term would
eventually have minor influence in an asymptotic setting.

3.3.2 Model Selection

In practice, domain experts might not be able to provide one single true
model. Instead, they might indicate a set of plausible models that they
would like to test against the observed data. In this section we investigate
this problem, known as model selection. For empirical evaluation, we
use the Lotka-Volterra system as ground truth to simulate our empirical
data. We then create four different candidate models via the following two
additional ODEs

ẋ1(t) = θ1x2
1(t) + θ2x2(t), (3.14)

ẋ2(t) = −θ3x2(t). (3.15)

Each model is indexed asMi,j, where i, j ∈ {0, 1}. Here, i = 0 indicates that
the wrong equation (i.e. 3.14) is used to model the dynamics of the first state,
while if i = 1 we provide the true parametric form in that specific candidate
model. In a similar fashion, j = 0 indicates that the wrong equation (i.e. 3.15)
is used to model the dynamics of the second state, otherwise j = 1. ODIN
is run independently for eachMi,j. Besides state and parameter estimates,
we thus obtain final values for γ, which are presented in Table 3.2. For
numerical stability, γ was lower bounded to 10−6 in all experiments. For the

3.4 sleipnir - scaling to bigger datasets 43

correct modelM1,1, γ settles at this lower bound, while it converges to a
much larger value in case a wrong model is used. This justifies the intuitive
interpretation of γ as a mean to account for model mismatch between the
GP regressor and the ODE model. This last result proves that γ is indeed
an efficient tool for identifying true parametric forms. Interestingly, this
also works dimension-wise for the mixed models M0,1 and M1,0, even
though the states x1 and x2 are coupled via wrong ODEs. This can be
explained by the GP regressor prioritizing states x close to the observations
y. Indeed, while incorrect ODEs might deteriorate the accuracy of the state
estimates with wrong regularization, their detrimental effects are limited
by the observation-dependent partial objective, effectively decoupling the
model mismatch across dimensions.

3.3.3 Linear Scaling in State Dimension

A key feature of gradient matching algorithms is the linear scaling in the
state dimension K. Following Gorbach, Bauer, and Buhmann [GBB17], we
demonstrate this for ODIN by using the Lorenz ’96 system with θ = 8,
using 50 observations equally spaced over t = [0, 5].

The Lorenz ’96 system was originally introduced by Lorenz and Emanuel
[LE98] for weather forecasting. The dimensionality K > 3 of this model can
be chosen arbitrarily, with the k-th state being governed by the differential
equation

ẋk = (xk+1 − xk−2)xk−1 − xk + θ, (3.16)

where all indices should be read modulo K. The free choice of K makes it
an ideal choice for scaling experiments.

The results are shown in Figure 3.8, including a linear regressor fitted to
the means with least squares.

3.4 sleipnir - scaling to bigger datasets

As shown in the previous section, ODIN scales linearly in the dimensional-
ity of the states. Furthermore, since trajectories coming from different initial
conditions are smoothed independently, ODIN also scales linearly in the
number of trajectories. However, due to the Nd × Nd matrices of Equation
(3.8) that need to be inverted, ODIN scales cubicly in the number of obser-
vations per trajectory. This is undesirable, especially for a smoothing-based
algorithm, for which we expect that denser observations significantly im-
prove its accuracy. Thus, until the end of this chapter, we will investigate,

44 the frequentist : ode-informed regression

200 400 600 800 1000
0

2000

4000

of system states

R
un

tim
e

[s
]

Figure 3.8: Run time for parameter inference on Lorenz ’96 for different state
dimension, with a (dashed) linear regressor fitted to the data. For
each system size, we report the mean (dots) +- one standard deviation
(shaded area) over 100 independent noise realizations.

develop and empirically study a novel way to consistently scale ODIN to a
setting with many observations. Large parts of the material presented here
was developed in a collaboration with colleagues. A preprint of that work
can be found on arxiv [Ang+20]. Large parts of the presentation of that
work and its plots have been adapted and reproduced to build the basis of
the presentation here.

3.4.1 Scaling standard GP Regression

In the context of standard GP Regression, there exist several ideas on how to
tackle the scaling problem. One family of approaches focuses on summariz-
ing the data set with a fixed number of pseudo-observations, the so-called
inducing points [QR05; SG06; Tit09]. Complementary to these methods, spe-
cial structure in either the kernel function [Wil+14] or the input data [CSS08]
can be exploited to speed up the necessary matrix-vector multiplications
needed to perform GP regression. Wilson and Nickisch [WN15] combine
these two ideas, creating an efficient approximation scheme linear in the
number of observations. Independently, Sarkka, Solin, and Hartikainen
[SSH13] propose a SDE-based reformulation and connect GP regression to
Kalman filtering. Finally, there is a family of approaches approximating the
kernel function via a finite dimensional scalar product of feature vectors.
These features have been obtained using the Nyström method [WS01],
Monte Carlo samples [RR08], sparse spectrum approximations [Laz+10],
variational optimization [HDS+17] or a quadrature scheme [MK18]. Fur-
thermore, Solin and Särkkä [SS] develop a deterministic feature expansion

3.4 sleipnir - scaling to bigger datasets 45

based on the Fourier transform of the Laplace operator. While they are able
to provide deterministic, non-asymptotic error bounds, their error decays
linearly with the the size of the domain of the operator expansion L, which
cannot grow faster than the number of features. This essentially means that
their approximation error decays at best linearly.

3.4.2 Scaling GP regression with derivatives

In the context of Gaussian process regression with derivatives though,
scalable methods seem to have received little attention [Eri+18], despite
their practical relevance. While some approaches like inducing points could
be applied by just using the same inducing points, it is not obvious how such
changes would affect the approximation error of the resulting estimates.
Similarly, an empirical extension of the approach of Solin and Särkkä [SS] to
the derivative case is presented by Solin et al. [Sol+18], without quantifying
the errors of the approximation scheme. For random Fourier features (RFF),
Szabó and Sriperumbudur [SS19] present a rigorous theoretical analysis.
However, due to the probabilistic nature of RFF, it is not possible to provide
deterministic, non-asymptotic guarantees for any given data set of fixed
size.

To obtain deterministic (i.e. hold with probability 1) and non-asymptotic
(i.e. for data sets with a fixed number of observations and a fixed number of
features) error bounds, we thus turn to quadratic Fourier features. Mutny
and Krause [MK18] recently derived exponentially fast decaying bounds for
standard GP regression. Building on their work, we derive approximations
and bounds for derivative kernels as well. These bounds can then be used
directly to quantify the absolute error of the predictive posterior mean and
covariance of a GP with derivative observations, leading to deterministic,
non-asymptotic error bounds. Besides guaranteeing users in safety-critical
environments a guaranteed worst case performance, these bounds can also
guide the choice of the number of features needed to obtain a desired
accuracy.

3.4.3 Accurately Approximating Derivative Kernels

As outlined in the previous section, many feature approximations ex-
ist that all ultimately try to approximate the scalar product of a kernel
k(ti, tj) ≈ φ(ti)

Tφ(tj). The key idea is always the same: Any kernel repre-
sents a scalar product between two potentially infinite dimensional feature

46 the frequentist : ode-informed regression

vectors. However, if we allow for a small error, this could potentially be
approximated by a finite-dimensional feature vector φ. Both feature approx-
imations we will focus on in the following presentation, namely random
Fourier features (RFF) introduced by Rahimi and Recht [RR08] and quadra-
ture Fourier features (QFF) introduced by Mutny and Krause [MK18], have
previously been studied intensively in the context of standard GP regres-
sion, while for RFF, there exist also analysis for derivative kernels [SS19].
As we shall see, they are both built on similar principles.

3.4.3.1 Background - Fourier Features

As before, we will introduce all concepts using a kernel with scalar inputs
k(ti, tj). However, it should be noted that this is by no means a necessary
condition, and the concept generalizes nicely to higher dimensional inputs,
albeit with an exponential penalty due to the curse of dimensionality. While
this penalty is inherent to all kernel methods, it can be avoided by additive
decomposition over groups of variables [MK18].

Both RFF and QFF are based on the following observation: For a sta-
tionary, scalar kernel, Bochner’s theorem [see e.g. Rud91] guarantees the
existence of a density p(ω) such that we can write

k(|ti − tj|) =
∫ ∞

−∞
p(ω)

(
cos(ωti)

sin(ωti)

)T (
cos(ωtj)

sin(ωtj)

)
dω. (3.17)

This equation can be interpreted as a scalar product of infinitely many
features given by cos(ωti) and sin(ωti). To obtain a finite approximation,
the aim is now to extract the M most important features.

To obtain the now famous random Fourier features, Rahimi and Recht
[RR08] propose to use Monte Carlo integration. In one approximation, they
obtain MC samples from p(ω) and for each sample add [sin(ωti) cos(ωti)]
to the feature vector φ(ti). For further refinement, they observe that(

cos(ωti)

sin(ωti)

)T (
cos(ωtj)

sin(ωtj)

)
= 2Eb{cos(ωti + b) cos(ωtj + b)}, (3.18)

where b ∼ Unif([0, 2π]). Thus, one can obtain a second approximation by
sampling concurrently b and ω and for each sample adding

√
2 cos(ωti + b)

to the feature vector φ(ti). Accentuating the presence of the bias term b, we
will refer to this approximation in the following as RFF-B, while we refer to
the first one as RFF.

3.4 sleipnir - scaling to bigger datasets 47

One main drawback of RFFs however is the fact that the intermediate
sampling step makes it impossible to obtain any deterministic bounds on
their approximation quality. Instead, all theoretical analysis has to be done
either asymptotically or probabilistically.

Mutny and Krause [MK18] thus propose to approximate the integral of
Equation (3.17) deterministically using Hermitian quadrature. In Hermitian
quadrature, the locations at which to evaluate the integrand are not chosen
via MC sampling. Instead, they are chosen to fulfill the following crite-
rion: For any f (x) being a polynomial of order ≤ 2m− 1, the Hermitian
approximation Qm of order m will accurately approximate

∫ ∞

−∞
w(x) f (x)dx = Qm(f (ω)) :=

m

∑
i=1

Wm
i f (ωm

i), (3.19)

where Wm
i and ωm

i are pre-defined weights and abscissas, specifically de-
signed for a pre-defined, non-negative weighting function w(x) [cf. Hil87].

3.4.3.2 Derivation - RBF Derivative Kernel

Unfortunately, to apply the Hermitian formalism, the integral of Equation
(3.17) has to be transformed to match the form of Equation (3.19). Thus,
the resulting feature approximation depends on the functional form of the
original kernel via p(ω), which is used to recover w(x). In particular, this
means that both derivation and error analysis have to be repeated for every
new kernel. Thus, we restrict ourselves in this section to the RBF kernel,
as required later in the applications presented in Section 3.6, keeping in
mind that in principle, all analysis provided here could be extended to
other stationary kernels. In the RBF case, we can use Gauss-Hermitian
quadrature with w(x) = e−x2

.
The RBF kernel is defined as k(ti, tj) = k(ti − tj) = k(r) = ρ exp(− r2

2l2),
where r := ti − tj. It is parametrized by its hyperparameters ρ (variance)
and l (lengthscale), that need to be learned in a pre-processing step. The
RBF kernel is very widely used, also due to its strong smoothing properties.
For sparsely observed systems, this smoothing can be too strong to capture
all the finer dynamics of the system. For densely observed systems however,
where the contribution of the prior is more and more disappearing, this is
not an issue. Thus, it is a good choice for the applications we will show in
Section 3.6.

For ease of readability, let us define I(f (ω)) :=
∫ +∞
−∞ e−ω2

f (ω)dω. To
suppress an irrelevant, constant factor, we fix ρ =

√
π for the theoretical

48 the frequentist : ode-informed regression

analysis. Using this notation, the RBF kernel can be written as k(ti, tj) =

I
(

cos
(

ωr
√

2/l
))

[MK18]. To obtain the extension for derivative kernel,
we differentiate this equality and use the linearity of the integral operator
to obtain

∂

∂ti
k(ti, tj) =

d
dr

I
(

cos
(

ωr
√

2/l
))

= I
(
−
√

2ω sin
(

ωr
√

2/l
)

/l
)

. (3.20)

Similarly,
∂

∂tj
k(ti, tj) = I

(
ω

√
2

l
sin

(
ωr
√

2
l

))
(3.21)

and
∂2

∂ti∂tj
k(ti, tj) = I

(
ω2 2

l2 cos

(
ωr
√

2
l

))
. (3.22)

In the spirit of QFF, these relations reduce the problem of approximating
the kernel derivatives to approximating integrals. Thus, similar to the
derivative-free case, we can now deploy Gauss-Hermite quadrature as in
Equation (3.19) with w(x) = e−x2

.
For a RBF kernel, Mutny and Krause [MK18] demonstrated that this boils

down to approximating

k(ti, tj) ≈ Qm(cos(ωr
√

2/l))

=
m

∑
i=1

Wm
i cos(ωm

i r
√

2/l)

= φ(ti)
Tφ(tj), (3.23)

where

φ(x) :=
[√

Wm
i cos(ωm

i ti
√

2/l)
√

Wm
i sin(ωm

i ti
√

2/l)
]T

i=1...m
. (3.24)

3.4 sleipnir - scaling to bigger datasets 49

Using trigonometric identities and a similar reasoning, we can show that

′k(ti, tj) :=
∂

∂ti
k(ti, tj) ≈ Qm

(
−
√

2ω sin
(

ωr
√

2/l
)

/l
)

= φ(ti)
′Tφ(tj), (3.25)

k′(ti, tj) :=
∂

∂tj
k(ti, tj) ≈ Qm

(√
2ω sin

(
ωr
√

2/l
)

/l
)

= φ(ti)
Tφ′(tj), (3.26)

k′′(ti, tj) :=
∂2

∂ti∂tj
k(ti, tj) ≈ Qm

(
ω22 cos

(
ωr
√

2/l
)

/l2
)

= φ(ti)
′Tφ′(tj), (3.27)

where

φ(ti)
′ :=

−√2Wm
i ωm

i sin
(

ωm
i ti
√

2/l
)

/l√
2Wm

i ωm
i cos

(
ωm

i ti
√

2/l
)

/l


i=1...m

. (3.28)

As expected intuitively, the feature map of the derivative kernels looks
like the derivative of the feature map of the original kernel, a fact that has
heuristically been explored in similar context, e.g., by Solin and Särkkä [SS].
While this seems intuitively plausible, it is important to demonstrate that
this map is then indeed optimal in the Gauss-Hermitian quadrature sense
(cf. Equation (3.19)), a fact that is crucial for the later theoretical analysis.
This crucial insight allows us to demonstrate that the feature expansions
for the derivative kernels are efficient as well in the sense that the approxi-
mation error decays exponentially in the number of features. Only then can
we claim that the expansion indeed provides accurate approximations of
the derivative kernels even for a small number of deterministically chosen
features.

3.4.3.3 Theoretical Results - Exponentially Decaying Kernel Approximation
Errors

Since the approximation error of a GP posterior can vary hugely with the
frequency content of the underlying function [see, e.g., WF22], we choose
the kernel approximation error as a more objective metric. In the context
of standard GP regression, Mutny and Krause [MK18] have bounded the
kernel approximation error via the inequality

|k(ti, tj)−φ(ti)
Tφ(tj)| ≤ Em := Em :=

√
π

1
mm

(e
4l2

)m
. (3.29)

50 the frequentist : ode-informed regression

(a) k(r) (b) k′(r) (c) k′′(r)

Figure 3.9: Maximum error of different feature expansions over r ∈ [0, 1]. For
the stochastic RFF and RFF-B, median, 12.5% and 87.5% quantiles
over 100 random samples are shown, but barely visible due to the
exponential decay of the error of the QFF error. As predicted by our
theoretical analysis, the error is a bit higher for the derivatives, but
still decaying exponentially.

This bound is especially appealing since it is deterministic and decays
exponentially in m. We prove that these favorable properties carry over to
derivative kernels as well. The main results are summarized in Theorem 2,
with a detailed proof given in Appendix A.2.3.

Theorem 2 Let k(ti, tj) be an RBF kernel and consider the Gauss-Hermite quadra-
ture scheme of order m, defining φ(ti) and φ(ti)

′. Then, for |r| = |ti − tj| ≤ 1, it
holds that

1. | ∂
∂ti

k(ti, tj)−φ(ti)
′Tφ(tj)| ≤ 2e

l2 Em−2

2. | ∂2

∂ti∂tj
k(ti, tj)−φ(ti)

′Tφ(tj)
′| ≤ 2e

l4 Em−3

where Em is defined as in Equation (3.29)

In practical applications, most assumptions of the theorem are readily met,
while |r| < 1 can always be achieved by scaling the domain and adapting
the lengthscale l accordingly. In particular, if |r| is large, scaling would
decrease l proportionally, leading to a higher approximation error. However,
it should be noted that this does not affect the exponential decay, since the
scaling will just appear as a constant factor. While the error is slightly larger
for the derivative approximations than for the kernel itself, it is important to
note that we can still guarantee the same exponentially decaying behavior.

3.4.3.4 Empirical Evaluation

In Figure 3.9, we evaluate the maximum error of the feature approximations
over an interval r ∈ [0, 1]. From Theorem 2, we would expect an exponential

3.4 sleipnir - scaling to bigger datasets 51

decay in the approximation error for both the kernel and the first and
second order derivatives. This exponential decay is clearly visible and
continues until we hit machine precision. In Figure 3.9, l was chosen to be
0.1. However, as expected from our theoretical findings, this behavior is
robust across different lengthscales. The corresponding plots can be found
in the appendix (Appendix A.2.9). Figure 3.9 allows for the interesting
observation that next to the exponential decay of QFF, the error of the RFF
almost looks constant, even though it decays linearly on a non-logarithmic
scale.

3.4.4 Accurately Approximating Posteriors for GP Regression with Observed
Derivatives

Before investigating the more complex case of ODIN, we will focus in
this section on the important application of Gaussian process regression
with derivative observations (GPRD). As we shall see in this section, the
exponentially fast decay of the kernel approximation error carries over
nicely to this case.

3.4.4.1 Background

The generative model of GPRD, as introduced by Solak et al. [Sol+03], is
shown in Figure 3.2. Unlike ODIN, in this case, we assume that we have
access to the full set of state observations y and derivative observations F .
These vectors contain observations of the function itself and its derivatives
at Nd distinct time points, corrupted by Gaussian noise with standard
deviations σ and

√
γ. Given the GP prior, the goal of GPRD is to find

estimates for x(t) and ẋ(t) given y and F . Since both prior and observation
model are Gaussian, the posteriors

p(x(τ)|y,F ,φ, γ) = N (x(τ)|µ(τ), α(τ)) (3.30)

and
p(x′(τ)|y,F ,φ, γ) = N (x′(τ)|µ′(τ), α′(τ)). (3.31)

are Gaussian as well and can be calculated in closed form.
To illustrate the computational challenges associated with this model,

let’s consider the calculation of the mean µ(T). Following e.g. [Sol+03]:

µ(T) = k̂φ(t, T)TK̂−1
φ

[
yT ,F T

]T
, (3.32)

52 the frequentist : ode-informed regression

where

K̂φ :=

(
Cφ C ′φ
′Cφ C ′′φ

)
+

(
σ2IN 0

0 γIN

)
. (3.33)

Here, Cφ, C ′φ, ′Cφ and C ′′φ are all Nd × Nd matrices, describing the covari-
ances between the states and derivatives, as given by k, ′k, k′ and k′′ [cf.
Section 2.3.1 and Sol+03]. To calculate the posterior, we would thus need to
invert a 2Nd × 2Nd matrix. Similar issues exist for the posterior derivative
mean and the calculation of the variances as well, leading to an overall
complexity of O(N3

d).

3.4.5 Derivation

However, similar to scaling standard GP regression, K̂φ can be decomposed

as K̂φ ≈ Φ̂
T

Φ̂ + Λ. Here, Φ̂ ∈ R2M×Nd is the feature matrix we obtain
when stacking the Nd 2M-dimensional feature vectors obtained by concate-
nating φ(ti) and φ′(ti) for ti. Also Λ is the diagonal matrix we obtain due
to the noise variance terms γ and σ2. Using the matrix inversion lemma,
we can write

K̂−1
φ ≈ (Φ̂

T
Φ̂ + Λ)−1 = Λ−1 −Λ−1Φ̂

T
(I + Φ̂Λ−1Φ̂

T
)−1Φ̂Λ−1. (3.34)

This trick allows us to compute the inverse of K̂φ ∈ R2Nd×2Nd by calcu-

lating the inverse of the (much) smaller (I + Φ̂Λ−1Φ̂
T
) ∈ R2M×2M. Thus, it

should be clear that the original complexity of O(N3
d) has been successfully

reduced to O(Nd M2 + M3).
Note that this is only possible since the features needed to approximate

k and k′′ are the same ones we need to approximate k′. In that sense, the
features derived in the previous section are not only optimal in a Hermitian
quadrature sense, but also ideal for this feature approximation.

3.4.5.1 Theoretical Results

As we shall see, the exponential error decay carries over nicely to the case
of GPRD. Define eµ̃, eα̃, eµ̃′ and eα̃′ as the absolute error between the feature
approximations and the corresponding accurate quantities of the means
and covariances of Equations (3.30) and (3.31). For each τ ∈ R, define
etot := max{eµ̃, eα̃, eµ̃′ , eα̃′} as the maximum of these four errors. We can
now show the exponential relation between feature approximation order m

3.4 sleipnir - scaling to bigger datasets 53

and the corresponding approximation error, as summarized in Theorem 3,
with proof in Appendix A.2.3.

Theorem 3 Let us consider an RBF kernel with hyperparameters (ρ, l) and do-
main [0, 1]. Define c := min(γ, σ2) and R := max(||y||∞, ||F ||∞). Let C > 0.
Let us consider a QFF approximation scheme of order m with

m ≥ 3 + max
(

e
2l2 , log

(
270N2ρ3R

l8c2C

))
.

Then, it holds for all τ ∈ [0, 1] that etot ≤ C.

From this theorem, we can also observe the following fact: If we decrease
the acceptable worst case performance C, we clearly need more features.
However, due to the logarithm in the theorem, an exponential decay in C
only leads to linear growth in m, all other things being equal.

3.4.5.2 Empirical Evaluation

(a) µ0 (b) α0 (c) µ′0 (d) α′0

Figure 3.10: Approximation error of the feature approximations compared to the
accurate GP, evaluated at t = 0.8 for the first state of the Lorenz
system, with 1000 observations and an SNR of 100. Median, 12.5%
and 87.5% quantiles over 10 independent noise realizations are
shown.

Wherever applicable, we will use three standard benchmark systems
previously introduced in Sections 2.7.1 and 3.3.3. For all experiments, we
created our data-set using numerical integration of the ground truth param-
eters. We then added 25 different noise realizations to obtain 25 different
data sets. This allows us to quantify robustness w.r.t. noise by showing
median as well as 20% and 80% quantiles over these noise realizations for
each experiment. In all experiments, we trained γ and learned the kernel
hyperparameters from the data using the scalable approximations described
in the previous section. For all algorithms, we keep RFF and RFF-B feature
expansions as comparison to our QFF-based approximation.

For GPRD, we show the exponential decay of all error quantities described
by Theorem 3 for the Lorenz system in Figure 3.10. It is clear that the

54 the frequentist : ode-informed regression

LV PT Lorenz

ODIN 973 ± 42.5 17900 ± 668 10700 ± 466

ODIN-S 1.24 ± 0.243 133 ± 12.8 13.2 ± 0.566

Table 3.3: Run time per iteration in miliseconds. Median ± on standard deviation
shown over 15 different iterations.

predicted exponential decay also holds in practice. While we only show one
state of one experiment, this behavior is consistent across experiments and
noise settings, as can be seen by looking at the additional plots presented
in Appendix A.2.9.

(a) LV (b) PT (c) Lorenz

Figure 3.11: Comparing the tRMSE of the inferred ODE parameters. Top row:
The results obtained by ODIN-S converge to the accurate results
when increasing the number of features. Bottom row: Only ODIN-S
is accurate enough to not affect the learning curves.

3.5 odin with sleipnir - risk consistent scaling

The first computational challenge for ODIN lies in calculating the risk term
of Equation (3.13), which can be written slightly more verbose as

R(x,θ) = xTC−1
φ x

+ (x− y)Tσ−2(x− y)
+ (f (x,θ)−Dx)T(A+ γI)−1(f (x,θ)−Dx). (3.35)

3.5 odin with sleipnir - risk consistent scaling 55

Clearly, ODIN scales similarly to standard GPRD, cubically in the number of
observations, due to the inversions of Cφ and A. Also, if γ is inferred from
the data as well (in this section referred by learning gamma), R(x,θ,y) is
extended by the additional summand log det(A+ γI). This term represents
the contribution of the determinant term of the conditional p(F |x,y,φ, γ)
and also scales cubically. Furthermore, when inferring the hyper-parameters
φ and σ from data via empirical Bayes. Here, ODIN maximizes the marginal
likelihood p(y|φ, σ). Usually, this is done via the log likelihood, whose
calculation scales cubically as well. So in essence, there are three main
challenges when scaling up ODIN to large datasets, where the latter two
have already intensely been studied, e.g. by Rahimi and Recht [RR08] or
Mutny and Krause [MK18]. Thus, we focus in this section on deriving the
appropriate approximations for the risk terms.

3.5.1 Derivation

Unlike the matrices needed for GPRD, neither D nor A allow for a direct
feature expansion. However, after inserting the appropriate feature expan-
sions and applying the matrix inversion Lemma multiple times, we can
obtain

zT(A+ γI)−1z ≈ 1
γ
zT(I−Φ′T(Φ′Φ′T +

γ

λ
ΦΦT + γI)−1Φ′)z,

where

z := f (θ,x)−Dx ≈ f (θ,x)−Φ′T(ΦΦT + λI)−1Φx.

Combining these approximations with the ones introduced in the previ-
ous section, we obtain a computationally efficient scheme for calculating
all objective functions in ODIN. Furthermore, both the additional term
log det(A+ γI) obtained when learning γ and learning φ and σ can be
scaled similarly. Overall, this means that the original complexity of O(N3

d)
has been successfully reduced to O(Nd M2 + M3). For M < Nd, this is
significantly accelerating ODIN, which is why we name our approxima-
tion scheme SLEIPNIR, as a reference to norse mythology. The resulting
algorithm will be referred to as ODIN-S.

theoretical results When applying SLEIPNIR to ODIN for a fixed
feature vector length M, we will always create a small approximation error

56 the frequentist : ode-informed regression

in the objective function. However, the deterministic nature of the QFF
approximation still allows us to choose the number of features in a way
such that we can guarantee it to be smaller than a pre-chosen threshold.
This result is summarized in Theorem 4 and proven in Appendix A.2.7.

Theorem 4 Let R be the ODIN-objective as defined in Equation (3.35) and let
R̃ denote its counterpart obtained by approximating the matrices Cφ, A and D
with a QFF scheme of order m. Assume the parameters λ, γ, φ = (ρ, l) and Nd to
be fixed. Suppose Nd ≥ 60 and let 1 > ε > 0. Then, for any x and θ,

m ≥ 10 + max

{
e

2l2 , log2

(
ρ2N3

d
λ2γl4ε

)}
(3.36)

implies
|Rλγφ(x, θ)− R̃λγφ(x, θ)|

Rλγφ(x, θ)
≤ ε (3.37)

Similar to GPRD, the threshold ε appears inside the logarithm. Thus, an
exponential decrease of the allowed error only requires a linear increase in
the number of features.The bound on Nd has been chosen to reduce the
number of terms, but it is not necessary. The bound on ε is equivalent to
stating that an approximation scheme with more than 100% relative error
is of little interest.

3.6 scaling experiments

In Figure 3.11, we compare the performance of ODIN-S against the original
ODIN as well as ODIN augmented with RFF and RFF-B on the three
standard benchmark systems. In the top row, we keep the total number of
observations fixed to 1000 for LV and 2000 for PT and Lorenz, while varying
the length of the feature vector. In the bottom row, we keep the number of
features fixed to 40 for LV, 300 for PT and 150 for Lorenz. All the data was
created using observation noise with σ2 = 0.1 for LV, σ2 = 0.01 for PT and
a signal-to-noise ratio of 5 for Lorenz. Due to computational restrictions,
it was not possible to evaluate accurate ODIN beyond what is shown in
the plots. To demonstrate the robustness of the evaluation, different noise,
feature and observation settings are investigated in Appendix A.2.9.

As predicted by our theoretical analysis, the trajectory RMSE of ODIN-S
eventually converges to the approximation-free ODIN in both median
and quantiles if we increase the number of QFFs. Also, it is interesting

3.6 scaling experiments 57

to observe that the learning curves of the MCMC-based RFF and RFF-B
are significantly worse than the true learning curves, especially for the
more involved PT and Lorenz systems. This seems to suggest that a bad
approximation can seriously hurt learning performance, further illustrating
the importance of provably accurate approximations.

In Table 3.3, we compare the run time per iteration of ODIN with ODIN-S.
Since the run time only depends on the number of features and not on
how the features were obtained, we omitted RFF and RFF-B. The run
time was evaluated using the same number of observation and number of
feature combinations as in Figure 3.11. While the table only shows the run
time reduction, the theoretically expected linear scaling is demonstrated in
additional plots in the appendix.

In a final experiment, we show that ODIN-S is able to scale to realistic data
sets. For this, we introduce a 12-dimensional ODE system representing the
dynamics of a 6DOF quadrocopter. We observe the system under Gaussian
noise with SNR=10 over the time interval t = [0, 15]. We assume a sampling
frequency of 1kHz, leading to 15’000 observations. We then run ODIN-S on
a standard laptop (Lenovo Carbon X1) and obtain results in roughly 80min.
Up to our knowledge, this is the first time that a system of such dimensions
has been solved with a Gaussian process based parameter inference scheme,
clearly demonstrating the power of our framework. The resulting trajectories
are shown in Figure 3.12, including example observation points to visualize
the noise level. The estimates of ODIN-S are so good that the ground truth
is almost indistinguishable.

58 the frequentist : ode-informed regression

Figure 3.12: State trajectories obtained by integrating the parameters inferred by
ODIN-S (orange). The blue line represents the ground truth, while
the blue dots show every 300-th observation for a signal-to-noise
ratio of 10.

4
T H E P R A C T I T I O N E R : D I S T R I B U T I O N A L G R A D I E N T
M AT C H I N G

In all dynamics models studied in this thesis thus far, we assumed that the
dynamics model was known and the number of parameters quite limited.
In particular, all algorithms thus far were evaluated on single trajectory
datasets. While their frameworks can in principle be extended to the multi-
trajectory case without theoretical problems, this is rarely done. In part,
this is to inherent computational limitations. In part, this is to keep in line
with the current gradient matching literature, which almost exclusively
studies the one-trajectory case. In part, this is also due to the fact that the
parametric form of the established benchmarks are quite restrictive. For
gradient matching to work in its established form, trajectories need to be
somewhat densely observed such that the smoother can pick up important
characteristics of the underlying dynamics. And for such densely observed
dynamics, one trajectory is already enough to learn decent dynamics for
the systems considered thus far.

In practice however, we might be fundamentally limited in the frequency
at which we can take measurements, so densely observing trajectories
might not be an option. Furthermore, we might be interested in studying a
system’s behavior in different regions of the state space, i.e. starting from
different initial conditions, especially in the context of system identification
[Lju98]. This could result in data sets with many observed trajectories,
but with fewer observations on each trajectory than studied thus far. A
naive extension of FGPGM or ODIN to this case would involve learning a
smoother for each trajectory independently. Even for simple smoothers with
few hyperparameters, this could quickly lead to an explosion of learnable
parameters. Thus, we would be forced to adapt the complexity of each
smoother to the number of observations available per trajectory, which
might fundamentally limit our capacity to accurately learn the underlying
characteristics of each trajectory.

In this chapter, we investigate a possible solution to this problem. Instead
of deploying independent smoothers for each trajectory, we propose to learn
a joint smoother over all trajectories. This smoother is then regularized by
a neural ordinary differential equation (neural ODE), to guarantee that its
predictions actually follow some underlying, Markovian dynamical system.

59

60 the practitioner : distributional gradient matching

Smoother: (t,x0)
GPϕ7−−→pS(x(t)),pS(ẋ(t)) Dynamics: x(t)

NNψ7−−→pD(ẋ(t))

maxψ,ϕ log pS(XS)−λ·W2
2(pS(ẊS),pD(ẊD))

Figure 4.1: High-level depiction of DGM.

The first parts of this chapter up to the case study were adapted from
the joint work with Treven et al. [Tre+21]. This work was published as a
conference publication and parts of it are reused with permission.

A high-level depiction of our algorithm, called distributional gradient
matching (DGM), is shown in Figure 4.1. In principle, DGM jointly learns a
smoother (S) and a dynamics model (D). The smoother model, chosen to be
a Gaussian process, maps an initial condition x0 and a time t to the state
distribution pS(x(t)) and state derivatives distribution pS(ẋ(t)) reached at
that time. The dynamics model, chosen to be a neural network, represents
an ODE that maps states x(t) to the derivative distribution pD(ẋ(t)). Both
models are evaluated at some training times and all its output distributions
collected in the random variables XS, ẊS and ẊD. The parameters of these
models are then jointly trained using a Wasserstein-distance-based objective
directly on the level of distributions.

4.1 background

4.1.1 Data

As in the previous chapters, we again consider a data set as described in
Section 1.1. For the first time in this thesis however, we explicitly consider
the case of multiple trajectories. To introduce DGM properly, a simplifica-
tion to the one-trajectory case as done in the previous chapters for brevity
of notation is not helpful here. Whenever we need an explicit reference to
a specific trajectory, we will use a subindex m ∈ {1, . . . , M}, to indicate
the index of the numbered M trajectories. Since there is no need for any
restrictions, we let the number of observations (Nm)m∈{1,...,M} vary from
trajectory to trajectory. Thus, a trajectory m is described by its initial condi-

4.1 background 61

tion xm(0), and the observations ym := [xm(tn,m) + εn,m]n∈{1,...,Nm} at times
tm := [tn,m]n∈{1,...,Nm}, where the additive observation noise εn,m is assumed
to be drawn i.i.d. from a zero mean Gaussian, whose covariance is given by
Σε := diag(σ2

1 , . . . , σ2
K). We denote by D the dataset, consisting of M initial

conditions xm(0), observation times tm, and observations ym, in line with
the definitions introduced in Section 1.1 and the cases studied thus far in
this thesis.

4.1.2 Problem

To model the unknown dynamical system, we choose again a deterministic
ODE

ẋ = f (x,θ), (4.1)

where we do not further restrict the parametric form of f , except for
requiring the ground truth to be Lipschitz so that unique system evolutions
exist for each initial condition. Thus, depending on the amount of expert
knowledge, the parametrization of f can follow a white-box, gray-box, or
black-box methodology [Boh06]. In any case, the parametric form of f is
fixed a priori (e.g., a neural network), and the first key challenge is to infer
a reasonable distribution over the parameters θ, conditioned on the data D
(i.e. Bayesian inference, as introduced in Section 1.1.1).

For later tasks, we are particularly interested in the predictive posterior
state distribution

p(xnew(tnew)|D, tnew,xnew(0)), (4.2)

i.e., the posterior distribution of the states starting from a potentially unseen
initial condition xnew(0) and evaluated at times tnew. This posterior would
then be used by the downstream or prediction tasks described at the
beginning of this chapter.

4.1.3 Motivation

As mentioned in Section 1.1, standard Bayesian inference requires many
integration steps. The same holds for the practically important prediction
as described in Equation (4.2). Especially when we model f with a neural
network, this can be a huge burden, both numerically and computationally
[Kel+20].

As an alternative approach, we can approximate the posterior p(θ|D)
with variational inference [Bis06]. However, we run into similar bottlenecks.

62 the practitioner : distributional gradient matching

While optimizing the variational objective, e.g., the ELBO, many integra-
tion steps are necessary to evaluate the unnormalized posterior. Also, at
inference time, to obtain a distribution over state x̂s(t), we still need to
integrate f several times. Furthermore, Dandekar et al. [Dan+21] report
poor forecasting performance by the variational approach.

4.2 distributional gradient matching

In both the Monte Carlo sampling-based and variational approaches, all
information about the dynamical system is stored in the estimates of the
system parameters θ̂. This makes these approaches rather cumbersome:
Both for obtaining estimates of θ̂ and for obtaining the predictive posterior
over states, once θ̂ is found, we need multiple rounds of numerically
integrating a potentially complicated (neural) differential equation. We thus
have identified two bottlenecks limiting the performance and applicability
of these algorithms: namely, numerical integration of f and inference of
the system parameters θ. In our proposed algorithm, we avoid both of these
bottlenecks by directly working with the posterior distribution in the state
space.

To this end, we introduce a probabilistic, differentiable smoother model,
that directly maps a tuple (t,x(0)) consisting of a time point t and an initial
condition x(0)) as input and maps it to the corresponding distribution over
x(t). Thus, the smoother directly replaces the costly, numerical integration
steps, needed, e.g., to evaluate Equation (4.2).

Albeit computationally attractive, this approach has one serious drawback.
Since the smoother no longer explicitly integrates differential equations,
there is no guarantee that the obtained smoother model follows any vector
field. Thus, the smoother model is strictly more general than the systems
described by deterministic ODEs as defined in Section 1.1. Unlike ODEs,
it is able to capture mappings whose underlying functions violate, e.g.,
Lipschitz or Markovianity properties, which is clearly not desirable. To
address this issue, we introduce a regularization term, Ldynamics, which
ensures that a trajectory predicted by the smoother is encouraged to follow
some underlying ODE system. The smoother is then trained with the
multi-objective loss function

L := Ldata + λ · Ldynamics, (4.3)

where, Ldata is a smoother-dependent loss function that ensures a suffi-
ciently accurate data fit, and λ is a trade-off parameter.

4.2 distributional gradient matching 63

4.2.1 Regularization by Matching Distributions over Gradients

To ultimately define Ldynamics, first choose a parametric dynamics model
similar to f (x,θ) in Equation (1.1), that maps states to their derivatives.
Second, define a set of supporting points T with the corresponding supporting
gradients Ẋ as

T :=
{(

tsupp,l ,xsupp,l(0)
)

l∈{1...Nsupp}

}
,

Ẋ :=
{(
ẋsupp,l

)
l∈{1...Nsupp}

}
.

Here, the l-th element represents the event that the dynamical system’s
derivative at time tsupp,l is ẋsupp,l , after being initialized at time 0 at initial
condition xsupp,l(0).

Given both the smoother and the dynamics model, we have now two
different ways to calculate distributions over Ẋ given some data D and
supporting points T . First, we can directly leverage the differentiability and
global nature of our smoother model to extract a distribution pS(Ẋ |D, T)
from the smoother model. Second, we can first use the smoother to obtain
state estimates and then plug these state estimates into the dynamics
model, to obtain a second distribution pD(Ẋ |D, T). Clearly, if the solution
proposed by the smoother follows the dynamics, these two distributions
should match. Thus, we can regularize the smoother to follow the solution
of Equation (1.1) by defining Ldynamics to encode the distance between
pD(Ẋ |D, T) and pS(Ẋ |D, T) to be small in some metric. By minimizing
the overall loss, we thus match the distributions over the gradients of the
smoother and the dynamics model.

4.2.2 Smoothing jointly over Trajectories with Deep Gaussian Processes

The core of DGM is formed by a smoother model. In principle, the poste-
rior state distribution of Equation (4.2) could be modeled by any Bayesian
regression technique. However, calculating pS(Ẋ |D, T) is generally more
involved. Here, the key challenge is evaluating this posterior, which is
already computationally challenging, e.g., for simple Bayesian neural net-
works. For Gaussian processes, however, this becomes straightforward, since
derivatives of GPs remain GPs [Sol+03]. Thus, DGM uses a GP smoother.
For scalability and simplicity, we keep K different, independent smoothers,

64 the practitioner : distributional gradient matching

one for each state dimension. However, if computational complexity is
not a concern, our approach generalizes directly to multi-output Gaus-
sian processes. Below, we focus on the one-dimensional case, for clarity
of exposition. For notational compactness, all vectors with a superscript
should be interpreted as vectors over time in this subsection. For exam-
ple, the vector x(k) consists of all the k-th elements of the state vectors
x(tn,m), n ∈ {1, . . . , Nm}, m ∈ {1, . . . , M}.

We define a Gaussian process with a differentiable mean function

µ(xm(0), tn,m)

as well as a differentiable and positive-definite kernel function

KRBF(φ(xm(0), tn,m),φ(xm′(0), tn′ ,m′).

Here, the kernel is given by the composition of a standard ARD-RBF kernel
[Ras04b] and a differentiable feature extractor φ parametrized by a deep
neural network, as introduced by Wilson et al. [Wil+16]. Following Solak
et al. [Sol+03], given fixed xsupp, we can now calculate the joint density of

(ẋ
(k)
supp,y(k)) for each state dimension k. Concatenating vectors accordingly

across time and trajectories, let

µ(k) := µ(k) (x(0), t) , µ̇(k) :=
∂

∂t
µ(k) (xsupp(0), tsupp

)
,

z(k) := φ(k)(x(0), t), z
(k)
supp := φ(k)(xsupp(0), tsupp),

K(k) := K(k)
RBF(z

(k), z(k)), K̇(k) :=
∂

∂t1
K(k)

RBF(z
(k)
supp, z(k)),

K̈(k) :=
∂2

∂t1∂t2
K(k)

RBF(z
(k)
supp, z(k)supp).

Then the joint density of (ẋ(k)supp,y(k)) can be written as(
ẋ
(k)
supp

y(k)

)
∼ N

((
µ̇(k)

µ(k)

)
,

(
K̈(k) K̇(k)

(K̇(k)
)> K(k) + σ2

k I

))
. (4.4)

Here we denote by ∂
∂t1

the partial derivative with respect to time in the

first coordinate, by ∂
∂t2

the partial derivative with respect to time in the
second coordinate, and with σ2

k the corresponding noise variance of Σobs.

4.2 distributional gradient matching 65

Since the conditionals of a joint Gaussian random variable are again
Gaussian distributed, pS is again Gaussian, i.e.,

pS(Ẋk|D, T) = N
(
ẋ
(k)
supp|µS, ΣS

)
with

µS := µ̇(k) + K̇(k)
(K(k) + σ2

k I)
−1
(
y(k) −µ(k)

)
,

ΣS := K̈(k) − K̇(k)
(K(k) + σ2

k I)
−1(K̇(k)

)>.
(4.5)

Here, the index k is used to highlight that this is just the distribution for
one state dimension. To obtain the final pS(Ẋ |D, T), we take the product
over all state dimensions k.

To fit our model to the data, we minimize the negative marginal log
likelihood of our observations, neglecting purely additive terms [Ras04b],
i.e.,

Ldata :=
1
2

K

∑
k=1

(
y(k) −µ(k)

)> (
K(k) + σ2

k I
)−1 (

y(k) −µ(k)
)

+ logdet
(
K(k) + σ2

k I
)

. (4.6)

Furthermore, the predictive posterior for a new point x(k)test given time ttest

and initial condition x(k)test(0) has the closed form

pS(x(k)test|Dk, ttest,xtest) = N
(

x(k)test

∣∣∣µ(k)
post, σ2

post,k

)
, (4.7)

where

µ
(k)
post = µ(k)(xtest(0), ttest)

+K(k)
RBF(z

(k)
test, z

(k))>(K(k) + σ2
k I)
−1
(
y(k) −µ(k)

)
(4.8)

and

σ2
post,k = K

(k)
RBF(ztest, ztest)

−K(k)
RBF(z

(k)
test, z

(k))>(K(k) + σ2
k I)
−1K(k)

RBF(z
(k)
test, z

(k)). (4.9)

Please note that the design choices in this section are by no means
absolute. All we need from the smoother model is a mechanism to extract
a probabilistic posterior. In particular, it could be interesting to explore

66 the practitioner : distributional gradient matching

alternative smoother models. In the context of model selection, Pfister,
Bauer, and Peters [PBP18] successfully deployed a spline-based approach.
As a more Bayesian alternative, Cutajar et al. [Cut+17] introduce a scalable
alternative in the context of GPs, although their definition of deep GP
should not be confused with the deep GPs used in this thesis. For the sake
of simplicity, we leave the investigation of such approaches to future work
though.

4.2.3 Representing Uncertainty in the Dynamics Model via the Reparametriza-
tion Trick

As described at the beginning of this section, a key bottleneck of standard
Bayesian approaches is the potentially high dimensionality of the dynamics
parameter vector θ. The same is true for our approach. If we were to
keep track of the distributions over all parameters of our dynamics model,
calculating pD(Ẋ |D, T) quickly becomes infeasible.

However, especially in the case of modeling f with a neural network,
the benefits of keeping distributions directly over θ is unclear due to over-
parametrization. For both the downstream tasks and our training method,
we are mainly interested in the distributions in the state space. Usually, the
state space is significantly lower dimensional compared to the parameter
space of θ. Furthermore, since the exact posterior state distributions are
generally intractable, they normally have to be approximated anyways with
simpler distributions for downstream tasks [Sch+15; Hou+16; Ber+17]. Thus,
we change the parametrization of our dynamics model as follows. Instead
of working directly with ẋ(t) = f (x(t),θ) and keeping a distribution over
θ, we model uncertainty directly on the level of the vector field as

ẋ(t) = f (x(t),ψ) + Σ
1
2
D(x(t),ψ)ε, (4.10)

where ε ∼ N (0, IK) is drawn once per rollout (i.e., fixed within a trajectory)
and ΣD is a state-dependent and positive semi-definite matrix parametrized
by a neural network. Here,ψ are the parameters of the new dynamics model,
consisting of both the original parameters θ and the weights of the neural
network parametrizing ΣD. To keep the number of parameters reasonable,
we employ a weight sharing scheme, detailed in Appendix A.3.2.

In spirit, this modeling paradigm is very closely related to standard
Bayesian training of NODEs. In both cases, the random distributions capture
a distribution over a set of deterministic, ordinary differential equations.
This should be seen in stark contrast to stochastic differential equations,

4.2 distributional gradient matching 67

where the randomness in the state space, i.e., diffusion, is modeled with
a stochastic process. In comparison to Equation (4.10), the latter is a time-
varying disturbance added to the vector field. In that sense, our model still
captures the epistemic uncertainty about our system dynamics, while an SDE
model captures the intrinsic process noise, i.e., aleatoric uncertainty. While
this reparametrization does not allow us to directly calculate pD(Ẋ |D, T),
we obtain a Gaussian distribution for the marginals pD(ẋsupp|xsupp). To
retrieve pD(Ẋ |D, T), we use the smoother model’s predictive state posterior
to obtain

pD(Ẋ |D, T) =
∫

pD(ẋsupp,xsupp|D, T)dxsupp (4.11)

≈
∫

pD(ẋsupp|xsupp)pS(xsupp|T ,D)dxsupp. (4.12)

4.2.4 Comparing Gradient Distributions via the Wasserstein Distance

To compare and eventually match pD(Ẋ |D, T) and pS(Ẋ |D, T), we pro-
pose to use the Wasserstein distance [Kan39], since it allows for an analytic,
closed-form representation, and since it outperforms similar measures
(like forward, backward and symmetric KL divergence) in our exploratory
experiments. The squared type-2 Wasserstein distance gives rise to the term

W2
2
[
pS(Ẋ |D, T), pD(Ẋ |D, T)

]
=

W2
2

[
pS(Ẋ |D, T), Exsupp∼pGP(xsupp|D,T)

[
pD(ẋsupp|xsupp)

]]
, (4.13)

that we will later use to regularize the smoothing process. To render the
calculation of this regularization term computationally feasible, we in-
troduce two approximations. First, observe that an exact calculation of
the expectation in Equation (4.13) requires mapping a multivariate Gaus-
sian through the deterministic neural networks parametrizing f and ΣD
in Equation (4.10). To avoid complex sampling schemes, we carry out a
certainty-equivalence approximation of the expectation, that is, we evaluate
the dynamics model on the posterior smoother mean µS, supp. As a result
of this approximation, observe that both pD(Ẋ |D, T) and pS(Ẋ |D, T) be-
come Gaussians. However, the covariance structure of these matrices is
very different. Since we use independent GPs for different state dimensions,
the smoother only models the covariance between the state values within
the same dimension, across different time points. Furthermore, since ε, the
random variable that captures the randomness of the dynamics across all

68 the practitioner : distributional gradient matching

time-points, is only K-dimensional, the covariance of pD will be degenerate.
Thus, we do not match the distributions directly, but instead match the
marginals of each state coordinate at each time point independently at the
different supporting time points. Hence, using first marginalization and
then the certainty equivalence, Equation (4.13) reduces to

W2
2
[
pS(Ẋ |D, T), pD(Ẋ |D, T)

]
(4.14)

≈
K

∑
k=1

|Ẋ |

∑
i=1

W2
2

[
pS(ẋ(k)supp(tsupp,i)|D, T), pD(ẋ(k)supp(tsupp,i)|D, T)

]

≈
K

∑
k=1

|Ẋ |

∑
i=1

W2
2

[
pS(ẋ(k)supp(tsupp,i)|D, T), pD(ẋ(k)supp(tsupp,i)|µS, supp)

]
.

Conveniently, the Wasserstein distance can now be calculated analytically,
since for two one-dimensional Gaussians

a ∼ N (µa, σ2
a) (4.15)

and
b ∼ N (µb, σ2

b), (4.16)

we have
W2

2[a, b] = (µa − µb)
2 + (σa − σb)

2. (4.17)

4.2.5 Final Loss Function

As explained in the previous paragraphs, distributional gradient matching
trains a smoother regularized by a dynamics model. Both the parameters
of the smoother ϕ, consisting of the trainable parameters of the GP prior
mean µ, the feature map φ, and the kernel K, and the parameters of the
dynamics model ψ are trained concurrently, using the same loss function.
This loss consists of two terms, of which the regularization term was
already described in Equation (4.14). While this term ensures that the
smoother follows the dynamics, we need a second term ensuring that
the smoother also follows the data. To this end, we follow standard GP
regression literature, where it is common to learn the GP hyperparameters

4.3 experiments 69

by maximizing the marginal log likelihood of the observations, i.e. Ldata
[Ras04b]. Combining these terms, we obtain the final objective

L(ϕ,ψ) := Ldata

− λ ·
K

∑
k=1

|Ẋ |

∑
i=1

W2
2

[
pS(ẋ(k)supp(tsupp,i)|D, T), pD(ẋ(k)supp(tsupp,i)|µS, supp)

]
.

This loss function is a multi-criteria objective, where fitting the data (via the
smoother) and identifying the dynamics model (by matching the marginals)
regularize each other.

In our preliminary experiments, we found the objective to be quite robust
w.r.t. different choices of λ. In the interest of simplicity, we thus set it in all
our experiments in Section 4.3 to a default value of λ = |D|

|Ẋ | , accounting
only for the possibility of having different numbers of supporting points
and observations. One special case worth mentioning is λ → 0, which
corresponds to conventional sequential smoothing, where the second part
would be used for identification in a second step, as proposed by Pillonetto
and De Nicolao [PD10]. However, as can be seen in Figure 4.4, the smoother
fails to properly identify the system without any knowledge about the
dynamics and thus fails to provide meaningful state or derivative estimates.
Thus, especially in the case of sparse observations, joint training is strictly
superior.

In its final form, unlike its pure Bayesian counterparts, DGM does not
require any prior knowledge about the system dynamics. Nevertheless, if
some prior knowledge is available, one could add an additional, additive
term log(p(ψ)) to L(ϕ,ψ). It should be noted however that this was not
done in any of our experiments, and excellent performance can be achieved
without.

4.3 experiments

We now compare DGM against state-of-the-art methods. In a first experi-
ment, we demonstrate the effects of an overparametrized, simple dynamics
model on the performance of DGM as well as traditional, MC-based al-
gorithms SGLD (Stochastic Gradient Lengevin Dynamics, [WT11]) and
SGHMC (Stochastic Gradient Hamiltonian Monte Carlo, [CFG14]). We se-
lect our baselines based on the results of Dandekar et al. [Dan+21], who
demonstrate that both a variational approach and NUTS (No U-Turn Sam-
pler, Hoffman and Gelman [HG14]) are inferior to these two. Subsequently,

70 the practitioner : distributional gradient matching

we will investigate and benchmark the ability of DGM to correctly identify
neural dynamics models and to generalize across different initial condi-
tions. Since SGLD and SGHMC reach their computational limits in the
generalization experiments, we compare against Neural ODE Processes
(NDP). Lastly, we will conclude by demonstrating the necessity of all of
its components. For all comparisons, we use the julia implementations of
SGLD and SGHMC provided by Dandekar et al. [Dan+21], the pytorch
implementation of NDP provided by Norcliffe et al. [Nor+21], and our own
JAX [Bra+18] implementation of DGM.

4.3.1 Setup

As benchmarks, we again consider the two-dimensional Lotka Volterra (LV)
system (as introduced in Section 2.7, the three-dimensional, chaotic Lorenz
(LO) system, a four-dimensional double pendulum (DP) and a 12-dimensional
quadrocopter (QU) model. For all systems, the exact equations and ground
truth parameters are restated in the appendix, Section A.3.1. For each
system, we create two different data sets. In the first, we include just
one densely observed trajectory, taking the computational limitations of
the benchmarks into consideration. In the second, we include many, but
sparsely observed trajectories (5 for LV and DP, 10 for LO, 15 for QU). This
setting aims to study generalization over different initial conditions.

4.3.2 Metric

We use the log likelihood as a metric to compare the accuracy of our
probabilistic models. In the 1-trajectory setting, we take a grid of 100 time
points equidistantly on the training trajectory. We then calculate the ground
truth and evaluate its likelihood using the predictive distributions of our
models. When testing for generalization, we repeat the same procedure for
unseen initial conditions.

4.3.3 Effects of Overparametrization

We first study a three-dimensional, linear system of the form

ẋ(t) = Ax(t), (4.18)

4.3 experiments 71

3,3 3,6,3 3,6,6,3 3,6,9,6,3 3,12,9,6,3
Model

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
g

Lik
el

ih
oo

d

SGLD
SGHMC
DGM

Figure 4.2: SGLD does not converge for strongly overparametrized models, the
performance of SGHMC deteriorates. DGM is not noticeably affected.

where A is a randomly chosen matrix with one stable and two marginally
stable eigenvalues. For the dynamics model, we choose a linear Ansatz

f (x,θ) = Bx(t), (4.19)

whereB is parametrized as the product of multiple matrices. The dimension
of the matrices of each factorization are captured in a string of integers of
the form (3, a1, . . . , aJ , 3). For example, (3, 3) corresponds to B being just
one matrix, while (3, 6, 6, 3) corresponds to B = B1B2B3, with B1 ∈ R3×6,
B2 ∈ R6×6 and B3 ∈ R6×3. All of these models can be interpreted as
linear neural networks, forming a simple case of the nonparametric systems
we study later. Unlike general neural networks, the expressiveness of the
Ansatz is independent of the number of parameters, allowing us to isolate
the effects of overparametrization. In Figure 4.2, we show the mean and
standard deviation of the log likelihood of the ground truth over 10 different
noise realizations. The exact procedure for one noise realization is described
in the appendix, Section A.3.2. While SGLD runs into numerical issues after
a medium model complexity, the performance of SGHMC continuously
disintegrates, while DGM is unaffected. This foreshadows the results of the
next two experiments, where we observe that the MC-based approaches are
not suitable for the more complicated settings.

4.3.4 Single Trajectory Benchmarks

In Table 4.1, we evaluate the log-likelihood of the ground truth for the four
benchmark systems, obtained when learning these systems using a neural
ODE as a dynamics model (for more details, see Section A.3.2.1). Clearly,
DGM performs the best on all systems, even though we supplied both
SGLD and SGHMC with very strong priors and fine-tuned them with an
extensive hyperparameter sweep (see Section A.3.3. Despite this effort, we

72 the practitioner : distributional gradient matching

Log Likelihood

DGM SGHMC SGLD

LV 1 1.96± 0.21 1.36± 0.0693 1.03± 0.0581

LO 1 −0.57± 0.11 −3.02± 0.158 −2.67± 0.367

DP 1 2.13± 0.14 1.88± 0.0506 1.85± 0.0501

QU 1 0.64± 0.07 −5.00± 1.36 NaN

Prediction time [ms]

DGM SGHMC SGLD

LV 1 0.68± 0.04 14.98± 0.23 14.59± 0.15

LO 1 0.99± 0.05 98.93.± 5.79 105.03± 12.22

DP 1 1.31± 0.05 10.60± 0.21 11.34± 0.76

QU 1 3.76± 0.12 24.68± 6.58 NaN

Table 4.1: Log likelihood and prediction times of 100 ground truth sample points,
with mean and standard deviation taken over 10 independent noise
realizations, for neural ODEs trained on a single, densely sampled
trajectory.

failed to get SGLD to work on Quadrocopter 1, where it always returned
NaNs. This is in stark contrast to DGM, which performs reliably without
any pre-training or priors.

4.3.5 Prediction speed

To evaluate prediction speed, we consider the task of predicting 100 points
on a previously unseen trajectory. To obtain a fair comparison, all algorithms’
prediction routines were implemented in JAX [Bra+18]. Furthermore, while
we used 1000 MC samples when evaluating the predictive posterior for the
log likelihood to guarantee maximal accuracy, we only used 200 samples
in Table 4.1. Here, 200 was chosen as a minimal sample size guaranteeing
reasonable accuracy, following a preliminary experiment visualized in
Appendix A.3.3. Nevertheless, the predictions of DGM are 1-2 orders of
magnitudes faster, as can be seen in Table 4.1. This further illustrates the
advantage of relying on a smoother instead of costly, numerical integration
to obtain predictive posteriors in the state space.

4.3 experiments 73

Log Likelihood

DGM NDP

LV 100 1.81± 0.08 0.62± 0.27

LO 125 −2.18± 0.76 −2.85± 0.05

DP 100 1.86± 0.05 0.88± 0.05

QU 64 −0.54± 0.36 −0.91± 0.07

Table 4.2: Log likelihood of 100 ground truth sample points, with mean and
covariance taken over 10 independent noise realizations, for neural
ODEs trained on a multiple, sparsely sampled trajectory.The number
following the system name denotes the number of trajectories in the
training set.

4.3.6 Multi-Trajectory Benchmarks

Next, we take a set of trajectories starting on an equidistant grid of the initial
conditions. Each trajectory is then observed at 5 equidistant observation
times for LV and DP, and 10 equidistant observation times for the chaotic
Lorenz and more complicated Quadrocopter. We test generalization by
randomly sampling a new initial condition and evaluating the negative log
likelihood of the ground truth at 100 equidistant time points. In Table 4.2,
we compare the generalization performance of DGM against NDP, since
despite serious tuning efforts, the MC methods failed to produce meaningful
results in this setting. DGM clearly outperforms NDP, a fact which is further
exemplified in Figure 4.3. There, we show the test log likeliood for Lotka
Volterra trained on an increasing set of trajectories. Even though the time
grid is fixed and we only decrease the distance between initial condition
samples, the dynamics model helps the smoother to generalize across time
as well. In stark contrast, NDP fails to improve with increasing data after
an initial jump.

4.3.7 Ablation study

We next study the importance of different elements of our approach via an
ablation study on the Lorenz 125 dataset, shown in Figure 4.4. Comparing
the two rows, we see that joint smoothing across trajectories is essential
to transfer knowledge between different training trajectories. Similarly,

74 the practitioner : distributional gradient matching

6 8 10 12 14 16 18 20
 # grid points per dimension

0.0

0.5

1.0

1.5

2.0

2.5
Lo

g
Lik

el
ih

oo
d

DGM train
DGM test
NDP test

Figure 4.3: Log likelihood of the ground truth for Lotka Volterra for increasing
number of trajectories with 5 observations each.

comparing the two columns, we see that the dynamics model enables the
smoother to reduce its uncertainty in between observation points.

4.3.8 Computational Requirements

For the one trajectory setting, all DGM related experiments were run on
a Nvidia RTX 2080 Ti, where the longest ones took 15 minutes. The com-
parison methods were given 24h, on Intel Xeon Gold 6140 CPUs. For the
multi-trajectory setting, we used Nvidia Titan RTX, where all experiments
finished in less than 3 hours. A more detailed run time compilation can
be found in Section A.3.4. Using careful implementation, the run time of
DGM scales linearly in the number of dimensions K. However, since we
use an accurate RBF kernel for all our experiments reported in this section,
we have cubic run time complexity in ∑M

m=1 Nm. In principle, this can be
alleviated by deploying standard feature approximation methods [RR+07;
Liu+20], or by combining it with SLEIPNIR, as introduced in the previous
section. While this is a well known fact, we will talk about it in more detail

4.3 experiments 75

30
20
10

0
10
20
30

x 0
(t)

Independent smoother

Prediction
Observations
True x0
All trajectories
95% conf. region

Independent smoother + dynamics

0.0 0.2 0.4 0.6 0.8 1.0
t

30
20
10

0
10
20
30

x 0
(t)

Joint smoother

0.0 0.2 0.4 0.6 0.8 1.0
t

Joint smoother + dynamics

Figure 4.4: Illustration of DGM: Learning a joint smoother (first vs second row)
across trajectories enables sharing observational data. Dynamics regu-
larization (first vs second column) substantially improves prediction
accuracy of joint smoother.

in the next section, where we demonstrate how to apply DGM to a realistic,
real-world data set.

4.3.9 Scaling to many observations or trajectories

Let N be the total number of observations, summed over all training tra-
jectories. In this section, we will analyze the computational complexity of
DGM in terms of N and demonstrate how this can be drastically reduced
using standard methods from the literature. This will be a crucial first step
towards enabling the case study in Section 4.4.

For notational compactness, we will assume that the supporting points
in T are at the same locations as the observations in D. However, this
is by no means necessary. As long as they are chosen to be constant or
stand in a linear relationship to the number of observations, our analysis
still holds. We will thus use x and xsupp and the corresponding quantities

76 the practitioner : distributional gradient matching

interchangeably. Similarly, we will omit the k that was used for indexing
the state dimension and assume one-dimensional systems. The extension to
multi-dimensional systems is straight forward and comes at the cost of an
additional factor K.

Fortunately, most components of the loss of DGM given by Equation (4.3)
can be calculated in linear time. In particular, it is worth noting that the
independence assumption made when calculating the Wasserstein distance
in Equation (4.14) alleviates the need to work with the full covariance matrix
and lets us work with its diagonal elements instead. Nevertheless, there
are several terms that are not straight forward to calculate. Besides the
marginal log likelihood of the observations, these are the posteriors

pS(x|D, T) = N
(
x|µpost, Σpost

)
, (4.20)

pS(Ẋ |D, T) = N
(
ẋsupp|µS, ΣS

)
, (4.21)

where

µpost = µ+KT(K+ σ2I)−1(y −µ), (4.22)

Σpost = K−KT(K+ σ2I)−1K, (4.23)

µS = µ̇+ K̇(K+ σ2I)−1 (y −µ) , (4.24)

ΣS = K̈− K̇(K+ σ2I)−1K̇>. (4.25)

Here, Equation (4.20) is used for prediction, while its mean is also used in
the approximation of Equation (4.14). On the other hand, Equation (4.21)
is used directly for Equation (4.14). Note that in both cases, we only need
the diagonal elements of the covariance matrices, a fact that will become
important later on.

In its original form, calculating the matrix inverses of both Equation (4.20)
and Equation (4.21) has cubic complexity in N. To alleviate this problem, we
follow Rahimi, Recht, et al. [RR+07] and Angelis et al. [Ang+20] by using a
feature approximation of the kernel matrix and its derivatives. In particular,
let Φ ∈ RF×N be a matrix of F random Fourier features as described by
Rahimi, Recht, et al. [RR+07]. Furthermore, denote Φ̇ as its derivative w.r.t.
the time input variable, as defined by Angelis et al. [Ang+20]. We can now
approximate the kernel matrix and its derivative versions as

K ≈ Φ>Φ, K̇> ≈ Φ̇
>

Φ, and K̈ ≈ Φ̇
>

Φ̇. (4.26)

4.3 experiments 77

Using these approximations, we can leverage the Woodbury idendity to
approximate

(K+ σ2I)−1 ≈ 1
σ2

[
I −Φ>

(
ΦΦ> + σ2I

)−1
Φ

]
. (4.27)

This approximation allows us to invert a F × F matrix, to replace the
inversion of a N × N matrix. This can be leveraged to calculate

µS = µ̇+ K̇(K+ σ2I)−1 (y −µ) (4.28)

≈ µ̇+
1
σ2 Φ̇

>
Φ

[
I −Φ>

(
ΦΦ> + σ2I

)−1
Φ

]
(y −µ) (4.29)

and

ΣS = K̈− K̇(K+ σ2I)−1K̇> (4.30)

≈ Φ̇
>

Φ̇− 1
σ2 Φ̇

>
Φ

[
I −Φ>

(
ΦΦ> + σ2I

)−1
Φ

]
Φ>Φ̇. (4.31)

Evaluating the matrix multiplications of Equation (4.29) in the right or-
der leads to a computational complexity of O(NF2 + F3). Similarly, the
diagonal elements of the covariance given by Equation (4.21) can be cal-
culated with the same complexity, by carefully summarizing everything
in between Φ̇

> and Φ̇ as one F × F matrix and then calculating the N
products independently.

Since the components of Equation (4.20) have the exact same form as the
components of Equation (4.21), they can be approximated in the exact same
way to obtain the exact same computational complexity. Thus, the only
components that need further analysis are the components of the marginal
log likelihood of the observations, particularly

y>(K+ σ2I)−1y ≈ y> 1
σ2

[
I −Φ>

(
ΦΦ> + σ2I

)−1
Φ

]
y (4.32)

and

logdet(K+ σ2I) ≈ logdet(Φ>Φ + σ2I) (4.33)

≈ logdet(ΦΦ> + σ2I) + (N − F)log(σ2). (4.34)

In the last line, we used the fact that the nonzero eigenvalues of the trans-
posed of a matrix stay the same.

78 the practitioner : distributional gradient matching

Combining all these tricks, it is clear that the overall complexity of
DGM can be reduced to O(NF2 + F3). Since F is a constant controlling the
quality of the approximation scheme and is usually chosen to be constant,
we thus get essentially linear computational complexity in the number
of observations. Note that these derivations are completely independent
of what scheme is chosen to obtain the feature matrix Φ. For ease of
implementation, we opted for random Fourier features though in our
experiments.

experimental proof of concept To demonstrate that this approx-
imation scheme can be used in the context of DGM, we tested it on the
multi-trajectory experiment of Lotka Volterra. To this end, we increased
the grid from 10 points per dimension to 25, leading to a total number of
3125 observations instead of 500. As an approximation, we used 50 random
Fourier features. Through this approximation, DGM became slightly more
sensitive to the optimization hyperparameters. Nevertheless, it reached
comparable accuracy within roughly 440 seconds of training, compared to
the 408 seconds needed to train the approximation free version on LV 100.

4.4 case study : ushcn

Thus far, this thesis investigated gradient matching techniques in the con-
text of theoretical, simulated data sets. This allowed us to guarantee key
assumptions on the underlying dynamical system, like Markovianity or
time-independence. In the following section, we want to investigate how
DGM performs on a real world data set, where we cannot know if these
assumptions hold or if they might be violated. The code for this section is
publicly available on github1.

4.4.1 The data set

For this practical case study, we use the publicly available daily data set
of the United State Historical Climatology Network [USHCN, MWV15].
This data set contains five measurements: Maximum daily temperature,
minimum daily temperature, percipitation, snowfall, snowdepth. It contains
measurements over 150 years for 1,218 meteorological stations scattered
over the United States. To clean the data, we follow the procedure described
by De Brouwer et al. [De +19], by using their code published alongside the

1 https://github.com/lasgroup/ushcn_dgm

4.4 case study : ushcn 79

Figure 4.5: Visualization of three trajectories of the USHCN dataset after prepro-
cessing.

80 the practitioner : distributional gradient matching

paper on github. Amongst filtering out trajectories with insufficient number
of observations, normalizing the measurements, and subsampling the data
set, they also restrict the analysis to the four years between 1996 and 2000.
A few example trajectories are shown in Figure 4.5.

Figure 4.6: Visualization of three trajectories of the USHCN dataset after remov-
ing snow and percipitation and including daylength.

4.4.2 Preparing the data set

To deploy DGM, we explicitly assume that there exists an underlying,
dynamical system that is responsible for creating the observations shown

4.4 case study : ushcn 81

in Figure 4.5. We then extract information about this system from the data
to be used to extrapolate either over time or over locations.

Intuitively, it might be reasonable to assume the existing of underlying
meteorological dynamics that drive the observed variables. However, when
looking at Figure 4.5, we observe a few key issues.

On most days, it is not raining. When it rains, it rains a lot. Since the
data has been subsampled, there is rarely a direct observation before or
after a rainy day. Thus, a rainy day comes as a surprise and appears to be
more an outlier than a feature. In terms of information theory, we postulate
that the rain dynamics are too fast for the sampling frequency chosen and
thus cannot be distinguished from being outliers. Thus, precipitation is not
included in our case study.

A similar thing can be observed for snowfall and snow depth. For most
stations, snowfall and snow depth stay constant (on a value that corresponds
to 0, in the not normalized data). Similarly, where snowfall exists, it follows
the same seemingly stochastic behavior as rainfall. Again, since neither
predicting outliers nor constants is of particular interest for our case, we
omit these two variables.

Some preliminary experiments with the GRU algorithm by De Brouwer
et al. [De +19], on whom we already relied for the data preprocessing,
confirm this notion. Even though we train GRU with precipitation and
snowfall included, the final predictions are not significantly better than just
predicting constants.

After removing snowfall, precipitation and snow depth, we are left with
predicting the minimum and maximum daily temperature. Here, the sam-
pling frequency seems sufficient to allow for an interesting case study.
However, we see a strong correlation between the two states. Indeed, it
seems reasonable to assume that with the chosen sampling frequency, min
and max temperature are mainly dominated by seasonal trends. And such
trends should affect both the minimum and maximum daily temperature
in a similar way, except for noise.

Unfortunately, this leaves us with a data set that does not seem to be
Markovian, since there seem to exist multiple points where the states are
the same, but the derivatives are very different. Trying to fit such a system
with a normal ODE would just lead to the prediction of a constant. One
way of handling such a system is to make the dynamics time-dependent.
However, while this could work well in an interpolation, we would lose
a key advantage of DGM. If the dynamics were time-dependent, it is no
longer reasonable to assume that the resulting system could extrapolate

82 the practitioner : distributional gradient matching

into the future, since it has no information about the dynamics at these
time points.

Thus, we chose to go a different route. In the meta-data of the data set, we
get 3D coordinates of every weather station. By using the astral package2,
such locations can easily be turned into the length of day at this location.
For each station, the day length is calculated for all time points where we
have either a min or a max temperature measurement. The resulting data is
visualized in Figure 4.6. While day length and temperature seem to have a
similar shape, there seems to be a phase difference. Thus, the system now
lives on a 2D manifold. Thus, many if not all of the previously pathological
points will now be separated via the newly introduced state. Since location
is always available and easy to obtain in any real world setting, day length
will be included in all of our experiments in this section.

Lastly, it should be noted that including the location of the weather
station has another, very important benefit. In previous experiments, we we
let the smoother depend on the noise free initial condition. This was key in
demonstrating the capability of DGM to generalize over initial conditions
of a dynamical system.

For USHCN however, no noise free initial conditions are available. Thus,
both training and prediction become much more difficult. However, we
can alleviate this problem by observing one key fact: In the framework of
DGM, there is no mechanism that enforces that the smoother input needs
to be the actual initial condition in a dynamical system sense. Instead, the
smoother input just needs to be something that uniquely identifies different
dynamical systems. Of course, it should carry some information about the
behavior of the system, over which the smoother can generalize. Both of
these criteria are clearly met by the station’s locations. A location is clearly
a unique identifier for a station. And it is not unreasonable to assume
that weather phenomena are somehow similar for similar locations. Thus,
instead of trying to obtain initial conditions, we directly feed the locations
to the smoother. This side-steps various challenges associated with trying to
denoise the initial conditions. And it preserves all the capabilities of DGM,
including generalization over both time and locations.

4.4.3 Challenge of the data set

In reality, assuming the existence of an underlying ODE might be wrong
for some systems. In such a case, the additional regularization via the

2 https://astral.readthedocs.io/en/latest/index.html

4.4 case study : ushcn 83

Figure 4.7: Predictions on a trajectory with training observations (red dots),
where some observations were hold out for testing (blue dots). The
mean of the smoother is shown in a blue line, with 95% confidence in-
tervals of the pure smoother model (blue shaded, barely visible) and a
confidence interval combining smoother uncertainty and observation
noise levels (red shaded).

time initial condition

deep GP 0.649 +- 0.0179 0.626 +- 0.0499

full DGM 0.742 +- 0.0180 0.752 +- 0.0439

Table 4.3: Mean and standard deviations of the negative test log likelihood for
the dynamics free smoother model (deep GP) and the full, dynamics-
regularized DGM model. When calculating the nlls, the contribution of
the third state was ignored, as it is an artificially calculated, noise-free
state.

dynamics model provided by DGM might actually hurt the performance
of the smoother. To increase the flexibility of the model without sacrificing
generalization capability, we provide the dynamics model with the locations
input as well. However, if the location is treated as a constant state, the
dynamics model is still time-independent and Markovian.

In this section, we aim to get a first understanding of how these assump-
tions influence the performance of DGM on the USHCN data. To this end,
we deploy DGM in two settings similar to the experiments we performed

84 the practitioner : distributional gradient matching

Figure 4.8: Predictions on a completely new trajectory. Since no training observa-
tions are available, all observations are used for testing (blue dots).
The mean of the smoother is shown in a blue line, with 95% con-
fidence intervals of the pure smoother model (blue shaded, barely
visible) and a confidence interval combining smoother uncertainty
and observation noise levels (red shaded).

in Section 4.3 on simulated data. On a subset of 200 trajectories from the
USHCN data set, we test how DGM generalizes to unseen times and unseen
initial conditions.

To test time generalization, we randomly subsample the observation
times of all 200 trajectories. For each trajectory, 10% of the data points are
kept for testing, while the other 90% are used for training. Then, since no
ground truth is available, we calculate the test negative log likelihood of
the remaining 10% of data points. Here, both the observation noise and the
uncertainty of the GP are considered in the Gaussian prediction.

To test generalization across initial conditions, we then sample 10 trajec-
tories out of the remaining trajectories that have not been used for training.
Again, since only the noisy observations are available for these trajectories,
we calculate the negative log likelihood of the whole, as of now unseen
trajectory.

Both settings are executed 10 times for 10 different sets of 200 ran-
domly sampled trajectories. Optimization parameters like learning rate
and number of training steps have been chosen in a preliminary step.
This optimization was guided purely by the visual representation of the

4.4 case study : ushcn 85

learning curve, there was no numerical optimization done. As for the hy-
perparameters "weight decay smoother" and "weight decay dynamics", the
test negative log likelihood was optimized via a grid search on the grid
[0, 10e− 6, 10e− 5, 10e− 4]. For this purpose, a new set of 200 trajectories
was used, that are not used in the sweeps later on.

For each of the 10 trajectory sets, multiple training steps were performed
sequentially. First, the smoother is trained via Kdata, while keeping the
parameters of the dynamics model constant (smoother pre-training). Then,
the dynamics model is trained using the full DGM loss, but while keeping
the smoother parameters constant. Finally, in the last step, smoother and
dynamics parameters are trained jointly, by using the full DGM loss.

This pre-training stabilizes the training procedure. However, more impor-
tantly, it allows us to directly compare the performance of the DGM model
to a normal GP smoother trained just with Ldata. In Figure 4.7, we show
one example trajectory for the time interpolation experiment. Here, one of
the training trajectories is shown with the corresponding points that have
been left out for training. In Figure 4.8, we then show the predictions of the
same model on a previously unknown initial condition. In both cases, the
performance of the dynamics-free smoother and the dynamics-informed
DGM do not seem to be much different visually. The difference becomes
clear when looking at the negative test log likelihoods in Table 4.3. There,
we present the mean and the standard deviation of the negative test log
likelihoods taken over all ten different data set splits. It becomes clear that
the smoother outperforms the dynamics-informed approach in both cases.
And in both cases, the difference is statistically significant.

This statistically significant difference in performance seems to suggest
that the additional regularization provided by the dynamics model is
hurting the performance of the smoother model. Thus, we can conclude
that there are some effects present in this real world data set, that cannot be
captured with our time-independent, Markovian dynamics. The additional
flexibility provided by letting the dynamics model depend on the station’s
locations was not sufficient to fully capture the different dynamics.

4.4.4 Including dynamics helps with extrapolation

However, even though not all assumptions seem to be satisfied, there are
tasks where the dynamics model can play a crucial role. The key strength
of a dynamics model is extrapolation over time. In this section, we will

86 the practitioner : distributional gradient matching

demonstrate how the dynamics model can be deployed in an extrapolation
setting to strongly improve the performance of the smoother.

To this end, we will differentiate between two uses of the dynamics model.
In standard DGM, the dynamics model is used to regularize the smoother
model during training. However, at prediction, the dynamics model is not
deployed anymore and DGM purely focuses on the smoother predictions.
As we demonstrate in this section, this can hurt extrapolation performance.
Thus, we also demonstrate a second use of the dynamics model, which is
deploying it at prediction via numerical integration.

The performance of these DGM variants will be analyzed in the setting
of extrapolation over time. In this setting, we train our models on the
first year of data for randomly sampled 200 trajectories. Then, we evaluate
the negative log likelihood on the second year of data on the same 200

trajectories.
As in the previous section, we first train just the smoother parameters

on Ldata, while keeping the dynamics parameters constant. Then, we train
only the dynamics parameters on the whole DGM loss, while keeping
the smoother parameters constant. At this point, we take a snapshot of
our smoother and dynamics models. Note that at this point, the dynamics
model has not been used to regularize the smoother, it has merely tried to
imitate the smoother to the best of its abilities in the second step. Note that
these steps are performed before the proper training with the full DGM
loss function. Thus, it will be called pre-training and all models from these
snapshot will be indexed with a "p" for pre-training.

After pre-training, the dynamics and smoother parameters are jointly
trained using the full DGM loss to obtain a final smoother and dynamics
model. During this joint training, the dynamics model regularizes the
smoother model via the joint loss function, as described previously. All
models obtained from this final training step will be indexed with a "f" for
final.

For prediction, we deploy two methodologies. The first method includes
no integration. It just uses the predictions of the smoother model, as done
in standard DGM. To indicate that these predictions are obtained without
integration, it will be indexed with "ni", for no integration. The second
method includes numerical integration of the dynamics model. First, we
use the smoother model to predict the final point of the first year. This
posterior is then sampled to obtain an estimate of the starting point for
the next year. After sampling the noise of the dynamics model as well, we
can then numerically integrate one example trajectory for the next year.

4.4 case study : ushcn 87

This process is repeated 100 times to obtain 100 trajectory samples, which
are then aggregated to obtain a Gaussian distribution at each time point.
To indicate that integration is used to obtain these predictions, we use the
index "wi", for with integration. In summary, we thus get four different
predictors, summarized in Table 4.4.

nip smoother predictions of smoother model after pre-training

wip numerically integrated predictions of models after pre-training

nif smoother predictions of final smoother model

wif numerically integrated predictions of models after final training

Table 4.4: DGM models deployed in time extrapolation experiment.

To determine the weight decay parameters of DGM, we leave out 5% of
the training samples and select the weight decay parameters with the best
prediction nll on these left out data.

]

nip 4.53 +- 3.69

nif 3.45 +- 2.90

wip 1.99 +- 0.800

wif 1.42 +- 0.630

Table 4.5: Test negative log likelihood of different DGM snapshots and prediction
modes for a year of unseen data in the future. Mean and standard
deviation over 10 sets of 200 trajectories independently subsampled
from the original data. When calculating the nlls, the contribution of
the third state was ignored, as it is an artificially calculated, noise-free
state.

The results of this experiment are summarized in Table 4.5. Here, the
benefits of the dynamics model are visible two-fold. First, it suggests that in-
cluding the dynamics model in training is beneficial. Here, we can compare
the predictions of the pre-trained and the final smoother model, as well
as the predictions of the pre-trained and the final integration predictions.
In both cases, choosing the model that leveraged the dynamics regulariza-
tion (i.e. indexed with "f" instead of "p") yields better test log likelihoods.
Second, these results also suggest that including the dynamics model at
prediction time is beneficial. Here, we can compare the predictions of the
smoother models to the predictions of the integration predictors. For both

88 the practitioner : distributional gradient matching

the pre-trained models as well as the final models, the integration predictors
outperform the smoothers, as indicated by the lower nll of the models with
index "wi" as opposed to "ni".

An intuitive understanding of these results can be obtained when in-
specting one sample trajectory as shown in Figure 4.9. Here, we show one
test case for all four different training / prediction strategies. In the first
two rows, we see the predictions of the models without integration. It
seems that independently of the dynamics regularization during training,
the smoother struggles to extrapolate the oscillating behavior. This is of
little surprise. The smoother takes time as an input, but was never trained
with times in that range. Thus, it cannot be expected to extrapolate. In
contrast, the integration-based predictions in the last two rows already
show the oscillatory shapes. Clearly, the dynamics models can generalize to
various extent to unseen times. Here, the key difference to the smoother is
highlighted. In contrast to the smoother, we explicitly refrain from making
the dynamics model time-dependent. Thus, it can be expected to generalize
to unseen time ranges.

When comparing the last two rows, we observe that including the dynam-
ics regularization during training does not only increase the accuracy of the
dynamics estimates, but also greatly reduces the inherent uncertainty of the
models. This observation is interesting, since it highlights the benefits of
training smoother and dynamics jointly in the presence of non-Markovian
effects. During pre-training, we fit a very flexible smoother to the data.
The derivatives of this flexible smoother do not need to follow a dynamics
model and might violate underlying assumptions of the dynamics model
(as indicated in the previous section). When we then train a dynamics
model on this potentially conflicting data, the dynamics model converges to
a dynamics model that best explains the conflicting data, potentially leading
to errors and overestimation of variance. However, when we regularize the
smoother during training with the dynamics model, they jointly converge
to a model that balances data fit and the assumptions in the dynamics
model. This leads to the better performance shown in the last row.

4.4.5 Comparisons

Thus far, we have only presented the performance of our algorithms. To get
an understanding of the difficulty of the task, we investigate how different
comparison methods perform on this benchmark.

4.4 case study : ushcn 89

Figure 4.9: One sample trajectory of the extrapolation experiment. The test ob-
servations are shown as blue dots. The mean and the standard 95%
confidence interval of each model is shown in blue, where the shaded
red area is combining the uncertainties of the model and the observa-
tion noise to a joint 95% confidence interval for the observations.

Since we are still interested in uncertainty aware analysis of dynam-
ics models, we again consider the three state-of-the-art algorithms SGLD,

90 the practitioner : distributional gradient matching

SGHMC and NDP. Unfortunately, similar to what we already observed in
Section 4.3.6, SGLD and SGHMC cannot keep up with the model complex-
ity and the thus resulting numerical challenges. We thus have to restrict our
comparisons to NDP.

For NDP, several adaptations were necessary to adapt it to the current
setting. In its original form, albeit able to handle non-equidistantly sampled
time points, NDP is unable to deal with partially missing observations.
However, in the USHCN data, there is almost no time point where all
variables are observed concurrently.

Thus, we had to adapt the underlying data structure used in the frame-
work. Previously, NDP worked directly with tuples (t,y), e.g. to caluclate
the context variables. Clearly, this can not be directly deployed if the obser-
vation vector y is missing data. Thus, we changed the data to chunks of the
form (t, yj, j, ỹ0). Here, j indicates the dimension of the observation that we
have currently available and yj is the j-th entry of the observation vector y.
This allows us to work directly with missing data. Furthermore, we added
the pseudo initial conditions ỹ0 to the vector. These are the same location
parameters that we fed to both our smoother and dynamics model in DGM
as input, consisting of the 3D GPS coordinates of each station. For practical
implementation, we again built on top of their publicly available pytorch
implementation. To make it work with the new data structure, we had to
make some adaptations. Primarily, this concerned padding and masking
operations at different places in the code. These were necessary so that we
were still able to use a vectorized representation for efficiency.

Since NDP relies on internal cross-validation, we split the 200 training
trajectories into 190 training and 10 validation trajectories at random. This
mirrors the 5% testing data we used to optimize the DGM weight-decay
parameters.

The resulting performance of NDP is summarized in Table 4.6. Here,
a few things should be noted. First, as we can see in the first two rows,
NDP trains well and its model translates nicely to the validation trajectories.
However, as soon as we try to test its extrapolation into the future, as
shown in the third row, performance completely deteriorates. We test two
different explanations for this behavior. First, NDP needs a context variable.
This variable is usually calculated from a subset of the observations of the
trajectory we would like to fit. Clearly, when we extrapolate into the future,
no such observations are observed. In our experiments, we thus feed it with
the past observations to extract context from. To investigate if this is the
main reason for its bad performance, we provide NDP with a subset of

4.4 case study : ushcn 91

the future observations at prediction times. Note that this means that we
provided it with more than half of the values that it should have learned to
predict. Nevertheless, as shown in the fourth row, this only reduced the nll
minimally. Second, we want to see if extrapolation over time leads to the
problem. To evaluate this hypothesis, we decide to explicitly tell NDP about
suspected, periodic behavior of the data set, i.e. we provide it at prediction
with the prediction times modulo 50.

This significantly improves the test nlls. However, it also defies the main
purpose of this study. Learning about the periodicity of the data is the key
challenge when trying to extrapolate over time. Clearly, NDP fails to do so.
Furthermore, even though we provide significant expert knowledge here,
the nlls are still worse than what we obtain for the joint DGM model, even
though the DGM model does not need any unfair advantages.

train 1.29 +- 0.0523

val 1.30 +- 0.103

test 295 +- 161

test, future context 277 +- 167

test, periodic times 1.58 +- 0.106

Table 4.6: Test likelihoods of NDP, with mean and standard deviation evaluated
over the same 10 samples of 200 trajectories previously used to evaluate
DGM. Again, when calculating the nlls, the third dimension is omitted.

A visualization of the same trajectory as in Figure 4.9 is shown in Fig-
ure 4.10. Here, we can speculate about the reasons for the bad performance
of NDP. In the first row, it seems that the algorithm is overfitting to the
noise in the training trajectories. Interestingly, despite this overfitting, the
validation nlls are very decent. This is a key issue, since the main tool for
regularization in NDP is early stopping using that validation nll. It seems
that this tool is not enough. It remains to speculate that the structure of
NDP, including the context variable that is provided with a subset of the
data that should be predicted, seems to encourage some kind of overfitting.

4.4.6 Conclusion

In summary, we have presented a novel perspective on how to tackle
gradient matching from a theoretical view. We introduced a different type
of stochasticity in the dynamics model and perform probabilistic matching.

92 the practitioner : distributional gradient matching

Figure 4.10: One sample trajectory visualizing NDP performance.

If the underlying assumption of the model are fulfilled, it can deliver
impressive feats in both an interpolation and extrapolation context. If the
underlying assumptions of the model are not fulfilled, it can still help
significantly in the context of extrapolation, especially since comparable,
uncertainty aware algorithms seem to struggle a lot with this challenge.

5
T H E S T O C H A S T I C : A D V E R S A R I A L A N D
M M D - M I N I M I Z I N G R E G R E S S I O N

5.1 introduction

Thus far, we exclusively considered ODEs as a model class. However, ODEs
fail to incorporate the inherent stochastic behavior present in many physical,
chemical or biological systems. While in principle, such effects could be
captured by stochastic difference equations, these models are difficult to
apply when observation times are unevenly distributed. Furthermore, they
do not generalize well across observation frequencies, while natural laws
do not care about this artificial construct. Thus, in this chapter, we will
investigate how gradient matching can be applied in the setting of stochastic
differential equations (SDEs). To this end, we use exclusively SDE models
in Itô-form

dx(t) = f (x(t),θ)dt + g(x(t),θ)dw(t), (5.1)

where x(t) is the time-dependent vector of states we would like to model,
θ collects the parameters of the model, f is the drift term, g is the matrix-
valued diffusion function and w(t) is a Wiener-process of the same dimen-
sion as the state vector x. Please note that the work in this chapter is heavily
based on a conference publication, that was created jointly with several
colleagues [Abb+19]. Some parts of it, including large parts of the text and
all plots, have been reproduced with permission.

While SDEs can efficiently capture stochasticity and deal with unevenly
spaced observation times and frequency, inference is rather challenging. Due
to the stochasticity of w(t), the state vector x(t) is itself a random variable.
Except for few special cases, it is not possible to find an analytic solution
for the statistics of x(t) for general drift and diffusion terms. The problem
is even more challenging if we were to condition on or state-estimate some
discrete time observations y (filtering/smoothing) or infer some statistics for
the parameters θ (parameter inference). It is well known that the parameter
inference problem is a difficult task, with most approaches either being
very sensitive to initialization [Pic07], strongly dependent on the choice of
hyperparameters like the spacing of the integration grid [BMR15] or using

93

94 the stochastic : adversarial and mmd-minimizing regression

excessive amount of computational resources even for small scale systems
and state-of-the-art implementation [Ryd+18].

The difficulty of the parameter estimation problem of estimating parame-
ters of drift and diffusion under observational noise is readily exemplified
by the fact that even major scientific programming environment providers
like MATLAB still lack an established toolbox for practical use.

5.1.1 Related Work

While it is impossible to cover all related research efforts, we would like to
give a quick overview by mentioning some of the most relevant. For a more
in-depth discussion, we recommend Tronarp and Särkkä [TS19], who pro-
vide an excellent review of the current state-of-the-art smoothing schemes.
Moreover, Sørensen [Sør04], Nielsen, Madsen, and Young [NMY00] and
Hurn, Jeisman, and Lindsay [HJL07] provide extensive explanations of the
more traditional approaches.

Most classical methods rely on calculating the probability of sample paths
x conditioned on the system parameters θ, denoted as p(x|θ). Since p(x|θ)
is usually analytically intractable, approximation schemes are necessary.
Elerian, Chib, and Shephard [ECS01] and Eraker [Era01] use the Euler-
Maruyama discretization to approximate p(x|θ) on a fixed, fine grid of
artificial observation times later to be leveraged in a MCMC sampling
scheme. Pieschner and Fuchs [PF20] and Meulen, Schauer, et al. [MS+17]
subsequently refine this approach with improved bridge constructs and
incorporated partial observability. Ryder et al. [Ryd+18] follow up on this
idea by combining discretization procedures with variational inference.
Särkkä et al. [Sär+15] investigate different approximation methods based on
Kalman filtering, while Archambeau et al. [Arc+07] and Vrettas, Opper, and
Cornford [VOC15] use a variational Gaussian process-based approximation.
Finally, it should be mentioned that p(x|θ) can be inferred by solving the
Fokker-Planck-Kolmogorov equations using standard methods for PDEs
[HL99; Ait02].

Instead of approximating p(x,θ) in a variational fashion, Gaussian pro-
cesses can as well be used to directly model f (x,θ) and g(x,θ), ignoring in
this way any prior knowledge about their parametric form. This approach
was investigated by Ruttor, Batz, and Opper [RBO13], whose linearization
and discretization assumptions which were later relaxed by Yildiz et al.
[Yil+18]. While we will show in our experiments that these methods can be
used for parameter estimation if the parametric form of drift and diffusion

5.1 introduction 95

are known, it should be noted that parameter inference was not the original
goal of their work.

5.1.2 Our Work

To the best of our knowledge, there are only very few works that try
to circumvent calculating p(x|θ) at all. Our approach is probably most
closely related to the ideas presented by Riesinger, Neckel, and Rupp
[RNR16]. Our proposal relies on the Doss-Sussman transformation [Dos77;
Sus78] to reduce the parameter inference problem to parameter inference
in an ensemble of random ordinary differential equations (RODEs). These
equations can then be solved path-wise using either standard numerical
schemes or using the computationally efficient gradient matching scheme
of Gorbach, Bauer, and Buhmann [GBB17] as proposed by Bauer et al.
[Bau+17].

The path-wise method by Bauer et al. [Bau+17] has natural parallelization
properties, but there is still an inherent approximation error due to the
Monte Carlo estimation of the expectation over the stochastic element in the
RODE. Furthermore, their framework imposes severe linearity restrictions
on the functional form of the drift f (x,θ), while it is unable to estimate the
diffusion matrix g(x,θ).

While we will keep their assumption of a constant diffusion matrix, i.e.
g(x,θ) = G, our approach gets rid of the linearity assumptions on the
drift f . Furthermore, we substitute the Monte Carlo approximation by
embedding the SDE into a fully statistical framework, allowing for effi-
cient estimation of both G and θ using state-of-the-art statistical inference
methods.

Despite a constant diffusion assumption might seem restrictive at first,
such SDE models are widely used, e.g. in chemical engineering [KM18], civil
engineering [Jim+08], pharmacology [DS13] and of course in signal process-
ing, control and econometrics. While we believe that this approach could
be extended approximately to systems with general diffusion matrices, we
leave this for future work.

In this chapter, we derive a new statistical framework for diffusion and
drift parameter estimation of SDEs using the Doss-Sussmann transforma-
tion and Gaussian processes. This framework leads to a grid-free, compu-
tationally efficient and robust parameter inference scheme that combines
a non-parametric Gaussian process model with adversarial loss functions.
As we demonstrate in our experiments section, this inference scheme is

96 the stochastic : adversarial and mmd-minimizing regression

able to estimate constant but non-diagonal diffusion terms of stochas-
tic differential equations without any functional form assumption on the
drift. Furthermore, we show that our method significantly outperforms
the state-of-the-art algorithms for SDEs with multi-modal state posteri-
ors, both in terms of diffusion and drift parameter estimation. As with
all research conducted in this thesis, the code is publicly available at
https://github.com/gabb7/AReS-MaRS.

5.2 background

Following Equation (1.2) and the notation introduced in Section 1.1, we
consider SDEs of the form

dx(t) = f (x(t),θ)dt +Gdw(t), (5.2)

where x(t) = [x1(t), . . . ,xK(t)]> is the K-dimensional state vector at time
t; dw(t) are the increments of a standard Wiener process; f is an arbitrary,
potentially highly nonlinear function whose parametric form is known,
save for the unknown parameter vector θ; G is the unknown but constant
diffusion matrix. Without loss of generality, we can assume G to be a
lower-diagonal, positive semi-definite matrix.

The system is observed at N arbitrarily spaced time points

t = [t1, . . . , tN], (5.3)

subjected to Gaussian observation noise:

y(tn) = x(tn) + e(tn) ∀ n = 1, . . . , N, (5.4)

where we assume the noise variances to be state-dependent but time-
independent, i.e.

p(e(tn)) =
K

∏
k=1
N (ek(tn) | 0, σk) , (5.5)

for n = 1, . . . , N and k = 1, . . . , K.

5.2.1 Deterministic ODE Case

As identified by Calderhead, Girolami, and Lawrence [CGL09] and as dis-
cussed in the previous chapters, numerical integration cacn be identified as

https://github.com/gabb7/AReS-MaRS

5.2 background 97

the main culprit for the bad computational performance of Bayesian param-
eter inference schemes for deterministic ODEs. To circumvent numerical
integration, the parameter estimation is thus turned on its head: instead of
calculating p(y | θ) using numerical integration, two probabilistic estimates
for the derivatives are extracted, one using only the noisy observations y
and one using the differential equations. The main challenge is then to
combine these two distributions, such that more information about y can
guide towards better parameter estimates θ. For this purpose, Calderhead,
Girolami, and Lawrence [CGL09] propose a product of experts heuristics
that was accepted and reused until we demonstrated severe theoretical
issues in [Wen+19], on which Chapter 2 is based on. Instead, we propose to
use an alternative graphical model, forcing equality between the data based
and the ODE based model save for a Gaussian distributed slack variable.

In this paper, we will provide one more interpretation of gradient match-
ing in the Bayesian setting. Similar to the previously introduced ideas in
the gradient matching context, it is aimed at finding parameters θ such that
the two distributions over ẋ match as closely as possible. Acknowledging
the fact that standard methods like minimizing the KL divergence are not
tractable, we use robust moment matching techniques while solving a much
harder problem with G 6= 0. However, it should be clear that our method-
ology could easily be applied to the special case of deterministic ODEs and
thus provides an additional contribution towards parameter estimation for
systems of ODEs.

5.2.2 Notation

Throughout this chapter, bold, capital letters describe matrices. Values of
a time-dependent quantities such as the state vector x(t) can be collected
in the matrix X = [x(t1), . . . ,x(tN)] of dimensions K× N, where the k-th
row collect the N single-state values at times t = [t1, . . . , tN] for the state k.

The matrix X can be vectorized by concatenating its rows and defining in
this way the vector x = [x1, . . . ,xK]

>. This vector should not be confused
with x(t), which is still a time-dependent vector of dimension K.

As we work with Gaussian processes, it is useful to standardize the
state observations by subtracting the mean and dividing by the standard
deviation, in a state-wise fashion. We define the vector of the data standard
deviation σy = [σy1 , . . . , σyK], and the matrix S as:

S = σy ⊗ IN (5.6)

98 the stochastic : adversarial and mmd-minimizing regression

where ⊗ indicates the Kronecker product and IN is the identity matrix of
size N × N. Similarly for the means, we can define the N × K vector µy
that contains the K state-wise means of the observations, each repeated N
times. Thus the standardize vector x̃ can be defined as:

x̃ = S−1(x−µy). (5.7)

For the sake of clarity, we omit the normalization in the following sections.
It should be noted however that in a finite sample setting, standardization
strongly improves the performance of GP regression. In our implementation
and all the experiments in section 5.4, we assume a GP prior on the states
standardized using the state-wise mean and standard deviation of the
observations y.

5.3 methods

In the deterministic case with G = 0, the GP regression model can be
directly applied to the states x (see Chapter 2). However, if G 6= 0, the
derivatives of the states with respect to time t no longer exist due to
the contributions of the Wiener process. Thus, performing direct gradient
matching on the states is not feasible.

5.3.1 Latent States Representation

We propose to tackle this problem by introducing a latent variable z, defined
via the linear coordinate transformation

z(t) = x(t)− o(t), (5.8)

where o(t) is the solution of the following SDE:

do(t) = −o(t) +Gdw(t). (5.9)

Without loss of generality, we set z(0) = x(0) and thus o(0) = 0. While in
principle the framework supports any initial condition as long as z(0) +
o(0) = x(0), the reasons for this choice will become clear in Section 5.3.2.3.

Using Itô’s formula, we obtain the following SDE for z

dz(t) = {f (z(t) + o(t),θ) + o(t)}dt (5.10)

This means that for a given realization of o(t), we obtain a differentiable
latent state z(t). In principle, we could sample realizations of o(t) and

5.3 methods 99

solve the corresponding deterministic problems, which is equivalent to
approximately marginalizing over o(t). However, it is actually possible to
treat this problem statistically, completely bypassing such marginalization.
We do this by creating probabilistic generative models for observations and
derivatives analytically. The equations are derived in this section, while the
final models are shown in Figure 5.1.

5.3.2 Generative Model for Observations

Let us define e(t) as the Gaussian observation error at time t. Using the
matrix notation introduced in Section 5.2.2, we can write

Y = X +E = Z +O+E, (5.11)

where Z and O are the matrices corresponding to the lower-case variables
introduced in the previous section. In contrast to standard GP regression,
we have an additional noise term O, which is the result of the stochastic
process described by Equation (5.9). As in standard GP regression, it is
possible to recover a closed form Gaussian distribution for each term.

5.3.2.1 GP Prior

We assume a zero-mean Gaussian prior over the latent states z, whose
covariance matrix is given by a kernel function k(x, y), in turn parameterized
by the hyperparameter vector φ:

p(z | φ) = N
(
z | 0,Cφ

)
. (5.12)

We treat all state dimensions as independent, meaning that we put indepen-
dent GP priors with separate hyperparameters φk on the time evolution of
each state. Consequently, Cφ is a block diagonal matrix with K blocks each
of dimension N×N. The blocks model the correlation over time introduced
by the GP prior.

5.3.2.2 Error Model

In Equation (5.5), we assume that observational errors are i.i.d. Gaussians
uncorrelated over time. The joint distribution of all errors is thus still a
Gaussian distribution, whose covariance T has only diagonal elements
given by the GP likelihood variances σ = {σ2

k }
K
k=1. More precisely:

T = σ ⊗ IN . (5.13)

100 the stochastic : adversarial and mmd-minimizing regression

and
p(e | σ) = N (e | 0,T) . (5.14)

5.3.2.3 Ornstein-Uhlenbeck Process

Through the coordinate transformation in Equation (5.8), all stochasticity is
captured by the stochastic process o(t) described by Equation (5.9). Such
mathematical construct has a closed-form, Gaussian solution and is called
Ornstein-Uhlenbeck process. For the one-dimensional case with zero initial
condition and unit diffusion

dô(t) = −ô(t) + dw(t), (5.15)

we get the following mean and covariance:

E[ô(t)] = 0 (5.16)

cov[ô(ti), ô(tj)] =
1
2

e−|ti−tj | − 1
2

e−(ti+tj). (5.17)

Sampling ô(t) at the N points t = [t1, . . . , tN] yields the vector ô(t) =
[ô(t1), . . . , ô(tN)], which is Gaussian distributed:

p(ô(t)) = N (ô(t) | 0, Ωone), (5.18)

where [Ωone]ij = cov[ô(ti), ô(tj)] according to (5.17). In the case of a K-
dimensional process with identity diffusion, i.e.

dô(t) = −ô+ IKdw(t), (5.19)

we can just treat each state dimension as an independent, one-dimensional
OU process. Thus, after sampling ô(t) K times at the N time points in t
and unrolling the resulting matrix as described in section 5.2.2, we get

p(ô) = N (ô | 0, Ω), (5.20)

where Ω is a block diagonal matrix with one Ωone for each state dimension.
Using Itô’s formula, we can show that the samples of the original

Ornstein-Uhlenbeck process o at each time point can be obtained via the
linear coordinate transformation

o(t) = Gô(t). (5.21)

Let B be defined as the matrix that performs this linear transformation for
the unrolled vectors o = Bô. We can then write the density of the original
OU process as

p(o | G) = N
(
o | 0,BΩB>

)
. (5.22)

5.3 methods 101

G o σ

ż z y

φθ

(a) SDE-based model

G o σ

ż z y

φ

(b) Data-based model

Figure 5.1: Generative models for the two different ways to compute the deriva-
tives of the latent states z.

5.3.2.4 Marginals of the Observations

Using Equation (5.11), the marginal distribution of y can be computed as
the sum of three independent Gaussian-distributed random variables with
zero mean, described respectively by Equations (5.12), (5.14) and (5.22).
Thus, y is again Gaussian-distributed, according to

p(ỹ | φ,G,σ) = N (y | 0, Σ), (5.23)

where
Σ = Cφ + T +BΩBT . (5.24)

Thanks to the latent state representation, the diffusion matrix G is now
a part of the hyperparameters of the observation model. It can then be
inferred alongside the hyperparameters of the GP using maximum evidence
[Ras04c]. Using a stationary kernel k, Cφ + T captures the stationary part
of z as in standard GP regression, while the parameters in G describe
the non-stationary part due deriving from Ω. This ultimately leads to an
identifiable problem.

5.3.3 Generative Model for Derivatives

Similarly to gradient matching approaches, we define two generative models
for the derivatives ż, one based on the data and one based on the SDE
model.

102 the stochastic : adversarial and mmd-minimizing regression

5.3.3.1 Data-based Model

As demonstrated e.g. in Chapter 2, the prior defined in Equation (5.12) au-
tomatically induces a GP prior on the conditional derivatives of z. Defining

D := ′CφC−1
φ , (5.25)

A := C ′′φ − ′CφC−1
φ C ′φ (5.26)

where [′Cφ]i,j :=
∂

∂a
kφ(a, b)

∣∣∣∣
a=ti ,b=tj

, (5.27)

[
C ′φ

]
i,j

:=
∂

∂b
kφ(a, b)

∣∣∣∣
a=ti ,b=tj

, (5.28)

[
C ′′φ

]
i,j

:=
∂2

∂a∂b
kφ(a, b)

∣∣∣∣
a=ti ,b=tj

, (5.29)

we can write
p(ż | z,φ) = N (ż | Dz,A) . (5.30)

5.3.3.2 SDE-based Model

There also is a second way of obtaining an expression for the derivatives of
z, namely using Equation (5.10):

p(ż | o, z,θ) = δ(ż − f (z + o,θ)− o), (5.31)

where δ represents the dirac delta.

5.3.4 Inference

Combined with the modeling paradigms introduced in the previous sec-
tions, this yields the two generative models for the observations in Figure
5.1. The graphical model in Figure 5.1a represents the derivatives we get via
the generative process described by the SDEs, in particular the nonlinear
drift function f . The model in Figure 5.1b represents the derivatives yielded
by the generative process described by the Gaussian process. Assuming
a perfect GP fit and access to the true parameters θ, intuitively these two
distributions should be equal. We thus want to find parameters θ that
minimizes the difference between these two distributions.

5.3 methods 103

Compared to the deterministic ODE case, the graphical models in Figure
5.1 contain additional dependencies on the contribution of the OU process
o. Furthermore, the SDE-driven probability distribution of ż in Figure 5.1a
depends on z, o, and θ through a potentially highly nonlinear drift function
f . Thus, one cannot do analytical inference without making restrictive
assumptions on the functional form of f .

However, as shown in Section A.4.3 of the appendix , it is possible
to derive computationally efficient ancestral sampling schemes for both
models, as summarized in Algorithm 3. While this rules out classical
approaches like analytically minimizing the KL divergence, we can now
deploy likelihood-free algorithms that were designed for matching two
probability densities based on samples.

Algorithm 3 Ancestral sampling for ż
1: Input: y,f (z,θ), t,σ,G
2: Ancestral sampling the SDE model
3: Sample os by drawing from p(o | G)
4: Sample zs by drawing from p(z | y,o,σ) using os
5: Sample żs by drawing from p(ż | o, z,θ) using os, zs
6: Ancestral sampling the Data model
7: Sample zd by drawing from p(z | y,G,σ)
8: Sample żd by drawing from p(ż | z,φ)
9: Return: żs, żd

5.3.5 Adversarial Sample-based Inference

Arguably, generative adversarial networks (GANs) [Goo+14] are amongst
the most popular algorithms of this kind; here a parametric neural network
is trained to match the unknown likelihood of the data. The basic GAN
setup consists of a fixed data set, a generator that tries to create realistic
samples of said dataset and a discriminator that tries to tell apart the
fake samples from the true ones. As recently shown by Yang, Zhang, and
Karniadakis [YZK20], GANs have the potential to solve stochastic partial
differential equations (SPDEs). Yang, Zhang, and Karniadakis [YZK20]
assume a fixed data set consisting of observations (similar to the y in this
paper) and use an SPDE-inspired neural network as a generator for realistic
observations. In the case of SDEs however, this would still involve a lot of
numerical integration. Thus, we modify the GAN setup by leaving behind

104 the stochastic : adversarial and mmd-minimizing regression

t

ż(
t)

Data-based
Model-based

(a) Before Training

t

ż(
t)

Data-based
Model-based

(b) After Training

Figure 5.2: Comparing gradients sampled from the graphical model in Figure
5.1a (Model-based) and the graphical model in Figure 5.1b (Data-
based) before and after adversarial training on Lotka Volterra.

the idea of having a fixed data set. Instead of relying on bootstrapped
samples of the observations y, we sample the derivatives from the data-
based model shown in Figure 5.1b. For a sufficiently good model fit, these
samples represent the true derivatives of the latent variable z. We then use
the SDE-based model shown in Figure 5.1a as a generator. To avoid standard
GAN problems such as training instability and to improve robustness,
we choose to replace the discriminator with a critic Cω. As proposed by
Arjovsky, Chintala, and Bottou [ACB17], this critic is trained to estimate
the Wasserstein distance between the derivative samples. The resulting
algorithm, summarized in Algorithm 4, can be interpreted as performing
Adversarial Regression for SDEs and will thus be called AReS. In Figure
5.2, we show the derivatives sampled from the two models both before and
after training for one example run of the Lotka Volterra system (cf. Section
5.4.4). While not perfect, the GAN is clearly able to push the SDE gradients
towards the gradients of the observed data.

5.3.6 Maximum Mean Discrepancy

Even though they work well in practical settings, during training GANs
need ad hoc precautions and careful balancing between their generator
and discriminator. Dziugaite, Roy, and Ghahramani [DRG15] propose to
solve this problem using Maximum Mean Discrepancy (MMD) [Gre+12]
as a metric to substitute the discriminator. As proposed by Li, Swersky,
and Zemel [LSZ15], we choose the rational quadratic kernel to obtain a
robust discriminator that can be deployed without fine-tuning on a variety

5.3 methods 105

of problems. The resulting procedure, summarized in Algorithm 5, can
be interpreted as performing Maximum mean discrepancy-minimizing
Regression for SDEs and will thus be called MaRS.

Algorithm 4 AReS
1: Input: Observations y at times t, a model f , learning rate α, number

of total iterations Nit, the clipping parameter c, the batch size M, the
number of iterations of the critic per generator iteration ncritic.

2: Train the Gaussian process on the data to recover the hyperparameters
φ, σ and the diffusion G

3: Initialize the critic parameters ω and the SDE parameters θ respectively
with ω0 and θ0

4: for nit = 1, . . . , Nit do
5: for nc = 1, . . . , ncritic do
6: Sample żs ∼ ps(ż) and żd ∼ pd(ż) as described in Algorithm 3.

Each batch contains M elements
7: gω ← ∇ω

[
1
M ∑M

i=1 Cω(ż
(i)
d)− 1

M ∑M
i=1 Cω(ż

(i)
s)
]

8: ω ← ω + α ·Adam(ω, gω)
9: ω ← clip(ω,−c, c)

10: end for
11: gθ ← −∇θ 1

M ∑M
i=1 fω(ż

(i)
s)

12: θ ← θ− α ·Adam(θ, gθ)
13: end for

Algorithm 5 MaRS
1: Input: Observations y at times t, SDE model f , learning rate α, num-

ber of iterations Nit, batch size M
2: Train the Gaussian process on the data to recover the hyperparameters
φ, σ and the diffusion G

3: Initialize the SDE parameters with θ0
4: for nit = 1, . . . , Nit do
5: Sample żs ∼ ps(ż) and żd ∼ pd(ż) as described in Algorithm 3.

Each batch contains M elements
6: gθ ← ∇θMMD2

u [żs, żd]
7: θ ← θ− α ·Adam(θ, gθ)
8: end for

106 the stochastic : adversarial and mmd-minimizing regression

5.4 experiments

To evaluate the empirical performance of our method, we conduct several
experiments on simulated data, using four standard benchmark systems
and comparing against the EKF-based approach by Särkkä et al. [Sär+15]
and two GP-based approaches respectively by Vrettas, Opper, and Cornford
[VOC15] and Yildiz et al. [Yil+18]. While the drift of some systems is
equivalent to systems previously used as ODE-benchmarks, the systems
in this section also include a diffusion term. This makes them completely
different, both in behavior as well as in its requirements on a parameter
inference algorithm.

5.4.1 Setups

The first system is a simple Ornstein-Uhlenbeck process as shown in Figure
5.3a, given by the SDE

dx(t) = θ0(θ1 − x(t))dt + Gdw(t). (5.32)

As mentioned in Section 5.3.2.3, this system has an analytical Gaussian
process solution and thus serves more academic purposes. We use θ =
[0.5, 1.0], G = 0.5 and x(0) = 10.

The second system is the Lorenz ’63 model given by the SDEs

dx1(t) = θ1(x2(t)− x1(t))dt + σ1dw1(t)

dx2(t) = (θ2x1(t)− x2(t)− x1(t)x3(t))dt + σ2dw2(t)

dx3(t) = (x1(t)x2(t)− θ3x3(t))dt + σ3dw3(t).

In both systems, the drift function is linear in one state or one parameter
conditioned on all the others [cf. GBB17]. Furthermore, there is no coupling
across state dimensions in the diffusion matrix. This leads to two more
interesting test cases.

To investigate the algorithm’s capability to deal with off-diagonal terms
in the diffusion, we introduce the two dimensional Lotka-Volterra system
shown in Figure 5.3b, given by the SDEs

dx(t) =

[
θ1x1(t)− θ2x1(t)x2(t)

−θ3x2(t) + θ4x1(t)x2(t)

]
dt +Gdw(t), (5.33)

where G is, without loss of generality, assumed to be a lower triangular
matrix. The true vector parameter is θ = [2, 1, 4, 1] and the system is

5.4 experiments 107

0 5 10 15 20

0

2

4

6

8

10

t

(a) Ornstein Uhlenbeck

0.0 0.5 1 1.5 2.0

2

4

6

8

t

(b) Lotka Volterra

0 5 10 15 20

−2

0

2

t

(c) Double Well

Figure 5.3: Sample trajectories for three different benchmark systems. While
Ornstein Uhlenbeck and Lotka Volterra are rather tame, the Double
Well potential clearly exhibits a bifurcation effect.

simulated starting from x(0) = [3, 5]. Since its original introduction by
Lotka [Lot32], the Lotka Volterra system has been widely used to model
population dynamics in biology. The system is observed at 50 equidistant
points in the interval t = [0, 20]. As it turns out, this problem is significantly
challenging for all algorithms, despite the absence of observation noise.

To investigate the effect of strong non-linearities in the drift, we introduce
the Ginzburg-Landau double-well potential shown in Figure 5.3c, defined
by the SDE

dx(t) = θ0x(θ1 − x2)dt + Gdw(t). (5.34)

Using θ = [0.1, 4], G = 0.5 and x(0) = 0, this system exhibits an interesting
bifurcation effect. While there are two stable equilibria at x = ±2, the one
the system will end up in is completely up to noise. For this reason it
represents a fitting framework to test how well an algorithm can deal with
multi-modal SDEs. The potential value is observed at 50 equidistant points
in the interval t = [0, 20], subjected to observational noise with σ = 0.2.

Lastly, some implementation details are constant throughout each ex-
periment: the critic in the adversarial parameter estimation is a 2-layer
fully connected neural network, with respectively 256 and 128 nodes. Every
batch, for both MMD and adversarial training contains 256 elements. While
the Ornstein-Uhlenbeck process and the double-well potential were mod-
eled with a sigmoid kernel, for Lotka-Volterra and Lorenz ’63 we used a
common RBF (we point at Rasmussen [Ras04c] for more information about
kernels and GPs).

108 the stochastic : adversarial and mmd-minimizing regression

5.4.2 Evaluation

For all systems, the parameters θ turn out to be identifiable. Thus, the
parameter value is a good indicator of how well an algorithm is able to infer
the drift function. However, since the components of dw(t) are independent,
there are multiple diffusion matrices G that generate the same trajectories.
We thus directly compare the variance of the increments, i.e. the elements
of H := GTG.

To account for statistical fluctuations, we use 100 independent realizations
of the SDE systems and compare the mean and standard deviation of θ
and H . AReS and MaRS are compared against the Gaussian process-based
VGPA by Vrettas, Opper, and Cornford [VOC15] and NPSDE by Yildiz et al.
[Yil+18] as well as the classic Kalman filter-based ESGF recommended by
Särkkä et al. [Sär+15].

5.4.3 Locally Linear Systems

As mentioned in Section 5.4.1, the functional form of the drift functions of
both the Ornstein-Uhlenbeck process and the Lorenz ’63 system satisfies
a local linearity assumption, while their diffusion is kept diagonal. Thus,
they serve as excellent benchmarks for parameter inference algorithms.
The empirical results are shown in Table 5.2a for the Ornstein-Uhlenbeck.
Unfortunately, VGPA turns out to be rather unstable if both diffusion and
parameters are unknown, despite on average roughly 54 hours are needed
to observe convergence. We then provide it with the true G and show
only its empirical parameter estimates. Since both AReS and MaRS use
Equation (5.23) to determine G, they share the same values. Due to space
restrictions, the results for Lorenz ’63 can be found in Table A.4 of the
appendix. As demonstrated by this experiment, AReS and MaRS can deal
with locally linear systems, outperforming their competitors, especially in
their estimates of the diffusion terms.

5.4.4 Non-Diagonal Diffusion

To investigate the effect of off-diagonal entries in G, we use the Lotka-
Volterra dynamics. Since NPSDE is unable to model non-diagonal diffu-
sions, we provide it with the true G and only compare parameter estimates.
As VGPA is already struggling in the lower dimensional cases, we omit it
from this comparison due to limited computational resources. The results

5.4 experiments 109

are shown in Table 5.2b. AReS and MaRS clearly outperform the other
methods in terms of diffusion estimation, while ESGF is the only algorithm
that yields drift parameter estimates of comparable quality.

5.4.5 Dealing with Multi-Modality

As a final challenge, we investigate the Ginzburg-Landau double well
potential. Despite one-dimensional, its state distribution is multi-modal
even if all parameters are known. As shown in Table 5.2c, this is definitely
a challenge for all classical approaches. While the number of data-points is
probably not enough for the non-parametric proxy for the drift function in
NPSDE, the time-dependent Gaussianity assumptions in both VGPA and
ESGF are problematic in this case. In our gradient matching framework, no
such assumption is made. Thus, both AReS and MaRS are able to deal with
the multimodality of the problem.

110 the stochastic : adversarial and mmd-minimizing regression

Ground truth NPSDE VGPA ESGF AReS MaRS

θ0 = 0.5 0.41± 0.11 0.53± 0.08 0.49± 0.07 0.50± 0.21 0.46± 0.06

θ1 = 1 0.71± 1.34 0.96± 0.31 0.96± 0.24 1.06± 0.93 0.99± 0.25

H = 0.25 0.00± 0.01 / 0.19± 0.06 0.24± 0.09

(a) Ornstein-Uhlenbeck process

Ground truth NPSDE ESGF AReS MaRS

θ0 = 2 1.58± 0.71 2.04± 0.09 2.36± 0.18 2.00± 0.09

θ1 = 1 0.74± 0.31 1.02± 0.05 1.18± 0.9 1.00± 0.04

θ2 = 4 2.26± 1.51 3.87± 0.59 3.97± 0.63 3.70± 0.51

θ3 = 1 0.49± 0.35 0.96± 0.14 0.98± 0.18 0.91± 0.14

H1,1 = 0.05 / 0.01± 0.03 0.03± 0.004

H1,2 = 0.03 / 0.01± 0.01 0.02± 0.01

H2,1 = 0.03 / 0.01± 0.01 0.02± 0.01

H2,2 = 0.09 / 0.03± 0.02 0.09± 0.03

(b) Lotka-Volterra

Ground truth NPSDE VGPA ESGF AReS MaRS

θ0 = 0.1 0.09± 7.00 0.05± 0.04 0.01± 0.03 0.09± 0.04 0.10± 0.05

θ1 = 4 3.36± 248.82 1.11± 0.66 0.11± 0.16 3.68± 1.34 3.85± 1.10

H = 0.25 0.00± 0.02 / 0.20± 0.05 0.21± 0.09

(c) Double-Well potential

Table 5.1: Inferred parameters over 100 independent realizations of respectively
the Ornstein-Uhlenbeck, Ginzburg-Landau Double-Well and Lotka-
Volterra dynamics. For every algorithm, we show the median ± one
standard deviation.

6
S U M M A RY

In this thesis, we developed several novel algorithms grounded on dif-
ferent theoretical view points for parameter inference in time-continuous
dynamical systems.

In Chapter 2, we gave a short overview of the state of the art gradient
matching schemes and analyzed their theoretical shortcomings. After pro-
viding a new theoretical foundation, we demonstrated that with proper
hyperparameter handling, gradient matching algorithms can perform well
on simulated data sets. Crucially, our algorithm did not rely on hand-tuned
hyperparameters or complicated, opaque sampling schemes, which was
common in comparison methods.

In Chapter 3, we then provided a constrained-based interpretation of
the theoretical framework provided in the previous chapter. Reformulating
the problem as a constrained optimization model allowed us to develop
significantly more accurate and faster inference schemes, albeit at the cost
of properly handling uncertainty. Nevertheless, the resulting inference
scheme allows to perform efficient model selection, by leveraging the model
mismatch factor γ. In the context of optimization, we were also able to
develop an efficient feature approximation scheme, that allows us to give
guarantees on the approximation error introduced via the features in terms
of the loss function.

In Chapter 4, the dynamics models become much more complex, reflect-
ing the reality that parametric models might not always be available. In
the previous chapters, the matching of gradients was achieved via a hard
loss function. Here, we focus on obtaining distributions over gradients and
then match them on the level of distributions. After combining the resulting
algorithm with efficient approximation schemes, we were able to apply
it to a data set with real world measurements. The resulting algorithm
is a hybrid combination of gradient matching and numerical integration,
without sacrificing the computational efficiency of gradient matching. As
we demonstrated, it performs well on extrapolation tasks, even though its
underlying assumptions are not fulfilled.

Finally, in Chapter 5, we apply the notion of distribution matching to
the case of stochastic differential equations. Sample paths of SDEs are not
differentiable with probability 1 everywhere. Nevertheless, through careful

111

112 summary

restriction of the model class and distributional matching on the level of
trajectory, we managed to develop a gradient matching scheme for this case
as well.

In summary, this thesis started with a family of tuning intensive al-
gorithms. Then, through careful innovations, we ultimately created an
algorithm that can be applied to real measurements with no hyperparame-
ter tuning necessary. As demonstrated in Chapter 4, the resulting parameter
inference scheme can be applied in settings where other inference mech-
anisms fail. Thus, it could be argued that they are an important first step
in making Bayesian parameter inference schemes practically viable for real
world, time-continuous learning scenarios. It is an interesting question how
and if one could leverage the uncertainties our algorithms provide for prac-
tically relevant applications, especially in the context of time-continuous
reinforcement learning, in the context of providing safety guarantees, or in
the context of model selection. In particular, it remains to be studied what
benefits they would bring. Unfortunately, such explorations were outside
of the scope of this thesis and we are excited to see what tangents will be
explored in future work.

A
A P P E N D I X

a.1 appendix to fgpgm

a.1.1 Proof of theorem 1

Proof 1 The proof of this statement follows directly by combining all the previous
definitions and marginalizing out all the random variables that are not part of the
end result.

First, one starts with the joint density over all variables as stated in equation
(2.19)

p(x, ẋ,y,F1,F2,θ|φ, σ, γ) =

pGP(x, ẋ,y|φ, σ)pODE(F1,F2,θ|x, ẋ, γ),

where
pGP(x, ẋ,y|φ, σ) = p(x|φ)p(ẋ|x,φ)p(y|x, σ)

and

pODE(F1,F2,θ|x, ẋ, γ) =

p(θ)p(F1|θ,x)p(F2|ẋ, γI)δ(F1 −F2).

To simplify this formula, pODE can be reduced by marginalizing out F2 using
the properties of the Dirac delta function and the probability density defined in
equation (2.18). The new pODE is then independent of F2.

pODE(F1,θ|x, ẋ, γ) = p(θ)p(F1|θ,x)N (F1|ẋ, γI).

Inserting equation (2.17) yields

pODE(F1,θ|x, ẋ, γ) = p(θ)δ(F1 − f (x,θ))N (F1|ẋ, γI).

Again, the properties of the Dirac delta function are used to marginalize out F1.
The new pODE is now independent of F1,

pODE(θ|x, ẋ, γ) = p(θ)N (f (x,θ)|ẋ, γI).

113

114 appendix

This reduced pODE is now combined with pGP. Observing that the mean and the
argument of a normal density are interchangeable and inserting the definition of
the GP prior on the derivatives given by equation (2.9) leads to

p(x,ẋ,y,θ|φ, σ, γ) =

p(θ)p(x|φ)N (ẋ|Dx,A)p(y|x, σ)N (ẋ|f (x,θ), γI).

ẋ can now be marginalized by observing that the product of two normal densities
of the same variable is again a normal density. The formula can be found, e.g., in
Petersen, Pedersen, et al. [PP+08]. As a result, one obtains

p(x,y,θ|φ, σ, γ) =

p(θ)p(x|φ)p(y|x, σ)N (f (x,θ)|Dx,A+ γI).

It should now be clear that after inserting equations (2.7) and (2.8) and renormal-
izing, we get the final result

p(x,θ|y,φ, γ, σ) ∝

p(θ)N (x|0,Cφ)N (y|x, σ2I)N (f (x,θ)|Dx,A+ γI),

concluding the proof of this theorem.

a.1.2 Additional Plots

A.1 appendix to fgpgm 115

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

st
at

e
1

(a) AGM

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time

2.5

3.0

3.5

4.0

4.5

5.0

5.5

st
at

e
1

(b) VGM

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

st
at

e
1

(c) FGPGM

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time

1.0

1.5

2.0

2.5

3.0

st
at

e
2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time

1.0

1.5

2.0

2.5

3.0

st
at

e
2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time

1.0

1.5

2.0

2.5

3.0

st
at

e
2

Figure A.1: Median Plots for all states of Lotka Volterra with low noise. State
1 is in the top row, state 2 is in the bottom row. The red line is the
ground truth, while the black line and the shaded area denote the
median and the 75% quantiles of the results of 100 independent
noise realizations. As was already to be expected by the parameter
estimates, FGPGM and VGM are almost indistinguishable while
AGM falls off a little bit.

0 20 40 60 80 100
time

0.0

0.2

0.4

0.6

0.8

1.0

st
at

e
1

0 20 40 60 80 100
time

0.0

0.1

0.2

0.3

0.4

st
at

e
2

0 20 40 60 80 100
time

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

st
at

e
3

0 20 40 60 80 100
time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

st
at

e
4

0 20 40 60 80 100
time

0.0

0.1

0.2

0.3

0.4

0.5

0.6
st

at
e

5

0 20 40 60 80 100
time

0.0

0.2

0.4

0.6

0.8

1.0

st
at

e
1

0 20 40 60 80 100
time

0.00

0.05

0.10

0.15

0.20

0.25

st
at

e
2

0 20 40 60 80 100
time

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

st
at

e
3

0 20 40 60 80 100
time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

st
at

e
4

0 20 40 60 80 100
time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

st
at

e
5

Figure A.2: Median plots for all states of the most difficult benchmark system in
the literature, Protein Transduction. The red line is the ground truth,
while the black line and the shaded area denote the median and the
75% quantiles of the results of 100 independent noise realizations.
FGPGM (middle) is clearly able to find more accurate parameter
estimates than AGM (top).

116 appendix

0 20 40 60 80 100
time

0.0

0.2

0.4

0.6

0.8

1.0
st

at
e

1

0 20 40 60 80 100
time

0.0

0.1

0.2

0.3

0.4

st
at

e
2

0 20 40 60 80 100
time

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

st
at

e
3

0 20 40 60 80 100
time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

st
at

e
4

0 20 40 60 80 100
time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

st
at

e
5

0 20 40 60 80 100
time

0.0

0.2

0.4

0.6

0.8

1.0

st
at

e
1

0 20 40 60 80 100
time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

st
at

e
2

0 20 40 60 80 100
time

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

st
at

e
3

0 20 40 60 80 100
time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

st
at

e
4

0 20 40 60 80 100
time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

st
at

e
5

Figure A.3: Median Plots for all states of the most difficult benchmark system
in the literature, Protein Transduction, for the high noise case.The
red line is the ground truth, while the black line and the shaded
area denote the median and the 75% quantiles of the results of 100

independent noise realizations. FGPGM (middle) is clearly able to
find more accurate parameter estimates than AGM (top).

a.2 appendix to odin

a.2.1 ODEs Provide Useful Information

As shown in Figure A.4, ODIN provides more accurate state estimates
in all but the high noise LV case compared to standard GP regression.
The different behavior can be explained by the quality of the GP prior.
For Lotka Volterra, the RBF kernel provides a perfectly suited prior for
the sinusoidal form of its dynamics. It is thus not surprising that the GP
regression estimates are already quite good, especially in a high noise
setting. However, for both FitzHugh Nagumo and Protein Transduction, the
GP prior is slightly off. Thus, including the additional information provided
by the ODEs leads to significant improvements in state estimation.

a.2.2 Median Trajectories

A.2 appendix to odin 117

ODIN GPR
0.01

0.02

ODIN GPR
0.02

0.04

ODIN GPR

0.0004

0.0006

ODIN GPR

0.05

0.10

(a) Lotka-Volterra

ODIN GPR

0.05

0.10

0.15

(b) FitzHugh-Nagumo

ODIN GPR

0.0030

0.0040

0.0050

(c) Protein Transduction

Figure A.4: Comparing the RMSE of state estimates using vanilla GP regression
and ODIN. All systems were evaluated on 100 independent noise
realizations and parameter initializations. The top row shows the
low noise case, the bottom row shows the high noise case.

a.2.3 Kernel Approximation Error Bounds - Proofs

In this section, we will extend classical quadrature results to prove the
exponentially fast decaying error bounds for our kernel approximations.
First, we will introduce some definitions we will use throughout this section.
Then, we will be restating some useful lemmas and theorems. They will
then be extended to a form which will finally allow us to prove the main
theorem.

a.2.3.1 Definitions

First, let us start by defining some quantities similarly to the work of Mutny
and Krause [MK18].

For any function f , let

I(f (ω)) :=
∫ +∞

−∞
e−ω2

f (ω)dω.

For any r ∈ [0, 1], let

k(r) :=
√

πe−
r2

2l2 =
∫ +∞

−∞
e−ω2

cos

(
ωr
√

2
l

)
dω = I

(
cos

(
ωr
√

2
l

))
.

Let

Qm(f) :=
m

∑
i=1

Wm
i f (xm

i)

118 appendix

x1(t)

0.0 0.5 1.0 1.5 2.0

3

4

5

6

t

x1(t)

0.0 0.5 1.0 1.5 2.0

3

4

5

6

t

x1(t)

0.0 0.5 1.0 1.5 2.0

3

4

5

6

t

x1(t)

0.0 0.5 1.0 1.5 2.0

3

4

5

6

t

x2(t)

0.0 0.5 1.0 1.5 2.0
1

2

3

t

(a) AGM

x2(t)

0.0 0.5 1.0 1.5 2.0
1

2

3

t

(b) FGPGM

x2(t)

0.0 0.5 1.0 1.5 2.0
1

2

3

t

(c) ODIN

x2(t)

0.0 0.5 1.0 1.5 2.0
1

2

3

t

(d) RKG3

Figure A.5: Comparison of the trajectories obtained by numerically integrating
the inferred parameters of the Lotka-Volterra system for σ = 0.1. The
plot was created using 100 independent noise realizations, where
the solid blue line is the median trajectory and the shaded areas
denote the 25% and 75% quantiles. While the upper row shows the
results for state x1, the lower one does the same for state x2. The
orange trajectory is the ground truth. The difference between the
four algorithms is barely visible.

denote the Gauss-Hermite quadrature scheme of order m and function
f with weights Wm

i ≥ 0 and abscissas xm
i and let Sm := {xm

1 , xm
2 , ..., xm

m}
denote the set of these abscissas.

Let Hm(x) be the Hermite polynomial of order m and hm(x) := Hm(x)
2m be

its normalized version.
Let Em :=

√
π 1

mm (e
4l2)

m.
Using these definitions, we can restate the error bounds derived by Mutny

and Krause [MK18] as∣∣∣I (cos
(

ωr
√

2/l
))
−Qm

(
cos

(
ωr
√

2/l
))∣∣∣ ≤ Em

and our bounds from Theorem 2 as
√

2
l

∣∣∣∣∣I
(

ω sin

(
ωr
√

2
l

))
−Qm

(
ω sin

(
ωr
√

2
l

))∣∣∣∣∣ ≤ 8(m− 1)Em−1

≤ 2e
l2 Em−2,

2
l2

∣∣∣I (ω2 cos
(

ωr
√

2/l
))
−Qm

(
ω2 cos

(
ωr
√

2/l
))∣∣∣ ≤ 4

l2 (m− 1)Em−2

≤ 2e
l4 Em−3.

A.2 appendix to odin 119

x1(t)

0.0 0.5 1.0 1.5 2.0

3

4

5

6

t

x1(t)

0.0 0.5 1.0 1.5 2.0

3

4

5

6

t

x1(t)

0.0 0.5 1.0 1.5 2.0

3

4

5

6

t

x1(t)

0.0 0.5 1.0 1.5 2.0

3

4

5

6

t

x2(t)

0.0 0.5 1.0 1.5 2.0
1

2

3

t

(a) AGM

x2(t)

0.0 0.5 1.0 1.5 2.0
1

2

3

t

(b) FGPGM

x2(t)

0.0 0.5 1.0 1.5 2.0
1

2

3

t

(c) ODIN

x2(t)

0.0 0.5 1.0 1.5 2.0
1

2

3

t

(d) RKG3

Figure A.6: Comparison of the trajectories obtained by numerically integrating
the inferred parameters of the Lotka-Volterra system for σ = 0.5. The
plot was created using 100 independent noise realizations, where
the solid blue line is the median trajectory and the shaded areas
denote the 25% and 75% quantiles. While the upper row shows the
results for state x1, the lower one does the same for state x2. The
orange trajectory is the ground truth. While all algorithms seem to
perform reasonably well, the perfect match between the sinusoidal
dynamics and the RBF kernel lead to a well performing RKG3, while
the more flexible Gaussian process based schemes seem to suffer
more strongly from a smoothing bias.

a.2.3.2 Useful Known Results

Following Hildebrand [Hil87], we know that for all polynomials f with
degree smaller equals 2m− 1, it holds that

Qm(f (ω)) = I(f (ω))

and
I(hm(ω)2) =

√
π

m!
2m ,

since
I(Hi(ω)Hj(ω)) = rij2j j!

√
π.

In the following, we will need the two following, well-known Lemmas
[see e.g. Hil87]:

Lemma 1 Let f be a real function n times continuously differentiable and qn(x)
a polynomial of degree n − 1 that agrees with f at the set of distinct points
S = {x1, x2, ..., xn}. Let π(x) = ∏n

i=1(x− xi). Then ∀x ∈ R we have

f (x)− qn(x) =
f (n)(ξ)

n!
π(x)

120 appendix

x1(t)

0 2 4 6 8 10

−2

−1

0

1

2

t

x1(t)

0 2 4 6 8 10

−2

−1

0

1

2

t

x1(t)

0 2 4 6 8 10

−2

−1

0

1

2

t

x2(t)

0 2 4 6 8 10

−1

0

1

t

(a) FGPGM

x2(t)

0 2 4 6 8 10

−1

0

1

t

(b) ODIN

x2(t)

0 2 4 6 8 10

−1

0

1

t

(c) RKG3

Figure A.7: Comparison of the trajectories obtained by numerically integrating
the inferred parameters of the FitzHugh-Nagumo system for a SNR
of 100. The plot was created using 100 independent noise realizations,
where the solid blue line is the median trajectory and the shaded
areas denote the 25% and 75% quantiles. While the upper row shows
the results for state x1, the lower one does the same for state x2.
The orange trajectory indicates the ground truth. This experiment
demonstrates how ODIN can comfortably deal with dynamics with
rapidly changing lengthscales.

for some ξ = ξ(x) ∈ I, where I is the interval limited by the smallest and largest
of the numbers x1, x2, ..., xn and x.

Lemma 2 Let f be a real function that is 2n-times continuously differentiable
and q2n(x) a polynomial of degree 2n− 1 that agrees with f at the set of distinct
points S = {x1, x2, ..., xn} and its derivative also agrees with f ′ at S. Let π(x) =
∏n

i=1(x− xi)
2. Then ∀x ∈ R we have

f (x)− q2n(x) =
f (2n)(ξ)

(2n)!
π(x) (A.1)

for some ξ = ξ(x) ∈ I, where I is the interval limited by the smallest and largest
of the numbers x1, x2, ..., xn and x.

We will also need the main kernel approximation theorem of Mutny and
Krause [MK18], namely

A.2 appendix to odin 121

x1(t)

0 2 4 6 8 10

−2

−1

0

1

2

t

x1(t)

0 2 4 6 8 10

−2

−1

0

1

2

t

x1(t)

0 2 4 6 8 10

−2

−1

0

1

2

t

x2(t)

0 2 4 6 8 10

−1

0

1

t

(a) FGPGM

x2(t)

0 2 4 6 8 10

−1

0

1

t

(b) ODIN

x2(t)

0 2 4 6 8 10

−1

0

1

t

(c) RKG3

Figure A.8: Comparison of the trajectories obtained by numerically integrating
the inferred parameters of the FitzHugh-Nagumo system for a SNR
of 10. The plot was created using 100 independent noise realizations,
where the solid blue line is the median trajectory and the shaded
areas denote the 25% and 75% quantiles. While the upper row shows
the results for state x1, the lower one does the same for state x2.
The orange trajectory indicates the ground truth. This experiment
demonstrates how ODIN can comfortably deal with dynamics with
rapidly changing lengthscales.

Theorem 5 Consider the function cos(
√

2
l rω). If we approximate the Gauss-

Hermite quadrature scheme of order m the integral

I

(
cos

(√
2

l
rω

))
=
∫ +∞

−∞
e−ω2

cos

(
ωr
√

2
l

)
dω

≈ Qm

(
cos

(√
2

l
rω

))
,

we have ∣∣∣∣∣I
(

cos

(√
2

l
rω

))
−Qm

(
cos

(√
2

l
rω

))∣∣∣∣∣ ≤ Em.

Without mentioning them further, we will always assume the following
existence results: Let S = {x1, x2, · · · xn} be a set of n distinct points in R

and define π(x) = ∏n
i=1(x− xi) and for i = 1, ..., n, li(x) = π(x)

(x−xi)π′(xi)
. It

holds that li(xj) = rij and that deg(li) = n − 1. Moreover, we define for
i = 1, ..., n, hi(x) = l2

i (x)(−2l′i(xi)(x − xi) + 1) and h̄i(x) = l2
i (x)(x − xi).

It holds that hi(xj) = rij , h′i(xj) = 0, h̄i(xj) = 0 and h̄′i(xj) = rij and

122 appendix

x1(t)

0 20 40 60 80 100

0.0
0.2
0.4
0.6
0.8
1.0

t

x1(t)

0 20 40 60 80 100

0.0
0.2
0.4
0.6
0.8
1.0

t

x1(t)

0 20 40 60 80 100

0.0
0.2
0.4
0.6
0.8
1.0

t

x1(t)

0 20 40 60 80 100

0.0
0.2
0.4
0.6
0.8
1.0

t

x2(t)

0 20 40 60 80 100

0.0
0.1
0.2
0.3
0.4

t

x2(t)

0 20 40 60 80 100

0.0
0.1
0.2
0.3
0.4

t

x2(t)

0 20 40 60 80 100

0.0
0.1
0.2
0.3
0.4

t

x2(t)

0 20 40 60 80 100

0.0
0.1
0.2
0.3
0.4

t

x3(t)

0 20 40 60 80 100
0.3

0.5

0.7

0.9

t

x3(t)

0 20 40 60 80 100
0.3

0.5

0.7

0.9

t

x3(t)

0 20 40 60 80 100
0.3

0.5

0.7

0.9

t

x3(t)

0 20 40 60 80 100
0.3

0.5

0.7

0.9

t

x4(t)

0 20 40 60 80 100

0.0

0.1

0.2

0.3

t

x4(t)

0 20 40 60 80 100

0.0

0.1

0.2

0.3

t

x4(t)

0 20 40 60 80 100

0.0

0.1

0.2

0.3

t

x4(t)

0 20 40 60 80 100

0.0

0.1

0.2

0.3

t

x5(t)

0 20 40 60 80 100

0.0

0.2

0.4

0.6

t

(a) AGM

x5(t)

0 20 40 60 80 100

0.0

0.2

0.4

0.6

t

(b) FGPGM

x5(t)

0 20 40 60 80 100

0.0

0.2

0.4

0.6

t

(c) ODIN

x5(t)

0 20 40 60 80 100

0.0

0.2

0.4

0.6

t

(d) RKG3

Figure A.9: Comparison of the trajectories obtained by numerically integrating
the inferred parameters of the Protein Transduction system for σ =
0.001. The plot was created using 100 independent noise realizations,
where the solid blue line is the median trajectory and the shaded
areas denote the 23% and 75% quantiles. The orange trajectory is
the ground truth. This experiment proves how ODIN is the only
algorithm among the displayed ones that can handle non-Gaussian
posterior marginals.

deg(hi) = deg(h̄i) = 2n− 1 for i = 1, ..., n. Thus, we can directly state the
following four Lemmas

Lemma 3 Let f be a real function and define

y1(x) :=
n

∑
i=1

f (xi)li(x).

Then y1 is a polynomial with degree n− 1 that agrees with f at S.

Lemma 4 Let f be a real differential function and define

y2(x) :=
n

∑
i=1

f (xi)hi(x) +
n

∑
i=1

f ′(xi)h̄i(x),

A.2 appendix to odin 123

x1(t)

0 20 40 60 80 100

0.0
0.2
0.4
0.6
0.8
1.0

t

x1(t)

0 20 40 60 80 100

0.0
0.2
0.4
0.6
0.8
1.0

t

x1(t)

0 20 40 60 80 100

0.0
0.2
0.4
0.6
0.8
1.0

t

x1(t)

0 20 40 60 80 100

0.0
0.2
0.4
0.6
0.8
1.0

t

x2(t)

0 20 40 60 80 100

0.0
0.1
0.2
0.3
0.4

t

x2(t)

0 20 40 60 80 100

0.0
0.1
0.2
0.3
0.4

t

x2(t)

0 20 40 60 80 100

0.0
0.1
0.2
0.3
0.4

t

x2(t)

0 20 40 60 80 100

0.0
0.1
0.2
0.3
0.4

t

x3(t)

0 20 40 60 80 100
0.3

0.5

0.7

0.9

t

x3(t)

0 20 40 60 80 100
0.3

0.5

0.7

0.9

t

x3(t)

0 20 40 60 80 100
0.3

0.5

0.7

0.9

t

x3(t)

0 20 40 60 80 100
0.3

0.5

0.7

0.9

t

x4(t)

0 20 40 60 80 100

0.0

0.1

0.2

0.3

t

x4(t)

0 20 40 60 80 100

0.0

0.1

0.2

0.3

t

x4(t)

0 20 40 60 80 100

0.0

0.1

0.2

0.3

t

x4(t)

0 20 40 60 80 100

0.0

0.1

0.2

0.3

t

x5(t)

0 20 40 60 80 100

0.0

0.2

0.4

0.6

t

(a) AGM

x5(t)

0 20 40 60 80 100

0.0

0.2

0.4

0.6

t

(b) FGPGM

x5(t)

0 20 40 60 80 100

0.0

0.2

0.4

0.6

t

(c) ODIN

x5(t)

0 20 40 60 80 100

0.0

0.2

0.4

0.6

t

(d) RKG3

Figure A.10: Comparison of the trajectories obtained by numerically integrating
the inferred parameters of the Protein Transduction system for σ =
0.01. The plot was created using 100 independent noise realizations,
where the solid blue line is the median trajectory and the shaded
areas denote the 23% and 75% quantiles. The orange trajectory is
the ground truth. As in the low noise case, this experiment proves
how ODIN is the only algorithm among the displayed ones that can
handle non-Gaussian posterior marginals.

Then y2 is a polynomial with degree 2n− 1 that agrees with f at S and its derivative
also agrees with the derivative in our proofs of f at S.

Lemma 5 Consider a point x0 6∈ S. Let f be a real differential function and define

y3(x) := y2(x) +
f (x0)− y2(x0)

π2(x0)
π2(x).

Then y3 is a polynomial with degree 2n that agrees with f at S ∪ {x0} and its
derivative also agrees with the derivative of f at S.

Lemma 6 Consider the point x1 ∈ S. Let f be a real two times differential function

and define y4(x) = y2(x) + f ′′(x1)−y′′2 (x1)

2π′2(x1)
π2(x) . Then y4 is a polynomial with

124 appendix

degree 2n that agrees with f at S, its derivative also agrees with the derivative of f
at S and its second derivative agrees with the second derivative of f at x1.

a.2.3.3 Intermediate Results

For the proof of our theorem, we need to extend Lemmas 1 and 2. Here,
we will introduce both the statements as well as the corresponding proofs.
The proof technique is similar to the proofs of the original Lemmas 1 and 2

given by Hildebrand [Hil87].

Lemma 7 Let f be a real, 2n + 1 times continuously differentiable function. Let
q2n+1(x) be a polynomial of degree 2n, which agrees with f at the set of distinct
points S = {x1, x2, ..., xn, x∗} and whose derivatives agree with f ′ at S \ {x∗}.
Let π(x) = (x− x∗)∏n

i=1(x− xi)
2. Then ∀x ∈ R, we have

f (x)− q2n+1(x) =
f (2n+1)(ξ)

(2n + 1)!
π(x)

for some ξ = ξ(x) ∈ I, where I is the interval limited by the smallest and largest
of the numbers x1, x2, ..., xn, x∗ and x.

Proof 2 For x ∈ S the property holds. Otherwise, fix x̄ ∈ R and define F(x) :=
f (x)− q2n+1(x)−Kπ(x), where K is chosen such that F(x̄) = 0. As F has n+ 2
distinct roots at I, F′ has n + 1 distinct roots in I which are different from the
points of S by Rolle’s theorem (and F′ vanishes at intermediate points). Similarly,
since F′ vanishes at all the points in S \ {x∗}, F′ has at least 2n + 1 distinct roots
in I. Thus, again by Rolle’s theorem, F′′ has 2n distinct roots in I. Continuing
inductively, we see that F(2n+1) has one root ξ ∈ I. At ξ, we have

0 = F(2n+1)(ξ) = f (2n+1)(ξ)− (2n + 1)!K ⇔ K =
f (2n+1)(ξ)

(2n + 1)!
.

So

F(x̄) = 0 = f (x̄)− q2n+1(x̄)− f (2n+1)(ξ)

(2n + 1)!
π(x̄)2

⇔ f (x̄)− q2n+1(x̄) =
f (2n+1)(ξ)

(2n + 1)!
π(x̄)2.

Lemma 8 Let f be a real, 2n + 1 times continuously differentiable function.
Let q2n+1(x) be a polynomial of degree 2n, which agrees with f at the set of
distinct points S = {x1, x2, ..., xn}, whose derivatives agree with f ′ at S and

A.2 appendix to odin 125

whose second derivative at x1 agrees with the second derivatives of f at x1. Let
π(x) = (x− x1)∏n

i=1(x− xi)
2. Then ∀x ∈ R, we have

f (x)− q2n+1(x) =
f (2n+1)(ξ)

(2n + 1)!
π(x)

for some ξ = ξ(x) ∈ I, where I is the interval limited by the smallest and largest
of the numbers x1, x2, ..., xn and x.

Proof 3 If x ∈ S, the property clearly holds. Otherwise, fix x̄ ∈ R. Define
F(x) := f (x)− q2n+1(x)− Kπ(x), where K is chosen such that F(x̄) = 0. As
F has n + 1 distinct roots at I, F′ has n distinct roots in I by Rolle’s theorem.
Note that these roots are different from the points of S, because F′ vanishes at
intermediate points). Since F′ vanishes at all the points in S, F′ has in total at
least 2n distinct roots in I. Consequently, again by Rolle’s theorem, F′′ has 2n− 1
distinct roots in I. Note that these are all different from the points of S, because F′′

vanishes at intermediate points. Since F′′ vanishes at x1, F′′ vanishes at least at
2n points in total. Continuing inductively, we see that F(2n+1) has one root ξ ∈ I.
At ξ, we have

0 = F(2n+1)(ξ) = f (2n+1)(ξ)− (2n + 1)!K ⇔ K =
f (2n+1)(ξ)

(2n + 1)!
.

So

F(x̄) = 0 = f (x̄)− q2n+1(x̄)− f (2n+1)(ξ)

(2n + 1)!
π(x̄)2

⇔ f (x̄)− q2n+1(x̄) =
f (2n+1)(ξ)

(2n + 1)!
π(x̄)2.

Also, we will need the following two extensions of Theorem 5.

Lemma 9 Using a Gauss-Hermite quadrature scheme of order m, we have

√
2
∣∣∣I(ω sin(ωr

√
2/l))−Qm(ω sin(ωr

√
2/l))

∣∣∣ ≤ 8l(m− 1)Em−1.

Proof 4 For the proof of this theorem, we have to distinguish between two cases.

126 appendix

case 1 If m is even, 0 ∈ Sm−1. By Lemma 5, there exists a polynomial y2m−3
of degree 2m− 4, which agrees with sin(

√
2rω/l) at Sm−1 and whose derivates

agree with the derivatives of sin(
√

2rω/l) at Sm−1 \ {0}. By Lemma 7, we have
for every ω that

ω
(

sin(
√

2rω/l)− y2m−3(ω)
)
= (
√

2r/l)2m−3 cos(ξ)
(2m− 3)!

h2
m−1(ω).

Using r ≤ 1 and | cos(ξ)| ≤ 1, we get∣∣∣ω sin(
√

2rω/l)−ωy2m−3(ω)
∣∣∣ ≤ (

√
2/l)2m−3 h2

m−1(ω)

(2m− 3)!
.

As h2
m−1 has degree less than 2m, we have Qm(h2

m−1(ω)) = I(h2
m−1(ω)). Com-

bining this with the fact that the weights Wm
i of a quadrature scheme are positive,

it holds that∣∣∣Qm(ωy2m−3(ω))−Qm(ω sin(ωr
√

2/l)
∣∣∣

=
∣∣∣Qm

(
ωy2m−3(ω)−ω sin(ωr

√
2/l)

)∣∣∣
≤ Qm

(∣∣∣ωy2m−3(ω)−ω sin(ωr
√

2/l)
∣∣∣)

≤ Qm

(
(
√

2/l)2m−3 h2
m−1(ω)

(2m− 3)!

)

= I

(
(
√

2/l)2m−3 h2
m−1(ω)

(2m− 3)!

)
= R1,

where

R1 := (
√

2/l)2m−3 (m− 1)!
√

π

2m−1(2m− 3)!
.

Similarly, ∣∣∣I(ωy2m−3(ω))− I(ω sin(ωr
√

2/l)
∣∣∣

=
∣∣∣I (ωy2m−3(ω)−ω sin(ωr

√
2/l)

)∣∣∣
≤ I

(∣∣∣ωy2m−3(ω)−ω sin(ωr
√

2/l)
∣∣∣)

≤ I

(
(
√

2/l)2m−3 h2
m−1(ω)

(2m− 3)!

)
= R1.

A.2 appendix to odin 127

As ωy2m−3(ω) has degree less than 2m, we know that Qm (ωy2m−3(ω)) =
I (ωy2m−3(ω)). This we can use to finally obtain
√

2
l

∣∣∣I (ω sin(ωr
√

2/l)
)
−Qm

(
ω sin(ωr

√
2/l)

)∣∣∣
≤
√

2
l

∣∣∣I (ω sin(ωr
√

2/l)
)
− I (ωy2m−3(ω))

∣∣∣
+

√
2

l

∣∣∣Qm (ωy2m−3(ω))−Qm

(
ω sin(ωr

√
2/l)

)∣∣∣
≤
√

8R1/l

= 2(
√

2/l)2m−2 (m− 1)!
√

π

2m−1(2m− 3)!

≤ 4(m− 1)Em−1.

case 2 If m is odd, 0 ∈ Sm−2. By Lemma 6, there exists a polynomial y2m−3(ω)
of degree 2m − 4, which agrees with sin(

√
2rω/l) at Sm−2, whose derivatives

agree with the derivative of sin(
√

2rω)/l at Sm−2, and whose second derivative
agrees with the second derivative of sin(

√
2

l rω) at 0. By Lemma 8, we have for
every ω that

ω
(

sin(
√

2rω/l)− y2m−3(ω)
)
= (2r/l)2m−3 cos(ξ)

(2m− 3)!
ω2h2

m−2(ω)

Using r ≤ 1 and | cos(ξ)| ≤ 1, we get

∣∣∣ω sin(
√

2rω/l)−ωy2m−3(ω)
∣∣∣ ≤ (

√
2/l)2m−3 ω2h2

m−2(ω)

(2m− 3)!
.

As ω2h2
m−2 has degree less than 2m, we have

Qm(ω
2h2

m−2(ω)) = (ω2h2
m−2(ω)).

128 appendix

Combining this with the fact that the weights Wm
i of a quadrature scheme are

positive, it holds that∣∣∣Qm(ωy2m−3(ω))−Qm(ω sin(
√

2ωr/l)
∣∣∣

=
∣∣∣Qm

(
ωy2m−3(ω)−ω sin(

√
2ωr/l)

)∣∣∣
≤ Qm

(∣∣∣ωy2m−3(ω)−ω sin(
√

2ωr/l)
∣∣∣)

≤ Qm

(
(
√

2/l)2m−3 ω2h2
m−2(ω)

(2m− 3)!

)

= I

(
(
√

2/l)2m−3 ω2h2
m−2(ω)

(2m− 3)!

)
= R2,

where

R2 = (
√

2/l)2m−3 I(ω2h2
m−2(ω))

(2m− 3)!
.

Using the identity xhn(x) = hn+1(x) + n
2 hn−1(x) the fact that

I(hn+1(ω)hn−1(ω)) = 0,

we obtain

I
(

ω2h2
m−2(ω)

)
= I

(
h2

m−1(ω)
)
+ ((m− 2)/2)2 I

(
h2

m−3(ω)
)

≤ 2
(m− 1)!

√
π

2m−1 .

Thus, R2 can be bounded by

R2 ≤ 2(
√

2/l)2m−3 (m− 1)!
√

π

2m−1(2m− 3)!
.

Similarly,∣∣∣I (ωy2m−3(ω))− I
(

ω sin(
√

2ωr/l
)∣∣∣

=
∣∣∣I (ωy2m−3(ω)−ω sin

√
2(ωr/l)

)∣∣∣
≤ I

(∣∣∣ωy2m−3(ω)−ω sin(
√

2ωr/l)
∣∣∣)

≤ I

(
(
√

2/l)2m−3 ω2h2
m−2(ω)

(2m− 3)!

)
= R2.

A.2 appendix to odin 129

As ωy2m−3(ω) has degree less than 2m, we know that Qm(ωy2m−3(ω)) =
I(ωy2m−3(ω)). This we can use to finally obtain
√

2
l

∣∣∣I (ω sin(
√

2ωr/l)
)
−Qm

(
ω sin(

√
2ωr/l)

)∣∣∣
≤
√

2
l

∣∣∣I (ω sin(
√

2ωr/l)
)
− I (ωy2m−3(ω))

∣∣∣
+

√
2

l

∣∣∣Qm (ωy2m−3(ω))−Qm

(
ω sin(

√
2ωr/l)

)∣∣∣
≤
√

8R2/l

= 4(
√

2/l)2m−2 (m− 1)!
√

π

2m−1(2m− 3)!

≤ 8(m− 1)Em−1.

Lemma 10 Using a Gauss-Hermite quadrature scheme of order m, we have

|I(ω2 cos(
√

2ωr/l)−Qm(ω
2 cos(

√
2ωr/l)| ≤ 2(m− 1)Em−2.

Proof 5 For the proof of this theorem, we have to distinguish between two cases.

case 1 If m is even, we know that 0 ∈ Sm−1. By Lemma 5, there exists
a polynomial y2m−4(ω) of degree 2m − 5, which agrees with cos(

√
2ωr/l) at

Sm−1 \ {0} and whose derivatives agree with the derivatives of cos(
√

2ωr/l) at
Sm−1 \ {0}. By Lemma 7, we have for every ω that

ω2
(

cos(
√

2rω/l)− y2m−4(ω)
)
= (
√

2r/l)2m−4 cos(ξ)
(2m− 4)!

h2
m−1(ω).

Using r ≤ 1 and |cos(ξ)| ≤ 1, we get

∣∣∣ω2 cos(
√

2rω/l)−ω2y2m−4(ω)
∣∣∣ ≤ (

√
2/l)2m−4 h2

m−1(ω)

(2m− 4)!
.

As h2
m−1 has degree less than 2m, we have Qm(h2

m−1(ω)) = I(h2
m−1(ω)).

Combining this with the fact that the weights Wm
i of a quadrature scheme are

positive, it holds that

130 appendix

∣∣∣Qm(ω
2y2m−4(ω))−Qm(ω

2 cos(
√

2ωr/l)
∣∣∣

=
∣∣∣Qm(ω

2y2m−4(ω)−ω2 cos(
√

2ωr/l))
∣∣∣

≤ Qm

(∣∣∣ω2y2m−4(ω)−ω2 cos(
√

2ωr/l)
∣∣∣)

≤ Qm

(
(
√

2/l)2m−4 h2
m−1(ω)

(2m− 4)!

)

= I

(
(
√

2/l)2m−4 h2
m−1(ω)

(2m− 4)!

)
= R3

where

R3 := (
√

2/l)2m−4 (m− 1)!
√

π

2m−1(2m− 4)!
.

Similarly,∣∣∣I(ω2y2m−4(ω))− I(ω2 cos(
√

2ωr/l))
∣∣∣

=
∣∣∣I (ω2y2m−4(ω)−ω2 cos(

√
2ωr/l)

)∣∣∣
≤ I

(∣∣∣ω2y2m−4(ω)−ω2 cos(
√

2ωr/l)
∣∣∣)

≤ I((
√

2/l)2m−4 h2
m−1(ω)

(2m− 4)!
)

= R3.

As ω2y2m−4(ω) has degree less than 2m, we know that Qm(ω2y2m−4(ω)) =
I(ω2y2m−4(ω)). Following a similar procedure as in the last step of the proof of
Lemma 9, we get

2
l2

∣∣∣I (ω2 cos(
√

2ωr/l
)
−Qm

(
ω2 cos(

√
2ωr/l

)∣∣∣
≤ 4R3/l2

= 2(
√

2/l)2m−2 (m− 1)!
√

π

2m−1(2m− 4)!

≤ 2
l2 (m− 1)Em−2.

A.2 appendix to odin 131

case 2 Suppose m is odd. By Lemma 4, there exists a polynomial y2m−4(ω) of
degree 2m− 5, which agrees with cos(

√
2rω/l) at Sm−2 and whose derivatives

agree with the derivatives of cos(
√

2rω/l) at Sm−2. By Lemma 2, we have for
every ω that

ω2(cos(
√

2rω/l)− y2m−4(ω)) = (
√

2r/l)2m−4 cos(ξ)
(2m− 4)!

ω2h2
m−2(ω).

Using r ≤ 1 and | cos(ξ)| ≤ 1, we get

∣∣∣ω2 cos(
√

2rω/l)−ω2y2m−4(ω)
∣∣∣ ≤ (

√
2/l)2m−4 ω2h2

m−2(ω)

(2m− 4)!
.

As ω2h2
m−2 has degree less than 2m, we have

Qm(ω
2h2

m−2(ω)) = I(ω2h2
m−2(ω)).

Combining this with the fact that the weights Wm
i of a quadrature scheme are

positive, it holds that∣∣∣Qm(ω
2y2m−4(ω))−Qm(ω

2 cos(
√

2ωr/l)
∣∣∣

=
∣∣∣Qm

(
ω2y2m−4(ω)−ω2 cos(

√
2ωr/l)

)∣∣∣
≤ Qm

(∣∣∣ω2y2m−4(ω)−ω2 cos(
√

2ωr/l)
∣∣∣)

≤ Qm

(
(
√

2/l)2m−4 ω2h2
m−2(ω)

(2m− 4)!

)

= I

(
(
√

2/l)2m−4 ω2h2
m−2(ω)

(2m− 4)!

)
= R4

where

R4 := (
√

2/l)2m−4 I(ω2h2
m−2(ω))

(2m− 4)!
.

Using the identity xhn(x) = hn+1(x) + n
2 hn−1(x) and the fact that

I(hn+1(ω)hn−1(ω)) = 0,

132 appendix

we obtain

I
(

ω2h2
m−2(ω)

)
= I

(
h2

m−1(ω)
)
+ (m− 2/2)2 I

(
h2

m−3(ω)
)

≤ 2
(m− 1)!

√
π

2m−1 .

Thus, R4 can be bounded by

R4 ≤ 2(
√

2/l)2m−4 (m− 1)!
√

π

2m−1(2m− 4)!
.

Similarly,∣∣∣I (ω2y2m−4(ω)
)
− I

(
ω2 cos(

√
2ωr/l

)∣∣∣
=
∣∣∣I (ω2y2m−4(ω)−ω2 cos(

√
2ωr/l)

)∣∣∣
≤ I

(∣∣∣ω2y2m−4(ω)−ω2 cos(
√

2ωr/l)
∣∣∣)

≤ I

(
(
√

2/l)2m−4 ω2h2
m−2(ω)

(2m− 4)!

)
= R4.

As ω2y2m−4(ω) has degree less than 2m, we know that Qm(ω2y2m−4(ω)) =
I(ω2y2m−4(ω)). Following a similar procedure as in the last step of the proof of
Lemma 9, we get

∣∣∣I (ω2 cos(
√

2ωr/l)
)
−Qm

(
ω2 cos(

√
2ωr/l)

)∣∣∣
≤ 2R

= 2l2(
√

2/l)2m−2 (m− 1)!
√

π

2m−1(2m− 4)!

≤ 2(m− 1)Em−2.

a.2.3.4 Proof of main Theorem

Given the previous results, the proof of Theorem 2 is now straight forward.
Applying Lemma 9 to the feature map defined in Equation (3.26) provides
the error bound on the kernel for the first derivative. Similarly, a combina-
tion of Lemma 10 and Equation (3.27) yields the error bound on the kernel
for the second derivatives, finishing the proof of Theorem 2.

A.2 appendix to odin 133

a.2.4 Kernel Approximation Additional Plots

134 appendix

a.2.5 GP Regression with Derivatives

In this section, we will further define and discuss our theoretical results
on GP regression with derivatives. We will start by introducing all relevant
definitions. Then, we will proof Theorem 3

a.2.5.1 Problem Setting

Consider the problem of Gaussian Process regression, using zero mean

prior and the RBF kernel function kφ(x, y) := ρe−
(x−y)2

2l2 for some fixed
hyperparameters φ = (ρ, l), which denote the variance and the lengthscale.
Suppose we are given at N observation points t := tN = (t0, . . . , tN−1) the
N-dimensional (column) vectors y := x+ εσ2 and F := ẋ+ εγ of noisy
state and noisy state derivative observations. Our goal is to obtain estimates
of the values of state x := x(T) and state derivative ẋ := ẋ(T) at a new
observation point T.

a.2.5.2 Notation

Let kφ(t, T) denote the N dimensional kernel (column) vector, i.e.

kφ(t, T)i := kφ(ti, T). (A.2)

Let ′kφ(x, y) denote the partial derivative of kφ w.r.t. its first argument, i.e.

′kφ(x, y) :=
∂

∂a
kφ(a, b)|a=x,b=y. (A.3)

Let ′kφ(t, T) denote the N dimensional kernel derivative (column) vector,
i.e.

′kφ(t, T)i := ′kφ(ti, T). (A.4)

Let k′φ(x, y) denote the partial derivative of kφ w.r.t. its second argument,
i.e.

k′φ(x, y) :=
∂

∂b
kφ(a, b)|a=x,b=y. (A.5)

Let k′φ(t, T) denote the N dimensional kernel derivative (column) vector,
i.e.

k′φ(t, T)i := k′φ(ti, T). (A.6)

Let k′′φ(x, y) denote the mixed partial derivative of kφ, i.e.

k′′φ(x, y) :=
∂2

∂a∂b
kφ(a, b)|a=x,b=y. (A.7)

A.2 appendix to odin 135

Let k′′φ(t, T) denote the N dimensional kernel derivative (column) vector,
i.e.

k′′φ(t, T)i := k′′φ(ti, T). (A.8)

Let Cφ denote the N × N covariance kernel matrix, whose elements are
given by [

Cφ
]

i,j := kφ(ti, tj). (A.9)

Let ′Cφ denote the kernel derivative matrix, whose elements are given by

[′Cφ]i,j :=
∂

∂a
kφ(a, b)|a=ti ,b=tj

. (A.10)

Let C ′φ denote the kernel derivative matrix, whose elements are given by

[
C ′φ

]
i,j

:=
∂

∂b
kφ(a, b)|a=ti ,b=tj

. (A.11)

Let C ′′φ denote the mixed kernel derivative matrix, whose elements are
given by [

C ′′φ

]
i,j

:=
∂2

∂a∂b
kφ(a, b)|a=ti ,b=tj

. (A.12)

In the graphical model of Figure 3.2, these matrices have been used to
build the matrices

D := C ′φC
′′−1
φ (A.13)

and
A := Cφ −C ′φC ′′−1

φ
′Cφ. (A.14)

Let K̂φ denote the sum of the 2N × 2N block matrix with the covariance
matrix and its derivatives plus the diagonal noise matrix, i.e.

K̂φ :=

(
Cφ C ′φ
′Cφ C ′′φ

)
+

(
σ2In 0

0 γIn

)
. (A.15)

Let k̂φ(t, T) denote the 2N dimensional (column) vector, which is a concate-
nation of kφ(t, T) and ′kφ(t, T), i.e.

k̂φ(t, T) :=

(
kφ(t, T)
′kφ(t, T)

)
. (A.16)

136 appendix

Let k̂′φ(t, T) denote the 2N dimensional (column) vector, which is a concate-
nation of k′φ(t, T) and k′′φ(t, T), i.e.

k̂′φ(t, T) :=

(
k′φ(t, T)

k′′φ(t, T)

)
. (A.17)

Finally, we are able to write down the formulas for the scalar predictive
mean and covariance at a new point T. Here, we let µ denote the mean of
the state, µ′ denote the mean of the derivative, α denote the variance of the
state and α′ the variance of the derivative prediction. They are given by

µ(T) = k̂φ(t, T)TK̂−1
φ

(
y

F

)
, (A.18)

µ′(T) = k̂′φ(t, T)TK̂−1
φ

(
y

F

)
, (A.19)

α(T) = k(T, T)− k̂φ(t, T)TK̂−1
φ k̂φ(t, T), (A.20)

α′(T) = k′′(T, T)− k̂′φ(t, T)TK̂−1
φ k̂′φ(t, T). (A.21)

a.2.5.3 Proof of Theorem 3

In this Section, we will directly prove Theorem 3, the theorem regarding
the approximation error of GPRD. Throughout this section, we will use ṽ,
ṽ and Ṽ to denote the feature approximation of any scalar v, vector v or
matrix V .

Proof 6 Suppose that we use a QFF approximation scheme of order m to approx-
imate the functions kφ,′ kφ, k′φ, k′′φ, which gives us a deterministic and uniform
(over their domain) approximation guarantee of absolute error less than ε := εφ(m)
(for any of them). W.l.o.g we can assume that the domain of these functions is
[0, 1]2, l ≤ 1 and ρ ≥ 1 (so also 0 ≤ T, t1, . . . tn ≤ 1). Moreover, we assume that
|y|max, |F |max ≤ R, for some positive constant R.

Using these assumptions, it is clear that∣∣∣∣k̂φ(t, T)
∣∣∣∣ ≤ √2Nρ/l, (A.22)∣∣∣∣∣∣k̂′φ(t, T)
∣∣∣∣∣∣ ≤ √2N2ρ/l2, (A.23)

since kφ ≤ ρ, ′kφ ≤ ρ/l and k′′φ ≤ 2ρ/l2.

A.2 appendix to odin 137

Let e1 be the error (vector) when approximating k̂φ(t, T),

e1 := k̂φ(t, T)− ˜̂kφ(t, T), (A.24)

whose norm, given our previous definitions, will be bounded by

||e1|| ≤
√

2Nε. (A.25)

Let e2 be the error (vector) when approximating k̂φ(t, T),

e2 := k̂′φ(t, T)− ˜̂k
′
φ(t, T), (A.26)

whose norm, given our previous definitions, will be bounded by

||e2|| ≤
√

2Nε. (A.27)

Let E1 be the error (matrix) when approximating K̂φ,

E1 := K̂φ − ˜̂Kφ, (A.28)

whose spectral norm, given our previous definitions, will be bounded by

σ1(E1) ≤ 2Nε. (A.29)

Let E2be the error (matrix) when approximating K̂−1
φ ,

E2 := K̂−1
φ −

˜̂Kφ−1 . (A.30)

Since the matrix

(
Cφ C ′φ
′Cφ C ′′φ

)
and its QFF approximation are symmetric and

positive semi-definite, their smallest singular value is non-negative. Furthermore,(
σ2IN 0

0 γIN

)
has smallest singular value c.

c := min{γ, σ2}. (A.31)

Thus, both K̂ and ˜̂K are symmetric, positive definite matrices, whose spectral

norms are bounded by σ1(K̂
−1
φ) ≤ 1

c and σ1(
˜̂K
−1
φ) ≤ 1

c . Thus, using the matrix
inversion Lemma, we can show that the spectral norm of E2 is bounded by

σ1(E2) ≤
2N
c2 ε, (A.32)

138 appendix

since E2 = −K̂−1
φ E1

˜̂Kφ−1 .
Combining all of these bounds, we get

|εµ| =
∣∣∣∣∣k̂φ(t, T)TK̂−1

φ

(
y

F

)
−
(
k̂φ(t, T)− e1

)T
(
K̂−1
φ −E1

)(y

F

)∣∣∣∣∣
(A.33)

=

∣∣∣∣∣(eT
1 K̂

−1
φ + k̂φ(t, T)TE1 − eT

1E1

)(y

F

)∣∣∣∣∣ (A.34)

≤
√

2NR

(√
2N
c

ε +
ρ

l

√
2N2Nε +

√
2N2Nε2

)
(A.35)

≤ 10
N2Rρ

lc
ε, (A.36)

where we used the fact that

∣∣∣∣∣
∣∣∣∣∣
(
y

F

)∣∣∣∣∣
∣∣∣∣∣ ≤ √2NR.

Similarly, we get

|εµ′ | =
∣∣∣∣∣(eT

2 K̂
−1
φ + k̂′φ(t, T)TE1 − eT

2E1

)(y

F

)∣∣∣∣∣ (A.37)

≤
√

2NR

(√
2N
c

ε +
ρ

l2

√
2N4Nε +

√
2N2Nε2

)
(A.38)

≤ 14
N2Rρ

l2c
ε. (A.39)

Moreover,

|εΣ| = |k(T, T)− k̂φ(t, T)TK̂−1
φ k̂φ(t, T)− k̃(T, T) (A.40)

+ (k̂φ(t, T)− e1)
T(K̂−1

φ −E1)(k̂φ(t, T)− e1)| (A.41)

≤ ε +

∣∣∣∣−2eT
1

˜̂Kφ−1 k̂φ(t, T) + eT
1

˜̂K
−1
φ e1 − k̂φ(t, T)TE2k̂φ(t, T)

∣∣∣∣
(A.42)

≤ ε +
4Nρ

lc
ε +

2N
c

ε2 +
4N2ρ2

l2c2 ε (A.43)

≤ 14N2ρ2

l2c2 ε (A.44)

A.2 appendix to odin 139

and

|εΣ′ | ≤ ε +

∣∣∣∣−2eT
2

˜̂K
−1
φ k̂

′
φ(t, T) + eT

2
˜̂K
−1
φ e2 − k̂′φ(t, T)TE2k̂

′
φ(t, T)

∣∣∣∣ (A.45)

≤ ε +
8Nρ

l2c
ε +

2N
c

ε2 +
16N2ρ2

l4c2 ε (A.46)

≤ 27N2ρ2

l4c2 ε. (A.47)

Taking the maximum of the four bounds, we can observe that

|etot| := |max{eµ̃, eα̃, eµ̃′ , eα̃′}| ≤
27N2ρ2R

l4c2 ε. (A.48)

For any 0 < C < 1, we can choose M ∈N such that

M ≥ max
{

e
2l2 , log

(
270N2ρ3R

l8c2C

)}
. (A.49)

Then, choose the order of quadrature m according to M := m− 3. With this choice,
it holds that (e

4l2M

)M
≤ l8c2

270N2ρ3R
C (A.50)

=⇒ 2e
√

πρ

l4

(e
4l2M

)M
≤ l4c2

27N2ρ2R
C (A.51)

=⇒ ε ≤ l4c2

27N2ρ2R
C (A.52)

⇐⇒ 27N2ρ2R
l4c2 ε ≤ C, (A.53)

(A.54)

which concludes the proof of this theorem.

The above bound could be reformulated as m ≥ 12+max
{

e
2l2 , log

(
N2ρ3R
l8c2C

)}
.

Moreover, we assumed that R ≥ 1 and that c ≤ 1. If any of these condi-
tions is not met, then the bounds are still valid if we substitute these
quantities by 1 (the same holds also for ρ and l). Finally, we implic-
itly assumed that ε, the uniform upper bound of the approximation for
kφ,′ kφ, k′φ, k′′φ is smaller than 1. As seen in Section A.2.3, this happens

if m ≥ 3 + max
{

e
2l2 , log

(
10ρ

l4

)}
, a condition which is met if m ≥ 3 +

max
{

e
2l2 , log

(
270N2ρ3R

l8c2C

)}
.

140 appendix

a.2.6 Additional Empirical Evaluation GPR

a.2.6.1 Lotka Volterra

A.2 appendix to odin 141

a.2.6.2 Protein Transduction

142 appendix

Statewise tRMSE

x1 x2

0

0.02

0.04

0.06

0.08
AGM
RKG3
FGPFM
ODIN

x1 x2

0.0

0.2

RKG3
FGPFM
ODIN

x1 x2

0.00

0.20

0.40
AGM
RKG3
FGPFM
ODIN

(a) Lotka-Volterra

x1 x2

0.0

0.2

RKG3
FGPFM
ODIN

(b) FitzHugh-Nagumo

x1 x2 x2 x3 x5

0.00

0.05

0.10
AGM
RKG3
FGPGM
ODIN

x1 x2 x2 x3 x5

0.00

0.05

AGM
RKG3
FGPGM
ODIN

(c) Protein Transduction

Figure A.11: Statewise trajectory RMSE for all benchmark systems in the parame-
ter inference problem. For each pair of plots, the top shows the low
noise case with σ = 0.1 for LV, σ = 0.001 for PT and SNR = 100 for
FHN. The bottom shows the high noise case with σ = 0.5 for LV,
σ = 0.01 for PT and SNR = 10 for FHN.

A.2 appendix to odin 143

(a) k(r) (b) k′(r) (c) k′′(r)

Figure A.12: Comparing the maximum error of different feature expansions over
r ∈ [0, 1]. For the stochastic RFF and RFF-B, median, 12.5% and
87.5% quantiles over 100 random samples are shown, but barely
visible due to the exponential decay of the error of the QFF error.
As predicted by our theoretical analysis, the error is a bit higher for
the derivatives, but still decaying exponentially. In this plot, we set
l = 0.05.

(a) k(r) (b) k′(r) (c) k′′(r)

Figure A.13: Comparing the maximum error of different feature expansions over
r ∈ [0, 1]. For the stochastic RFF and RFF-B, median, 12.5% and
87.5% quantiles over 100 random samples are shown, but barely
visible due to the exponential decay of the error of the QFF error.
As predicted by our theoretical analysis, the error is a bit higher for
the derivatives, but still decaying exponentially. In this plot, we set
l = 0.5.

144 appendix

(a) µ0 (b) Σ0 (c) µ′0 (d) Σ′0

(e) µ1 (f) Σ1 (g) µ′1 (h) Σ′1

Figure A.14: Approximation error of the different feature approximations com-
pared to the accurate GP, evaluated at t = 1.75 for the Lotka Volterra
system with 1000 observations and σ2 = 0.1. For each feature, we
show the median as well as the 12.5% and 87.5% quantiles over 10

independent noise realizations, separately for each state dimension.

(a) µ0 (b) Σ0 (c) µ′0 (d) Σ′0

(e) µ1 (f) Σ1 (g) µ′1 (h) Σ′1

Figure A.15: Approximation error of the different feature approximations com-
pared to the accurate GP, evaluated at t = 1.75 for the Lotka Volterra
system with 1000 observations and σ2 = 0.5. For each feature, we
show the median as well as the 12.5% and 87.5% quantiles over 10

independent noise realizations, separately for each state dimension.

A.2 appendix to odin 145

(a) µ1 (b) Σ1 (c) µ′1 (d) Σ′1

(e) µ2 (f) Σ2 (g) µ′2 (h) Σ′2

(i) µ3 (j) Σ3 (k) µ′3 (l) Σ′3

(m) µ4 (n) Σ4 (o) µ′4 (p) Σ′4

(q) µ5 (r) Σ5 (s) µ′5 (t) Σ′5

Figure A.16: Approximation error of the different feature approximations com-
pared to the accurate GP, evaluated at t = 30 for the Protein Trans-
duction system with 1000 observations and σ2 = 0.0001. For each
feature, we show the median as well as the 12.5% and 87.5% quan-
tiles over 10 independent noise realizations, separately for each
state dimension.

146 appendix

(a) µ1 (b) Σ1 (c) µ′1 (d) Σ′1

(e) µ2 (f) Σ2 (g) µ′2 (h) Σ′2

(i) µ3 (j) Σ3 (k) µ′3 (l) Σ′3

(m) µ4 (n) Σ4 (o) µ′4 (p) Σ′4

(q) µ5 (r) Σ5 (s) µ′5 (t) Σ′5

Figure A.17: Approximation error of the different feature approximations com-
pared to the accurate GP, evaluated at t = 30 for the Protein Trans-
duction system with 1000 observations and σ2 = 0.01. For each
feature, we show the median as well as the 12.5% and 87.5% quan-
tiles over 10 independent noise realizations, separately for each
state dimension.

A.2 appendix to odin 147

a.2.6.3 Lorenz

(a) µ0 (b) Σ0 (c) µ′0 (d) Σ′0

(e) µ1 (f) Σ1 (g) µ′1 (h) Σ′1

Figure A.18: Approximation error of the different feature approximations com-
pared to the accurate GP, evaluated at t = 0.8 for the Lorenz system
with 1000 observations and an SNR of 100. For each feature, we
show the median as well as the 12.5% and 87.5% quantiles over 10

independent noise realizations, separately for each state dimension.

(a) µ0 (b) Σ0 (c) µ′0 (d) Σ′0

(e) µ1 (f) Σ1 (g) µ′1 (h) Σ′1

Figure A.19: Approximation error of the different feature approximations com-
pared to the accurate GP, evaluated at t = 0.8 for the Lorenz system
with 1000 observations and an SNR of 10. For each feature, we
show the median as well as the 12.5% and 87.5% quantiles over 10

independent noise realizations, separately for each state dimension.

148 appendix

(a) µ0 (b) Σ0 (c) µ′0 (d) Σ′0

(e) µ1 (f) Σ1 (g) µ′1 (h) Σ′1

Figure A.20: Approximation error of the different feature approximations com-
pared to the accurate GP, evaluated at t = 0.8 for the Lorenz system
with 1000 observations and an SNR of 5. For each feature, we
show the median as well as the 12.5% and 87.5% quantiles over 10

independent noise realizations, separately for each state dimension.

a.2.7 Risk Approximation Error Bounds

In this section, we will provide all necessary results to prove Theorem
4. We will start by introducing necessary definitions, after which we will
formulate and prove lemmas for all terms involved in the risk. Finally, we
will combine these lemmas to form the main proof of the theorem.

a.2.7.1 Definitions

Let

Rλγφ(x,θ,y) := xT(Cφ + λI)−1x (A.55)

+ (x− y)Tσ−2(x− y) (A.56)

+ (f −Dx)T(A+ γI)−1(f −Dx) (A.57)

be the original risk of ODIN, where all matrices are chosen as defined in
Section A.2.5.

A.2 appendix to odin 149

By writing C̃φ, Ã and D̃ for the QFF-approximated quantities as de-
scribed in Section A.2.5, we get the approximate risk function

R̃λγφ(x,θ) :=xT(C̃φ + λI)−1x (A.58)

+ (x− y)Tσ−2(x− y) (A.59)

+ (f − D̃x)T(Ã+ γI)−1(f − D̃x). (A.60)

Let
|K|F :=

√
tr(KKT) (A.61)

be the Frobenius norm of a matrix K. Furthermore, let

|K|max := max
i,j
|Kij| (A.62)

denote the max-norm of K and

σ1(K) := |K|2 (A.63)

denote the spectral norm of K, given by its largest singular value.

a.2.7.2 Intermediate Results

It is well-known that |Kx| ≤ σ1(K)|x| and that, for a N× N matrix K, we
have

σ1(K) ≤
√

∑ σ2
i (K) =

√
|K|2F ≤

√
N2|K|2max = N|K|max (A.64)

In particular, for an RBF kernel as we have chosen, it holds that

σ1(Cφ) ≤ ρN (A.65)

and
σ1(C

′
φ) ≤ ρN/l (A.66)

since for all x, it holds that xe−
x2
2 ≤ 1√

e ≤ 1.

Defining the error matrix E1 := E1(m) = C̃φ − Cφ, we know that

|E1|max ≤
√

π
2

1
mm (e

4l2)
m. Thus, for

a :=
e

4l2 (A.67)

we have
σ1(E1) ≤ 2N

(a
m

)m
. (A.68)

150 appendix

To avoid overly complicated notation, we shall assume that γ ≤ 1,λ ≤
1,ρ ≥ 1, l ≤ 1 (and specifically l ≤ e

4). If any of these assumptions is
violated, the corresponding parameter could be substituted by 1 in all final
bounds and our results would still be valid.

In our first lemma, we will bound the first term of the risk

Lemma 11 For some jitter λ > 0, consider the term xT(Cφ + λI)−1x approxi-

mated by xT(C̃φ + λI)−1x. Then for m ≥ M := 7 + max
{

e
2l2 , log

(
ρ2n3

λ2γl4

)}
,

it holds that∣∣∣xT(Cφ + λI)−1x− xT(C̃φ + λI)−1x
∣∣∣ ≤ ε1x

T(Cφ + λI)−1x (A.69)

where ε1 = 4N
λ (a

m)m.

Proof 7 Define K := Cφ + λI . Since Cφ is positive-definite and λ > 0,

σ1(K
−1) < 1

λ . Clearly, m ≥ max
{

e
2l2 , log

(
4N
λ

)}
, as m ≥ M. Thus, setting

E := E1, we have for any vector u with ||u||2 = 1∣∣∣∣∣∣(I +EK−1
)
u
∣∣∣∣∣∣ ≥ ||u||− ∣∣∣∣∣∣EK−1u

∣∣∣∣∣∣ ≥ 1−σ1(E)σ1(K
−1) ≥ 1− 2n

λ
(

a
m
)m ≥ 1

2
.

(A.70)
Thus, σ1(I +EK

−1) ≥ 1
2 , which implies σ1((I +EK

−1)−1) ≤ 2.
Since, σ1(K

−1(I+EK−1)−1EK−1) ≤ σ1(K
−1)2σ1((I+EK

−1)−1)σ1(E) ≤
4N
λ2 (

a
m)m, we have

σ1

(
(Cφ + λI)−1 − (C̃φ + λI)−1

)
≤ 4N

λ2

(a
m

)m
. (A.71)

Combining these inequalities, we finally get

||xT(Cφ + λI)−1x− xT(C̃φ + λI)−1x|| (A.72)

=
∣∣∣∣∣∣xTK−1(I +EK−1)−1EK−1x

∣∣∣∣∣∣ (A.73)

≤
∣∣∣∣∣∣xTK−

1
2

∣∣∣∣∣∣ σ1

(
K−

1
2 (I +EK−1)−1EK−

1
2

) ∣∣∣∣∣∣xTK−
1
2

∣∣∣∣∣∣
(A.74)

≤
∣∣∣∣∣∣xTK−

1
2

∣∣∣∣∣∣2 σ1(K
− 1

2)2σ1((I +EK
−1)−1)σ1(E (A.75)

≤ 4N
λ

(a
m

)m ∣∣∣∣∣∣xT(Cφ + λI)−1x
∣∣∣∣∣∣ . (A.76)

Before dealing with the third term, we introduce two lemmas providing
an upper bound for the spectral norm of the two error matrices

E2 = E2(m) := Ã−A (A.77)

A.2 appendix to odin 151

and
E3 = E3(m) := D̃−D. (A.78)

Lemma 12 Let m ≥ M := 7 + max
{

e
2l2 , log

(
ρ2 N3

λ2γl4

)}
. Then

σ1 (E2(m + 3)) ≤ 20
ρ2n3a2

λ2

(a
m

)m
. (A.79)

Proof 8 We have

E2 = C̃
′′
φ −C

′′
φ + ′C̃φ(C̃φ + λI)−1C̃ ′φ − ′Cφ(Cφ + λI)−1C ′φ, (A.80)

which we decompose by defining

E21 := C̃ ′φ −C ′φ, (A.81)

E22 := (C̃φ + λI)−1 − (Cφ + λI)−1, (A.82)

E23 := C̃
′′
φ −C

′′
φ. (A.83)

Since ||E21(m + 2)||max ≤ 16a
(a

m
)m, it holds that

σ1(E21(m + 3)) ≤ 16aN
(a

m

)m
. (A.84)

Moreover, since ||E23(m + 3)||max ≤ 32a2 (a
m
)m, it holds that

σ1(E23(m + 3)) = 32a2N
(a

m

)m
. (A.85)

Finally, as stated by Equation (A.71),

σ1(E22(m)) ≤ 4N
λ2

(a
m

)m
. (A.86)

Combining all of those, we get

σ1(E2(m + 3)) (A.87)

= σ1

(
E23 + (′Cφ +ET

21)((Cφ + λI)−1 +E22)(C
′
φ +E21)− ′Cφ(Cφ + λI)−1C ′φ

)
(A.88)

≤ σ1(E23) + 2σ1(
′Cφ)σ1((Cφ + λI)−1)σ1(E21) + σ1(E21)

2σ1((Cφ + λI)−1)
(A.89)

+ σ1(
′Cφ)

2σ1(E22) + 2σ1(E21)σ1(E22)σ1(
′Cφ) + σ1(E21)

2σ1(E22) (A.90)

≤ 20
ρ2N3a2

λ2

(a
m

)m
(A.91)

152 appendix

For the last inequality, we need the following facts: Since m > M, it holds that

σ1(E23) ≤ 32a2
(a

m

)m
N ≤ 1

2
ρ2N3a2

λ2

(a
m

)m
,

(A.92)

2σ1(
′Cφ)σ1((Cφ + λI)−1)σ1(E21) ≤ 32

ρa
lλ

(a
m

)m
N2 ≤ ρ2N3a2

λ2

(a
m

)m
,

(A.93)

σ1(E21)
2σ1((Cφ + λI)−1) ≤ 162 a2N2

λ
(

a
m
)2m ≤ 1

2
ρ2N3a2

λ2

(a
m

)m
,

(A.94)

σ1(
′Cφ)

2σ1(E22) ≤ 16
ρ2n3a

λ2

(a
m

)m
≤ 16

ρ2N3a2

λ2

(a
m

)m
,

(A.95)

2σ1(E21)σ1(E22)σ1(
′Cφ) ≤ 16a

(a
m

)m
N

4N
λ2

(a
m

)m Nρ

l
(A.96)

≤ 29 a2N2ρ2

λ2 (
a
m
)2m ≤ ρ2N3a2

λ2

(a
m

)m
,

(A.97)

σ1(E21)
2σ1(E22) ≤ 210 a2N3

λ2 (
a
m
)3m ≤ ρ2N3a2

λ2

(a
m

)m
.

(A.98)

Lemma 13 Let m ≥ M := 7 + max{ e
2l2 , log(ρ2 N3

λ2γl4)}. Then

σ1(E3(m + 3)) ≤ 10
N2ρa

λ2

(a
m

)m
(A.99)

Proof 9 We start by additively decomposing

E3 = ′C̃φ(C̃φ + λI)−1 − ′Cφ(Cφ + λI)−1 (A.100)

= ′CφE22 +E
T
21(Cφ + λI)−1 +ET

21E22 (A.101)

A.2 appendix to odin 153

and then bounding each summand individually, as m > M implies that

σ1(
′CφE22) ≤

4N2ρ

λ2l

(a
m

)m
≤ 8

N2ρa
λ2

(a
m

)m
, (A.102)

σ1(E
T
21(Cφ + λI)−1) ≤ 16

N
λ

a
(a

m

)m
≤ N2ρa

λ2

(a
m

)m
, (A.103)

σ(ET
21E22) ≤ 16Na

(a
m

)m 4N
λ2

(a
m

)m
= 64

N2a
λ2 (

a
m
)2m ≤ N2ρa

λ2

(a
m

)m
.

(A.104)

Thus, we have shown that σ1(E3) ≤ 10 N2ρa
λ2

(a
m
)m.

To deal with the third term, we define

T1 :=
∣∣∣∣∣∣(f − D̃x)T(Ã+ γI)−1(f − D̃x)− (f −Dx)T(Ã+ γI)−1(f −Dx)

∣∣∣∣∣∣ ,

(A.105)

T2 :=
∣∣∣∣∣∣(f −Dx)T(Ã+ γI)−1(f −Dx)− (f −Dx)T(A+ γI)−1(f −Dx)

∣∣∣∣∣∣ .

(A.106)

Using the triangle inequality, we can observe that∣∣∣∣∣∣(f − D̃x)T(Ã+ γI)−1(f − D̃x)− (f −Dx)T(A+ γI)−1(f −Dx)
∣∣∣∣∣∣ ≤ T1 + T2.

(A.107)

The following two lemmas bound T1 and T2, as required for the proof of
Theorem 4.

Lemma 14 Let m ≥ M := 7 + max
{

e
2l2 , log

(
ρ2n3

λ2γl4

)}
. Then, for a quadrature

scheme of order m + 3, it holds that

T2 ≤ ε32(f −Dx)T(A+ γI)−1(f −Dx), (A.108)

where

ε32 = 40
ρ2N3a2

λ2γ

(a
m

)m
. (A.109)

Proof 10 The proof of this lemma is identical to the proof of Lemma 11, using
A+ γI instead of Cφ + λI , E2 instead of E1 and (f −Dx) instead of x.

154 appendix

Lemma 15 Let m ≥ M := 7 + max
{

e
2l2 , log

(
ρ2n3

λ2γl4

)}
. Then, fora quadrature

scheme of order m + 3, it holds that

T1 ≤ ε31(f −Dx)T(A+ γI)−1(f −Dx) + ε31x
T(Cφ + λI)−1x (A.110)

where ε31 = 30 N
5
2 ρ

3
2 a

λ2γ
1
2

(a
m
)m.

Proof 11 We know that

σ1((Ã+ γI)−
1
2)σ1(E3)σ1((Cφ + λI)

1
2) ≤ 10

N2ρa
λ2

(a
m

)m
(

ρN + λ

γ

) 1
2

(A.111)

≤ 15
N

5
2 ρ

3
2 a

λ2γ
1
2

(a
m

)m
(A.112)

= ε31/2. (A.113)

Furthermore,

T1 =
∣∣∣∣∣∣2(E3x)

T(Ã+ γI)−1(f −Dx) + (E3x)
T(Ã+ γI)−1(E3x)

∣∣∣∣∣∣
(A.114)

≤ 2 ||E3x|| σ1

(
(Ã+ γI)−

1
2

) ∣∣∣∣∣∣(Ã+ γI)−
1
2 (f −Dx)

∣∣∣∣∣∣+ σ1

(
(Ã+ γI)−1

)
||E3x||2 .

(A.115)

For the second summand of Equation (A.115), observe that

||E3x|| =
∣∣∣∣∣∣E3(Cφ + λI)

1
2 (Cφ + λI)−

1
2x
∣∣∣∣∣∣ (A.116)

≤ σ1(E3)σ1

(
(Cφ + λI)

1
2

) ∣∣∣∣∣∣(Cφ + λI)−
1
2x
∣∣∣∣∣∣ (A.117)

implies

σ1

(
(Ã+ γI)−1

)
||E3x||2 (A.118)

≤ σ1

(
(Ã+ γI)−1

)
σ1 (E3)

2 σ1

(
(Cφ + λI)

1
2

)2 ∣∣∣∣∣∣(Cφ + λI)−
1
2x
∣∣∣∣∣∣2

(A.119)

≤
ε2

31
4

∣∣∣∣∣∣(Cφ + λI)−
1
2x
∣∣∣∣∣∣2 (A.120)

≤ ε31

2

∣∣∣∣∣∣(Cφ + λI)−
1
2x
∣∣∣∣∣∣2 . (A.121)

A.2 appendix to odin 155

For the first summand of Equation (A.115), observe that

2 ||E3x|| σ1

(
(Ã+ γI)−

1
2

) ∣∣∣∣∣∣(Ã+ γI)−
1
2 (f (x,θ)−Dx)

∣∣∣∣∣∣
= 2σ1

(
(Ã+ γI)−

1
2

) ∣∣∣∣∣∣E3(Cφ + λI)
1
2 (Cφ + λI)−

1
2x
∣∣∣∣∣∣ ∣∣∣∣∣∣(Ã+ γI)−

1
2 (f −Dx)

∣∣∣∣∣∣
≤ 2σ1

(
(Ã+ γI)−

1
2

)
σ1 (E3) σ1

(
(Cφ + λI)

1
2

) ∣∣∣∣∣∣(Cφ + λI)−
1
2x
∣∣∣∣∣∣ ∣∣∣∣∣∣(Ã+ γI)−

1
2 (f −Dx)

∣∣∣∣∣∣
≤ ε31

2

(∣∣∣∣∣∣(Cφ + λI)−
1
2x
∣∣∣∣∣∣2 + ∣∣∣∣∣∣(Ã+ γI)−

1
2 (f −Dx)

∣∣∣∣∣∣2)
≤ ε31

2

(∣∣∣∣∣∣(Cφ + λI)−
1
2x
∣∣∣∣∣∣2 + (1 + ε32)

∣∣∣∣∣∣(A+ γI)−
1
2 (f −Dx)

∣∣∣∣∣∣2)
≤ ε31

2

∣∣∣∣∣∣(Cφ + λI)−
1
2x
∣∣∣∣∣∣2 + ε31

∣∣∣∣∣∣(A+ γI)−
1
2 (f −Dx)

∣∣∣∣∣∣2
where the second to last inequality comes from Equation (A.108), while the last
follows from the fact that ε32 ≤ 1 for m ≥ M, concluding the proof of this lemma.

a.2.7.3 Proof of Theorem 4

Combining the results of Lemmas 11, 15and 14, proving Theorem 4 is
straight forward.

Consider m ≥ M := 7 + max
{

e
2l2 , log

(
ρ2 N3

λ2γl4

)}
and let m′ = m + 3.

Observing the facts that that ε1 ≤ ε32 and ε31 ≤ ε32, we get∣∣Rλγφ(x,θ)− R̃λγφ(x,θ)
∣∣

Rλγφ(x,θ)
≤ 2ε32 (A.122)

= 80
ρ2N3a2

λ2γ

(a
m

)m
(A.123)

≤ 50
ρ2N3

λ2γl4

(a
m

)m
. (A.124)

In order to make that smaller than ε it suffices m ≥ max
{

e
2l2 , log

(
50 ρ2 N3

λ2γl4ε

)}
.

Thus, we retrieve the desired error bounds for a quadrature scheme of order
m′, where

m′ = 10 + max
{

e
2l2 , log

(
ρ2N3

λ2γl4ε

)}
. (A.125)

156 appendix

a.2.8 Experimental Setups

Here, we will give a brief overview of the experimental setups we used
throughout this paper.

a.2.8.1 Basic Definitions

The trajectory RMSE has proven to be an efficient metric to evaluate the
quality of a parameter inference scheme, especially in the context of non-
identifiable systems. Here, we restate its definition as used by Wenk et al.
[Wen+20].

Definition 2 (Trajectory RMSE) Let θ̂ be the parameters estimated by an al-
gorithm. Let t be the vector collecting the observation times. Define x̃(t) as the
trajectory one obtains by integrating the ODEs using the estimated parameters,
but the true initial value, i.e.

x̃(0) = x∗(0) (A.126)

x̃(t) =
∫ t

0
f (x̃(s), θ̂)ds (A.127)

and define x̃ element-wise as its evaluation at observation times t, i.e. x̃i = x̃(ti).
The trajectory RMSE is then defined as

tRMSE :=
1√
N
||x̃− x||2 (A.128)

where ||.||2 denotes the standard Euclidean 2-norm.

Additionally, we would like to restate the definition of the signal-to-noise
ratio, as it was used in our work to create the observation noise for the
Quadrocopter system.

Definition 3 (Signal to Noise Ratio) Let x(t) be a time-continuous signal for
a closed time interval. Let σ2

x denote its variance across time. Furthermore, let σ2

be the variance of an additive, Gaussian noise signal. Then we define the SNR as
the ration of these two variances, i.e.

SNR =
σ2

x
σ2 . (A.129)

A.2 appendix to odin 157

a.2.8.2 Lotka Volterra

ẋ1(t) = θ1x1(t)− θ2x1(t)x2(t)

ẋ2(t) = −θ3x2(t) + θ4x1(t)x2(t). (A.130)

The Lotka Volterra system [Lot32] has become a widely used benchmarking
system. Due to its locally linear dynamics [GBB17] and relatively tame
trajectories, it is a system many algorithms can solve. We follow the standard
setting in the literature and use θ = [2, 1, 4, 1] and x(0) = [5, 3] to generate
trajectories over the time interval [0, 2]. The dynamics are shown in Equation
(A.130).

a.2.8.3 Protein Transduction

Ṡ = −θ1S− θ2SR + θ3RS

ḋS = θ1S

Ṙ = −θ2SR + θ3RS + θ5
Rpp

θ6 + Rpp

ṘS = θ2SR− θ3RS − θ4RS

Ṙpp = θ4RS − θ5
Rpp

θ6 + Rpp
(A.131)

A more challenging system was introduced by Vyshemirsky and Girolami
[VG07]. Its nonlinear terms and non-stationarity introduce interesting chal-
lenges for many collocation methods. We follow the standard setting in the
literature and use θ = [0.07, 0.6, 0.05, 0.3, 0.017, 0.3] and x(0) = [1, 0, 1, 0, 0],
but change the time interval to generate trajectories over the time interval
[0, 50], since they stay pretty much constant for t > 50. The dynamics are
shown in Equation (A.131).

a.2.8.4 Lorenz 63

ẋ = θ0(y− x) (A.132)

ẏ = x(θ1 − z)− y (A.133)

ż = xy− θ2z (A.134)

The Lorenz 63 system was introduced by Lorenz [Lor63] to model atmo-
spheric flows. It is an optimal test bed for parameter inference algorithms,

158 appendix

as it exhibits chaotic behavior for the parameter settings we chose. Working
with chaotic dynamics is notoriously challenging due to high sensitivity
to parameter changes and the presence of many local optima. We follow
standard literature and use θ = [10, 28, 8/3] and x(0) = [1, 1, 1] to gener-
ate trajectories over the time interval [0, 1]. The dynamics are shown in
Equation (A.134).

a.2.8.5 Quadrocopter

ẋ0 = −g sin(x7) + x5x1 − x4x2

ẋ1 = g sin(x6) cos(x7)− x0x5 + x2x3

ẋ2 = −u0 + u1 + u2 + u3

θ0
+ g cos(x6) cos(x7) + x0x4 − θ4x1

ẋ3 =
1
θ1
(θ5(−u0 + u1 + u2 − u3)) + (θ2 − θ3(θ2 + θ1)))x4x5)

ẋ4 =
1
θ2
(θ4(u0 − u1 + u3 − u4) + (θ3(θ2 + θ1)− θ1)x3x5)

ẋ5 =
(θ1 − θ2)x3x4

θ3(θ2 + θ1)

ẋ6 = x3 + (x4 sin(x6) +
x5 cos(x6) sin(x7)

cos(x7)

ẋ7 = x4 cos(x6)− x5 sin(x6)

ẋ8 =
x4 sin(x6) + x5 cos(x6)

cos(x7)

ẋ9 = cos(x7) cos(x8)x0 + (− cos(x6) sin(x8) + sin(x6) sin(x7) cos(x8))x1

+ (sin(x6) sin(x8) + cos(x6) sin(x7) cos(x8))x2

ẋ10 = cos(x7) sin(x8)x0 + (cos(x6) cos(x8) + sin(x6) sin(x7) sin(x8))x1

+ (cos(x6) sin(x7) sin(x8)− sin(x6) cos(x8))x2

ẋ11 = sin(x7)x0 − sin(x6) cos(x7)x1 − cos(x6) cos(x7)x2 (A.135)

As an ultimate benchmark, we introduce a parametric model describ-
ing the dynamics of a 6DOF quadrocopter, shown in Equation (A.135).
Its strongly nonlinear dynamics and the presence of inputs make it a
formidable challenge. The states of this system are representing the linear
velocities (x0, x1, x2), the angular velocities (x3, x4, x5), the angles (x6, x7, x8)
and the position (x9, x10, x11) of the quadrocopter. The four inputs rep-
resent the forces applied at the four different propellers. While in prin-

A.2 appendix to odin 159

ciple any input commands could be incorporated, we keep the inputs
constant at u = [0.248, 0.2475, 0.24775, 0.24775]. This input leads to inter-
esting nonstationary climbing, pitching and rolling behavior. We use θ =
[0.1, 0.00062, 0.00113, 0.9, 0.114, 0.0825, 9.85] and xi(0) = 0 for i = 0 . . . 11 to
generate trajectories over the time interval [0, 15].

160 appendix

a.2.9 Additional Empirical Evaluation SLEIPNIR

a.2.10 tRMSE vs Features

a.2.10.1 Lotka Volterra

(a) 100 obs (b) 200 obs (c) 500 obs

(d) 1000 obs (e) 2000 obs (f) 5000 obs

Figure A.21: tRMSE vs features for the Lotka Volterra system using additive
observation noise with σ2 = 0.1.

A.2 appendix to odin 161

(a) 100 obs (b) 200 obs (c) 500 obs

(d) 1000 obs (e) 2000 obs (f) 5000 obs

Figure A.22: tRMSE vs features for the Lotka Volterra system using additive
observation noise with σ2 = 0.5.

a.2.10.2 Protein Transduction

(a) 500 obs (b) 1000 obs (c) 2000 obs (d) 3000 obs

Figure A.23: tRMSE vs features for the Protein Transduction system using addi-
tive observation noise with σ2 = 0.01.

(a) 500 obs (b) 1000 obs (c) 2000 obs (d) 3000 obs

Figure A.24: tRMSE vs features for the Protein Transduction system using addi-
tive observation noise with σ2 = 0.0001.

162 appendix

a.2.10.3 Lorenz

(a) 100 obs (b) 200 obs (c) 500 obs

(d) 1000 obs (e) 2000 obs (f) 5000 obs

Figure A.25: tRMSE vs features for the Lorenz system with noise created using a
signal-to-noise ratio of 5.

(a) 100 obs (b) 200 obs (c) 500 obs

(d) 1000 obs (e) 2000 obs (f) 5000 obs

Figure A.26: tRMSE vs features for the Lorenz system with noise created using a
signal-to-noise ratio of 10.

A.2 appendix to odin 163

(a) 100 obs (b) 200 obs (c) 500 obs

(d) 1000 obs (e) 2000 obs (f) 5000 obs

Figure A.27: tRMSE vs features for the Lorenz system with noise created using a
signal-to-noise ratio of 100.

164 appendix

a.2.11 Learning Curves

a.2.11.1 Lotka Volterra

(a) 20 features (b) 25 features (c) 30 features

(d) 35 features (e) 40 features

Figure A.28: tRMSE vs number of observations for the Lotka Volterra system
with additive noise with σ2 = 0.1.

(a) 20 features (b) 25 features (c) 30 features

(d) 30 features (e) 35 features

Figure A.29: tRMSE vs number of observations for the Lotka Volterra system
with additive noise with σ2 = 0.5.

A.2 appendix to odin 165

a.2.11.2 Protein Transduction

(a) 100 features (b) 200 features (c) 300 features

(d) 400 features (e) 500 features

Figure A.30: tRMSE vs number of observations for the Protein Transduction
system using additive Gaussian noise with σ2 = 0.01.

(a) 100 features (b) 200 features (c) 300 features

(d) 400 features (e) 500 features

Figure A.31: tRMSE vs number of observations for the Protein Transduction
system using additive Gaussian noise with σ2 = 0.0001.

166 appendix

a.2.11.3 Lorenz

(a) 50 features (b) 80 features (c) 100 features

(d) 120 features (e) 150 features (f) 200 features

Figure A.32: tRMSE vs number of observations for the Lorenz system with noise
created using a signal-to-noise ratio of 5.

(a) 50 features (b) 80 features (c) 100 features

(d) 120 features (e) 150 features (f) 200 features

Figure A.33: tRMSE vs number of observations for the Lorenz system with noise
created using a signal-to-noise ratio of 10.

A.2 appendix to odin 167

(a) 50 features (b) 80 features (c) 100 features

(d) 120 features (e) 150 features (f) 200 features

Figure A.34: tRMSE vs number of observations for the Lorenz system with noise
created using a signal-to-noise ratio of 100.

168 appendix

a.2.11.4 Run Time

(a) LV (b) PT (c) Lorenz

Figure A.35: Run time per iteration in ms vs number of features for different
numbers of observations. As expected from theoretical analysis, the
run time per iteration scales approximately cubic.

(a) LV (b) PT (c) Lorenz

Figure A.36: Run time per iteration in ms vs number of observations for different
numbers of Fourier features. As expected from theoretical analysis,
the run time per iteration scales approximately linear, even though
there is a strong bias term.

A.3 appendix to dgm 169

a.3 appendix to dgm

170 appendix

a.3.1 Dataset description

In this section, we describe the datasets we use in our experiments.

a.3.1.1 Lotka Volterra

The two dimensional Lotka Volterra system is governed by the parametric
differential equations

dx
dt

= αx− βxy

dy
dt

= δxy− γy,

where we selected (α, β, γ, δ) = (1, 1, 1, 1). These equations were numeri-
cally integrated to obtain a ground truth, where the initial conditions and
observation times depend on the dataset. All observations were then created
by adding additive, i.i.d. noise, distributed according to a normal distri-
bution N

(
0, 0.12). This is the same system that was already introduced

in Section 2.7, but with different ground truth settings to obtain a slightly
more interesting trajectory shape.

LV 1 consists of one trajectory starting from initial condition (1, 2). The
trajectory is observed at 100 equidistant time points from the interval (0, 10).

LV 100 consists of 100 trajectories. Initial conditions for these trajectories
are located on a grid, i.e.,{(

1
2
+

i
9

,
1
2
+

j
9

) ∣∣∣i ∈ {0, . . . , 9}, j ∈ {0, . . . , 9}
}

.

Each trajectory is then observed at 5 equidistant time points from the
interval (0, 10), which leads to a total of 500 observations.

A.3 appendix to dgm 171

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
x 0

(t)

x 1
(t)

0 2 4 6 8 10
t

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

x 0
(t)

0 2 4 6 8 10
t

x 1
(t)

Observations
True state
All trajectories

Figure A.37: The first row represents the true states and all observations of LV
1 with random seed 0. In the second row we plot all ground truth
trajectories from the dataset LV 100. One particular trajectory is
highlighted in black, together with the corresponding observations
of that trajectory (red dots).

To test generalization, we created 10 new trajectories. The initial condi-
tions of these trajectories were obtained by sampling uniformly at random
on [0.5, 1.5]2. To evaluate the log likelihood, we used 100 equidistant time
points from the interval (0, 10).

172 appendix

a.3.1.2 Lorenz

The 3 dimensional, chaotic Lorenz system is governed by the parametric
differential equations

dx
dt

= σ(y− x)

dy
dt

= x(ρ− z)− y

dz
dt

= xy− τy,

where we selected (σ, ρ, τ) = (10, 28, 8/3). These equations were numer-
ically integrated to obtain a ground truth, where the initial conditions
and observation times depend on the dataset. All observations were then
created by adding additive, i.i.d. noise, distributed according to a normal
distribution N (0, 1). This is a system similar to the Lorenz system we used
in the scaling experiments in Section 3.3.3, but fixed to three dimensions
and with a different parameter structure. However, they are closely related.

LO 1 consists of one trajectory starting from initial condition (−2.5, 2.5, 2.5).
The trajectory is observed at 100 equidistant time points from the interval
(0, 1).

LO 125 consists of 125 trajectories. Initial conditions for these trajectories
are located on a grid, i.e.,{(
−5 +

5i
2

,−5 +
5j
2

,−5 +
5k
2

) ∣∣∣i ∈ {0, . . . , 4}, j ∈ {0, . . . , 4}, k ∈ {0, . . . , 4}
}

.

Each trajectory is then observed on 10 equidistant time points from the
interval (0, 1), which leads to a total of 1250 observations.

To test generalization, we created 10 new trajectories. The initial condi-
tions of these trajectories were obtained by sampling uniformly at random
on [−5, 5]3. To evaluate the log likelihood, we used 100 equidistant time
points from the interval (0, 1).

A.3 appendix to dgm 173

20

15

10

5

0

5

10

x 0
(t)

25

20

15

10

5

0

5

10

15

x 1
(t)

0

10

20

30

40

50

x 2
(t)

0.0 0.2 0.4 0.6 0.8 1.0
t

20

10

0

10

20

x 0
(t)

0.0 0.2 0.4 0.6 0.8 1.0
t

30

20

10

0

10

20

30
x 1

(t)

0.0 0.2 0.4 0.6 0.8 1.0
t

0

10

20

30

40

50

x 2
(t)

Observations
True state
All trajectories

Figure A.38: The first row represents the true states and all observations of LO
1 with random seed 0. In the second row we plot all ground truth
trajectories from the dataset LO 125. One particular trajectory is
highlighted in black, together with the corresponding observations
of that trajectory (red dots).

a.3.1.3 Double Pendulum

The 4 dimensional Double pendulum system is governed by the parametric
differential equations where we selected (g, m, l) = (9.81, 1, 1). In these
equations, θ1 and θ2 represent the offset angles, while pθ1 and pθ1 represent
the momentum of the upper and lower pendulum. These equations were
numerically integrated to obtain a ground truth, where the initial conditions
and observation times depend on the dataset.

θ̇1 =
6

ml2
2pθ1 − 3 cos(θ1 − θ2)pθ2

16− 9 cos2(θ1 − θ2)

θ̇2 =
6

ml2
8pθ2 − 3 cos(θ1 − θ2)pθ1

16− 9 cos2(θ1 − θ2)
.

ṗθ1 = − 1
2 ml2

(
θ̇1θ̇2 sin(θ1 − θ2) + 3

g
l

sin θ1

)
ṗθ2 = − 1

2 ml2
(
−θ̇1θ̇2 sin(θ1 − θ2) +

g
l

sin θ2

)
,

174 appendix

Figure A.39: Double Pen-
dulum where
both rods have
equal length
and mass.

All observations were then created by adding
additive, i.i.d. noise, distributed according to a
normal distribution N

(
0, 0.12).

DP 1 consist of one trajectory starting from
initial condition (−π/6,−π/6, 0, 0). The trajec-
tory is observed at 100 equidistant time points
from the interval (0, 1).

DP 100 consists of 100 trajectories. Initial con-
ditions for these trajectories are located on a
grid, i.e.,{(
−π

6
+

πi
27

,−π

6
+

π j
27

, 0, 0
) ∣∣∣i ∈ {0, . . . , 9}, j ∈ {0, . . . , 9}

}
.

Each trajectory is then observed at 5 equidistant time points from the
interval (0, 1), which leads to a total of 500 observations.

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

x 0
(t)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

x 1
(t)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x 2
(t)

0.25

0.00

0.25

0.50

0.75

1.00

1.25

x 3
(t)

0.0 0.2 0.4 0.6 0.8 1.0
0.6

0.4

0.2

0.0

0.2

0.4

0.6

x 0
(t)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.6

0.4

0.2

0.0

0.2

0.4

0.6

x 1
(t)

0.0 0.2 0.4 0.6 0.8 1.0
t

3

2

1

0

1

2

3

x 2
(t)

0.0 0.2 0.4 0.6 0.8 1.0
t

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x 3
(t)

Observations
True state
All trajectories

Figure A.40: The first row represents the true states and all observations of DP
1 with random seed 0. In the second row we plot all ground truth
trajectories from the dataset DP 100. One particular trajectory is
highlighted in black, together with the corresponding observations
of that trajectory (red dots).

To test generalization, we created 10 new trajectories. The initial condi-
tions of these trajectories were obtained by sampling uniformly at random
on [−π

6 , π
6]

2 × {0}2. To evaluate the log likelihood, we used 100 equidistant
time points from the interval (0, 1).

A.3 appendix to dgm 175

a.3.1.4 Quadrocopter

The 12 dimensional Quadrocopter system is governed by the parametric
differential equations

u̇ = −g sin(θ) + rv− qw

v̇ = g sin(φ) cos(θ)− ru + pw

ẇ = −Fz/m + g cos(φ) cos(θ) + qu− pv

ṗ =
(

L + (Iyy − Izz)qr
)

/Ixx

q̇ = (M + (Izz − Ixx)pr) /Iyy

ṙ = (Ixx − Iyy)pq/Izz

φ̇ = p + (q sin(φ) + r cos(φ)) tan(θ)

θ̇ = q cos(φ)− r sin(φ)

ψ̇ = (q sin(φ) + r cos(φ)) sec(θ)

ẋ = cos(θ) cos(ψ)u + (− cos(φ) sin(ψ) + sin(φ) sin(θ) cos(ψ))v+

+ (sin(φ) sin(ψ) + cos(φ) sin(θ) cos(φ))w

ẏ = cos(θ) sin(ψ)u + (cos(φ) cos(ψ) + sin(φ) sin(θ) sin(ψ))v+

+ (− sin(φ) cos(ψ) + cos(φ) sin(θ) sin(φ))w

ż = sin(θ)u− sin(φ) cos(θ)v− cos(φ) cos(θ)w,

where

Fz = F1 + F2 + F3 + F4

L = (F2 + F3)dy − (F1 + F4)dx

M = (F1 + F3)dx − (F2 + F4)dx.

We fixed the input control forces to (F1, F2, F3, F4) = (0.496, 0.495, 0.4955, 0.4955)
(not to be inferred) and selected (m, Ixx, Iyy, Izz, dx, dy, g) = (0.1, 0.62, 1.13, 0.9, 0.114, 0.0825, 9.85).
These equations were numerically integrated to obtain a ground truth,
where the initial conditions and observation times depend on the dataset.
All observations were then created by adding additive, i.i.d. noise, dis-
tributed according to a normal distribution N (0, Σ), where

Σ = diag(1, 1, 1, 0.1, 0.1, 0.1, 1, 0.1, 0.1, 5, 5, 5).

QU 1 consists of one trajectory starting from initial condition

x(0) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). (A.136)

176 appendix

The trajectory is observed at 100 equidistant time points from the interval
(0, 10).

QU 64 consists of 64 trajectories. Initial conditions for these trajectories
are located on a grid, i.e.,{(

0, 0, 0, 0, 0, 0,− π

18
+

πi
27

,− π

18
+

π j
27

,− π

18
+

πk
27

, 0, 0, 0
) ∣∣∣(i, j, k) ∈ {0, . . . , 4}3

}
.

Each trajectory is then observed at 15 equidistant time points from the
interval (0, 10), which leads to a total of 960 observations.

0
10
20
30
40
50
60

x 0
(t)

20
10

0
10
20
30
40
50

x 1
(t)

60

40

20

0

20

x 2
(t)

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

x 3
(t)

0.6

0.4

0.2

0.0

0.2

0.4

x 4
(t)

0.1
0.0
0.1
0.2
0.3
0.4

x 5
(t)

8

6

4

2

0
x 6

(t)

0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8

x 7
(t)

0 2 4 6 8 10
t

1.50
1.25
1.00
0.75
0.50
0.25
0.00

x 8
(t)

0 2 4 6 8 10
t

100
80
60
40
20

0

x 9
(t)

0 2 4 6 8 10
t

350
300
250
200
150
100

50
0

x 1
0(

t)

0 2 4 6 8 10
t

40
20

0
20
40
60
80

100

x 1
1(

t)

Observations
True state

Figure A.41: Visualization showing the true states and all observations of QU 1

with random seed 0.

0
10
20
30
40
50
60
70
80

x 0
(t)

40

20

0

20

40

60

x 1
(t)

80
60
40
20

0
20
40

x 2
(t)

1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00

x 3
(t)

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

x 4
(t)

0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8

x 5
(t)

7.5
5.0
2.5
0.0
2.5
5.0
7.5

x 6
(t)

1.0

0.5

0.0

0.5

1.0

x 7
(t)

0 2 4 6 8 10
t

1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.25

x 8
(t)

0 2 4 6 8 10
t

200
150
100

50
0

50

x 9
(t)

0 2 4 6 8 10
t

400

300

200

100

0

x 1
0(

t)

0 2 4 6 8 10
t

100

50

0

50

100

x 1
1(

t)

Observations
True state
All trajectories

Figure A.42: Visualization showing all ground truth trajectories from the dataset
QU 64. One particular trajectory is highlighted in black, together
with the corresponding observations of that trajectory (red dots).

To test generalization, we created 10 new trajectories. The initial condi-
tions of these trajectories were obtained by sampling uniformly at random

A.3 appendix to dgm 177

on {0}6 × [− π
18 , π

18]
2 × {0}3. To evaluate the log likelihood, we used 100

equidistant time points from the interval (0, 10).

178 appendix

a.3.2 Implementation details of DGM

In this section we discuss all implementation details of DGM. As described
in Section 4.2, DGM consists of a smoother and a dynamics model. At
training time, the dynamics model is then used to regularize the smoother
via the squared type-2 Wasserstein distance.

a.3.2.1 Dynamics model

The role of the dynamics model is to map every state x to a distribution over
derivatives, which we decide to parameterize as N (f (x,ψ), ΣD(x,ψ)). In
the paper we focused in the case where we do not have any prior knowledge
about the dynamics and we model both f and ΣD with neural network.
Nevertheless, if some prior knowledge about the dynamics f is available, it
can be used to inform the mean function f (potentially also covariance ΣD)
appropriately. In particular, if the parametric form of the dynamics is known,
we can use them as a direct substitute for f . This is the special case of ODE-
parameter inference, which we investigate empirically in Appendix A.3.4.
Next we present implementation details of both non-parametric (i.e. f given
by a neural network) and parametric (i.e. f given by some parametric form)
dynamics models.

non-parametric dynamics In the non-parametric case, we model
both the dynamics’ mean function µD and covariance function ΣD with
a neural networks. Across all experiments, we choose a simple 3-layer
neural network with 20, 20 and 2n nodes, where n denotes the number
of state dimensions of a specific system. After each layer, we apply the
sigmoid activation function, except for the last one. The first n output nodes
represent the mean function. Here, no activation function is necessary for
the last layer. The second n output nodes are used to construct the diagonal
covariance ΣD. To ensure positivity, we use x 7→ log(1 + exp(x))2 as an
activation function on the last n nodes of the last layer.

parametric dynamics In the parametric case, we model µD using
the parametric form of the vector field. Across all experiments, we choose a
simple 3-layer neural network with 10, 10 and n nodes, where n denotes
the number of state dimensions of a specific system. After each lyer, we
apply the sigmoid activation function, except for the last one. The n nodes
are then used to construct the diagonal covariance ΣD. To ensure positivity,
we use x 7→ log(1 + exp(x))2 as an activation function on the last layer.

A.3 appendix to dgm 179

a.3.2.2 Smoother model

The role of the smoother model is to map every tuple (x(0), t) consisting
of initial condition x(0) and time t to x(t), which is the state at time t of a
trajectory starting at x(0) at time 0. In the paper, we model the smoother
using a Gaussian process with a deep mean function µ and a deep feature
map φ. Both of them take as input the tuple (x(0), t). This tuple is then
mapped through a dense neural network we call core. For all experiments,
we chose a core with two layers, with 10 and 5 hidden nodes and sigmoid
activation on both. The output of the core is then fed into two linear heads.
The head for µ builds a linear combination of the core’s output to obtain a
vector of the same shape as x(t). The head for φ builds a linear combination
of the core’s output to obtain a vector of length 3, the so called features.
These features are then used as inputs to a standard RBF kernel with ARD
[Ras04b]. For each state dimension, we keep a separate φ-head, as well
as separate kernel hyperparameters. However, the core is shared across
dimensions, while µ is directly introduced as multidimensional.

In the paper, we set the variance of the RBF to 1 and learned the length-
scales together with all other hyperparameters. However, due to the ex-
pressiveness of the neural network, the lengthscales are redundant and
could easily be incorporated into the linear combination performed by
the head. Thus, in the scaling experiments, we fix the lengthscale to one
and approximate the RBF kernel with a feature expansion, as detailed in
Section 4.4.

a.3.2.3 Evaluation metric

To evaluate the quality of our models’ predictions, we use the log likelihood.
To obtain the log likelihood, we first use the model to predict the mean
and standard deviation at 100 equidistant times. Then we calculate the
log likelihood of the ground truth for every predicted point. We take the
mean over dimensions, over times, and over trajectories. When reporting
the training log likelihood, as done e.g. in Table 4.1, we use the training
trajectories for evaluation. When reporting the generalization log likelihood,
as done e.g. in Table 4.2, we use 10 unseen trajectories. This evaluation is
then repeated for 10 different , meaning that we retrain the model 10 times
on a data set with the same ground truth, but a different noise realization.
We then report the mean and standard deviation of the log likelihood across
these repetitions.

180 appendix

weight decay To prevent overfitting, we use weight decay on the
parameters of both the dynamics and the smoother neural networks. We
denote by wdD the weight decay parameter of the dynamics model, and
wdS the weight decay parameters of the smoother model. While we keep
the wdS constant during all three phases of training, we gradually increase
wdD from 0 to its final value, which is the same as wdS. The increase follows
a polynomial schedule with power 0.8.

a.3.2.4 Training details

The training of DGM, i.e. optimizing Equation (4.3), can be split into three
distinct phases: transition, training, and fine-tuning. In the transition phase we
gradually increase the value of both λ and the weight decay regularization
parameter of the dynamics (wdD) from 0 to its final value. When these
parameters reach their final value, we reach the end of the transition phase
and start the training phase. In this phase, all optimization parameters
are left constant. It stops when the last 1000 steps are reached. Then, the
fine-tune phase starts, where we decrease learning rate to 0.01. The gradual
increase of λ and wdD follows polynomial schedule with power 0.8. As an
optimizer, we use Adam.

supporting points The selection of the supporting points in T is dif-
ferent for data sets consisting of one or multiple trajectories. If there is only
one trajectory in the dataset, we match the derivatives at the same places
where we observe the state. If there are multiple trajectories, we match the
derivatives at 30 equidistant time points on each training trajectory.

selection of λ The loss of Equation (4.3) is a multi-objective optimiza-
tion problem with a trade-off parameter λ. Intuitively, if λ is too small, the
model only tries to fit the data and neglects the dynamics. On the other
hand, with too large λ, the model neglects the data fit and only cares about
the dynamics. In Figure A.43 we show a plot of log likelihood score on
the 10 test trajectories of the LV 100 dataset with varying λ. We train the
model for λ · |Ẋ |/|D| ∈ {2i|i = −20, . . . , 6}. To estimate the robustness of
the experiment, we show the mean and standard deviation over 5 different
noise realizations.

parameter selection To search for the best performing parameters
we performed sweep over learning rate value lr in the transition and training

A.3 appendix to dgm 181

10 5 10 3 10 1 101

| |
| |

100

80

60

40

20

0

Lo
g

Lik
el

ih
oo

d

10 1 100 101

| |
| |

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Figure A.43: If λ is too small, the dynamics model does not regularize the
smoother sufficiently, the model overfits to the data and the test log
likelihood score is worse. If λ is too large, the observation term gets
dominated, the model underfits and the log likelihood score on the
test data is worse. Empirically, we found that we achieve the best
log likelihood on the test data with λ = |D|/|Ẋ |.

phase and over the weight decay parameters wdS. For lr, we considered the
values 0.02, 0.05 and 0.1. For wdS, we considered 0.1, 0.5 and 1.0.

training time We did not optimize our hyperparameters and code
for training time. Nevertheless, we report the length of each phase and the
total time in the Table A.1.

182 appendix

Transition Training Fine-Tuning Time[s]

LV 1 1000 0 1000 329± 15

LO 1 1000 0 1000 399± 6

DP 1 1000 1000 1000 535± 42

QU 1 1000 2000 1000 1121± 41

LV 100 1000 0 1000 408± 8

LO 125 1000 0 1000 753± 8

DP 100 5000 4000 1000 2988± 261

QU 64 6000 3000 1000 8387± 36

Table A.1: Number of steps for each training phase and total training time for
different datasets. For the times, we report mean ± standard deviation
over 10 different random seeds.

a.3.3 Bayesian NODE training

In this section, we describe the specifics of the experiments and the im-
plementation of SGLD and SGHMC, the Bayesian integration benchmarks
used in the paper. For all experiments, we use a slightly changed version of
the code provided by Dandekar et al. [Dan+21], which is written in Julia
[Bez+17].

a.3.3.1 Effects of Overparametrization

Here we provide further details regarding the experiment presented in
Figure 4.2. For the ground truth dynamics ẋ = Ax, we selected the matrix
A such that it has 1 stable and 2 marginally stable modes. The eigenvalue of
the stable mode is selected uniformly at random from [−0.5,−0.1]. To create
marginally stable modes, we create a blockC ∈ R2×2, where its components
are sampled i.i.d. uniformly at random from [0, 1]. The marginally stable
part is then created as A as π

2ρ(C−C>)
(
C −C>

)
, where ρ(.) denotes the

spectral radius. Using the spectral radius in the normalization ensures
that the period of the mariginally stable mode is bounded with π/2. We
selected the initial condition for the trajectory uniformly at random from
the unit sphere in R3. We evolved the trajectory on the time interval (0, 10)
and observed 100 noisy observations, where every ground truth value

A.3 appendix to dgm 183

was perturbed with additive, independent Gaussian noise, drawn from
N
(
0, 0.12).

While DGM performed without any pre-training, we observed that both
SGLD and SGHMC struggle without narrow priors. To obtain reasonable
priors, we followed the following procedure:

First, we pretrain every set of matrices B1, . . . ,Bk on the ground truth,
such that the

100

∑
i=1

∥∥∥∥∥ẋ(ti)−
k

∏
j=1
Bjx(ti)

∥∥∥∥∥
2

2

≤ 10−5,

where ti are times at which we observed the state. We selected the prior
as Gaussian centered around the pretrained parameters. The standard
deviation was chosen such that the standard deviation of the product of
the matrices ∏k

j=1Bj stays at 0.01, independent of the number of matrices
used. For SGHMC, we selected learning rate 1.5× 10−7 and momentum
decay 0.1 as hyperparameters. For SGLD,we chose the hyperparameters a =
0.001, b = 1 and γ = 0.9, which SGLD then uses to calculate a polynomial
decay a(b + k)−γ (at step k) for its learning rate. For sampling we used 5
chains with 20000 samples on each chain. The last 2000 samples of each
chain were used for evaluation. With this setting we ensured that the r-hat
score was smaller than 1.1.

a.3.3.2 Finetuning for Benchmark Systems

Both SGLD and SGHMC require hyperparameters, that influence their
performance quite strongly. In this subsection, we explain all the tuning
steps and requirements we deployed for these algorithms to produce the
results shown in the main paper. For both algorithms, we used a setup of 6
chains, that were sampled in parallel, with 10000 samples per chain, where
the final 2000 samples were taken as predictions. These numbers were
selected using the r-hat value to determine if the chains had sufficiently
converged.

hyperparameters of SGLD For SGLD, we additionally searched over
the hyperparameters a, b, and γ. All three are used to calculate the learning
rate of the algorithm. These parameters were chosen by evaluating the
log likelihood of the ground truth on a grid, which was given by the
values a ∈ {0.0001, 0.001, 0.005, 0.01, 0.05, 0.1}, b ∈ {0.3, 0.6, 1.0, 1.5, 2} and
γ ∈ {0.5001, 0.55, 0.6, 0.7, 0.8, 0.99}. Clearly, using the log likelihood of the

184 appendix

ground truth to tune the hyperparameters overestimates the performance
of the algorithm, but it provides us with an optimistic estimate of its real
performance in practice. For computational reasons, we only performed a
grid search on the one trajectory experiments, and then reused the same
hyperparameters on the multi-trajectory experiments. All hyperparameters
are shown in Table A.2.

hyperparameters of SGHMC For SGHMC, we additionally searched
over the hyperparameters the learning rate and the momentum decay.
Again, these parameters were chosen by evaluating the log likelihood of
the ground truth on a grid, where learning rate was chosen from the set
{1e−8, 5e−8, 1.5e−7, 5e−7, 1e−6, 5e−6, 1e−5, 5e−5, 1e−4, 5e−4} and mo-
mentum decay was chosen from the set {0.0001, 0.001, 0.05, 0.1, 0.5, 1, 5}.
Since we used the log likelihood of the ground truth again to tune the
hyperparameters, we overestimate the performance of the algorithm and
obtain thus an optimistic estimate of its real performance in practice. For
computational reasons, be only performed a grid search on the one tra-
jectory experiments, and then reused the same hyperparameters on the
multi-trajectory experiments. All hyperparameters are shown in Table A.2.

SGLD SGHMC

a b γ learning rate momentum decay

LV p 1e−3 2 0.5001 5e−7 0.1

Lo p 0.001 1.5 0.5001 1e−5 0.05

DP p 0.1 0.3 0.5001 1e−6 0.1

QU p 0.0001 1.5 0.7 5e−7 0.5

LV n 0.005 1.5 0.7 5e−7 0.5

LO n 0.001 1.5 0.55 5e−6 0.1

DPn 0.01 2 0.55 1e−6 0.05

QU n F F F 5e−7 0.05

Table A.2: Hyperparameters with best performance evaluated on the likelihood
of the ground truth. The hyperparameters are different for the para-
metric (p) and the non-parametric (n) dynamics models, which is
indicated with the last letter.

A.3 appendix to dgm 185

choice of priors for SGLD and SGHMC Since SGLD and SGHMC
are both Bayesian methods, they need to be supplied with a prior. As
we discovered in our experiments, this prior plays a crucial role in the
stability of the algorithm. In the end, we did not manage to get them to
converge without some use of ground truth. In particular, if the priors
were not chosen narrowly around some ground truth, the algorithms just
returned NaNs, since their integration scheme runs into numerical issues.
For the parametric case shown in Appendix A.3.4, where we assume access
to the true parametric form of the system, we thus chose narrow priors
around the ground truth of the parameter values, that were used to create
the data set. For Lotka Volterra, we chose a uniform distribution around
the ground truth ±0.5, i.e. θi ∼ Uniform[0.5, 1] for all components of θ.
For Lorenz, we chose α ∼ Uniform[8, 12], β ∼ Uniform[25, 31] and γ ∼
Uniform[6/3, 10/3]. For Double Pendulum, we chose m ∼ Uniform[0.5, 1.5]
and l ∼ Uniform[0.5, 1.5]. For Quadrocopter, we chose independent Gaus-
sians, centered around the ground truth, with a standard deviation of
0.005. For all experiments, the prior on the observation noise was set to
σ ∼ InverseGamma[2, 3], except for SGLD when inferring the Lorenz sys-
tem. There, we had to fix the noise standard deviation to its ground truth,
to get convergence.

For the non-parametric case shown in the main paper, we needed a
different strategy, since no ground truth information was available for the
weights of the neural dynamics model. Thus, we first trained a deterministic
dynamics model. As data, we sampled 100 tuples x, ẋ equidistantly in time
on the trajectory. Note that we implicitly assume access to the ground truth
of the dynamics model, i.e. we assume we are provided with accurate,
noise free ẋ. The neural dynamics model was then pre-trained on these
pairs, until the loss was almost zero (up to 1e−5). SGLD and SGHMC were
then provided with Gaussian priors, independent for each component of θ,
centered around the pre-trained weights, with a standard deviation of 0.1.

a.3.3.3 Number of integrations for prediction

SGLD and SGHMC both return samples of the parameters of the dynamics
model. To obtain uncertainties in the state space at prediction time, each
one of these samples needs to be turned into a sample trajectory, by using
numerical integration. To obtain maximum accuracy, we would ideally
integrate all parameter samples obtained by the chains. However, due to the
computational burden inflicted by numerical integration, this is not feasible.

186 appendix

We thus need to find a trade-off between accuracy and computational cost,
by randomly subsampling the number of available parameter samples.

In Figure A.44 we show how the log likelihood of the ground truth
changes with increasing number of sample trajectories on the LV 1 dataset.
After initial fluctuations, the log likelihood of the ground truth stabilizes
after approximately 200 steps. To obtain the results of Table 4.1, we thus
chose 200 integration steps.

0 50 100 150 200 250 300 350 400
integration steps

1.0

1.1

1.2

1.3

1.4

1.5

Lo
g

Lik
el

ih
oo

d

SGHMC

0 50 100 150 200 250 300 350 400
integration steps

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20 SGLD

Figure A.44: We select the number of sample trajectories for uncertainty pre-
diction to be 200, since we observe that the log likelihood of the
ground truth stops fluctuating after 200 steps.

A.3 appendix to dgm 187

a.3.4 Additional experiments

In this section, we first show the state predictions of DGM on the datasets
with multiple trajectories. Then, we compare DGM with SGLD and SGHMC
for the parametric case, i.e. where we assume to have access to the true
parametric form of the dynamics. Since most datasets have too many
trajectories to be fully visualized, we show a random subset instead.

188 appendix

a.3.4.1 Sample plots from trained trajectories

0.50
0.75
1.00
1.25
1.50
1.75
2.00

x(
t)

Tr
aj

ec
to

ry
 6

1
Dimension 0 Dimension 1

0.50
0.75
1.00
1.25
1.50
1.75
2.00

x(
t)

Tr
aj

ec
to

ry
 1

4

0.50
0.75
1.00
1.25
1.50
1.75
2.00

x(
t)

Tr
aj

ec
to

ry
 3

0.50
0.75
1.00
1.25
1.50
1.75
2.00

x(
t)

Tr
aj

ec
to

ry
 2

3

0 2 4 6 8 10
t

0.50
0.75
1.00
1.25
1.50
1.75
2.00

x(
t)

Tr
aj

ec
to

ry
 6

6

0 2 4 6 8 10
t

Prediction
True x
All trajectories
Observations
95% confidence

Figure A.45: DGM’s prediction on 5 randomly sampled training trajectories of
LV 100.

A.3 appendix to dgm 189

20

10

0

10

20
x(

t)
Tr

aj
ec

to
ry

 1
8

Dimension 0

30
20
10

0
10
20
30

Dimension 1

0
10
20
30
40
50

Dimension 2

20

10

0

10

20

x(
t)

Tr
aj

ec
to

ry
 5

8

30
20
10

0
10
20
30

0
10
20
30
40
50

20

10

0

10

20

x(
t)

Tr
aj

ec
to

ry
 1

04

30
20
10

0
10
20
30

0
10
20
30
40
50

20

10

0

10

20

x(
t)

Tr
aj

ec
to

ry
 4

4

30
20
10

0
10
20
30

0
10
20
30
40
50

20

10

0

10

20

x(
t)

Tr
aj

ec
to

ry
 8

2

30
20
10

0
10
20
30

0
10
20
30
40
50

20

10

0

10

20

x(
t)

Tr
aj

ec
to

ry
 2

5

30
20
10

0
10
20
30

0
10
20
30
40
50

20

10

0

10

20

x(
t)

Tr
aj

ec
to

ry
 9

4

30
20
10

0
10
20
30

0
10
20
30
40
50

0.0 0.2 0.4 0.6 0.8 1.0
t

20

10

0

10

20

x(
t)

Tr
aj

ec
to

ry
 2

5

0.0 0.2 0.4 0.6 0.8 1.0
t

30
20
10

0
10
20
30

0.0 0.2 0.4 0.6 0.8 1.0
t

0
10
20
30
40
50

Prediction
True x
All trajectories
Observations
95% confidence

Figure A.46: DGM’s prediction on 8 randomly sampled training trajectories of
LO 125.

190 appendix

0.6
0.4
0.2
0.0
0.2
0.4
0.6

x(
t)

Tr
aj

ec
to

ry
 9

5

Dimension 0

0.6
0.4
0.2
0.0
0.2
0.4
0.6

Dimension 1

3
2
1
0
1
2
3

Dimension 2

1.5
1.0
0.5
0.0
0.5
1.0
1.5

Dimension 3

0.6
0.4
0.2
0.0
0.2
0.4
0.6

x(
t)

Tr
aj

ec
to

ry
 8

2

0.6
0.4
0.2
0.0
0.2
0.4
0.6

3
2
1
0
1
2
3

1.5
1.0
0.5
0.0
0.5
1.0
1.5

0.6
0.4
0.2
0.0
0.2
0.4
0.6

x(
t)

Tr
aj

ec
to

ry
 2

0

0.6
0.4
0.2
0.0
0.2
0.4
0.6

3
2
1
0
1
2
3

1.5
1.0
0.5
0.0
0.5
1.0
1.5

0.6
0.4
0.2
0.0
0.2
0.4
0.6

x(
t)

Tr
aj

ec
to

ry
 7

0.6
0.4
0.2
0.0
0.2
0.4
0.6

3
2
1
0
1
2
3

1.5
1.0
0.5
0.0
0.5
1.0
1.5

0.6
0.4
0.2
0.0
0.2
0.4
0.6

x(
t)

Tr
aj

ec
to

ry
 4

9

0.6
0.4
0.2
0.0
0.2
0.4
0.6

3
2
1
0
1
2
3

1.5
1.0
0.5
0.0
0.5
1.0
1.5

0.6
0.4
0.2
0.0
0.2
0.4
0.6

x(
t)

Tr
aj

ec
to

ry
 1

1

0.6
0.4
0.2
0.0
0.2
0.4
0.6

3
2
1
0
1
2
3

1.5
1.0
0.5
0.0
0.5
1.0
1.5

0.6
0.4
0.2
0.0
0.2
0.4
0.6

x(
t)

Tr
aj

ec
to

ry
 7

2

0.6
0.4
0.2
0.0
0.2
0.4
0.6

3
2
1
0
1
2
3

1.5
1.0
0.5
0.0
0.5
1.0
1.5

0.6
0.4
0.2
0.0
0.2
0.4
0.6

x(
t)

Tr
aj

ec
to

ry
 5

0.6
0.4
0.2
0.0
0.2
0.4
0.6

3
2
1
0
1
2
3

1.5
1.0
0.5
0.0
0.5
1.0
1.5

0.6
0.4
0.2
0.0
0.2
0.4
0.6

x(
t)

Tr
aj

ec
to

ry
 1

0

0.6
0.4
0.2
0.0
0.2
0.4
0.6

3
2
1
0
1
2
3

1.5
1.0
0.5
0.0
0.5
1.0
1.5

0.0 0.2 0.4 0.6 0.8 1.0
t

0.6
0.4
0.2
0.0
0.2
0.4
0.6

x(
t)

Tr
aj

ec
to

ry
 3

0.0 0.2 0.4 0.6 0.8 1.0
t

0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8

0.0 0.2 0.4 0.6 0.8 1.0
t

3
2
1
0
1
2
3

0.0 0.2 0.4 0.6 0.8 1.0
t

1.5
1.0
0.5
0.0
0.5
1.0
1.5

Prediction
True x
All trajectories
Observations
95% confidence

Figure A.47: DGM’s prediction on 10 randomly sampled training trajectories of
DP 100.

A.3 appendix to dgm 191

0
10
20
30
40
50
60
70
80

x(
t)

Tr
aj

ec
to

ry
 1

4

Dimension 0

40

20

0

20

40

60
Dimension 1

80
60
40
20

0
20
40

Dimension 2

0

20

40

60

80

x(
t)

Tr
aj

ec
to

ry
 1

40

20

0

20

40

60

80
60
40
20

0
20
40

0

20

40

60

80

x(
t)

Tr
aj

ec
to

ry
 2

9

40

20

0

20

40

60

80
60
40
20

0
20
40

0

20

40

60

80

x(
t)

Tr
aj

ec
to

ry
 1

6

40

20

0

20

40

60

80
60
40
20

0
20
40

0

20

40

60

80

x(
t)

Tr
aj

ec
to

ry
 2

2

40

20

0

20

40

60

80
60
40
20

0
20
40

0

20

40

60

80

x(
t)

Tr
aj

ec
to

ry
 5

6

40

20

0

20

40

60

80
60
40
20

0
20
40

0

20

40

60

80

x(
t)

Tr
aj

ec
to

ry
 5

4

40

20

0

20

40

60

80
60
40
20

0
20
40

0
10
20
30
40
50
60
70
80

x(
t)

Tr
aj

ec
to

ry
 2

3

40

20

0

20

40

60

80
60
40
20

0
20
40

0
10
20
30
40
50
60
70
80

x(
t)

Tr
aj

ec
to

ry
 3

7

40

20

0

20

40

60

80
60
40
20

0
20
40

0 2 4 6 8 10
t

0
10
20
30
40
50
60
70
80

x(
t)

Tr
aj

ec
to

ry
 5

7

0 2 4 6 8 10
t

40

20

0

20

40

60

0 2 4 6 8 10
t

80
60
40
20

0
20
40

Prediction
True x
All trajectories
Observations
95% confidence

Figure A.48: DGM’s prediction on 10 randomly sampled training trajectories of
QU 64, for state dimensions 0-2.

192 appendix

1.25
1.00
0.75
0.50
0.25
0.00
0.25

x(
t)

Tr
aj

ec
to

ry
 1

4

Dimension 3

0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Dimension 4

0.4
0.2
0.0
0.2
0.4
0.6
0.8

Dimension 5

1.5

1.0

0.5

0.0

x(
t)

Tr
aj

ec
to

ry
 1

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75

0.4

0.2

0.0

0.2

0.4

0.6

1.5

1.0

0.5

0.0

x(
t)

Tr
aj

ec
to

ry
 2

9

0.4
0.2
0.0
0.2
0.4
0.6
0.8

0.4
0.2
0.0
0.2
0.4
0.6

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

x(
t)

Tr
aj

ec
to

ry
 1

6

0.6
0.4
0.2
0.0
0.2
0.4
0.6

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

2.0

1.5

1.0

0.5

0.0

x(
t)

Tr
aj

ec
to

ry
 2

2

0.50
0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50

0.4
0.2
0.0
0.2
0.4
0.6
0.8

1.5

1.0

0.5

0.0

0.5

x(
t)

Tr
aj

ec
to

ry
 5

6

1.0
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6

0.50
0.25
0.00
0.25
0.50
0.75
1.00

2.0

1.5

1.0

0.5

0.0

x(
t)

Tr
aj

ec
to

ry
 5

4

0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6

0.2

0.0

0.2

0.4

0.6

1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.25

x(
t)

Tr
aj

ec
to

ry
 2

3

0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

0.2

0.0

0.2

0.4

0.6

1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.25
0.50

x(
t)

Tr
aj

ec
to

ry
 3

7

0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

0.6

0.4

0.2

0.0

0.2

0.4

0 2 4 6 8 10
t

1.5

1.0

0.5

0.0

x(
t)

Tr
aj

ec
to

ry
 5

7

0 2 4 6 8 10
t

0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8

0 2 4 6 8 10
t

0.2

0.0

0.2

0.4

0.6

Prediction
True x
All trajectories
Observations
95% confidence

Figure A.49: DGM’s prediction on 10 randomly sampled training trajectories of
QU 64, for state dimensions 3-5.

A.3 appendix to dgm 193

8
6
4
2
0
2
4
6

x(
t)

Tr
aj

ec
to

ry
 1

4

Dimension 6

1.0

0.5

0.0

0.5

1.0
Dimension 7

1.5

1.0

0.5

0.0

0.5

Dimension 8

10
8
6
4
2
0
2
4

x(
t)

Tr
aj

ec
to

ry
 1

1.5

1.0

0.5

0.0

0.5

1.0

1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.25

8
6
4
2
0
2
4
6

x(
t)

Tr
aj

ec
to

ry
 2

9

0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00
1.25

1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.25

10
8
6
4
2
0

x(
t)

Tr
aj

ec
to

ry
 1

6

1.0

0.5

0.0

0.5

1.0

1.5

1.0

0.5

0.0

0.5

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

x(
t)

Tr
aj

ec
to

ry
 2

2

1.5
1.0
0.5
0.0
0.5
1.0
1.5

1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.25

10
8
6
4
2
0
2
4

x(
t)

Tr
aj

ec
to

ry
 5

6

0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

2.0

1.5

1.0

0.5

0.0

12.5
10.0
7.5
5.0
2.5
0.0
2.5
5.0

x(
t)

Tr
aj

ec
to

ry
 5

4

0.5

0.0

0.5

1.0

1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.25

12.5
10.0
7.5
5.0
2.5
0.0
2.5
5.0

x(
t)

Tr
aj

ec
to

ry
 2

3

0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00
1.25

1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.25

12
10
8
6
4
2
0
2
4

x(
t)

Tr
aj

ec
to

ry
 3

7

0.5

0.0

0.5

1.0

1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.25

0 2 4 6 8 10
t

10
8
6
4
2
0
2
4

x(
t)

Tr
aj

ec
to

ry
 5

7

0 2 4 6 8 10
t

0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

0 2 4 6 8 10
t

2.0

1.5

1.0

0.5

0.0

Prediction
True x
All trajectories
Observations
95% confidence

Figure A.50: DGM’s prediction on 10 randomly sampled training trajectories of
QU 64, for state dimensions 6-8.

194 appendix

200

150

100

50

0

50

x(
t)

Tr
aj

ec
to

ry
 1

4

Dimension 9

400

300

200

100

0

Dimension 10

100

50

0

50

100

Dimension 11

200

150

100

50

0

50
x(

t)
Tr

aj
ec

to
ry

 1

400

300

200

100

0

100

50

0

50

100

200

150

100

50

0

50

x(
t)

Tr
aj

ec
to

ry
 2

9

400

300

200

100

0

100

50

0

50

100

200

150

100

50

0

50

x(
t)

Tr
aj

ec
to

ry
 1

6

400

300

200

100

0

100

50

0

50

100

200

150

100

50

0

50

x(
t)

Tr
aj

ec
to

ry
 2

2

400

300

200

100

0

100

50

0

50

100

200

150

100

50

0

50

x(
t)

Tr
aj

ec
to

ry
 5

6

400

300

200

100

0

100

50

0

50

100

200

150

100

50

0

50

x(
t)

Tr
aj

ec
to

ry
 5

4

400

300

200

100

0

100

50

0

50

100

200

150

100

50

0

50

x(
t)

Tr
aj

ec
to

ry
 2

3

400

300

200

100

0

100

50

0

50

100

200

150

100

50

0

50

x(
t)

Tr
aj

ec
to

ry
 3

7

400

300

200

100

0

100

50

0

50

100

0 2 4 6 8 10
t

200

150

100

50

0

50

x(
t)

Tr
aj

ec
to

ry
 5

7

0 2 4 6 8 10
t

400

300

200

100

0

0 2 4 6 8 10
t

100

50

0

50

100

Prediction
True x
All trajectories
Observations
95% confidence

Figure A.51: DGM’s prediction on 10 randomly sampled training trajectories of
QU 64, for state dimensions 9-11.

A.3 appendix to dgm 195

a.3.4.2 Sample plots from test trajectories

Here, we show DGM’s predictions on the test trajectories used to test
generalization, as introduced in Appendix A.3.1. Since LV 100 is a two
dimensional system, we also show the placement of the train and test initial
conditions in Figure A.52.

0.6 0.8 1.0 1.2 1.4
x0

0.6

0.8

1.0

1.2

1.4
x 1

Train initial conditions
Test initial conditions

Figure A.52: Placement of the initial conditions for the train and test trajectories
of the LV 100 dataset. We selected the initial conditions for the train
trajectories by gridding [0.5, 1.5]2 with 10 points in every dimen-
sion. We select initial conditions for test trajectories independently,
uniformly at random from the cube [0.5, 1.5]2.

196 appendix

0.50
0.75
1.00
1.25
1.50
1.75
2.00

x(
t)

Tr
aj

ec
to

ry
 0

Dimension 0

0.50
0.75
1.00
1.25
1.50
1.75
2.00

Dimension 1

0.50
0.75
1.00
1.25
1.50
1.75
2.00

x(
t)

Tr
aj

ec
to

ry
 1

0.50
0.75
1.00
1.25
1.50
1.75
2.00

0.50
0.75
1.00
1.25
1.50
1.75
2.00

x(
t)

Tr
aj

ec
to

ry
 2

0.50
0.75
1.00
1.25
1.50
1.75
2.00

0.50
0.75
1.00
1.25
1.50
1.75
2.00

x(
t)

Tr
aj

ec
to

ry
 3

0.50
0.75
1.00
1.25
1.50
1.75
2.00

0 2 4 6 8 10
t

0.50
0.75
1.00
1.25
1.50
1.75
2.00

x(
t)

Tr
aj

ec
to

ry
 4

0 2 4 6 8 10
t

0.50
0.75
1.00
1.25
1.50
1.75
2.00

Prediction
True x
All trajectories
95% confidence

0.50
0.75
1.00
1.25
1.50
1.75
2.00

x(
t)

Tr
aj

ec
to

ry
 5

Dimension 0

0.50
0.75
1.00
1.25
1.50
1.75
2.00

Dimension 1

0.50
0.75
1.00
1.25
1.50
1.75
2.00

x(
t)

Tr
aj

ec
to

ry
 6

0.50
0.75
1.00
1.25
1.50
1.75
2.00

0.50
0.75
1.00
1.25
1.50
1.75
2.00

x(
t)

Tr
aj

ec
to

ry
 7

0.50
0.75
1.00
1.25
1.50
1.75
2.00

0.50
0.75
1.00
1.25
1.50
1.75
2.00

x(
t)

Tr
aj

ec
to

ry
 8

0.50
0.75
1.00
1.25
1.50
1.75
2.00

0 2 4 6 8 10
t

0.50
0.75
1.00
1.25
1.50
1.75
2.00

x(
t)

Tr
aj

ec
to

ry
 9

0 2 4 6 8 10
t

0.50
0.75
1.00
1.25
1.50
1.75
2.00

Figure A.53: DGM’s prediction on 10 randomly sampled test trajectories for the
LV 100 dataset.

A.3 appendix to dgm 197

20

10

0

10

20

x(
t)

Tr
aj

ec
to

ry
 0

Dimension 0

30
20
10

0
10
20
30

Dimension 1

0
10
20
30
40
50

Dimension 2

20

10

0

10

20

x(
t)

Tr
aj

ec
to

ry
 1

30
20
10

0
10
20
30

0
10
20
30
40
50

20

10

0

10

20

x(
t)

Tr
aj

ec
to

ry
 2

30
20
10

0
10
20
30

0
10
20
30
40
50

20

10

0

10

20

x(
t)

Tr
aj

ec
to

ry
 3

30
20
10

0
10
20
30

0
10
20
30
40
50

20

10

0

10

20

x(
t)

Tr
aj

ec
to

ry
 4

30
20
10

0
10
20
30

0
10
20
30
40
50

20

10

0

10

20

x(
t)

Tr
aj

ec
to

ry
 5

30
20
10

0
10
20
30

0
10
20
30
40
50

20

10

0

10

20

x(
t)

Tr
aj

ec
to

ry
 6

30
20
10

0
10
20
30

0
10
20
30
40
50

20

10

0

10

20

x(
t)

Tr
aj

ec
to

ry
 7

30
20
10

0
10
20
30

0
10
20
30
40
50

20

10

0

10

20

x(
t)

Tr
aj

ec
to

ry
 8

30
20
10

0
10
20
30

0
10
20
30
40
50

0.0 0.2 0.4 0.6 0.8 1.0
t

20

10

0

10

20

x(
t)

Tr
aj

ec
to

ry
 9

0.0 0.2 0.4 0.6 0.8 1.0
t

30
20
10

0
10
20
30

0.0 0.2 0.4 0.6 0.8 1.0
t

0
10
20
30
40
50

Prediction
True x
All trajectories
95% confidence

Figure A.54: DGM’s prediction on 10 randomly sampled test trajectories for the
LO 125 dataset.

198 appendix

0.6
0.4
0.2
0.0
0.2
0.4
0.6

x(
t)

Tr
aj

ec
to

ry
 0

Dimension 0

0.6
0.4
0.2
0.0
0.2
0.4
0.6

Dimension 1

3
2
1
0
1
2
3

Dimension 2

1.5
1.0
0.5
0.0
0.5
1.0
1.5

Dimension 3

0.6
0.4
0.2
0.0
0.2
0.4
0.6

x(
t)

Tr
aj

ec
to

ry
 1

0.6
0.4
0.2
0.0
0.2
0.4
0.6

3
2
1
0
1
2
3

1.5
1.0
0.5
0.0
0.5
1.0
1.5

0.6
0.4
0.2
0.0
0.2
0.4
0.6

x(
t)

Tr
aj

ec
to

ry
 2

0.6
0.4
0.2
0.0
0.2
0.4
0.6

3
2
1
0
1
2
3

1.5
1.0
0.5
0.0
0.5
1.0
1.5

0.6
0.4
0.2
0.0
0.2
0.4
0.6

x(
t)

Tr
aj

ec
to

ry
 3

0.6
0.4
0.2
0.0
0.2
0.4
0.6

3
2
1
0
1
2
3

1.5
1.0
0.5
0.0
0.5
1.0
1.5

0.6
0.4
0.2
0.0
0.2
0.4
0.6

x(
t)

Tr
aj

ec
to

ry
 4

0.6
0.4
0.2
0.0
0.2
0.4
0.6

3
2
1
0
1
2
3

1.5
1.0
0.5
0.0
0.5
1.0
1.5

0.6
0.4
0.2
0.0
0.2
0.4
0.6

x(
t)

Tr
aj

ec
to

ry
 5

0.6
0.4
0.2
0.0
0.2
0.4
0.6

3
2
1
0
1
2
3

1.5
1.0
0.5
0.0
0.5
1.0
1.5

0.6
0.4
0.2
0.0
0.2
0.4
0.6

x(
t)

Tr
aj

ec
to

ry
 6

0.6
0.4
0.2
0.0
0.2
0.4
0.6

3
2
1
0
1
2
3

1.5
1.0
0.5
0.0
0.5
1.0
1.5

0.6
0.4
0.2
0.0
0.2
0.4
0.6

x(
t)

Tr
aj

ec
to

ry
 7

0.6
0.4
0.2
0.0
0.2
0.4
0.6

3
2
1
0
1
2
3

1.5
1.0
0.5
0.0
0.5
1.0
1.5

0.6
0.4
0.2
0.0
0.2
0.4
0.6

x(
t)

Tr
aj

ec
to

ry
 8

0.6
0.4
0.2
0.0
0.2
0.4
0.6

3
2
1
0
1
2
3

1.5
1.0
0.5
0.0
0.5
1.0
1.5

0.0 0.2 0.4 0.6 0.8 1.0
t

0.6
0.4
0.2
0.0
0.2
0.4
0.6

x(
t)

Tr
aj

ec
to

ry
 9

0.0 0.2 0.4 0.6 0.8 1.0
t

0.6
0.4
0.2
0.0
0.2
0.4
0.6

0.0 0.2 0.4 0.6 0.8 1.0
t

3
2
1
0
1
2
3

0.0 0.2 0.4 0.6 0.8 1.0
t

1.5
1.0
0.5
0.0
0.5
1.0
1.5

Prediction
True x
All trajectories
95% confidence

Figure A.55: DGM’s prediction on 10 randomly sampled test trajectories for the
DP 100 dataset.

A.3 appendix to dgm 199

0
10
20
30
40
50
60
70
80

x(
t)

Tr
aj

ec
to

ry
 0

Dimension 0

40

20

0

20

40

60
Dimension 1

80
60
40
20

0
20
40

Dimension 2

0
10
20
30
40
50
60
70
80

x(
t)

Tr
aj

ec
to

ry
 1

40

20

0

20

40

60

80
60
40
20

0
20
40

0
10
20
30
40
50
60
70
80

x(
t)

Tr
aj

ec
to

ry
 2

40

20

0

20

40

60

80
60
40
20

0
20
40

0
10
20
30
40
50
60
70
80

x(
t)

Tr
aj

ec
to

ry
 3

40

20

0

20

40

60

80
60
40
20

0
20
40

0
10
20
30
40
50
60
70
80

x(
t)

Tr
aj

ec
to

ry
 4

40

20

0

20

40

60

80
60
40
20

0
20
40

0
10
20
30
40
50
60
70
80

x(
t)

Tr
aj

ec
to

ry
 5

40

20

0

20

40

60

80
60
40
20

0
20
40

0
10
20
30
40
50
60
70
80

x(
t)

Tr
aj

ec
to

ry
 6

40

20

0

20

40

60

80
60
40
20

0
20
40

0
10
20
30
40
50
60
70
80

x(
t)

Tr
aj

ec
to

ry
 7

40

20

0

20

40

60

80
60
40
20

0
20
40

0
10
20
30
40
50
60
70
80

x(
t)

Tr
aj

ec
to

ry
 8

40

20

0

20

40

60

80
60
40
20

0
20
40

0 2 4 6 8 10
t

0
10
20
30
40
50
60
70
80

x(
t)

Tr
aj

ec
to

ry
 9

0 2 4 6 8 10
t

40

20

0

20

40

60

0 2 4 6 8 10
t

80
60
40
20

0
20
40

Figure A.56: DGM’s prediction on 10 randomly sampled test trajectories of QU
64, for state dimensions 0-2.

200 appendix

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

x(
t)

Tr
aj

ec
to

ry
 0

Dimension 3

0.4

0.2

0.0

0.2

0.4
Dimension 4

0.0

0.1

0.2

0.3

0.4
Dimension 5

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

x(
t)

Tr
aj

ec
to

ry
 1

0.4

0.2

0.0

0.2

0.4

0.1

0.0

0.1

0.2

0.3

0.4

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

x(
t)

Tr
aj

ec
to

ry
 2

0.4

0.2

0.0

0.2

0.4

0.1

0.0

0.1

0.2

0.3

0.4

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

x(
t)

Tr
aj

ec
to

ry
 3

0.4

0.2

0.0

0.2

0.4

0.1

0.0

0.1

0.2

0.3

0.4

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

x(
t)

Tr
aj

ec
to

ry
 4

0.4

0.2

0.0

0.2

0.4

0.0

0.1

0.2

0.3

0.4

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

x(
t)

Tr
aj

ec
to

ry
 5

0.4

0.2

0.0

0.2

0.4

0.0

0.1

0.2

0.3

0.4

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

x(
t)

Tr
aj

ec
to

ry
 6

0.4

0.2

0.0

0.2

0.4

0.1

0.0

0.1

0.2

0.3

0.4

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

x(
t)

Tr
aj

ec
to

ry
 7

0.4

0.2

0.0

0.2

0.4

0.1

0.0

0.1

0.2

0.3

0.4

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

x(
t)

Tr
aj

ec
to

ry
 8

0.4

0.2

0.0

0.2

0.4

0.1

0.0

0.1

0.2

0.3

0.4

0 2 4 6 8 10
t

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

x(
t)

Tr
aj

ec
to

ry
 9

0 2 4 6 8 10
t

0.4

0.2

0.0

0.2

0.4

0 2 4 6 8 10
t

0.0

0.1

0.2

0.3

0.4

Figure A.57: DGM’s prediction on 10 randomly sampled test trajectories of QU
64, for state dimensions 3-5.

A.3 appendix to dgm 201

8

6

4

2

0

x(
t)

Tr
aj

ec
to

ry
 0

Dimension 6

0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Dimension 7

1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.25

Dimension 8

8

6

4

2

0

x(
t)

Tr
aj

ec
to

ry
 1

0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.25

10

8

6

4

2

0

x(
t)

Tr
aj

ec
to

ry
 2

0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.25

8

6

4

2

0

x(
t)

Tr
aj

ec
to

ry
 3

0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.25

8

6

4

2

0

x(
t)

Tr
aj

ec
to

ry
 4

0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.25

8

6

4

2

0

x(
t)

Tr
aj

ec
to

ry
 5

0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.25

10

8

6

4

2

0

x(
t)

Tr
aj

ec
to

ry
 6

0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.25

10

8

6

4

2

0

x(
t)

Tr
aj

ec
to

ry
 7

0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.25

10

8

6

4

2

0

x(
t)

Tr
aj

ec
to

ry
 8

0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.25

0 2 4 6 8 10
t

8

6

4

2

0

x(
t)

Tr
aj

ec
to

ry
 9

0 2 4 6 8 10
t

0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

0 2 4 6 8 10
t

1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00
0.25

Figure A.58: DGM’s prediction on 10 randomly sampled test trajectories of QU
64, for state dimensions 6-8.

202 appendix

200

150

100

50

0

50

x(
t)

Tr
aj

ec
to

ry
 0

Dimension 9

400

300

200

100

0
Dimension 10

100

50

0

50

100

Dimension 11

200

150

100

50

0

50
x(

t)
Tr

aj
ec

to
ry

 1

400

300

200

100

0

100

50

0

50

100

200

150

100

50

0

50

x(
t)

Tr
aj

ec
to

ry
 2

400

300

200

100

0

100

50

0

50

100

200

150

100

50

0

50

x(
t)

Tr
aj

ec
to

ry
 3

400

300

200

100

0

100

50

0

50

100

200

150

100

50

0

50

x(
t)

Tr
aj

ec
to

ry
 4

400

300

200

100

0

100

50

0

50

100

200

150

100

50

0

50

x(
t)

Tr
aj

ec
to

ry
 5

400

300

200

100

0

100

50

0

50

100

200

150

100

50

0

50

x(
t)

Tr
aj

ec
to

ry
 6

400

300

200

100

0

100

50

0

50

100

200

150

100

50

0

50

x(
t)

Tr
aj

ec
to

ry
 7

400

300

200

100

0

100

50

0

50

100

200

150

100

50

0

50

x(
t)

Tr
aj

ec
to

ry
 8

400

300

200

100

0

100

50

0

50

100

0 2 4 6 8 10
t

200

150

100

50

0

50

x(
t)

Tr
aj

ec
to

ry
 9

0 2 4 6 8 10
t

400

300

200

100

0

0 2 4 6 8 10
t

100

50

0

50

100

Figure A.59: DGM’s prediction on 10 randomly sampled test trajectories of QU
64, for state dimensions 9-11.

A.3 appendix to dgm 203

a.3.4.3 Comparison with parameteric integration

In this subsection, we compare DGM against SGLD and SGHMC in the
parametric setting, i.e. where we assume access to the parametric form
of the true dynamics f (x,θ). Despite serious tuning efforts outlined in
Section refsubsection: DGM hyperparameters selection, we were unable
to make SGLD and SGHMC perform on any multitrajectory experiments
except for Lotka Volterra 100. As can be seen in Table A.3, the sampling
based methods seem to perform quite well. However, it should be noted
that we were unable to get a stable performance without using ground truth
information, as outlined in Section A.3.3.2. Given this caveat and the results
of the non-parametric case in the main paper, we conclude the following.
If strong and accurate expert knowledge is available that can be used to
fix strong priors on simple systems, the sampling-based approaches are
certainly a good choice. For more complex systems or in the absence of any
expert knowledge, DGM seems to have a clear edge.

Log Likelihood

DGM SGLD SGHMC

LV 1 1.98± 0.18 3.07± 0.685 3.06± 0.517

LO 1 −0.52± 0.09 2.01± 0.548 F

DP 1 2.16± 0.13 3.43± 0.396 2.96± 0.795

QU 1 0.71± 0.07 2.42± 0.322 1.38± 0.00

LV 100 1.85± 0.11 4.28± 0.184 4.26± 0.178

Table A.3: Log likelihood of the ground truth of 100 points on the training
trajectories. SGHMC and SGLD were provided with strong, ground-
truth-inspired priors and received an extensive hyperparameter sweep
using the ground truth as metric. Nevertheless, DGM performs de-
cently in comparison, without using neither priors nor ground truth.

204 appendix

a.4 appendix to ares/mars

a.4.1 Parameter Estimation Lorenz ’63

Ground truth NPSDE ESGF AReS MaRS

θ0 = 10 1.28± 2.32 9.97± 0.33 7.24± 1.08 9.82± 0.56

θ1 = 28 20.69± 5.73 28.00± 0.17 28.16± 1.08 27.96± 0.21

θ0 = 2.667 1.86± 1.08 2.65± 0.06 2.55± 0.10 2.64± 0.07

G =
√

10 6.51± 1.31 3.03± 0.2 3.54± 2.45

Table A.4: Median and standard deviation of the 65 best runs of each algorithm.
As ESGF crashed in roughly one third of all experiments, we compare
only the best 65 runs, where a crash is treated as a complete failure.
While this provides somehow a fair comparison, it should be noted
that this significantly overestimates the performance of all algorithms.

a.4.2 Training Times

NPSDE VGPA ESGF AReS MaRS

OU Process 48.8± 0.9 ∼ (54± 8)hours 32.2± 0.3 321.3± 0.8 17.3± 0.3

DW Potential 406.9± 147.9 ∼ (12± 6)hours 35.2± 0.1 326.0± 1.8 17.7± 2.0

Lotka-Volterra 1421.8± 1.0 / 244.7± 1.2 47.6± 1.3 19.3± 1.1

Lorenz ’63 39273.5± 8.9 / 670.7± 10.7 26274.0± 2529.8 721.1± 10.7

Table A.5: Computational times (in seconds) required for training the different
algorithms.

a.4.3 Densities for Ancestral Sampling of the SDE-Based Model

Given the graphical model in Figure 5.1a, it is straightforward to compute
the densities used in the ancestral sampling scheme in Algorithm 3. After
marginalizing out ż, the joint density described by the graphical model can
be written as

p(o, z,y|φ,G,σ) = p(o|G)p(z|φ)p(y|z,o,σ) (A.137)

A.4 appendix to ares/mars 205

Substituting the densities given by Equations (5.11), (5.12), (5.14) and (5.22)
yields

p(o, z,y|φ,G,σ) = N (o|0,BΩBT)N (z|0,Cφ)N (y|z + o,T). (A.138)

Using a change of variables to simplify notation, we write

p(o, z,y|φ,G,σ) = N (o|0, Ω̃)N (z|0,Cφ)N (y|z + o,T). (A.139)

This equation is now subsequently modified by observing that the product
of two Gaussian densities in the same random variable is again a Gaussian
density:

p(o, z,y|φ,G,σ) = N (o|0, Ω̃)N (z|0,Cφ)N (y|z + o,T)

= N (o|0, Ω̃)N (z|0,Cφ)N (z|y − o,T)

= N (o|0, Ω̃)N (y − o|0,Cφ + T)N (z|mz,Cz)

= N (o|0, Ω̃)N (o|y,Cφ + T)N (z|mz,Cz)

= N (y|0, Ω̃ +Cφ + T)N (o|mo,Co)N (z|mz,Cz)
(A.140)

where

mz = Cz(T
−1(y − o)) (A.141)

Cz = (C−1
φ + T−1)−1 (A.142)

mo = Co(Cφ + T)−1y (A.143)

Co = (Ω̃
−1

+ (Cφ + T)−1)−1 (A.144)

This formula can be further refined with the Woodbury identity, i.e.

Cz = (C−1
φ + T−1)−1

= Cφ −Cφ(Cφ + T)−1Cφ

= Cφ(Cφ + T)−1T (A.145)

which leads to
mz = Cφ(Cφ + T)−1(y − o) (A.146)

and

Co = (Ω̃
−1

+ (Cφ + T)−1)−1

= Ω̃− Ω̃(Ω̃ +Cφ + T)−1Ω̃

= Ω̃(Ω̃ +Cφ + T)−1(Cφ + T) (A.147)

206 appendix

which leads to
mo = Ω̃(Ω̃ +Cφ + T)−1y (A.148)

Since we observe y, we are interested in calculating the conditional
distribution

p(o, z|y,φ,G,σ) =
p(o, z,y|φ,G,σ)

p(y|φ,G.σ)
(A.149)

Conveniently enough, the marginal density of y is already factorized out in
Equation (A.140) (compare Equation (5.23)). Thus, we have

p(o, z|y,φ,G,σ) = N (o|mo,Co)N (z|mz,Cz) (A.150)

As N (o|mo,Co) is independent of z, we can employ ancestral sampling by
first obtaining a sample of o through N (o|mo,Co), and then utilizing such
sample to get z through N (z|mz,Cz).

a.4.4 Calculating the GP Posterior for Data-Based Ancestral Sampling

Given the graphical model in Figure 5.1b, we can calculate the densities
used in the ancestral sampling scheme in Algorithm 3. After marginalizing
out ż and using the variable substitutions introduced in Equation (A.139),
the joint density described by the graphical model can be written as

p(o, z,y|φ,G,σ) = p(o|G)p(y|σ,o, z)p(z|φ)
= N (o|0, Ω̃)N (y|z + o,T)N (z|0,Cφ)

= N (o|0, Ω̃)N (o|y − z,T)N (z|0,Cφ)

= N (o|m,C)N (y − z|0, Ω̃ + T)N (z|0,Cφ)

= N (o|m,C)N (z|y, Ω̃ + T)N (z|0,Cφ)

= N (o|m,C)N (y|0, Ω̃ + T +Cφ)N (z|µz, Σz),
(A.151)

where

µz = Σz(Ω̃ + T)−1y (A.152)

Σz = ((Ω̃ + T)−1 +C−1
φ)−1

= Cφ −Cφ(Ω̃ + T +Cφ)
−1Cφ

= (Ω̃ + T)(Ω̃ + T +Cφ)
−1Cφ

= Cφ(Ω̃ + T +Cφ)
−1(Ω̃ + T). (A.153)

A.4 appendix to ares/mars 207

After marginalizing out o and dividing by the marginal of y, we get the
conditional distribution

p(z|y,φ,G,σ) = N (z|µz, Σz). (A.154)

B I B L I O G R A P H Y

[Lju98] Lennart Ljung. “System Identification”. In: Signal Analysis and
Prediction. Ed. by Ales Procházka, Jan Uhlíř, P. W. J. Rayner,
and N. G. Kingsbury. Boston, MA: Birkhäuser Boston, 1998,
163.

[AM07] Brian DO Anderson and John B Moore. Optimal control: linear
quadratic methods. Courier Corporation, 2007.

[GPM89] Carlos E Garcia, David M Prett, and Manfred Morari. “Model
predictive control: Theory and practice—A survey”. In: Auto-
matica 25.3 (1989), 335.

[Soh98] Björn Sohlberg. “Grey Box Modelling”. In: Supervision and Con-
trol for Industrial Processes: Using Grey Box Models, Predictive
Control and Fault Detection Methods. London: Springer London,
1998, 7.

[Zam+11] Elias Zamora-Sillero, Marc Hafner, Ariane Ibig, Joerg Stelling,
and Andreas Wagner. “Efficient characterization of high-
dimensional parameter spaces for systems biology”. In: BMC
systems biology 5.1 (2011), 1.

[Set09] Burr Settles. “Active learning literature survey”. In: (2009).

[GF15] Javier Garcıa and Fernando Fernández. “A comprehensive sur-
vey on safe reinforcement learning”. In: Journal of Machine Learn-
ing Research 16.1 (2015), 1437.

[Bar74] Yonathan Bard. “Nonlinear parameter estimation”. In: (1974).

[Ben79] M Benson. “Parameter fitting in dynamic models”. In: Ecological
Modelling 6.2 (1979), 97.

[Pon+62] L.S. Pontriagin, G. Boltjanskij, V.G. Boltânskij, Karreman Math-
ematics Research Collection, V. Gamkrelidze, K.N. Trirogoff,
L.W. Neustadt, R.V. Gamkrelidze, W. Neustadt, E.F. Miŝenko,
et al. The Mathematical Theory of Optimal Processes. Interscience
publishers. Interscience Publishers, 1962.

209

210 bibliography

[Ma+21] Yingbo Ma, Vaibhav Dixit, Michael J Innes, Xingjian Guo, and
Chris Rackauckas. “A comparison of automatic differentiation
and continuous sensitivity analysis for derivatives of differen-
tial equation solutions”. In: 2021 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE. 2021, 1.

[Hou+12] Boris Houska, Filip Logist, Moritz Diehl, and Jan Van Impe.
“A Tutorial on Numerical Methods for State and Parameter
Estimation in Nonlinear Dynamic Systems”. In: Identification for
Automotive Systems. Ed. by Daniel Alberer, Håkan Hjalmarsson,
and Luigi del Re. London: Springer London, 2012, 67.

[RC11] Christian Robert and George Casella. “A short history of
Markov chain Monte Carlo: Subjective recollections from
incomplete data”. In: Statistical Science (2011), 102.

[BKM17] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. “Varia-
tional inference: A review for statisticians”. In: Journal of the
American statistical Association 112.518 (2017), 859.

[Var82] James M Varah. “A spline least squares method for numeri-
cal parameter estimation in differential equations”. In: SIAM
Journal on Scientific and Statistical Computing 3.1 (1982), 28.

[Wen+19] Philippe Wenk, Alkis Gotovos, Stefan Bauer, Nico S Gorbach,
Andreas Krause, and Joachim M Buhmann. “Fast Gaussian
process based gradient matching for parameter identification
in systems of nonlinear ODEs”. In: The 22nd International Con-
ference on Artificial Intelligence and Statistics. PMLR. 2019, 1351.

[Wen+20] Philippe Wenk, Gabriele Abbati, Michael A Osborne, Bernhard
Schölkopf, Andreas Krause, and Stefan Bauer. “Odin: Ode-
informed regression for parameter and state inference in time-
continuous dynamical systems”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 34. 04. 2020, 6364.

[Ang+20] Emmanouil Angelis, Philippe Wenk, Bernhard Schölkopf, Ste-
fan Bauer, and Andreas Krause. SLEIPNIR: Deterministic and
Provably Accurate Feature Expansion for Gaussian Process Regres-
sion with Derivatives. 2020.

[Tre+21] Lenart Treven, Philippe Wenk, Florian Dörfler, and Andreas
Krause. “Distributional Gradient Matching for Learning Uncer-
tain Neural Dynamics Models”. In: 2021.

bibliography 211

[Abb+19] Gabriele Abbati, Philippe Wenk, Michael A. Osborne, Andreas
Krause, Bernhard Schölkopf, and Stefan Bauer. “AReS and
MaRS Adversarial and MMD-Minimizing Regression for SDEs”.
In: Proceedings of the 36th International Conference on Machine
Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdi-
nov. Vol. 97. Proceedings of Machine Learning Research. Long
Beach, California, USA: PMLR, 2019, 1.

[BKS14] Ann C Babtie, Paul Kirk, and Michael PH Stumpf. “Topological
sensitivity analysis for systems biology”. In: Proceedings of the
National Academy of Sciences 111.52 (2014), 18507.

[PBP18] Niklas Pfister, Stefan Bauer, and Jonas Peters. “Identifying
Causal Structure in Large-Scale Kinetic Systems”. In: arXiv
preprint arXiv:1810.11776 (2018).

[CGL09] Ben Calderhead, Mark Girolami, and Neil D Lawrence. “Accel-
erating Bayesian inference over nonlinear differential equations
with Gaussian processes”. In: Advances in neural information
processing systems. Citeseer. 2009, 217.

[Ram+07] Jim O Ramsay, Giles Hooker, David Campbell, and Jiguo Cao.
“Parameter estimation for differential equations: a generalized
smoothing approach”. In: Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 69.5 (2007), 741.

[Don+13] Frank Dondelinger, Dirk Husmeier, Simon Rogers, and Maur-
izio Filippone. “ODE parameter inference using adaptive gradi-
ent matching with Gaussian processes”. In: Artificial intelligence
and statistics. PMLR. 2013, 216.

[GBB17] Nico S Gorbach, Stefan Bauer, and Joachim M Buhmann. “Scal-
able Variational Inference for Dynamical Systems”. In: Advances
in Neural Information Processing Systems. Ed. by I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett. Vol. 30. Curran Associates, Inc., 2017.

[WB14] Yali Wang and David Barber. “Gaussian Processes for Bayesian
Estimation in Ordinary Differential Equations”. In: International
Conference on Machine Learning (ICML) (2014).

[MHH15] Benn Macdonald, Catherine Higham, and Dirk Husmeier. “Con-
troversy in mechanistic modelling with Gaussian processes”.
In: International Conference on Machine Learning. 2015, 1539.

212 bibliography

[Hin02] Geoffrey E Hinton. “Training products of experts by minimizing
contrastive divergence”. In: Neural computation 14.8 (2002), 1771.

[CS07] Taeryon Choi and Mark J Schervish. “On posterior consistency
in nonparametric regression problems”. In: Journal of Multivari-
ate Analysis 98.10 (2007), 1969.

[Duv+13] David Duvenaud, James Lloyd, Roger Grosse, Joshua Tenen-
baum, and Ghahramani Zoubin. “Structure discovery in non-
parametric regression through compositional kernel search”.
In: International Conference on Machine Learning. PMLR. 2013,
1166.

[Gor+17] Nico S Gorbach, Andrew An Bian, Benjamin Fischer, Stefan
Bauer, and Joachim M Buhmann. “Model Selection for Gaus-
sian Process Regression”. In: German Conference on Pattern Recog-
nition. Springer. 2017, 306.

[Duv14] David Duvenaud. “Automatic model construction with Gaus-
sian processes”. PhD thesis. University of Cambridge, 2014.

[Ras04a] Carl Edward Rasmussen. “Gaussian processes in machine learn-
ing”. In: Advanced lectures on machine learning. Springer, 2004,
63.

[Ras04b] Carl Edward Rasmussen. “Gaussian Processes in Machine
Learning”. In: Advanced Lectures on Machine Learning: ML Sum-
mer Schools 2003, Canberra, Australia, February 2 - 14, 2003, Tübin-
gen, Germany, August 4 - 16, 2003, Revised Lectures. Ed. by Olivier
Bousquet, Ulrike von Luxburg, and Gunnar Rätsch. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2004, 63.

[MD17] Benn Macdonald and Frank Dondelinger. deGradInfer: Parameter
Inference for Systems of Differential Equation. https://CRAN.R-
project.org/package=deGradInfer. 2017.

[Mac17] Benn Macdonald. “Statistical inference for ordinary differential
equations using gradient matching”. PhD thesis. University of
Glasgow, 2017.

[Lot32] Alfred J Lotka. “The growth of mixed populations: two species
competing for a common food supply”. In: Journal of the Wash-
ington Academy of Sciences 22.16/17 (1932), 461.

[VG07] Vladislav Vyshemirsky and Mark A Girolami. “Bayesian rank-
ing of biochemical system models”. In: Bioinformatics 24.6 (2007),
833.

https://CRAN.R-project.org/package=deGradInfer
https://CRAN.R-project.org/package=deGradInfer

bibliography 213

[Fit61] Richard FitzHugh. “Impulses and physiological states in theo-
retical models of nerve membrane”. In: Biophysical journal 1.6
(1961), 445.

[NAY62] Jinichi Nagumo, Suguru Arimoto, and Shuji Yoshizawa. “An
active pulse transmission line simulating nerve axon”. In: Pro-
ceedings of the IRE 50.10 (1962), 2061.

[LF18] Marco Lorenzi and Maurizio Filippone. “Constraining the dy-
namics of deep probabilistic models”. In: International Confer-
ence on Machine Learning. PMLR. 2018, 3227.

[GVW14] Javier González, Ivan Vujačić, and Ernst Wit. “Reproducing
kernel Hilbert space based estimation of systems of ordinary
differential equations”. In: Pattern Recognition Letters 45 (2014),
26.

[Niu+16] Mu Niu, Simon Rogers, Maurizio Filippone, and Dirk Hus-
meier. “Fast inference in nonlinear dynamical systems using
gradient matching”. In: Proceedings of Machine Learning Research
48 (2016), 1699.

[SHS01] Bernhard Schölkopf, Ralf Herbrich, and Alex J Smola. “A gen-
eralized representer theorem”. In: International conference on
computational learning theory. Springer. 2001, 416.

[Sol+03] Ercan Solak, Roderick Murray-Smith, William E Leithead, Dou-
glas J Leith, and Carl E Rasmussen. “Derivative observations
in Gaussian process models of dynamic systems”. In: Advances
in neural information processing systems. 2003, 1057.

[LE98] Edward N Lorenz and Kerry A Emanuel. “Optimal sites for
supplementary weather observations: Simulation with a small
model”. In: Journal of the Atmospheric Sciences 55.3 (1998), 399.

[QR05] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. “A
unifying view of sparse approximate Gaussian process regres-
sion”. In: Journal of Machine Learning Research 6.Dec (2005), 1939.

[SG06] Edward Snelson and Zoubin Ghahramani. “Sparse Gaussian
processes using pseudo-inputs”. In: Advances in neural informa-
tion processing systems. 2006, 1257.

[Tit09] Michalis Titsias. “Variational learning of inducing variables in
sparse Gaussian processes”. In: Artificial Intelligence and Statis-
tics. 2009, 567.

214 bibliography

[Wil+14] Andrew G Wilson, Elad Gilboa, Arye Nehorai, and John P
Cunningham. “Fast kernel learning for multidimensional pat-
tern extrapolation”. In: Advances in Neural Information Processing
Systems. 2014, 3626.

[CSS08] John P Cunningham, Krishna V Shenoy, and Maneesh Sahani.
“Fast Gaussian process methods for point process intensity
estimation”. In: Proceedings of the 25th international conference on
Machine learning. ACM. 2008, 192.

[WN15] Andrew Wilson and Hannes Nickisch. “Kernel interpolation
for scalable structured Gaussian processes (KISS-GP)”. In: In-
ternational Conference on Machine Learning. 2015, 1775.

[SSH13] Simo Sarkka, Arno Solin, and Jouni Hartikainen. “Spatiotem-
poral learning via infinite-dimensional Bayesian filtering and
smoothing: A look at Gaussian process regression through
Kalman filtering”. In: IEEE Signal Processing Magazine 30.4
(2013), 51.

[WS01] Christopher KI Williams and Matthias Seeger. “Using the Nys-
tröm method to speed up kernel machines”. In: Advances in
neural information processing systems. 2001, 682.

[RR08] Ali Rahimi and Benjamin Recht. “Random features for large-
scale kernel machines”. In: Advances in neural information pro-
cessing systems. 2008, 1177.

[Laz+10] Miguel Lazaro-Gredilla, Joaquin Quiñonero-Candela, Carl Ed-
ward Rasmussen, and Anibal R Figueiras-Vidal. “Sparse spec-
trum Gaussian process regression”. In: Journal of Machine Learn-
ing Research 11.Jun (2010), 1865.

[HDS+17] James Hensman, Nicolas Durrande, Arno Solin, et al. “Varia-
tional Fourier Features for Gaussian Processes.” In: Journal of
Machine Learning Research 18.151 (2017), 1.

[MK18] Mojmir Mutny and Andreas Krause. “Efficient High Dimen-
sional Bayesian Optimization with Additivity and Quadrature
Fourier Features”. In: Advances in Neural Information Processing
Systems. 2018, 9005.

[SS] Arno Solin and Simo Särkkä. “Hilbert space methods for
reduced-rank Gaussian process regression”. In: Statistics and
Computing (), 1.

bibliography 215

[Eri+18] David Eriksson, Kun Dong, Eric Lee, David Bindel, and An-
drew G Wilson. “Scaling Gaussian process regression with
derivatives”. In: Advances in Neural Information Processing Sys-
tems. 2018, 6867.

[Sol+18] Arno Solin, Manon Kok, Niklas Wahlström, Thomas B Schön,
and Simo Särkkä. “Modeling and interpolation of the ambient
magnetic field by Gaussian processes”. In: IEEE Transactions on
robotics 34.4 (2018), 1112.

[SS19] Zoltán Szabó and Bharath Sriperumbudur. “On kernel deriva-
tive approximation with random Fourier features”. In: The
22nd International Conference on Artificial Intelligence and Statis-
tics. PMLR. 2019, 827.

[Rud91] Walter Rudin. “Functional analysis. 1991”. In: Internat. Ser. Pure
Appl. Math (1991).

[Hil87] Francis Begnaud Hildebrand. Introduction to numerical analysis.
Courier Corporation, 1987.

[WF22] Jonas Wacker and Maurizio Filippone. “Local Random Feature
Approximations of the Gaussian Kernel”. In: arXiv preprint
arXiv:2204.05667 (2022).

[Boh06] Torsten P Bohlin. Practical grey-box process identification: theory
and applications. Springer Science & Business Media, 2006.

[Kel+20] Jacob Kelly, Jesse Bettencourt, Matthew J Johnson, and David K
Duvenaud. “Learning Differential Equations that are Easy to
Solve”. In: Advances in Neural Information Processing Systems.
Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin. Vol. 33. Curran Associates, Inc., 2020, 4370.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Berlin, Heidelberg: Springer-
Verlag, 2006.

[Dan+21] Raj Dandekar, Karen Chung, Vaibhav Dixit, Mohamed Tarek,
Aslan Garcia-Valadez, Krishna Vishal Vemula, and Chris Rack-
auckas. “Bayesian neural ordinary differential equations”. In:
48th ACM SIGPLAN Symposium on Principles of Programming
Languages (2021).

[Wil+16] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov,
and Eric P Xing. “Deep kernel learning”. In: Artificial intelligence
and statistics. PMLR. 2016, 370.

216 bibliography

[Cut+17] Kurt Cutajar, Edwin V Bonilla, Pietro Michiardi, and Maurizio
Filippone. “Random feature expansions for deep Gaussian pro-
cesses”. In: International Conference on Machine Learning. PMLR.
2017, 884.

[Sch+15] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan,
and Philipp Moritz. “Trust region policy optimization”. In:
International conference on machine learning. PMLR. 2015, 1889.

[Hou+16] Rein Houthooft, Xi Chen, Xi Chen, Yan Duan, John Schul-
man, Filip De Turck, and Pieter Abbeel. “VIME: Variational
Information Maximizing Exploration”. In: Advances in Neural
Information Processing Systems. Ed. by D. Lee, M. Sugiyama, U.
Luxburg, I. Guyon, and R. Garnett. Vol. 29. Curran Associates,
Inc., 2016.

[Ber+17] Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and
Andreas Krause. “Safe Model-based Reinforcement Learning
with Stability Guarantees”. In: Advances in Neural Information
Processing Systems. Ed. by I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30.
Curran Associates, Inc., 2017.

[Kan39] Leonid V Kantorovich. “The mathematical method of produc-
tion planning and organization”. In: Management Science 6.4
(1939), 363.

[PD10] Gianluigi Pillonetto and Giuseppe De Nicolao. “A new kernel-
based approach for linear system identification”. In: Automatica
46.1 (2010), 81.

[WT11] Max Welling and Yee W Teh. “Bayesian learning via stochastic
gradient Langevin dynamics”. In: Proceedings of the 28th inter-
national conference on machine learning (ICML-11). Citeseer. 2011,
681.

[CFG14] Tianqi Chen, Emily Fox, and Carlos Guestrin. “Stochastic gra-
dient hamiltonian monte carlo”. In: International conference on
machine learning. PMLR. 2014, 1683.

[HG14] Matthew D Hoffman and Andrew Gelman. “The No-U-Turn
sampler: adaptively setting path lengths in Hamiltonian Monte
Carlo.” In: J. Mach. Learn. Res. 15.1 (2014), 1593.

bibliography 217

[Nor+21] Alexander Norcliffe, Cristian Bodnar, Ben Day, Jacob Moss,
and Pietro Liò. “Neural {ODE} Processes”. In: International
Conference on Learning Representations. 2021.

[Bra+18] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James
Johnson, Chris Leary, Dougal Maclaurin, George Necula, Adam
Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy pro-
grams. Version 0.2.5. 2018.

[RR+07] Ali Rahimi, Benjamin Recht, et al. “Random Features for Large-
Scale Kernel Machines.” In: NIPS. Vol. 3. 4. Citeseer. 2007, 5.

[Liu+20] Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei Cai.
“When Gaussian process meets big data: A review of scal-
able GPs”. In: IEEE transactions on neural networks and learning
systems 31.11 (2020), 4405.

[MWV15] MJ Menne, CN Williams Jr, and RS Vose. Long-term daily climate
records from stations across the contiguous United States. 2015.

[De +19] Edward De Brouwer, Jaak Simm, Adam Arany, and Yves
Moreau. “GRU-ODE-Bayes: Continuous modeling of sporadically-
observed time series”. In: Advances in neural information process-
ing systems 32 (2019).

[Pic07] Umberto Picchini. “SDE Toolbox: Simulation and estimation of
stochastic differential equations with MATLAB.” In: (2007).

[BMR15] Harish S Bhat, RWMA Madushani, and Shagun Rawat. “Param-
eter inference for stochastic differential equations with density
tracking by quadrature”. In: International Workshop on Simulation.
Springer. 2015, 99.

[Ryd+18] Thomas Ryder, Andrew Golightly, A Stephen McGough, and
Dennis Prangle. “Black-box Variational Inference for Stochastic
Differential Equations”. In: International Conference on Machine
Learning (2018).

[TS19] Filip Tronarp and Simo Särkkä. “Iterative statistical linear re-
gression for Gaussian smoothing in continuous-time non-linear
stochastic dynamic systems”. In: Signal Processing 159 (2019), 1.

[Sør04] Helle Sørensen. “Parametric inference for diffusion processes
observed at discrete points in time: a survey”. In: International
Statistical Review 72.3 (2004), 337.

218 bibliography

[NMY00] Jan Nygaard Nielsen, Henrik Madsen, and Peter C Young.
“Parameter estimation in stochastic differential equations: an
overview”. In: Annual Reviews in Control 24 (2000), 83.

[HJL07] A Stan Hurn, JI Jeisman, and Kenneth A Lindsay. “Seeing the
wood for the trees: A critical evaluation of methods to estimate
the parameters of stochastic differential equations”. In: Journal
of Financial Econometrics 5.3 (2007), 390.

[ECS01] Ola Elerian, Siddhartha Chib, and Neil Shephard. “Likelihood
inference for discretely observed nonlinear diffusions”. In:
Econometrica 69.4 (2001), 959.

[Era01] Bjørn Eraker. “MCMC analysis of diffusion models with appli-
cation to finance”. In: Journal of Business & Economic Statistics
19.2 (2001), 177.

[PF20] Susanne Pieschner and Christiane Fuchs. “Bayesian inference
for diffusion processes: using higher-order approximations for
transition densities”. In: Royal Society open science 7.10 (2020),
200270.

[MS+17] Frank van der Meulen, Moritz Schauer, et al. “Bayesian esti-
mation of discretely observed multi-dimensional diffusion pro-
cesses using guided proposals”. In: Electronic Journal of Statistics
11.1 (2017), 2358.

[Sär+15] Simo Särkkä, Jouni Hartikainen, Isambi Sailon Mbalawata, and
Heikki Haario. “Posterior inference on parameters of stochastic
differential equations via non-linear Gaussian filtering and
adaptive MCMC”. In: Statistics and Computing 25.2 (2015), 427.

[Arc+07] Cedric Archambeau, Dan Cornford, Manfred Opper, and John
Shawe-Taylor. “Gaussian process approximations of stochastic
differential equations”. In: Journal of machine learning research 1

(2007), 1.

[VOC15] Michail D Vrettas, Manfred Opper, and Dan Cornford. “Vari-
ational mean-field algorithm for efficient inference in large
systems of stochastic differential equations”. In: Physical Review
E 91.1 (2015), 012148.

[HL99] AS Hurn and KA Lindsay. “Estimating the parameters of
stochastic differential equations”. In: Mathematics and computers
in simulation 48.4-6 (1999), 373.

bibliography 219

[Ait02] Yacine Ait-Sahalia. “Maximum likelihood estimation of dis-
cretely sampled diffusions: a closed-form approximation ap-
proach”. In: Econometrica 70.1 (2002), 223.

[RBO13] Andreas Ruttor, Philipp Batz, and Manfred Opper. “Approx-
imate Gaussian process inference for the drift function in
stochastic differential equations”. In: Advances in Neural In-
formation Processing Systems. 2013, 2040.

[Yil+18] Cagatay Yildiz, Markus Heinonen, Jukka Intosalmi, Henrik
Mannerstrom, and Harri Lahdesmaki. “Learning stochastic
differential equations with gaussian processes without gradient
matching”. In: 2018 IEEE 28th International Workshop on Machine
Learning for Signal Processing (MLSP). IEEE. 2018, 1.

[RNR16] Christoph Riesinger, Tobias Neckel, and Florian Rupp. “Solving
random ordinary differential equations on gpu clusters using
multiple levels of parallelism”. In: SIAM Journal on Scientific
Computing 38.4 (2016), C372.

[Dos77] Halim Doss. “Liens entre équations différentielles stochastiques
et ordinaires”. In: (1977).

[Sus78] Héctor J Sussmann. “On the gap between deterministic and
stochastic ordinary differential equations”. In: The Annals of
Probability (1978), 19.

[Bau+17] Stefan Bauer, Nico S Gorbach, Djordje Miladinovic, and
Joachim M Buhmann. “Efficient and Flexible Inference for
Stochastic Systems”. In: Advances in Neural Information Process-
ing Systems. 2017, 6988.

[KM18] Hadiseh Karimi and Kimberley B McAuley. “Bayesian Objective
Functions for Estimating Parameters in Nonlinear Stochastic
Differential Equation Models with Limited Data”. In: Industrial
& Engineering Chemistry Research 57.27 (2018), 8946.

[Jim+08] MJ Jiménez, Henrik Madsen, JJ Bloem, and Bernd Dammann.
“Estimation of non-linear continuous time models for the heat
exchange dynamics of building integrated photovoltaic mod-
ules”. In: Energy and Buildings 40.2 (2008), 157.

[DS13] Sophie Donnet and Adeline Samson. “A review on esti-
mation of stochastic differential equations for pharmacoki-
netic/pharmacodynamic models”. In: Advanced Drug Delivery
Reviews 65.7 (2013), 929.

220 bibliography

[Ras04c] Carl Edward Rasmussen. “Gaussian processes in machine learn-
ing”. In: Advanced lectures on machine learning. Springer, 2004,
63.

[Goo+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. “Generative adversarial nets”. In: Advances in
neural information processing systems. 2014, 2672.

[YZK20] Liu Yang, Dongkun Zhang, and George Em Karniadakis.
“Physics-informed generative adversarial networks for stochas-
tic differential equations”. In: SIAM Journal on Scientific Comput-
ing 42.1 (2020), A292.

[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasser-
stein generative adversarial networks”. In: International Confer-
ence on Machine Learning. 2017, 214.

[DRG15] Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin
Ghahramani. “Training generative neural networks via max-
imum mean discrepancy optimization”. In: arXiv preprint
arXiv:1505.03906 (2015).

[Gre+12] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard
Schölkopf, and Alexander Smola. “A kernel two-sample test”.
In: Journal of Machine Learning Research 13.Mar (2012), 723.

[LSZ15] Yujia Li, Kevin Swersky, and Rich Zemel. “Generative moment
matching networks”. In: International Conference on Machine
Learning. 2015, 1718.

[PP+08] Kaare Brandt Petersen, Michael Syskind Pedersen, et al. “The
matrix cookbook”. In: Technical University of Denmark 7.15 (2008),
510.

[Lor63] Edward N Lorenz. “Deterministic nonperiodic flow”. In: Journal
of the atmospheric sciences 20.2 (1963), 130.

[Bez+17] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B
Shah. “Julia: A fresh approach to numerical computing”. In:
SIAM Review 59.1 (2017), 65.

P U B L I C AT I O N S

Conference contributions:

[Wen+19] Philippe Wenk, Alkis Gotovos, Stefan Bauer, Nico S Gorbach,
Andreas Krause, and Joachim M Buhmann. “Fast Gaussian
process based gradient matching for parameter identification
in systems of nonlinear ODEs”. In: The 22nd International Con-
ference on Artificial Intelligence and Statistics. PMLR. 2019, 1351.

[Wen+20] Philippe Wenk, Gabriele Abbati, Michael A Osborne, Bernhard
Schölkopf, Andreas Krause, and Stefan Bauer. “Odin: Ode-
informed regression for parameter and state inference in time-
continuous dynamical systems”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 34. 04. 2020, 6364.

[Abb+19] Gabriele Abbati, Philippe Wenk, Michael A. Osborne, Andreas
Krause, Bernhard Schölkopf, and Stefan Bauer. “AReS and
MaRS Adversarial and MMD-Minimizing Regression for SDEs”.
In: Proceedings of the 36th International Conference on Machine
Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdi-
nov. Vol. 97. Proceedings of Machine Learning Research. Long
Beach, California, USA: PMLR, 2019, 1.

[Tre+21] Lenart Treven, Philippe Wenk, Florian Dörfler, and Andreas
Krause. “Distributional Gradient Matching for Learning Uncer-
tain Neural Dynamics Models”. In: 2021.

[Cal+22] Edoardo Caldarelli, Philippe Wenk, Stefan Bauer, and Andreas
Krause. “Adaptive Gaussian Process Change Point Detection”.
In: International Conference on Machine Learning. PMLR. 2022,
2542.

[Sch+21] Andreas Schlaginhaufen, Philippe Wenk, Andreas Krause, and
Florian Dorfler. “Learning Stable Deep Dynamics Models for
Partially Observed or Delayed Dynamical Systems”. In: vol. 34.
2021, 11870.

221

222 bibliography

[Agu+20] Diego Agudelo-Espana, Andrii Zadaianchuk, Philippe Wenk,
Aditya Garg, Joel Akpo, Felix Grimminger, Julian Viereck, Max-
imilien Naveau, Ludovic Righetti, Georg Martius, et al. “A real-
robot dataset for assessing transferability of learned dynamics
models”. In: 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2020, 8151.

Preprints:

[Ang+20] Emmanouil Angelis, Philippe Wenk, Bernhard Schölkopf, Ste-
fan Bauer, and Andreas Krause. SLEIPNIR: Deterministic and
Provably Accurate Feature Expansion for Gaussian Process Regres-
sion with Derivatives. 2020.

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Introduction and Overview
	1.1 Problem Setting
	1.1.1 Ordinary Differential Equations
	1.1.2 Stochastic Differential Equations

	1.2 Numerical Integration vs Collocation Methods
	1.2.1 Frequentist Parameter Inference
	1.2.2 Bayesian Parameter Inference
	1.2.3 Numerical Integration for SDEs
	1.2.4 Avoid Numerical Integration Via Gradient Matching

	1.3 Outlook

	2 The Bayesian: Fast Gaussian-Process-Based Gradient Matching
	2.1 Introduction and Related Work
	2.2 Problem Setting and Notation
	2.3 GP-Based Gradient Matching - State Of The Art
	2.3.1 Calculating Derivatives: Basic Modeling Choices
	2.3.2 Merging the two Components Via the Product of Experts Heuristics
	2.3.3 State of the Art Inference
	2.3.4 Gradient Matching Without Product of Experts

	2.4 Theory
	2.4.1 Analysis Of The Product Of Experts Approach
	2.4.2 Adapting The Original Graphical Model
	2.4.3 Inference In The New Model

	2.5 Hyperparameters and Preprocessing
	2.5.1 Hyperparameter and kernel selection
	2.5.2 Accounting for Normalization and Standardization

	2.6 FGPGM - Fast Gaussian Process Based Gradient Matching
	2.7 Experiments
	2.7.1 Benchmark Tasks
	2.7.2 Evaluation
	2.7.3 Sampling vs Variational Inference - Lotka Volterra
	2.7.4 Beyond Locally Linear Dynamics - Protein Transduction
	2.7.5 Investigating Smoothness Bias - FitzHugh-Nagumo

	3 The Frequentist: ODE-Informed Regression
	3.1 Problem Setting and Related Work
	3.2 Methods
	3.2.1 Notation
	3.2.2 Generative Model
	3.2.3 ODIN - ODE-Informed Regression
	3.2.4 Derivative Observation Model
	3.2.5 Remarks

	3.3 Experiments
	3.3.1 State and Parameter Inference
	3.3.2 Model Selection
	3.3.3 Linear Scaling in State Dimension

	3.4 SLEIPNIR - Scaling to Bigger Datasets
	3.4.1 Scaling standard GP Regression
	3.4.2 Scaling GP regression with derivatives
	3.4.3 Accurately Approximating Derivative Kernels
	3.4.4 Accurately Approximating Posteriors for GP Regression with Observed Derivatives
	3.4.5 Derivation

	3.5 ODIN with SLEIPNIR - Risk Consistent Scaling
	3.5.1 Derivation

	3.6 Scaling Experiments

	4 The Practitioner: Distributional Gradient Matching
	4.1 Background
	4.1.1 Data
	4.1.2 Problem
	4.1.3 Motivation

	4.2 Distributional Gradient Matching
	4.2.1 Regularization by Matching Distributions over Gradients
	4.2.2 Smoothing jointly over Trajectories with Deep Gaussian Processes
	4.2.3 Representing Uncertainty in the Dynamics Model via the Reparametrization Trick
	4.2.4 Comparing Gradient Distributions via the Wasserstein Distance
	4.2.5 Final Loss Function

	4.3 Experiments
	4.3.1 Setup
	4.3.2 Metric
	4.3.3 Effects of Overparametrization
	4.3.4 Single Trajectory Benchmarks
	4.3.5 Prediction speed
	4.3.6 Multi-Trajectory Benchmarks
	4.3.7 Ablation study
	4.3.8 Computational Requirements
	4.3.9 Scaling to many observations or trajectories

	4.4 Case Study: USHCN
	4.4.1 The data set
	4.4.2 Preparing the data set
	4.4.3 Challenge of the data set
	4.4.4 Including dynamics helps with extrapolation
	4.4.5 Comparisons
	4.4.6 Conclusion

	5 The Stochastic: Adversarial and MMD-Minimizing Regression
	5.1 Introduction
	5.1.1 Related Work
	5.1.2 Our Work

	5.2 Background
	5.2.1 Deterministic ODE Case
	5.2.2 Notation

	5.3 Methods
	5.3.1 Latent States Representation
	5.3.2 Generative Model for Observations
	5.3.3 Generative Model for Derivatives
	5.3.4 Inference
	5.3.5 Adversarial Sample-based Inference
	5.3.6 Maximum Mean Discrepancy

	5.4 Experiments
	5.4.1 Setups
	5.4.2 Evaluation
	5.4.3 Locally Linear Systems
	5.4.4 Non-Diagonal Diffusion
	5.4.5 Dealing with Multi-Modality

	6 Summary
	A Appendix
	A.1 Appendix to FGPGM
	A.1.1 Proof of theorem 1
	A.1.2 Additional Plots

	A.2 Appendix to ODIN
	A.2.1 ODEs Provide Useful Information
	A.2.2 Median Trajectories
	A.2.3 Kernel Approximation Error Bounds - Proofs
	A.2.4 Kernel Approximation Additional Plots
	A.2.5 GP Regression with Derivatives
	A.2.6 Additional Empirical Evaluation GPR
	A.2.7 Risk Approximation Error Bounds
	A.2.8 Experimental Setups
	A.2.9 Additional Empirical Evaluation SLEIPNIR
	A.2.10 tRMSE vs Features
	A.2.11 Learning Curves

	A.3 Appendix to DGM
	A.3.1 Dataset description
	A.3.2 Implementation details of DGM
	A.3.3 Bayesian NODE training
	A.3.4 Additional experiments

	A.4 Appendix to ARES/MARS
	A.4.1 Parameter Estimation Lorenz '63
	A.4.2 Training Times
	A.4.3 Densities for Ancestral Sampling of the SDE-Based Model
	A.4.4 Calculating the GP Posterior for Data-Based Ancestral Sampling

	 Bibliography
	Publications

