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A B S T R A C T

Deep learning models, and in particular neural networks, have become
ubiquitous in modern computing. Neural networks can be found in spam
and malware detection systems [1], bug fixing tools [2–4], at numerous
parts of the stack in self driving cars [5, 6], in aircraft collision avoidance
systems [7], facial recognition for authentication [8], health-care [9, 10], in
algorithmic trading [11, 12], and even at the base of stacks that power
generic upstream code tools such as compilers and SMT solvers [13–15].

As many of these applications are safety-critical, or more generally have
no tolerance for error, it is essential that programmers be able to analyze
neural networks to ensure their reliability. While historically, neural
networks were assumed to be correct and well-behaved if they achieved
a low statistical error on a test-set, Szegedy et al. [16] demonstrated that
this was insufficient: neural networks could be fooled by adversaries
presenting intentionally crafted unusual inputs. Such attacks could be
made imperceptible to humans [17–27], and could be as easy to deploy
as applying a sticker to a road sign [28–30].

The main problem we address in this dissertation is: how can sound,
formal guarantees on neural networks be scalably verified. To answer this
question, our work is based on a fundamental insight: a verifier needs
only to be correct when it determines a property can be guaranteed, but
it does not always need to make such a determination. Using this insight,
we demonstrate the first application of abstract interpretation to neural
networks, and show that it can additionally be used for training.

In this dissertation, we first present two extensible frameworks: AI2 for
sound verification, and DiffAI which additionally implements provable
training. We develop new domains which allow our systems to scale to
orders of magnitude larger networks than prior verification systems, and
allow us to demonstrate correctness of significantly more properties on
those networks. We finally extend DiffAI with the domain GenProve to
prove sound, formal probabilistic guarantees and show how this can be
used to verify semantic specifications using generative networks.
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Z U S A M M E N FA S S U N G

Deep-Learning-Modelle und insbesondere neuronale Netze sind im
modernen Computing allgegenwärtig geworden. Neuronale Netze
finden sich in Spam- und Malware-Erkennungssystemen [1], Bugfixing-
Tools [2–4], an zahlreichen Teilen der Stacks in selbstfahrenden Autos [5,
6], in Kollisionsvermeidungssystemen in Flugzeugen [7], bei der Gesichts-
erkennung zur Authentifizierung [8], in der Gesundheitsversorgung [9, 10],
im algorithmischen Handel [11, 12] und sogar an der Basis von Stacks
welche generische Upstream-Code-Tools wie Compiler und SMT-Solver
betreiben [13–15].

Da viele dieser Anwendungen sicherheitskritisch sind, beziehungsweise
eine geringe Fehlertoleranz besitzen, ist es von Bedeutung, dass
Programmierer dazu in der Lage sind, neuronale Netze zu analysieren, um
ihre Zuverlässigkeit sicherzustellen. Während in der Vergangenheit davon
ausgegangen wurde, dass neuronale Netze korrekt und vorhersehbar
sind, wenn sie einen niedrigen statistischen Fehler in einem Testsatz
besitzen, konnte Szegedy u. a. [16] zeigen, dass dies nicht ausreicht:
Neuronale Netze konnten von Gegnern getäuscht werden, die absichtlich
künstliche ungewöhnliche Eingaben präsentierten. Solche Angriffe
könnten für Menschen unbemerkbar gemacht werden [17–27] und sind
so einfach auszuführen wie das Anbringen eines Aufklebers auf ein
Verkehrsschild [28–30].

Das Hauptproblem, das in dieser Dissertation behandelt wird, ist:
Wie kann die solide, formale Garantie auf neuronalen Netzen skalierbar
verifiziert werden? Um diese Frage zu beantworten, basiert unsere
Arbeit auf einer grundlegenden Erkenntnis: Ein Verifizierer muss nur
dann richtig liegen, wenn er feststellt, dass eine Eigenschaft gewährleistet
werden kann. Der Verifizierer muss jedoch nicht immer eine solche
Bestimmung durchführen. Mit dieser Erkenntnis demonstrieren wir die
erste Anwendung der abstrakten Interpretation von neuronalen Netzen
und zeigen, dass sie zusätzlich für das Training verwendet werden kann.

In dieser Dissertation stellen wir zunächst zwei erweiterbare
Rahmenordnungen vor: AI2 für die fundierte Verifikation und DiffAI,
das zusätzlich nachweisbares Training implementiert. Wir entwickeln neue
Domänen, die es unseren Systemen ermöglichen, auf die Magnitude
grössere Netzwerke zu skalieren als frühere Verifizierungssysteme. Des
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Weiteren erlaubt uns dies die Korrektheit von deutlich mehr Eigenschaften
in diesen Netzwerken zu demonstrieren. Schließlich erweitern wir DiffAI
um die Domäne GenProve, um solide, formale probabilistische Garantien
zu beweisen und zu zeigen, wie dies zur Verifizierung semantischer
Spezifikationen für generative Netzwerke verwendet werden kann.
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1
I N T R O D U C T I O N

Recent years have shown a wide adoption of deep neural networks
in safety-critical applications, including self-driving cars [5], malware
detection [1], medical diagnosis [10], and aircraft collision avoidance [7].
This adoption can be attributed to the near, and sometimes even super-
human accuracy obtained by these models [31]. Despite their success, an
essential challenge remains:

How can one ensure that machine learning models,
and neural networks in particular, behave as intended?

(Essential Challenge)

In the traditional software setting, software engineers have typically
approached addressing this challenge two ways: (i) handcrafting proofs
of correctness for their code and algorithms, and (ii) utilizing (semi)-
automated verifiers and solvers which may not halt, but when they do,
always produce entirely correct statements (i.e. are over-approximators of
program behavior). Crucially, both of these methods have one thing in
common: the programmer knows in advance what properties they would
like their code to have.

In the deep learning setting, it may be counterintuitive that one would
ever want to predetermine such absolute and deterministic properties.
After all, neural networks are fundamentally statistical models, most
often trained using noisy datasets collected from the physical world (e.g.,
pictures of handwritten digits). It has been commonly assumed that if
a neural network performs well on a randomly chosen subset of the
dataset not used for training, the test or validation-set, it will perform well
when used in production. This kind of statistical guarantee is sufficient
when the stakes are low (e.g., automated story generation [32]), or when
guarantees can be made about the production environment (e.g., running
in a sandbox on air-gapped hardware in a lab). However, recent research
has shown that even highly accurate networks are vulnerable to adversarial
examples, demonstrating that the typical statistical guarantee of correctness
is inadequate.
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2 introduction

Classically, Szegedy et al. [16] showed that by perturbing pixels a small
amount (essentially adding invisible noise), one could cause a network
to misclassify an originally correctly classified image. Such adversarial
attacks typically generate or modify images in ways that are imperceptible
to humans, but induce unexpected behavior by the network [17–27, 33–35].

Adversarial examples can be especially problematic when safety-critical
systems rely on neural networks. For instance, it has been shown that
attacks can be executed physically (e.g., [28–30]), and against neural
networks accessible only as a black box (e.g., [16, 20, 36–40]).

Gu & Rigazio [23] provided an early technique for defending against
adversarial examples based on adding concrete noise to the training set
and removing it statistically. Goodfellow, Shlens & Szegedy [20] showed
an adversarial attack that generated examples that were misclassified on
a wide array of networks and then demonstrated a defense against this
attack, based on explicit training against perturbations generated by the
attack. Madry et al. [41] improved on this style of defense by showing
that training against an optimal attack would provide a defense against
non-optimal attacks as well. While this technique was highly effective
in experiments, Carlini et al. [42] demonstrated an attack for the safety-
critical problem of ground-truthing, where this defense in fact occasionally
exacerbated the problem.

Many further works have focused on designing defenses that increase
robustness by using modified procedures for training the network
(e.g., [43–46]). Others have developed approaches that can show non-
robustness by under-approximating neural network behaviors [47, 48].

Despite making substantial progress at mitigating the impact of
adversarial examples, the aforementioned techniques do not address
the agency involved in the generation of adversarial examples: without
ensuring guarantees with 100% confidence, a neural network might still
be vulnerable to some kind of attack. Without being able to verify such
guarantees, ensuring the safety of systems involving neural networks
becomes a game of cat-and-mouse.

Widening the focus from attacks, in this dissertation, we assert that the
techniques used to analyze and evaluate neural networks need not be
restricted to the statistical. We show that despite their scale, valuable and
strong guarantees can be made with neural networks. In this dissertation
we answer the following fundamental research question:

How can sound formal guarantees be made available to deep learning?
(Fundamental Question)
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Our Work (This Thesis)

Reluplex [7] AI2 GenProve DiffAI
(SMT) (Abstract Interpretation) (Probabilistic Abst. Int.) (Differentiable Abst. Int.)

Networks FFNN FFNN, Conv FFNN, Conv, Generative FFNN, Conv, Residual

Activations ReLU ReLU, MaxPool ReLU ReLU, Softmax, Sigmoid

Properties Robustness Robustness Generative-Semantic Robustness

Guarantees Complete Sound Complete or Sound Sound

Runtime1 Hours Minutes Seconds Milliseconds

Largest Net 2k Neurons 53k Neurons 200k Neurons 4.5m Neurons2

Scalable 7 3 3 3

Training 7 7 7 3

Deterministic
3 3 3 3Properties

Probabilistic
7 7 3 7Properties

Table 1.1: Dimensions addressed by our methods compared with prior work.

1Runtime is the time to verify a specification on a small convolutional network or, for Reluplex, the largest FFNN tried.
2Result obtained using the DiffAI verifier with a network trained in our supplemental work: Mirman, Singh & Vechev [49].

1.1 in search of formal guarantees for deep learning

Here we describe the overarching direction of this thesis, the dimensions
of the problem we tackle, our high-level approach to addressing these
problems, and the challenges our approaches must overcome. In this
dissertation, we advance the state-of-the-art in neural network analysis by
expanding the following capabilities:

• The nature of guarantees that can be scalably verified.

• The types of properties that can be scalably verified.

• The networks which satisfy, verifiably, these guarantees.

1.1.1 Problem Dimensions

In order for deep learning to be trusted for use in safety-critical systems, it
is essential that the kinds of analyses one can perform eventually matches
the depth of analyses engineers have come to rely on for traditional code.
In particular, this means expanding the guarantees, properties, and model
building techniques (outlined in Table 1.1) as follows:

Types of Guarantees. While statistical guarantees have been the default
for neural networks, engineers require sound, meaning that there is no
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chance of the claim being incorrect, guarantees. Sound guarantees can
either be deterministic (e.g., “The plane never crashes”) or probabilistic
(e.g., “The plane crashes at most 5% of flights”). Crucially, however, sound
guarantees can not be made by statistical sampling, which can at best
make claims with high confidence: “I’m 99% confident the plane crashes
at most 5% of flights, but there is a 1% chance I’m entirely wrong.” While
prior methods have demonstrated lower bounds (e.g., “The plane can
crash”), the prior techniques for finding upper bounds only scale to neural
networks orders of magnitude smaller than needed for common tasks.

Kinds of Properties. Traditional neural network guarantees are based
on sampling a partition of the dataset off-limits to training. Adversarial
example research has shown that this is insufficient. Images off of the
originally sampled data-manifold can look like those on the data-manifold,
and appear in production. This implies that the types of specifications
used must be expanded. The first adversarial attacks focused on finding
incorrectly classified images in Lp Balls around correctly classified images
such that they were imperceptibly different. In this thesis, we observe that
the properties verified need not be limited to the imperceptible, but that
it may be useful to analyze the compliance to semantic visible properties,
such as those produced by generative models.

Network Suitability. It is well known that some programs are
significantly easier to prove correct than others, even ones performing the
same task. Automated verification suffers similarly from this challenge. We
observe that neural networks are no different. While it may be possible to
analyze a neural network with a complete system (such as an SMT solver),
this is NP-hard in general [7]. We posit that one network may be more
suitable than another for verification, even when both may obey the given
specification. We thus propose, analogously to quantitative synthesis [50],
training neural networks which are amenable to verification.

1.1.2 This Dissertation’s Approach

While prior methods were able to provide lower-bound guarantees (by
finding attacks), we develop methods that guarantee both sound lower
and sound upper-bounds on deterministic and probabilistic properties for
large networks. Our analysis methods can be used to ensure that networks
are not vulnerable to traditional adversarial attacks, and furthermore to
augment statistical claims on semantic accuracy.
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When traditional defenses produce networks that are experimentally
robust to attack, but too large to be verified by complete systems, we
demonstrate how to defend the network so that it can be verified with
overapproximation. We address our research goals in the following ways:

• We demonstrate how to soundly analyze preexisting networks.

• We demonstrate how to train networks amenable to analysis.

1.1.3 Challenges Addressed by This Dissertation

To build scalable neural network verification tools, our systems must
overcome the following challenges:

Modern neural networks are massive. Neural networks commonly
have millions of neurons, each of which is a non-convexity, that when
translated to a SMT formula is represented by a disjunction. Complete
verification systems handle disjunctions by enumerating possible branches,
and therefore could, in the worst case, run in exponential time. This
is unacceptable for neural networks: Huang et al. [51], for example,
introduced a network with 4.5 million neurons. While such large code-
bases do exist, they can often be analyzed in more manageable fragments.

Data is high dimensional. Similarly, verification systems have typically
been designed to handle low-dimensional inputs. Even in non deep-
learning robotic systems, the number of input dimensions is often limited
by the number of physical (non-image) sensors. Neural networks on
the other hand are commonly used on images. Our smallest dataset,
MNIST [52] for example, uses 784-dimensional images. On the other
hand, the well-known dataset ImageNet [53] is commonly scaled down to
128× 128 pixels of three colors, representing nearly 50k input dimensions.
While the dimensionality of the inputs represents a similar theoretical
challenge as size of the analyzed model, the dimensionality of the input is
indicative of necessary non-convexity.

Neural networks are imprecise. Fundamentally, neural networks are
usually trained on noisy datasets, produced by collection from the real-
world. Unlike in traditional software systems, there is often no immediate
expectation of “perfection.” It is thus not immediately obvious what kinds
of guarantees or specifications one might be able to make. For neural
networks, verification systems should be able to make overapproximate
claims, and ideally provide probabilistic guarantees.



6 introduction

Specification

Perturbation Semantic

+

=

Generative
Network

Systems AI2, DiffAI DiffAI

Domains Box, Zonotope, Hybrid Zonotope
GenProve, GenProveCurve

Polyhedra, Bounded Powerset

Figure 1.1: Outline of the specifications we analyze, and the systems and
domains that implement them.

1.2 this dissertation : sound guarantees for deep learning

In this thesis, we tackle the problem of introducing sound guarantees into
deep learning by designing two systems, AI2 and DiffAI each representing
a significant jump in capability, bringing neural network verification
possibilities from toy-scale to production-scale. The specifications and
domains supported by these systems are shown in Fig. 1.1.

Main Achievements. In this dissertation we present the following main
technical achievements:

• We designed extensible frameworks, AI2 and DiffAI, for verifying
properties of neural networks multiple orders of magnitude larger
than preexisting systems: up to 200k neurons from 1200 neurons.

• We produced networks with significantly lower verified error than
could be previously produced: down to 11.8% from 100% (on
normalized MNIST)1.

• We scaled sound probabilistic verification on generative models so
that it could beat (in terms of precision, guarantees, and efficiency)
statistical sampling.

1 Later training schedule refinements reduced this to 4.2% in an unnormalized MNIST. [49]
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1.2.1 Systems Overview

This dissertation presents three systems, each of which fundamentally
extends the capabilities of neural network analysis:

AI2 [54], introduced in Chapter 2, is the first scalable system for
verifying neural networks. In this chapter, we demonstrate how to leverage
the flexible techniques, known as abstract interpretation, developed in
the formal methods community to address the increasingly pressing
problem of neural network analysis. Specifically, our framework enables
the analysis of neural networks through overapproximation by geometric
domains which can then be fine-tuned for performance.

DiffAI [55], introduced in Chapter 3, is the first scalable system for
training neural networks to be verifiable. The key insight of DiffAI is
that it is possible to reuse abstract interpretation verification techniques,
such as those developed in Chapter 2, as the optimization goal for
backpropagation based training.

GenProve [56], introduced in Chapter 4, provides a scalable way to
verify more complex and semantically meaningful properties based on
generative models. We observe that such complex properties are more
unlikely to completely hold, and thus extend the abstract interpretation
framework to handle probabilistic properties. This allows certification of
not just whether a property holds, but also of measuring how much it holds.

1.2.2 Impact and Results Beyond The Scope of this Dissertation

Since releasing DiffAI, it has garnered 186 stars on github, and has 23

forks. It has become a standard for producing benchmark networks for
comparing verifiers [57] and has also been used industrially [58].

We have also significantly improved DiffAI’s usability by providing a
training DSL which allows easy expression of training schedules and loss
functions. We provided an updated evaluation using modern schedules
and loss functions [59] in Mirman, Singh & Vechev [49], demonstrating
that our core technique scales to networks with up to 4.5 million neurons.
Zhang, Albarghouthi & D’Antoni [60] furthermore demonstrated that
abstract training could be used to improve training results of NLP tasks.

Finally, DiffAI has inspired theoretical results: In Baader, Mirman &
Vechev [61] we proved that one could construct interval certifiable neural
networks to approximate any function with any given interval size. While
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it is reassuring to know that the search for certifiable neural networks is
not entirely futile, these results do not address the difficulty of improving
on the results shown in this thesis. In Mirman, Baader & Vechev [62]
we demonstrate that there are fundamental limitations preventing neural
networks from being constructed that are certifiable with interval. Namely,
we demonstrate that no neural network is completely certifiably robust
with the interval domain for even a dataset with only three points. We
furthermore show that for any minimum distance between robust regions,
there is a dataset that no single hidden layer network can be proven to be
robust on with interval analysis.



2
A B S T R A C T I N T E R P R E TAT I O N F O R N E U R A L N E T W O R K
V E R I F I C AT I O N

We begin by presenting AI2, the first sound and scalable analyzer for deep
neural networks. We first note that the material in this chapter is the result
of joint work [54] with Timon Gehr and also appears in his dissertation.

The key insight behind AI2 is to phrase reasoning about safety and
robustness of neural networks in terms of classic abstract interpretation,
enabling us to leverage decades of advances in that area. Specifically,
AI2 uses overapproximation to automatically prove safety properties
(e.g., robustness) of realistic neural networks (e.g., convolutional neural
networks). In this chapter we introduce an interpretation of neural
networks into abstract transformers that capture the behavior of fully
connected and convolutional network layers with rectified linear unit
activations (ReLU), as well as max-pooling layers. This allows us to handle
real-world neural networks, which are often built using only these layers.

We present a complete implementation of AI2, together with an
extensive evaluation on 20 neural networks. Our results demonstrate that:
(i) AI2 is precise enough to prove useful specifications (e.g., robustness),
(ii) AI2 can be used to certify the effectiveness of state-of-the-art defenses
for neural networks, (iii) AI2 is significantly faster than preexisting
analyzers that are based on symbolic analysis, which often take hours
to verify simple, fully-connected networks, and (iv) AI2 can handle deep
convolutional networks, which are beyond the reach of existing methods.

2.1 introduction

Adversarial examples present a pressing concern for safety-critical systems
that rely on neural networks. In order to tackle this problem, we will
proceed initially by focusing our attention on verifying safety against the
first generation of adversarial examples. These are typically obtained by
slightly perturbing an input that is correctly classified by the network,
such that the network misclassifies the perturbed input. Various kinds
of perturbations have been shown to successfully generate adversarial
examples (e.g., [17–27]).

9
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Attack Original Perturbed Diff

FGSM [20], ε = 0.3

Brightening, δ = 0.085

Figure 2.1: Attacks applied to MNIST images [52].

Fig. 2.1 illustrates two attacks, FGSM and brightening, against a digit
classifier. For each attack, Fig. 2.1 shows an input in the “Original” column,
the perturbed input in the “Perturbed” column, and the pixels that were
changed in the “Diff” column. Brightened pixels are marked in yellow
and darkened pixels are marked in purple. The FGSM [20] attack perturbs
an image by adding to it a particular noise vector multiplied by a small
number ε (in Fig. 2.1, ε = 0.3). The brightening attack (e.g., [26]) perturbs
an image by changing all pixels above the threshold 1− δ to the brightest
possible value (in Fig. 2.1, δ = 0.085).

To mitigate these issues, recent research has focused on reasoning about
neural network robustness, and in particular on local robustness. Local
robustness (or robustness, for short) requires that all samples in the
neighborhood of a given input are classified with the same label [43].
Prior works have introduced methods that decide robustness of small fully
connected feed-forward networks [7]. However, no prior sound analyzer
handles convolutional networks, one of the most popular architectures.

Key Challenge: Scalability and Precision. The main challenge facing
sound analysis of neural networks is scaling to large classifiers while
maintaining a precision that suffices to prove useful properties. The
analyzer must consider all possible outputs of the network over a
prohibitively large set of inputs, processed by a vast number of
intermediate neurons. For instance, consider the image of the digit 8 in
Fig. 2.1 and suppose we would like to prove that no matter how we
brighten the value of pixels with intensity above 1 − 0.085, the network
will still classify the image as 8 (in this example we have 84 such pixels,
shown in yellow). Assuming 64-bit floating point numbers are used to
express pixel intensity, we obtain more than 101154 possible perturbed
images. Thus, proving the property by running a network exhaustively on
all possible input images and checking if all of them are classified as 8 is
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Figure 2.2: A high-level illustration of how AI2 checks that all perturbed inputs
are classified the same way. AI2 first creates an abstract element A1
capturing all perturbed images (Here, we use a 2-bounded set of
zonotopes). It then propagates A1 through the abstract transformer
of each layer, obtaining new shapes. Finally, it verifies that all points
in A4 correspond to outputs with the same classification.

infeasible. To avoid this state space explosion, current methods (e.g., [7, 27,
63]) symbolically encode the network as a logical formula and then check
robustness properties with a constraint solver. However, such solutions do
not scale to larger (e.g., convolutional) networks, which usually involve
many intermediate computations.

Key Concept: Abstract Interpretation for AI. The key insight of our work
is to address the above challenge by leveraging the classic framework
of abstract interpretation (e.g., [64, 65]), a theory that dictates how to
obtain sound, computable, and precise finite approximations of potentially
infinite sets of behaviors. Concretely, we leverage numerical abstract
domains – a particularly good match, as AI systems tend to heavily
manipulate numerical quantities. By showing how to apply abstract
interpretation to reason about AI safety, we enable one to leverage decades
of research and any future advancements in that area (e.g., in numerical
domains [66]). With abstract interpretation, a neural network computation
is overapproximated using an abstract domain. An abstract domain consists
of logical formulas that capture certain shapes (e.g., zonotopes, a restricted
form of polyhedra). For example, in Fig. 2.2, the green zonotope A1
overapproximates the set of blue points (each point represents an image).
Of course, sometimes, due to abstraction, a shape may also contain points
that will not occur in any concrete execution (e.g., the red points in A2).
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This work: The AI2 Analyzer. Based on this insight, we developed a
system called AI2 (Abstract Interpretation for Artificial Intelligence)1. AI2

is the first scalable analyzer that handles common network layer types,
including fully connected and convolutional layers with rectified linear
unit activations (ReLU) and max-pooling layers.

To illustrate the operation of AI2, consider the example in Fig. 2.2,
where we have a neural network, an image of the digit 8 and a set of
perturbations: brightening with parameter 0.085. Our goal is to prove that
the neural network classifies all perturbed images as 8. AI2 takes the
image of the digit 8 and the perturbation type and creates an abstract
element A1 that captures all perturbed images. In particular, we can
capture the entire set of brightening perturbations exactly with a single
zonotope. However, in general, this step may result in an abstract element
that contains additional inputs (that is, red points). In the second step,
A1 is automatically propagated through the layers of the network. Since
layers work on concrete values and not abstract elements, this propagation
requires us to define abstract layers (marked with #) that compute the
effects of the layers on abstract elements. The abstract layers are commonly
called the abstract transformers of the layers. Defining sound and precise, yet
scalable abstract transformers is key to the success of an analysis based on
abstract interpretation. We define abstract transformers for all three layer
types shown in Fig. 2.2.

At the end of the analysis, the abstract output A4 is an
overapproximation of all possible concrete outputs. This enables AI2 to
verify safety properties such as robustness (e.g., are all images classified
as 8?) directly on A4. In fact, with a single abstract run, AI2 was able to
prove that a convolutional neural network classifies all of the considered
perturbed images as 8.

We evaluated AI2 on important tasks such as verifying robustness and
comparing neural networks defenses. For example, for the perturbed
image of the digit 0 in Fig. 2.1, we showed that while a non-defended
neural network classified the FGSM perturbation with ε = 0.3 as 9, this
attack is provably eliminated when using a neural network trained with
Madry et al. [41]’s defense. In fact, AI2 proved that no attack can generate
adversarial examples from this image for any ε between 0 and 0.3.

Main Contributions. Our main contributions are:

1 AI2 is available at: http://ai2.ethz.ch

http://ai2.ethz.ch
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• A sound and scalable method for analysis of deep neural networks
based on abstract interpretation (Section 2.4).

• AI2, an end-to-end analyzer, extensively evaluated on feed-forward
and convolutional networks (computing with 53 000 neurons), far
exceeding capabilities of current systems (Section 2.6).

• An application of AI2 to evaluate provable robustness of neural
network defenses (Section 2.7).

2.2 representing neural networks for certification

In this section, we provide background on feedforward and convolutional
neural networks and show how to transform them into a representation
amenable to abstract interpretation. This representation helps us simplify
the construction and description of our analyzer, which we discuss in later
sections. We use the following notation: for a vector x ∈ Rn, xi denotes
its ith entry, and for a matrix W ∈ Rn×m, Wi denotes its ith row and Wi,j

denotes the entry in its ith row and jth column.

CAT Functions. We express the neural network as a composition of
conditional affine transformations (CAT), which are affine transformations
guarded by logical constraints. The class of CAT functions, shown in
Fig. 2.3, consists of functions f : Rm → Rn for m, n ∈ N and is defined
recursively. Any affine transformation f (x) = W · x + b is a CAT function,
for a matrix W and a vector b. Given sequences of conditions E1, . . . , Ek
and CAT functions f1, . . . , fk, we write:

f (x) = case E1 : f1(x), . . . , case Ek : fk(x).

This is also a CAT function, which returns fi(x) for the first Ei satisfied by
x. The conditions are conjunctions of constraints of the form xi ≥ xj, xi ≥ 0
and xi < 0. Finally, any composition of CAT functions is a CAT function.
We often write f ′′ ◦ f ′ to denote the CAT function f (x) = f ′′( f ′(x)).

Layers. Neural networks are often organized as a sequence of layers, such
that the output of one layer is the input of the next layer. Layers consist of
neurons, performing the same function but with different parameters. The
output of a layer is formed by stacking the outputs of the neurons into a
vector or three-dimensional array. We will define the functionality in terms
of entire layers instead of in terms of individual neurons.
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f (x) ::= W · x + b

| case E1 : f1(x), . . . , case Ek : fk(x)

| f ( f ′(x))

E ::= E ∧ E | xi ≥ xj | xi ≥ 0 | xi < 0

Figure 2.3: Definition of CAT functions.

Reshaping of Inputs. Layers often take three-dimensional inputs (e.g.,
colored images). Such inputs are transformed into vectors by reshaping. A
three-dimensional array x ∈ Rm×n×r can be reshaped to xv ∈ Rm·n·r in a
canonical way, first by depth, then by column, finally by row. That is, given
x:

xv = (x1,1,1 . . . x1,1,r x1,2,1 . . . x1,2,r . . . xm,n,1 . . . xm,n,r)
T .

Activation Function. Typically, layers in a neural network perform a linear
transformation followed by a non-linear activation function. We focus on
the commonly used rectified linear unit (ReLU) activation function, which
for x ∈ R is defined as ReLU(x) = max(0, x), and for a vector x ∈ Rm as
ReLU(x)=(ReLU(x1), . . . , ReLU(xm)).

ReLU to CAT. We can express the ReLU activation function as ReLU =
ReLUn ◦ . . . ◦ ReLU1 where ReLUi processes the ith entry of the input x
and is given by:

ReLUi(x) = case (xi ≥ 0) : x,

case (xi < 0) : Ii←0 · x.

Ii←0 is the identity matrix with the ith row replaced by zeros.

Fully Connected (FC) Layer. An FC layer takes a vector of size m (the m
outputs of the previous layer), and passes it to n neurons, each computing
a function based on the neuron’s weights and bias, one weight for each
component of the input. Formally, an FC layer with n neurons is a function
FCW,b : Rm → Rn parameterized by a weight matrix W ∈ Rn×m and a bias
b ∈ Rn. For x ∈ Rm, we have:

FCW,b(x) = ReLU(W · x + b).
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Figure 2.4: One example computation for each of the three layer types
supported by AI2.

Fig. 2.4a shows an FC layer computation for x = (2, 3, 1).

Convolutional Layer. A convolutional layer is defined by a series of t
filters Fp,q = (Fp,q

1 , .., Fp,q
t ), parameterized by the same p and q, where

p ≤ m and q ≤ n. A filter Fp,q
i is a function parameterized by a three-

dimensional array of weights W ∈ Rp×q×r and a bias b ∈ R. A filter takes
a three-dimensional array and returns a two-dimensional array:

Fp,q
i : Rm×n×r → R(m−p+1)×(n−q+1).

The entries of the output y for a given input x are given by:

yi,j = ReLU(
p
∑

i′=1

q
∑

j′=1

r
∑

k′=1
Wi′ ,j′ ,k′ · x(i+i′−1),(j+j′−1),k′ + b).

Intuitively, this matrix is computed by sliding the filter along the height
and width of the input three-dimensional array, each time reading a
slice of size p × q × r, computing its dot product with W (resulting
in a real number), adding b, and applying ReLU. The function ConvF,
corresponding to a convolutional layer with t filters, has the following type:

ConvF : Rm×n×r → R(m−p+1)×(n−q+1)×t.

As expected, the function ConvF returns a three-dimensional array of
depth t, which stacks the outputs produced by each filter. Fig. 2.4b
illustrates a computation of a convolutional layer with a single filter. For
example:

y1,1,1 = ReLU((1 · 0 + 0 · 4 + (−1) · (−1) + 2 · 0) + 1) = 2.
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Here, the input is a three-dimensional array in R4×4×1. As the input depth
is 1, the depth of the filter’s weights is also 1. The output depth is 1 because
the layer has one filter.

Convolutional Layer to CAT. For a convolutional layer ConvF, we define
a matrix WF whose entries are those of the weight matrices for each

filter (replicated to simulate sliding), and a bias b
F

consisting of copies
of the filters’ biases. We then treat the convolutional layer ConvF like

the equivalent FC
WF ,b

F . We provide formal definitions of WF and b
F

in
Section 2.4.2. Here, we provide an intuitive illustration of the translation on
the example in Fig. 2.4b. Consider the first entry y1,1 = 2 of y in Fig. 2.4b:

y1,1 = ReLU(W1,1 · x1,1 + W1,2 · x1,2 + W2,1 · x2,1 + W2,2 · x2,2 + b).

When x is reshaped to a vector xv, the four entries x1,1, x1,2, x2,1 and x2,2 will
be found in xv

1 , xv
2 , xv

5 and xv
6 , respectively. Similarly, when y is reshaped to

yv, the entry y1,1 will be found in yv
1. Thus, to obtain yv

1 = y1,1, we define
the first row in WF such that its 1st, 2nd, 5th, and 6th entries are W1,1, W1,2,
W2,1 and W2,2. The other entries are zeros. We also define the first entry
of the bias to be b. For similar reasons, to obtain yv

2 = y1,2, we define the
second row in WF such that its 2nd, 3rd, 6th, and 7th entries are W1,1, W1,2,
W2,1 and W2,2 (also b2 = b). By following this transformation, we obtain

the matrix WF ∈ R9 ×R16 and the bias b
F ∈ R9:

WF = b
F
=

1 0 0 0 −1 2 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 −1 2 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 −1 2 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 −1 2 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 −1 2 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 −1 2 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 −1 2 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 −1 2 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 2




1
1
1
1
1
1
1
1
1


To aid understanding, we show the entries from W that appear in the
resulting matrix WF in bold.

Max Pooling (MP) Layer. An MP layer takes a three-dimensional array
x ∈ Rm×n×r and reduces the height m of x by a factor of p and the width
n of x by a factor of q (for p and q dividing m and n). Depth is kept
as-is. Neurons take as input disjoint subrectangles of x of size p× q and
return the maximal value in their subrectangle. Formally, the MP layer is
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Figure 2.5: The operation of the transformed max-pooling layer.

a function MaxPoolp,q : Rm×n×r → R
m
p ×

n
q×r that for an input x returns the

three-dimensional array y given by:

yi,j,k = max({xi′ ,j′ ,k | p · (i− 1) < i′ ≤ p · i
q · (j− 1) < j′ ≤ q · j}).

Fig. 2.4c illustrates the max-pooling computation for p = 2, q = 2 and
r = 1. For example, here we have:

y1,1,1 = max({x1,1,1, x1,2,1, x2,1,1, x2,2,1}) = 2.

Max Pooling to CAT. Let MaxPool′p,q : Rm·n·r → R
m
p ·

n
q ·r be the function

that is obtained from MaxPoolp,q by reshaping its input and output:
MaxPool′p,q(xv) = MaxPoolp,q(x)v. To represent max-pooling as a CAT
function, we define a series of CAT functions whose composition is
MaxPool′p,q:

MaxPool′p,q = f m
p ·

n
q ·r ◦ . . . ◦ f1 ◦ f MP.

The first function is f MP(xv) = WMP · xv, which reorders its input vector
xv to a vector xMP in which the values of each max-pooling subrectangle
of x are adjacent. The remaining functions execute standard max-pooling.
Concretely, the function fi ∈ { f1, . . . , f m

p ·
n
q ·r} executes max-pooling on the

ith subrectangle by selecting the maximal value and removing the other
values. We provide formal definitions of the CAT functions f MP and fi in
Section 2.4.2.

Here, we illustrate them on the example from Fig. 2.4c, where r = 1. The
CAT computation for this example is shown in Fig. 2.5. The computation
begins from the input vector xv, which is the reshaping of x from Fig. 2.4c.
The values of the first 2× 2 subrectangle in x (namely, 0, 1, 2 and −4) are



18 abstract interpretation for neural network verification

separated in xv by values from another subrectangle (3 and −2). To make
them contiguous, we reorder xv using a permutation matrix WMP, yielding
xMP. In our example, WMP is:

WMP=



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


One entry in each row of WMP is 1, all other entries are zeros. If row i

has entry j set to 1, then the jth value of xv is moved to the ith entry of xMP.
For example, we placed a one in the fifth column of the third row of WMP

to move the value xv
5 to entry 3 of the output vector.

Next, for each i ∈ {1, . . . , m
p ·

n
q }, the function fi takes as input a vector

whose values at the indices between i and i + p · q− 1 are those of the ith

subrectangle of x̄ in Fig. 2.4c. It then replaces those p · q values by their
maximum:

fi(x) = (x1, . . ., xi−1, xk, xi+p·q, . . . , xm·n−(p·q−1)·(i−1)),

where the index k ∈ {i, . . . , i + p · q − 1} is such that xk is maximal. For
k given, fi can be written as a CAT function: fi(x) = W(i,k) · x, where the
rows of the matrix W(i,k) ∈ R(m·n−(p·q−1)·i)×(m·n−(p·q−1)·(i−1)) are given by
the following sequence of standard basis vectors:

e1, . . . , ei−1, ek, ei+p·q, . . . , em·n−(p·q−1)·(i−1).

For example, in Fig. 2.5, f1(xMP) = W(1,3) · xMP deletes 0, 1 and −4. Then it
moves the value 2 to the first component, and the values at indices 5, . . . , 16
to components 2, . . . , 13. Overall, W(1,3) is given by:

W(1,3)=



0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


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As, in general, k is not known in advance, we need to write fi as a CAT
function with a different case for each possible index k of the maximal
value in x. For example, in Fig. 2.5:

f1(x) =

case (x1 ≥ x2) ∧ (x1 ≥ x3) ∧ (x1 ≥ x4) : W(1,1) · x,

case (x2 ≥ x1) ∧ (x2 ≥ x3) ∧ (x2 ≥ x4) : W(1,2) · x,

case (x3 ≥ x1) ∧ (x3 ≥ x2) ∧ (x3 ≥ x4) : W(1,3) · x,

case (x4 ≥ x1) ∧ (x4 ≥ x2) ∧ (x4 ≥ x3) : W(1,4) · x.

In our example, the vector xMP in Fig. 2.5 satisfies the third condition,
and therefore f1(xMP) = W(1,3) · xMP. Taking into account all four
subrectangles, we obtain:

MaxPool′2,2 = f4 ◦ f3 ◦ f2 ◦ f1 ◦ f MP.

In summary, each function fi replaces p · q components of their input by
the maximum value among them, suitably moving other values. For xv in
Fig. 2.5:

MaxPool′2,2(xv) = W(4,7) ·W(3,6) ·W(2,2) ·W(1,3) ·WMP · xv.

Network Architectures. Two popular architectures of neural networks are
fully connected (FNN) and convolutional (CNN). An FNN is a sequence
of fully connected layers, while a CNN [67] consists of all previously
described layer types: convolutional, max-pooling, and fully connected.

2.3 background : abstract interpretation

We now provide a short introduction to Abstract Interpretation (AI). AI
enables one to prove program properties on a set of inputs without actually
running the program. Formally, given a function f : Rm → Rn, a set of
inputs X ⊆ Rm, and a property C ⊆ Rn, the goal is to determine whether
the property holds, that is, whether ∀x ∈ X. f (x) ∈ C.

Fig. 2.6 shows a CAT function f : R2 → R2 that is defined as f (x) =( 2 −1
0 1

)
· x and four input points for the function f , given as

X = {(0, 1), (1, 1), (1, 3), (2, 2)}.

Let the property be C = {(y1, y2) ∈ R2 | y1 ≥ −2}, which holds in this
example. To reason about all inputs simultaneously, we lift the definition
of f to be over a set of inputs X rather than a single input:

Tf : P(Rm)→ P(Rn), Tf (X) = { f (x) | x ∈ X}.
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Figure 2.6: (a) Abstracting four points with a polyhedron (gray), zonotope
(green), and box (blue). (b) The points and abstractions resulting
from the affine transformer.

The function Tf is called the concrete transformer of f . With Tf , our goal is
to determine whether Tf (X) ⊆ C for a given input set X. Because the set
X can be very large (or infinite), we cannot enumerate all points in X to
compute Tf (X). Instead, AI overapproximates sets with abstract elements
(drawn from some abstract domain A) and then defines a function, called
an abstract transformer of f , which works with these abstract elements and
overapproximates the effect of Tf . Then, the property C can be checked
on the resulting abstract element returned by the abstract transformer.
Naturally, because AI employs overapproximation, it is sound, but may
be imprecise (i.e., may fail to prove the property when it holds). Next, we
explain the ingredients of AI in more detail.

Abstract Domains. Abstract domains consist of shapes expressible as sets
of logical constraints. A few popular numerical abstract domains are: Box
(i.e., Interval), Zonotope, and Polyhedra. These domains provide trade-offs
between precision and scalability (e.g., Box’s abstract transformers are far
faster than Polyhedra’s abstract transformers, but polyhedra are far more
precise than boxes). The Box domain consists of boxes, captured by a set of
constraints of the form a ≤ xi ≤ b, for a, b ∈ R ∪ {−∞,+∞} and a ≤ b. A
box B contains all points which satisfy all constraints in B. In our example,
X can be abstracted by the following box:

B = {0 ≤ x1 ≤ 2, 1 ≤ x2 ≤ 3}.

Note that B is not very precise since it includes 9 integer points (along with
other points), whereas X has only 4 points.
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The Zonotope domain [68] consists of zonotopes. A zonotope is a center-
symmetric convex closed polyhedron Z ⊆ Rn that can be represented as
an affine function:

z : [a1, b1]× [a2, b2]× · · · × [am, bm]→ Rn.

In other words, z has the form z(ε) = M · ε + b where ε is a vector of error
terms satisfying interval constraints εi ∈ [ai, bi] for 1 ≤ i ≤ m. The bias
vector b captures the center of the zonotope, while the matrix M captures
the boundaries of the zonotope around b. A zonotope z represents all
vectors in the image of z (i.e., z[[a1, b1]× · · · × [am, bm]]). In our example, X
can be abstracted by the zonotope z : [−1, 1]3 → R2:

z(ε1, ε2, ε3) = (1 + 0.5 · ε1 + 0.5 · ε2, 2 + 0.5 · ε1 + 0.5 · ε3).

Zonotope is a more precise domain than Box: for our example, z includes
only 7 integer points.

The Polyhedra [69] domain consists of convex closed polyhedra, where a
polyhedron is captured by a set of linear constraints of the form A · x ≤ b,
for some matrix A and a vector b. A polyhedron C contains all points
which satisfy the constraints in C. In our example, X can be abstracted by
the following polyhedron:

C = {x2 ≤ 2 · x1 + 1, x2 ≤ 4− x1, x2 ≥ 1, x2 ≥ x1}.

Polyhedra is a more precise domain than Zonotope: for our example, C
includes only 5 integer points.

To conclude, abstract elements (from an abstract domain) represent large,
potentially infinite sets. There are various abstract domains, providing
different levels of precision and scalability.

Abstract Transformers. To compute the effect of a function on an abstract
element, AI uses the concept of an abstract transformer. Given the (lifted)
concrete transformer Tf : P(Rm) → P(Rn) of a function f : Rm → Rn, an
abstract transformer of Tf is a function over abstract domains, denoted by
T#

f : Am → An. The superscripts denote the number of components of the
represented vectors. For example, elements in Am represent sets of vectors
of dimension m. This also determines which variables can appear in the
constraints associated with an abstract element. For example, elements in
Am constrain the values of the variables x1, . . . , xm.

Abstract transformers have to be sound. To define soundness, we
introduce two functions: the abstraction function α and the concretization
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function γ. An abstraction function αm : P(Rm) → Am maps a set of
vectors to an abstract element in Am that overapproximates it. For example,
in the Box domain:

α2({(0, 1), (1, 1), (1, 3), (2, 2)}) = {0 ≤ x1 ≤ 2, 1 ≤ x2 ≤ 3}.

A concretization function γm : Am → P(Rm) does the opposite: it maps
an abstract element to the set of concrete vectors that it represents. For
example, for Box:

γ2({0 ≤ x1 ≤ 2, 1 ≤ x2 ≤ 3}) = {(0, 1), (0, 2), (0, 3),

(1, 1), (1, 2), (1, 3),

(2, 1), (2, 2), (2, 3), . . .}.

This only shows the 9 vectors with integer components. We can now define
soundness. An abstract transformer T#

f is sound if for all a ∈ Am, we

have Tf (γ
m(a)) ⊆ γn(T#

f (a)), where Tf is the concrete transformer. That
is, an abstract transformer has to overapproximate the effect of a concrete
transformer. For example, the transformers illustrated in Fig. 2.6 are sound.
For instance, if we apply the Box transformer on the box in Fig. 2.6a, it
will produce the box in Fig. 2.6b. The box in Fig. 2.6b includes all points
that f could compute in principle when given any point included in the
concretization of the box in Fig. 2.6a. Analogous properties hold for the
Zonotope and Polyhedra transformers. It is also important that abstract
transformers are precise. That is, the abstract output should include as few
points as possible. For example, as we can see in Fig. 2.6b, the output
produced by the Box transformer is less precise (it is larger) than the output
produced by the Zonotope transformer, which in turn is less precise than
the output produced by the Polyhedra transformer.

Property Verification. After obtaining the (abstract) output, we can check
various properties of interest on the result. In general, an abstract output
a = T#

f (α
m(X)) proves a property Tf (X) ⊆ C if γn(a) ⊆ C. If the abstract

output proves a property, we know that the property holds for all possible
concrete values. However, the property may hold even if it cannot be
proven with a given abstract domain. For example, in Fig. 2.6b, for all
concrete points, the property C = {(y1, y2) ∈ R2 | y1 ≥ −2} holds.
However, with the Box domain, the abstract output violates C, which
means that the Box domain is not precise enough to prove the property.
In contrast, the Zonotope and Polyhedra domains are precise enough to
prove the property.
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Figure 2.7: Illustration of how AI2 overapproximates neural network states. Blue
circles show the concrete values, while green zonotopes show the
abstract elements. The gray box shows the steps in one application
of the ReLU transformer (ReLU1).

In summary, to apply AI successfully, we need to: (a) find a suitable
abstract domain, and (b) define abstract transformers that are sound and as
precise as possible. In the next section, we introduce abstract transformers
for neural networks that are parameterized by the numerical abstract
domain. This means that we can explore the precision-scalability trade-off
by plugging in different abstract domains.

2.4 ai
2 : ai for neural networks

In this section we present AI2, an abstract interpretation framework
for sound analysis of neural networks. We begin by defining abstract
transformers for the different kinds of layers. Using these transformers,
we then show how to prove robustness properties of neural networks.

2.4.1 Abstract Interpretation for CAT Functions

We now show how to overapproximate CAT functions with AI. We
illustrate the method on the example in Fig. 2.7, which shows a simple
network that manipulates two-dimensional vectors using a single fully
connected layer of the form f (x) = ReLU2

(
ReLU1

(( 2 −1
0 1

)
· x
))

. Recall

ReLUi(x) = case (xi ≥ 0) : x,

case (xi < 0) : Ii←0 · x,

where Ii←0 is the identity matrix with the ith row replaced by the zero
vector. We overapproximate the network behavior on an abstract input.
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The input can be obtained directly (see Sec. 2.4.3) or by abstracting a set
of concrete inputs to an abstract element (using the abstraction function α).
For our example, we use the concrete inputs (the blue points) from Fig 2.6.
Those concrete inputs are abstracted to the green zonotope z0 : [−1, 1]3 →
R2, given as:

z0(ε1, ε2, ε3) = (1 + 0.5 · ε1 + 0.5 · ε2, 2 + 0.5 · ε1 + 0.5 · ε3).

Due to abstraction, more (spurious) points may be added. In this example,
except the blue points, the entire area of the zonotope is spurious. We then
apply abstract transformers to the abstract input. Note that, if a function
f can be written as f = f ′′ ◦ f ′, the concrete transformer for f is Tf =

Tf ′′ ◦ Tf ′ . Similarly, given abstract transformers T#
f ′ and T#

f ′′ , an abstract

transformer for f is T#
f ′′ ◦ T#

f ′ . When a neural network N = f ′` ◦ · · · ◦ f ′1 is a

composition of multiple CAT functions f ′i of the shape f ′i (x) = W · x + b or
fi(x) = case E1 : f1(x), . . . , case Ek : fk(x), we only have to define abstract
transformers for these two kinds of functions. We then obtain the abstract
transformer T#

N = T#
f ′`
◦ · · · ◦ T#

f ′1
.

Abstracting Affine Functions. To abstract functions of the form f (x) =
W · x + b, we assume that the underlying abstract domain supports the
operator Aff that overapproximates such functions. Note that for Zonotope
and Polyhedra, this operation is supported and exact. Fig. 2.7 demonstrates
Aff as the first step taken for overapproximating the effect of the fully
connected layer. Here, the resulting zonotope z1 : [−1, 1]3 → R2 is:

z1(ε1, ε2, ε3) =

(2 · (1 + 0.5 · ε1 + 0.5 · ε2)− (2 + 0.5 · ε1 + 0.5 · ε3),

2 + 0.5 · ε1 + 0.5 · ε3) =

(0.5 · ε1 + ε2 − 0.5 · ε3, 2 + 0.5 · ε1 + 0.5 · ε3).

Abstracting Case Functions. To abstract functions of the form f (x) =
case E1 : f1(x), . . . , case Ek : fk(x), we first split the abstract element a into
the different cases (each defined by one of the expressions Ei), resulting
in k abstract elements a1, . . . , ak. We then compute the result of T#

fi
(ai) for

each ai. Finally, we unify the results to a single abstract element.
To split and unify, we assume two standard operators for abstract

domains: (1) meet with a conjunction of linear constraints and (2) join.
The meet (u) operator is an abstract transformer for set intersection: for
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For f (x) = W · x + b, T#
f (a) = Aff(a, W, b).

For f (x) = case E1 : f1(x), . . . , case Ek : fk(y),

T#
f (a) =

⊔
1≤i≤k

T#
fi
(a u Ei).

For f (x) = f2( f1(x)), T#
f (a) = T#

f2
(T#

f1
(a)).

Figure 2.8: Abstract transformers for CAT functions.

an inequality expression E from Fig. 2.3, γn(a) ∩ {x ∈ Rn | x |= E} ⊆
γn(a u E). The join (t) operator is an abstract transformer for set union:
γn(a1)∪ γn(a2) ⊆ γn(a1 t a2). We further assume that the abstract domain
contains an element ⊥, which satisfies γn(⊥) = {}, ⊥ u E = ⊥ and
a t⊥ = a for a ∈ A.

For our example in Fig. 2.7, abstract interpretation continues on z1 using
the meet and join operators. To compute the effect of ReLU1, z1 is split
into two zonotopes z2 = z1 u (x1 ≥ 0) and z3 = z1 u (x1 < 0). One way to
compute a meet between a zonotope and a linear constraint is to modify
the intervals of the error terms (see [70]). In our example, the resulting
zonotopes are z2 : [−1, 1]× [0, 1]× [−1, 1] → R2 such that z2(ε) = z1(ε)
and z3 : [−1, 1] × [−1, 0] × [−1, 1] → R2 such that z3(ε) = z1(ε) for ε̄
common to their respective domains. Note that both z2 and z3 contain
small spurious areas, because the intersections of the respective linear
constraints with z1 are not zonotopes. Therefore, they cannot be captured
exactly by the domain. Here, the meet operator u overapproximates set
intersection ∩ to get a sound, but not perfectly precise, result.

Then, the two cases of ReLU1 are processed separately. We apply
the abstract transformer of f1(x) = x to z2 and we apply the abstract
transformer of f2(x) = I0←0 · x to z3. The resulting zonotopes are z4 = z2
and z5 : [−1, 1]2 → R2 such that z5(ε1, ε3) = (0, 2 + 0.5 · ε1 + 0.5 · ε3).
These are then joined to obtain a single zonotope z6. Since z5 is contained
in z4, we get z6 = z4 (of course, this need not always be the case). Then,
z6 is passed to ReLU2. Because z6 u (x1 < 0) = ⊥, this results in z7 = z6.
Finally, γ2(z7) is our overapproximation of the network outputs for our
initial set of points. The abstract element z7 is a finite representation of this
infinite set.
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In summary, we define abstract transformers for every kind of CAT
function (summarized in Fig. 2.8). These definitions are general and are
compatible with any abstract domain A which has a minimum element
⊥ and supports (1) a meet operator between an abstract element and a
conjunction of linear constraints, (2) a join operator between two abstract
elements, and (3) an affine transformer. We assume that the operations
are sound. We note that these operations are standard or definable with
standard operations. By definition of the abstract transformers, we get
soundness:

Theorem 1. For any CAT function f with transformer Tf : P(Rm) → P(Rn)
and any abstract input a ∈ Am,

Tf (γ
m(a)) ⊆ γn(T#

f (a)).

Theorem 1 is the key to sound neural network analysis with our abstract
transformers, as we explain in the next section.
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2.4.2 CAT Representations for Common Layer Types

In this section, we provide the formal definitions of the matrices and
vectors used to represent the convolutional layer and the max-pooling layer
as CAT functions.

Convolutional Layer. Recall that for filters Wk ∈ Rp×q×r, bk ∈ R for
1 ≤ k ≤ t, we have

ConvF(x) : Rn×m×r → R(m−p+1)×(n−q+1)×t

ConvF(x)i,j,k = ReLU(
p
∑

i′=1

q
∑

j′=1

r
∑

k′=1
Wk

i′ ,j′ ,k′ · x(i+i′−1),(j+j′−1),k′ + bk),

for 1 ≤ i ≤ m− p + 1, 1 ≤ j ≤ n− q + 1 and 1 ≤ k ≤ t. Reshaping both the
input and the output vector such that they have only one index, we obtain

Conv′F(x) : Rn·m·r → R(m−p+1)·(n−q+1)·t

Conv′F(x)(n−q+1)·t·(i−1)+t·(j−1)+k = ReLU(
p
∑

i′=1

q
∑

j′=1

r
∑

k′=1
Wk

i′ ,j′ ,k′

·xn·r·(i+i′−2)+r·(j+j′−2)+k′ + bk),

for 1 ≤ i ≤ m − p + 1, 1 ≤ j ≤ n − q + 1 and 1 ≤ k ≤ t. The function
Conv′F is ReLU after an affine transformation, therefore there is a matrix

WF ∈ R((m−p+1)·(n−q+1)·t)×(n·m·r) and a vector b
F ∈ R(m−p+1)·(n−q+1)·t

such that

ConvF(x)v = Conv′F(xv) = ReLU(WF · xv + bF) = FC
WF ,b

F (x).

The entries of WF and b
F

are obtained by equating

FC(el)(n−q+1)·t·(i−1)+t·(j−1)+k = ReLU(WF
(n−q+1)·t·(i−1)+t·(j−1)+k,l

+ bF
(n−q+1)·t·(i−1)+t·(j−1)+k) with

Conv′F(el)(n−q+1)·t·(i−1)+t·(j−1)+k = ReLU(
p
∑

i′=1

q
∑

j′=1

r
∑

k′=1
Wk

i′ ,j′ ,k′ ·

[l = n · r · (i + i′ − 2)

+ r · (j + j′ − 2) + k′] + bk),
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for standard basis vectors el with (el)i = [l = i] for 1 ≤ l ≤ n and
1 ≤ i ≤ n ·m · r. This way, we obtain

WF
(n−q+1)·t·(i−1)+t·(j−1)+k,l =

p

∑
i′=1

q

∑
j′=1

r

∑
k′=1

Wk
i′ ,j′ ,k′ · [l = n · r · (i + i′ − 2)

+ r · (j + j′ − 2) + k′] and

bF
(n−q+1)·t·(i−1)+t·(j−1)+k = bk,

for 1 ≤ i ≤ m− p + 1, 1 ≤ j ≤ n− q + 1 and 1 ≤ k ≤ t. Note that here,
[ϕ] is an Iverson bracket, which is equal to 1 if ϕ holds and equal to 0
otherwise.

Max Pooling Layer. Recall that MaxPoolp,q : Rm×n×r → R
m
p ×

n
q×r

partitions the input vector into disjoint blocks of size p× q× 1 and replaces
each block by its maximum value. Furthermore, MaxPool′p,q : Rm·n·r →
R

m
p ·

n
q ·r is obtained from MaxPoolp,q by reshaping both the input and

output: MaxPool′p,q(xv) = MaxPoolp,q(x)v. We will represent MaxPool′p,q
as a composition of CAT functions,

MaxPool′p,q = f m
p ·

n
q ·r ◦ . . . ◦ f1 ◦ f MP.

Here, f MP rearranges the input vector such that values from the same
block are adjacent. Values from different blocks are brought into the same
order as the output from each block appears in the output vector.

Note that ((i − 1) mod p) + 1, (j − 1) mod q) + 1, 1) are the indices of
input value xi,j,k within its respective block and

(⌊
i−1

p

⌋
+ 1,

⌊
j−1

q

⌋
+ 1, k

)
are the indices of the unique value in the output vector whose value
depends on xi,j,k. Recall that the permutation matrix M representing a
permutation π is given by Mπ(i) = ei.

The CAT function f MP is a linear transformation f MP(xv) = WMP · xv

where the permutation matrix WMP is given by

WMP
r·p·q·

(
n
q

⌊
i−1

p

⌋
+
⌊

j−1
q

⌋)
+p·q·(k−1)+q·((i−1) mod p)+((j−1) mod q)+1

= en·r·(i−1)+r·(j−1)+k,

for 1 ≤ i ≤ m, 1 ≤ j ≤ n and 1 ≤ k ≤ r.
For each 1 ≤ i ≤ m

p ·
n
p · r, the CAT function fi selects the maximum

value from a (p · q)-segment starting from the ith component of the input
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vector. The function fi consists of a sequence of cases, one for each of the
p · q possible indices of the maximal value in the segment:

fi(x) = case (xi ≥ xi+1) ∧ . . . ∧ (xi ≥ xi+p·q−1) : W(i,i) · x,

case (xi+1 ≥ xi) ∧ . . . ∧ (xi+1 ≥ xi+p·q−1) : W(i,i+1) · x,
...

case (xi+p·q−1 ≥ xi) ∧ . . . ∧ (xi+p·q−1 ≥ xi+p·q−2) : W(i,i+p·q−1) · x.

The matrix W(i,k) ∈ R(m·n·r−(p·q−1)·i)×(m·n·r−(p·q−1)·(i−1)) replaces the
segment xi, . . . , xi+p·q−1 of the input vector x by the value xk and is given
by

W(i,k)
j =


ej, if 1 ≤ j ≤ i− 1

ek, if j = i

ej+p·q−1, if i + 1 ≤ j ≤ m · n · r− (p · q− 1) · i
.

2.4.3 Neural Network Analysis with AI

In this section, we explain how to leverage AI with our abstract
transformers to prove properties of neural networks. We focus on
robustness properties below, however, the framework can be applied to
reason about any safety property.

For robustness, we aim to determine if for a (possibly unbounded)
set of inputs, the outputs of a neural network satisfy a given condition.
A robustness property for a neural network N : Rm → Rn is a pair
(X, C) ∈ P(Rm) × P(Rn) consisting of a robustness region X and a
robustness condition C. We say that the neural network N satisfies a
robustness property (X, C) if N(x) ∈ C for all x ∈ X.

Local Robustness. This is a property (X, CL) where X is a robustness
region and CL contains the outputs that describe the same label L:

CL =

{
y ∈ Rn

∣∣∣∣∣ arg max
i∈{1,...,n}

(yi) = L

}
.

For example, Fig. 2.7 shows a neural network and a robustness property
(X, C2) for X = {(0, 1), (1, 1), (1, 3), (2, 2)} and C2 = {y | arg max(y1, y2) =
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2}. In this example, (X, C2) holds. Typically, we will want to check that
there is some label L for which (X, CL) holds.

We now explain how our abstract transformers can be used to prove a
given robustness property (X, C).

Robustness Proofs using AI. Assume we are given a neural network
N : Rm → Rn, a robustness property (X, C) and an abstract domain A
(supporting t, u with a conjunction of linear constraints, Aff, and ⊥)
with an abstraction function α and a concretization function γ. Further
assume that N can be written as a CAT function. Denote by T#

N the abstract
transformer of N, as defined in Fig. 2.8. Then, the following condition is
sufficient to prove that N satisfies (X, C):

γn(T#
N(α

m(X))) ⊆ C.

This follows from Theorem 1 and the properties of α and γ. Note that
there may be abstract domains A that are not precise enough to prove that
N satisfies (X, C), even if N in fact satisfies (X, C). On the other hand, if
we are able to show that some abstract domain A proves that N satisfies
(X, C), we know that it holds.

Proving Containment. To prove the property (X, C) given the result
a = T#

N(α
m(X)) of abstract interpretation, we need to be able to show

γn(a) ⊆ C. There is a general method if C is given by a CNF formula∧
i
∨

j li,j where all literals li,j are linear constraints: we show that the
negated formula

∨
i
∧

j ¬li,j is inconsistent with the abstract element a by

checking that a u
(∧

j ¬li,j
)
= ⊥ for all i.

For our example in Fig. 2.7, the goal is to check that all inputs are
classified as 2. We can represent C using the formula y2 ≥ y1. Its negation
is y2 < y1, and it suffices to show that no point in the concretization of the
abstract output satisfies this negated constraint. As indeed z7u (y2 < y1) =
⊥, the property is successfully verified. However, note that we would not
be able to prove some other true properties, such as y1 ≥ 0. This property
holds for all concrete outputs, but some points in the concretization of the
output z7 do not satisfy it.

2.5 implementation of ai
2

The AI2 framework is implemented in the D programming language and
supports any neural network composed of fully connected, convolutional,
and max-pooling layers.
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Properties. AI2 supports properties (X, C) where X is specified by a
zonotope and C by a conjunction of linear constraints over the output
vector’s components. In our experiments, we illustrate the specification
of local robustness properties where the region X is defined by a box or a
line, both of which are precisely captured by a zonotope.

Abstract Domains. The AI2 system is fully integrated with all abstract
domains supported by Apron [71], a popular library for numerical abstract
domains, including: Box [64], Zonotope [68], and Polyhedra [69].

Bounded Powerset. We also implemented bounded powerset domains
(disjunctive abstractions [72, 73]), which can be instantiated with any of
the above abstract domains. An abstract element in the powerset domain
P(A) of an underlying abstract domain A is a set of abstract elements
from A, concretizing to the union of the concretizations of the individual
elements (i.e., γ(A) =

⋃
a∈A γ(a) for A ∈ P(A)).

The powerset domain can implement a precise join operator using
standard set union (potentially pruning redundant elements). However,
since the increased precision can become prohibitively costly if many
join operations are performed, the bounded powerset domain limits the
number of abstract elements in a set to N (for some constant N).

We implemented bounded powerset domains on top of standard
powerset domains using a greedy heuristic that repeatedly replaces two
abstract elements in a set by their join, until the number of abstract
elements in the set is below the bound N. For joining, AI2 heuristically
selects two abstract elements that minimize the distance between the
centers of their bounding boxes. In our experiments, we denote by
ZonotopeN or ZN the bounded powerset domain with bound N ≥ 2 and
underlying abstract domain Zonotope.

2.6 evaluation of ai
2

In this section, we present our empirical evaluation of AI2. Before
discussing the results in detail, we summarize our three most important
findings:

• AI2 can prove useful robustness properties for convolutional
networks with 53 000 neurons and large fully connected feedforward
networks with 1 800 neurons.
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Figure 2.9: Verified properties by AI2 on the MNIST and CIFAR convolutional
networks for each bound δ ∈ ∆ (x-axis).

• AI2 benefits from more precise abstract domains: Zonotope enables
AI2 to prove substantially more properties over Box. Furthermore,
ZonotopeN, with N ≥ 2, can prove stronger robustness properties
than Zonotope alone.

• AI2 scales better than the SMT-based Reluplex [7]: AI2 is able to
verify robustness properties on large networks with ≥ 1200 neurons
within few minutes, while Reluplex takes hours to verify the same
properties.

In the following, we first describe our experimental setup. Then, we
present and discuss our results.

2.6.1 Experimental Setup

We now describe the datasets, neural networks, and robustness properties
used in our experiments.

Datasets. We used two popular datasets: MNIST [52] and CIFAR-10 [74]
(referred to as CIFAR from now on). MNIST consists of 60 000 grayscale
images of handwritten digits, whose resolution is 28 × 28 pixels. The
images show white digits on a black background.

CIFAR consists of 60 000 colored photographs with 3 color channels,
whose resolution is 32 × 32 pixels. The images are partitioned into 10



2.6 evaluation of ai
2

33

different classes (e.g., airplane or bird). Each photograph has a different
background (unlike MNIST).

Neural Networks. We trained convolutional and fully connected
feedforward networks on both datasets. All networks were trained using
accelerated gradient descent with at least 50 epochs of batch size 128. The
training completed when each network had a test set accuracy of at least
0.9.

For the convolutional networks, we used the LeNet architecture [75],
which consists of the following sequence of layers: 2 convolutional, 1 max-
pooling, 2 convolutional, 1 max-pooling, and 3 fully connected layers. We
write np×q to denote a convolutional layer with n filters of size p× q, and
m to denote a fully connected layer with m neurons. The hidden layers of
the MNIST network are 83×3, 83×3, 143×3, 143×3, 50, 50, 10, and those of the
CIFAR network are 243×3, 243×3, 323×3, 323×3, 100, 100, 10. The max-pooling
layers of both networks have a size of 2× 2. We trained our networks using
an open-source implementation [76].

We used 7 different architectures of fully connected feedforward
networks (FNNs). We write l × n to denote the FNN architecture with
l layers, each consisting of n neurons. Note that this determines the
network’s size; e.g., a 4× 50 network has 200 neurons. For each dataset,
MNIST and CIFAR, we trained FNNs with the following architectures:
3× 20, 6× 20, 3× 50, 3× 100, 6× 100, 6× 200, and 9× 200.

Robustness Properties. In our experiments, we consider local robustness
properties (X, CL) where the region X captures changes to lighting
conditions. This type of property is inspired by the work of [26], where
adversarial examples were found by brightening the pixels of an image.

Formally, we consider robustness regions Sx,δ that are parameterized by
an input x ∈ Rm and a robustness bound δ ∈ [0, 1]. The robustness region
is defined as:

Sx,δ = {x′ ∈ Rm | ∀i ∈ [1, m]. 1− δ ≤ xi ≤ x′i ≤ 1∨ x′i = xi}.

For example, the robustness region for x = (0.6, 0.85, 0.9) and bound
δ = 0.2 is given by the set:

{(0.6, x, x′) ∈ R3 | x ∈ [0.85, 1], x′ ∈ [0.9, 1]}.

Note that increasing the bound δ increases the region’s size.
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In our experiments, we used AI2 to check whether all inputs in a given
region Sx,δ are classified to the label assigned to x. We consider 6 different
robustness bounds δ, which are drawn from the set

∆ = {0.001, 0.005, 0.025, 0.045, 0.065, 0.085}.

We remark that our robustness properties are stronger than those
considered in [26]. This is because, in a given robustness region Sx,δ, each
pixel of the image x is brightened independently of the other pixels. We
remark that this is useful to capture scenarios where only part of the image
is brightened (e.g., due to shadowing).

Other perturbations. Note that AI2 is not limited to certifying robustness
against such brightening perturbations. In general, AI2 can be used
whenever the set of perturbed inputs can be overapproximated with a set
of zonotopes in a precise way (i.e., without adding too many inputs that
do not capture actual perturbations to the robustness region). For example,
the inputs perturbed by an `∞ attack [25] are captured exactly by a
single zonotope. Further, rotations and translations have low-dimensional
parameter spaces, and therefore can be overapproximated by a set of
zonotopes in a precise way.

Benchmarks. We selected 10 images from each dataset. Then, we specified
a robustness property for each image and each robustness bound in ∆,
resulting in 60 properties per dataset. We ran AI2 to check whether each
neural network satisfies the robustness properties for the respective dataset.
We compared the results using different abstract domains, including Box,
Zonotope, and ZonotopeN with N ranging between 2 and 128.

We ran all experiments on an Ubuntu 16.04.3 LTS server with two Intel
Xeon E5-2690 processors and 512GB of memory. To compare AI2 to existing
solutions, we also ran the FNN benchmarks with Reluplex [7]. We did
not run convolutional benchmarks with Reluplex as it currently does not
support convolutional networks.

2.6.2 Discussion of Results

In the following, we first present our results for convolutional networks.
Then, we present experiments with different abstract domains and discuss
how the domain’s precision affects AI2’s ability to verify robustness. We
also plot AI2’s running times for different abstract domains to investigate
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Figure 2.10: Verified properties as a function of the abstract domain used by
AI2 for the 9× 200 network. Each point represents the fraction of
robustness properties for a given bound (as specified in the legend)
verified by a given abstract domain (x-axis).

the trade-off between precision and scalability. Finally, we compare AI2 to
Reluplex.

Proving Robustness of Convolutional Networks. We start with our
results for convolutional networks. AI2 terminated within 1.5 minutes
when verifying properties on the MNIST network and within 1 hour when
verifying the CIFAR network.

In Fig. 2.9, we show the fraction of robustness properties verified by AI2

for each robustness bound. We plot separate bars for Box and Zonotope
to illustrate the effect of the domain’s precision on AI2’s ability to verify
robustness.

For both networks, AI2 verified all robustness properties for the smallest
bound 0.001 and it verified at least one property for the largest bound
0.085. This demonstrates that AI2 can verify properties of convolutional
networks with rather wide robustness regions. Further, the number of
verified properties converges to zero as the robustness bound increases.
This is expected, as larger robustness regions are more likely to contain
adversarial examples.

In Fig. 2.9a, we observe that Zonotope proves significantly more
properties than Box. For example, Box fails to prove any robustness
properties with bounds at least 0.025, while Zonotope proves 80% of the



36 abstract interpretation for neural network verification

Box Zono Z2 Z4 Z8 Z16 Z32 Z64

0.01s

0.10s

1s

10s

100s

500s

Time (seconds)

3x20 6x20

3x50 3x100

6x100 6x200

9x200

Figure 2.11: Average running time of AI2 when proving robustness properties
on MNIST networks as a function of the abstract domain used by
AI2 (x-axis). Axes are scaled logarithmically.

properties with bounds 0.025 and 0.045. This indicates that Box is often
imprecise and fails to prove properties that the network satisfies.

Similarly, Fig. 2.9b shows that Zonotope proves more robustness
properties than Box also for the CIFAR convolutional network. The
difference between these two domains is, however, less significant than that
observed for the MNIST network. For example, both Box and Zonotope
prove the same properties for bounds 0.065 and 0.085.

Precision of Different Abstract Domains. Next, we demonstrate that
more precise abstract domains enable AI2 to prove stronger robustness
properties. In this experiment, we consider our 9× 200 MNIST and CIFAR
networks, which are our largest fully connected feedforward networks. We
evaluate the Box, Zonotope, and the ZonotopeN domains for exponentially
increasing bounds of N between 2 and 64. We do not report results for the
Polyhedra domain, which takes several days to terminate for our smallest
networks.

In Fig. 2.10, we show the fraction of verified robustness properties as
a function of the abstract domain used by AI2. We plot a separate line
for each robustness bound. All runs of AI2 in this experiment completed
within 1 hour.

The graphs show that Zonotope proves more robustness properties than
Box. For the MNIST network, Box proves 11 out of all 60 robustness
properties (across all 6 bounds), failing to prove any robustness properties
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Figure 2.12: Comparing the performance of AI2 to Reluplex. Each point is
an average of the results for all 60 robustness properties for the
MNIST networks. Each point in (a) represents the average time to
completion, regardless of the result of the computation. While not
shown, the result of the computation could be a failure to verify,
timeout, crash, or discovery of a counterexample. Each point in (b)
represents the fraction of the 60 robustness properties that were
verified.

with bounds above 0.005. In contrast, Zonotope proves 43 out of the 60
properties and proves at least 50% of the properties across the 6 robustness
bounds. For the CIFAR network, Box proves 25 out of the 60 properties
while Zonotope proves 35.

The data also demonstrates that bounded sets of zonotopes further
improve AI2’s ability to prove robustness properties. For the MNIST
network, Zonotope64 proves more robustness properties than Zonotope
for all 4 bounds for which Zonotope fails to prove at least one property
(i.e., for bounds δ ≥ 0.025). For the CIFAR network, Zonotope64 proves
more properties than Zonotope for 4 out of the 5 the bounds. The only
exception is the bound 0.085, where Zonotope64 and Zonotope prove the
same set of properties.

Trade-off between Precision and Scalability. In Fig. 2.11, we plot the
running time of AI2 as a function of the abstract domain. Each point
in the graph represents the average running time of AI2 when proving
a robustness property for a given MNIST network (as indicated in the
legend). We use a log-log plot to better visualize the trade-off in time.
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The data shows that AI2 can efficiently verify robustness of large
networks. AI2 terminates within a few minutes for all MNIST FNNs and
all considered domains. Further, we observe that AI2 takes less than 10
seconds on average to verify a property with the Zonotope domain.

As expected, the graph demonstrates that more precise domains increase
AI2’s running time. More importantly, AI2’s running time is polynomial in
the bound N of ZonotopeN, which allows one to adjust AI2’s precision by
increasing N.

Comparison to Reluplex. The current state-of-the-art system for verifying
properties of neural networks is Reluplex [7]. Reluplex supports FNNs
with ReLU activation functions, and its analysis is sound and complete.
Reluplex would eventually either verify a given property or return a
counterexample.

To compare the performance of Reluplex and AI2, we ran both systems
on all MNIST FNN benchmarks. We ran AI2 using Zonotope and
Zonotope64. For both Reluplex and AI2, we set a 1 hour timeout for
verifying a single property.

Fig. 2.12 presents our results: Fig. 2.12a plots the average running time
of Reluplex and AI2 and Fig. 2.12b shows the fraction of robustness
properties verified by the systems. The data shows that Reluplex can
analyze FNNs with at most 600 neurons efficiently, typically within a few
minutes. Overall, both system verified roughly the same set of properties.
However, Reluplex crashed during verification of some of the properties.
This explains why AI2 was able to prove slightly more properties than
Reluplex on the smaller FNNs.

For large networks with more than 600 neurons, the running time
of Reluplex increases significantly and its analysis often times out. In
contrast, AI2 analyzes the large networks within a few minutes and verifies
substantially more robustness properties than Reluplex. For example,
Zonotope64 proves 57 out of the 60 properties on the 6 × 200 network,
while Reluplex proves 3. Further, Zonotope64 proves 45 out of the 60
properties on the largest 9 × 200 network, while Reluplex proves none.
We remark that while Reluplex did not verify any property on the largest
9 × 200 network, it did disprove some of the properties and returned
counterexamples.

We also ran Reluplex without a predefined timeout to investigate how
long it would take to verify properties on the large networks. To this end,
we ran Reluplex on properties that AI2 successfully verified. We observed
that Reluplex often took more than 24 hours to terminate. Overall, our
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results indicate that Reluplex does not scale to larger FNNs whereas AI2

succeeds on these networks.

2.7 comparing defenses with ai2

In this section, we illustrate a practical application of AI2: evaluating and
comparing neural network defenses. A defense is an algorithm whose goal
is to reduce the effectiveness of a certain attack against a specific network,
for example, by retraining the network with an altered loss function.
Since the discovery of adversarial examples, many works have suggested
different kinds of defenses to mitigate this phenomenon (e.g., [20, 41,
44]). A natural metric to compare defenses is the average “size” of the
robustness region on some test set. Intuitively, the greater this size is, the
more robust the defense.

We compared three state-of-the-art defenses:
• GSS [20] extends the loss with a regularization term encoding the

fast gradient sign method (FGSM) attack.
• Ensemble [44] is similar to GSS, but includes regularization terms

from attacks on other models.
• MMSTV [41] adds, during training, a perturbation layer before the

input layer which applies the FGSMk attack. FGSMk is a multi-step
variant of FGSM, also known as projected gradient descent.

All these defenses attempt to reduce the effectiveness of the FGSM
attack [20]. This attack consists of taking a network N and an input x
and computing a vector ρN,x in the input space along which an adversarial
example is likely to be found. An adversarial input a is then generated by
taking a step ε along this vector: a = x + ε · ρN,x.

We define a new kind of robustness region, called line, that captures
resilience with respect to the FGSM attack. The line robustness region
captures all points from x to x + δ · ρN,x for some robustness bound δ:

LN,x,δ = {x + ε · ρN,x | ε ∈ [0, δ]}.

This robustness region is a zonotope and can thus be precisely captured
by AI2.

We compared the three state-of-the-art defenses on the MNIST
convolutional network described in Section 2.6; we call this the Original
network. We trained the Original network with each of the defenses, which
resulted in 3 additional networks: GSS, Ensemble, and MMSTV. We used



40 abstract interpretation for neural network verification

40 epochs for GSS, 12 epochs for Ensemble, and 10 000 training steps for
MMSTV using their published frameworks.

We conducted 20 experiments. In each experiment, we randomly
selected an image x and computed ρN,x. Then, for each network, our goal
was to find the largest bound δ for which AI2 proves the region LN,x,δ
robust. To approximate the largest robustness bound, we ran binary search
to depth 6 and ran AI2 with the Zonotope domain for each candidate
bound δ. We refer to the largest robustness bound verified by AI2 as the
verified bound.

The average verified bounds for the Original, GSS, Ensemble, and
MMSTV networks are 0.026, 0.031, 0.042, and 0.209, respectively. Fig. 2.13

shows a box-and-whisker plot which demonstrates the distribution of the
verified bounds for the four networks. The bottom and top of each whisker
show the minimum and maximum verified bounds discovered during the
20 experiments. The bottom and top of each whisker’s box show the first
and third quartiles of the verified bounds.

Our results indicate that MMSTV provides a significant increase in
provable robustness against the FGSM attack. In all 20 experiments, the
verified bound for the MMSTV network was larger than those found for
the Original, GSS, and Ensemble networks. We observe that GSS and
Ensemble defend the network in a way that makes it only slightly more
provably robust, consistent with observations that these styles of defense
are insufficient [41, 77].

2.8 related work

In this section, we survey the works closely related to ours.

Adversarial Examples. [16] showed that neural networks are vulnerable
to small perturbations on inputs. Since then, many works have focused on
constructing adversarial examples. For example, [17] showed how to find
adversarial examples without starting from a test point, [18] generated
adversarial examples using random perturbations, [78] demonstrated
that even intermediate layers are not robust, and [19] generated
adversarial examples for malware classification. Other works presented
ways to construct adversarial examples during the training phase, thereby
increasing the network robustness (see [20–25]). [47] formalized the notion
of robustness in neural networks and defined metrics to evaluate the
robustness of a neural network. [26] illustrated how to systematically
generate adversarial examples that cover all neurons in the network.
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Figure 2.13: Box-and-whisker plot of the verified bounds for the Original, GSS,
Ensemble, and MMSTV networks. The boxes represent the δ for
the middle 50% of the images, whereas the whiskers represent the
minimum and maximum δ. The inner-lines are the averages.

Neural Network Analysis. Many works have studied the robustness
of networks. [63] presented an abstraction-refinement approach for
FNNs. However, this was shown successful for a network with only
6 neurons. [76] introduced a bounded model checking technique to
verify safety of a neural network for the Cart Pole system. [27] showed
a verification framework, based on an SMT solver, which verified the
robustness with respect to a certain set of functions that can manipulate the
input and are minimal (a notion which they define). However, it is unclear
how one can obtain such a set. [7] extended the simplex algorithm to verify
properties of FNNs with ReLU. [79] showed lower bounds on the norm of
the input manipulation required to fool a network, but is tested only on a
one-hidden layer network with 1024 units.

Robustness Analysis of Programs. Many works deal with robustness
analysis of programs (e.g., [80–83]). [80] considered a definition of
robustness that is similar to the one in our work, and [81] used a
combination of abstract interpretation and SMT-based methods to prove
robustness of programs. The programs considered in this literature tend to
be small but have complex constructs such as loops and array operations.
In contrast, neural networks (which are our focus) are closer to circuits, in
that they lack high-level language features but are potentially massive.
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2.9 conclusion and future work

We presented AI2, the first system able to certify convolutional and large
fully connected networks. The key insight behind AI2 is to phrase the
problem of analyzing neural networks in the classic framework of abstract
interpretation. To this end, we defined abstract transformers that capture
the behavior of common neural network layers and presented a bounded
powerset domain that enables a trade-off between precision and scalability.

Our experimental results showed that AI2 can effectively handle neural
networks that are beyond the reach of existing methods.

We believe AI2, and the approach behind it, is a promising step towards
ensuring the safety and robustness of AI systems. While not included in
the scope of this thesis, we have extended AI2 with additional abstract
transformers to support more neural network features, and provided more
accurate domains that can scale to larger networks. We believe these
extensions would further improve AI2’s applicability and foster future
research in AI safety.
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A B S T R A C T I N T E R P R E TAT I O N F O R T R A I N I N G
C E RT I F I A B L E N E T W O R K S

In this chapter, we introduce the first scalable method for training
certifiably robust neural networks, DiffAI. The key insight in this chapter
is that the analysis techniques outlined in Chapter 2 can be used directly
as a training goal that may be optimized (trained) with backpropagation.

We first present several abstract transformers that balance efficiency with
precision, designed specifically to be used during training, and show that
these techniques scale to train large networks that are certifiably robust to
adversarial perturbations.

We then present our public implementation of DiffAI and provide a
detailed evaluation. Our results show that (i) DiffAI can efficiently train
orders of magnitude larger network than prior methods, (ii) DiffAI can
quickly verify orders of magnitude larger networks than prior methods,
and finally (iii) DiffAI can produce networks which are vastly more
provably robust.

3.1 introduction

As heuristic defenses are insufficient to ensure safety, works such as Gehr
et al. [54] provided methods for certifying local robustness properties of
neural networks. Wong & Kolter [84] demonstrated a defense against
adversarial attacks that provides certificates proving that none of the
training examples could be adversarially permuted, as well as providing
bounds on the capability of an adversary to influence performance on
a test set. This method is based on computing an overapproximation to
the adversarial polytope, which describes the set of possible neural network
outputs given the region of possible inputs. However, this approach incurs
significant accuracy and scalability overheads. Prior work by Raghunathan,
Steinhardt & Liang [85] provides certifiable robustness, but only for neural
networks consisting of two layers. Thus, developing techniques to train
large neural networks that can be automatically certified free of robustness
violations remains a fundamental challenge.

43
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This Work: DiffAI - Abstract Interpretation for Network Training. We
address the above challenge by leveraging the classic framework of abstract
interpretation [64], a general theory for approximating a potentially infinite
set of behaviors with a finite representation, as described in further detail
in Chapter 2. This theory has been widely used over the last 40 years
to build large-scale automatic code analyzers [86]. We show how to
bridge abstract interpretation and gradient-based optimization and how to
apply these concepts to train larger networks. Concretely, we compute an
approximation to the adversarial polytope and use this approximation as
part of our loss function, effectively training the network on entire regions
of the input space at once. This abstract loss has the advantage of being
optimizable via standard techniques such as gradient descent and, as we
demonstrate, networks trained in this manner are more provably robust.

Main Contributions. Our main contributions are:
• A new method for training neural networks based on abstract

interpretation (Sections 3.2.1 and 3.4).

• Novel abstract transformers for the zonotope domain which are
parallelizable and suited for differentiation and gradient descent
(Sections 3.2.2 and 3.3).

• A complete implementation of the method in a system called DiffAI1

together with an extensive evaluation on a range of datasets and
architectures. Our results show that DiffAI improves provability of
robustness and scales to large networks (Section 3.6).

3.2 background : verification for neural networks

In this section we review and formally define the concept of robustness
and discuss an approach to robustness verification via sound, computable
approximations.

3.2.1 Robustness and Sound Approximations

Let Nθ : Rd → Rk be a neural network with d input features and k output
classes, parameterized by weights θ. The network Nθ assigns the class
i ∈ {1, . . . , k} to the point x ∈ Rd if Nθ(x)i > Nθ(x)j for all j 6= i.

1 Available at: http://diffai.ethz.ch

http://diffai.ethz.ch
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Let Bε(x) denote the `∞-ball of radius ε around a point x ∈ Rd. A
network Nθ is called ε-robust around a point x ∈ Rd if Nθ assigns the
same class to all points x̃ ∈ Bε(x).

More generally, a network Nθ is called π-robust around x if it assigns the
same class to all points in x̃ ∈ π(x), where π : Rd → P(Rd) describes the
capabilities of an attacker. In particular, Nθ is ε-robust if it is π-robust for
π = Bε.

Given a set of labeled training examples {(xi, yi)}n
i=1, the goal of

adversarial training is to find a θ such that: (i) Nθ assigns the correct class yi
to each example xi, and (ii) Nθ is π-robust around each example xi.

Definition 3.2.1. Given a loss function L(z, y) which is non-negative if
arg maxi zi 6= y and strictly negative if arg maxi zi = y, we define the worst-
case adversarial loss LN on a labeled example (x, y) with respect to network
N:

LN(x, y) = max
x̃∈π(x)

L(N(x̃), y).

Intuitively, the worst-case adversarial loss is the maximal loss that an
attacker can obtain by perturbing the example x to an arbitrary x̃ ∈ π(x).
For a given labeled example (x, y), we call a point x̃ ∈ π(x) that maximizes
L(N(x̃), y) a worst-case adversarial perturbation.

Using the worst-case adversarial loss, we can formulate adversarial
training as the following optimization problem:

min
θ

max
i

LNθ
(xi, yi).

If the value of the solution is negative, Nθ classifies all training examples
correctly and is π-robust around all points in the training set.

Optimizing Over Sound Approximations. It is usually very difficult to
find a worst-case adversarial perturbation in the ε-ball around an example.
Madry et al. [41] strengthen the network using a heuristic approximation
of the worst-case adversarial perturbation and show that the method
is practically effective. Wong & Kolter [84] propose an approach where
a superset of the possible classifications for a particular example is
determined and the optimization problem is stated in terms of this
overapproximation. At a high level, we take a similar approach, but we
introduce sound approximations that scale to larger networks and are
easier to work with.
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Definition 3.2.2. A sound approximation of a given function f : Rd → Rk

under perturbations π : Rd → P(Rd) is a function A f ,π : Rd → P(Rk),
such that for every x ∈ Rd, we have that f (π(x)) ⊆ A f ,π(x).

To avoid clutter, we usually write f (S) (as in the above definition) as
shorthand for the image of S ⊆ Rd under f .

Sound approximations can be used to prove robustness properties: for
example, if we can show that all values z̃ ∈ AN,Bε(x) share the same
arg maxi z̃i, then the network N is ε-robust around the point x.

Definition 3.2.3. Given a sound approximationAN,π , the approximate worst-
case adversarial loss LAN is given by

LAN(x, y) = max
z̃∈AN,π(x)

L(z̃, y).

The worst-case adversarial loss LN can be expressed equivalently as LAN
using AN,π(x) = N(π(x)). Therefore, as by definition, we have N(π(x)) ⊆
AN,π(x), it follows that LN(x, y) ≤ LAN(x, y).

This means that if we choose A such that: (i) we can compute LAN , and
(ii) we can find θ where maxi LANθ

(xi, yi) is negative, then we have proven
the neural network Nθ correct and ε-robust for the entire training set.

While the above does not imply that Nθ is ε-robust on the test set, we
find that approximating the optimal θ in

min
θ

max
i

LANθ
(xi, yi)

produces networks Nθ that can often be proven robust around previously
unseen test examples using the sound approximation A. That is, provable
robustness generalizes.

3.2.2 Abstract Interpretation

We will approximate neural networks using abstract interpretation [64].
Abstract interpretation has been recently used to certify robustness of
neural networks [54]. It has also been used to find constants in small
programs using black-box optimization by Chaudhuri, Clochard & Solar-
Lezama [87], who approximate abstract transformers for a particular
probabilistic domain by families of continuous functions. We now
introduce the necessary general concepts and our specific instantiations.

Definition 3.2.4. An abstract domain D is a set equipped with an abstraction
function α : P(Rp) → D and a concretization function γ : D → P(Rp) for
some p ∈N.
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Figure 3.1: A visualization of abstract interpretation applied on a neural
network with convolutional and fully connected layers.

Intuitively, an element d ∈ D corresponds to a set of symbolic constraints
over Rp and γ(d) determines the set of points that satisfy the constraints
d. The abstraction function α is defined such that X ⊆ γ(α(X)) for each
X ⊆ Rp.

Definition 3.2.5. A (computable) function T#
f : D → D′ is called an abstract

transformer for a function f : Rp → Rp′ if f (γ(d)) ⊆ γ′(T#
f (d)) for all d ∈ D.

Intuitively, an abstract transformer T#
f overapproximates the behavior

of a function f on a set γ(d) by operating directly on a symbolic
representation d ∈ D to produce a new abstract element d′ ∈ D′ whose
concretization overapproximates the image of f under γ(d).

Abstract transformers compose: If T#
f and T#

g are abstract transformers

for functions f and g, then T#
f ◦ T#

g is an abstract transformer for f ◦
g. Therefore, it suffices to define abstract transformers for each basic
operation in a neural network N. If we then write the neural network
as a composition of basic operations, we can immediately derive an
abstract transformer T#

N for the entire N. This abstract transformer T#
N

induces a sound approximation AN,π(x) = γ(T#
N(α(π(x)))) in the sense

of Definition 3.2.2.
We apply abstract interpretation to compute T#

N(α(π(x))), which
describes a superset of the possible outputs of the neural network N
under perturbations π. Figure 3.1 illustrates how abstract interpretation
overapproximates the behavior of a network on a concrete set of inputs
π(x) = Bε(x). For each intermediate abstract result, γ yields a superset of
the corresponding intermediate concrete result (analysis always happens
in the abstract, γ is only used to ensure soundness).
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We next discuss the abstract domains we use in this chapter.

Interval Domain. The simplest domain we consider is the interval (also
called Box) domain. Abstract interpretation using this domain is equivalent
to computation using standard interval arithmetic. Each element of the
domain represents a p-dimensional box, described by its center and
deviations in each component. We use this representation for two reasons:
(i) it makes the transformations for multiplication and addition efficiently
parallelizable on a GPU, and (ii) it exposes essential relationships between
our presentation of interval and zonotope domains (discussed below).

An element of the domain is a pair b = 〈bC, bB〉 where bC ∈ Rp is the
center of the box, while bB ∈ R

p
≥0 describes (non-negative) deviations. The

concretization function γI is:

γI(b) = {bC + diag(bB) · β | β ∈ [−1, 1]p}.

Here, diag(bB) creates a diagonal p × p matrix where the entries on the
diagonal are those of bB, and β is an error vector used to pick a particular
element of the concretization.

Definition 3.2.6. The total error of the i-th component of a box b is
εI(b)i = (bB)i and the interval concretization of the i-th component of b
is given by

ιI(b)i = [(bC)i − εI(b)i, (bC)i + εI(b)i].

Zonotope Domain. Interval arithmetic can be imprecise as it does not
keep information on how values of variables are related. The zonotope
domain [68] aims to preserve some of these relationships. Unlike the
interval domain, where each error term is associated to a particular
component, the zonotope domain freely shares error terms among
components. In this way, some amount of dependency information can be
encoded at moderate costs. The most important feature of the zonotope
domain is that there exists an abstract transformer for affine functions
(such as the transition function of a fully connected or convolutional layers)
which does not lose precision.

An element of the zonotope domain is a pair z = 〈zC, zE〉 where
zC ∈ Rp is the center of the zonotope, while zE ∈ Rp×m describes a
linear relationship between the error vector e ∈ [− 1, 1]m and the output
components (for arbitrary m). The concretization function γZ is given by

γZ(z) = {zC + zE · e | e ∈ [−1, 1]m}.
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Definition 3.2.7. The total error of the i-th component of a zonotope z is
εZ(z)i = ∑m

j=1
∣∣(zE)i,j

∣∣ and the interval concretization of the i-th component
of z is given by

ιZ(z)i = [(zC)i − εZ(z)i, (zC)i + εZ(z)i].

The zonotope domain is strictly more expressive than the interval
domain: for a box b, its corresponding zonotope z is given by zC = bC,
zE = diag(bB).

Hybrid Zonotope Domain. While the zonotope domain is more precise
than interval, its transformers are less efficient. The hybrid zonotope domain,
introduced originally as perturbed affine arithmetic by Goubault & Putot [88],
aims to address this issue: its transformers are more accurate than interval,
but more efficient than zonotope.

An element of this domain is a triple h = 〈hC, hB, hE〉 where hC ∈ Rp is
the center, hB ∈ R

p
≥0 contains non-negative deviations for each component

(similar to interval domain), and hE ∈ Rp×m describes error coefficients
(similar to zonotope domain). The concretization γH is given by

γH(h) = {ĥ(β, e) | β ∈ [−1, 1]p, e ∈ [−1, 1]m},

where ĥ(β, e) = hC + diag(hB) · β + hE · e.

Definition 3.2.8. The total error of the i-th component of a hybrid zonotope
h, is εH(h)i = (hB)i + ∑m

j=1
∣∣(hE)i,j

∣∣, and the interval concretization of the i-th
component of h is

ιH(h)i = [(hC)i − εH(h)i, (hC)i + εH(h)i].

This domain is equally expressive as the zonotope domain but
can represent interval constraints more efficiently. Further, the abstract
transformers of this domain treat a hybrid zonotope differently than they
would treat a zonotope with the same concretization, due to the deviation
coefficients.

A box b can be expressed efficiently as a hybrid zonotope h with hC = bC,
hB = bB and m = 0. A zonotope z can be expressed as a hybrid zonotope
h with hC = zC, hB = 0 and hE = zE.

3.3 abstract transformers for zonotope

We now introduce our abstract transformers for the hybrid zonotope
domain, specifically ReLU transformers which balance precision with
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scalability. The transformers are “point-wise”: they are efficiently
executable on a GPU and can benefit both training and analysis of the
network.

There are three basic types of abstract transformers, those that: (i)
increase the deviations, (ii) introduce new error terms producing a hybrid
zonotope h′ with m′ > m, and (iii) handle deviations and error coefficients
separately and do not introduce new error terms. We first discuss the
transformers of type (iii). For this type, the transformers of the interval
and zonotope domains arise as special cases.

Addition. We first consider a function f that replaces the i-th component
of the input vector x ∈ Rp by the sum of the j-th and k-th components:

f (x) = (x1, . . . , xi−1, xj + xk, xi+1, . . . , xp)
T .

The corresponding abstract transformer is given by

T#
f (h) = 〈M · hC, M · hB, M · hE〉,

where the matrix M ∈ Rp×p is such that M · x replaces the i-th row of x by
the sum of the j-th and k-th rows.

Multiplication. Consider a function f that multiplies the i-th component
of the input vector x ∈ Rp by a known constant κ ∈ R:

f (x) = (x1, . . . , xi−1, κ · xi, xi+1, . . . , xp)
T .

The abstract transformer T#
f for this operation is simple and does not lose

any precision. We define

T#
f (h) = 〈Mκ · hC, M|κ| · hB, Mκ · hE〉,

where Mα = I + diag((α− 1) · ei). Here, I is the identity matrix and ei is
the i-th standard basis vector.

Matrix Multiplication and Convolution. Consider a function f that
multiplies the input vector x ∈ Rp by a known matrix M ∈ Rp′×p:

f (x) = M · x.

Combining the insights from the addition and multiplication transformers,
the abstract transformer T#

f is given by

T#
f (h) = 〈M · hC, |M| · hB, M · hE〉.
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Here, |M| simply performs component-wise absolute value operation. The
above transformer can be easily differentiated and parallelized on the GPU.
As convolutions are linear operations, the same approach can be applied
for these.

ReLU. ReLU is a simple nonlinear activation function:

ReLU(x) = max(x, 0).

In contrast to the abstract transformers discussed so far, there is no single
best ReLU abstract transformer for the hybrid zonotope domain. Instead,
there are many possible, pairwise incomparable, abstract transformers
T#

ReLU.
Abstract domains D usually support a join operator (t) such that for all

abstract elements d, d′ ∈ D, we have

γ(d) ∪ γ(d′) ⊆ γ(d t d′),

and a meet-with-linear-constraint operator (u) such that for all linear
constraints L(x) = xi < 0 or L(x) = xi ≥ 0 for 1 ≤ i ≤ p, we have

γ(d) ∩ {x | L(x)} ⊆ γ(d u L).

In this case, we can define the abstract transformer for ReLU in a general
way. Let fi(x) = (x1, . . . , xi−1, 0, xi+1, . . . , xp) be the function that assigns
0 to the i-th component of the input vector. The abstract transformer for
ReLU can then be defined as

T#
ReLU = T#

ReLUp
◦ T#

ReLUp−1
◦ · · · ◦ T#

ReLU2
◦ T#

ReLU1
,

where T#
ReLUi

(d) = d u (xi ≥ 0) t T#
fi
(d u (xi < 0)).

ReLUi applies ReLU only to the i-th component of the input vector.
While Goubault, Le Gall & Putot [89] demonstrate that accurate join and
meet are possible for a hybrid zonotope domain, they take Ω(m3 + m2 · p)
time in the worst case, which is significant in the case of deep neural
networks. Further, ReLU defined in this way is not parallelizable as the
application of ReLU in each component is dependent on the application in
the previous component.

Point-wise Abstract Transformers for ReLU. We define several novel
zonotope transformers for the functions ReLUi. Each modifies the i-th
component of the input zonotope and does not depend on any other
component (hence, “point-wise”). As a result, the result can be computed
in parallel for all components, enabling scalable ReLU analysis.
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Definition 3.3.1 (zBox ReLU transformer). For a zonotope z and index i,
we define z′ = T#(zBox)

ReLUi
(z) with m′ = m + 1. If min(ιi(z)) ≥ 0, then z′ is z

with an additional unused error term, meaning new entries in z′E are set to
0. Otherwise

(z′X)t = (zX)t, for X ∈ {C, E}, t 6= i,

(z′C)i = ReLU( 1
2 max(ι(z)i)),

(z′E)i,l = 0, for l ≤ m,

(z′E)i,m+1 = ReLU( 1
2 max(ι(z)i)),

(z′E)j,m+1 = 0, for j 6= i.

T#(zBox)
ReLUi

(z) propagates the input zonotope unchanged if it can prove
the i-th component is non-negative (then ReLUi has no effect). Otherwise,
it bounds the i-th component of the output by a suitable independent
interval using the new error term. In both cases, the number of error terms
in z′ is the same, allowing for more effective parallelization.

We also define a transformer which uses the above transformer with
incomparable precision.

Definition 3.3.2 (zDiag ReLU transformer). Given a zonotope z and index

i, we define a ReLU abstract transformer z′ = T#(zDiag)
ReLUi

(z) where m′ =
m + 1. If the condition min(ι(z)i) < 0 < max(ι(z)i) holds, we have

(z′X)t = (zX)t for X ∈ {C, E}, t 6= i,

(z′C)i = (zC)i − 1
2 min(ι(z)i),

(z′E)i,l = (zE)i,l for l ≤ m,

(z′E)i,m+1 = − 1
2 min(ι(z)i),

(z′E)j,m+1 = 0, for j 6= i.

Otherwise, z′ = T#(zBox)
ReLUi

(z).

Finally, we define two transformers which combine zBox and zDiag in
different ways.

Definition 3.3.3 (zSwitch ReLU transformer). Transformer T#(zSwitch)
ReLUi

uses

T#(zBox)
ReLUi

if |min(ι(z)i)| > |max(ι(z)i)|. Otherwise, it uses T#(zDiag)
ReLUi

.
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Definition 3.3.4 (zSmooth ReLU transformer). Transformer T#(zSmooth)
ReLUi

takes a weighted average of the results of T#(zBox)
ReLUi

and T#(zDiag)
ReLUi

, with
weights |min(ι(z)i)| and |max(ι(z)i)| respectively.

Point-wise ReLU for Hybrid Zonotopes. The hybrid zonotope
transformers (hSwitch, hSmooth) operate the same way as the respective
zonotope versions (zSwitch, zSmooth), but do not add new error terms.
Instead, they accumulate the computed error in the i-th component of hB.

3.4 adversarial training

We now introduce adversarial training with our domains.

3.4.1 Approximate Worst-Case Adversarial Loss

Let the loss L(z, y) = maxy′ 6=y(zy′ − zy). This loss satisfies the
requirements for adversarial training from Definition 3.2.1. Let us define
our approximate worst-case adversarial loss by instantiating AN,π(x) from
Definition 3.2.3 as

AN,π(x) = γ(T#
N(α(π(x))).

This means that we take the region π(x), abstract it so it can be captured
in our abstract domain, obtain α(π(x)), and then apply the neural network
transformer T#

N (as discussed so far) to that result. For π = Bε, the
expression α(π(x)) corresponds to a simple interval constraint that can
be computed easily for each of the discussed abstract domains. Once we
obtain the abstract output of the transformer, we can apply γ to obtain all
concrete output points represented by this result. With this instantiation
we obtain the loss

LAN(x, y) = max
z̃∈γ(T#

N(α(π(x))))
L(z̃, y).

This is the approximate worst-case adversarial loss when we use abstract
interpretation for approximation. We can compute the loss LAN(x, y) using

LAN(x, y) = max
y′ 6=y

(max ι(T#
fy′
(T#

N(α(π(x)))))),

provided the following conditions hold: (i) an interval concretization
function ι exists for which we can compute interval upper bounds max ι(x),
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a

Figure 3.2: Visualizing line segment training with 3 classifications.

(ii) we can compute α(π(xi)), and (iii) the linear function fy′(z) = zy′ − zy

has a precise abstract transformer T#
fy′

. All three of these conditions hold

for the interval, zonotope and hybrid zonotope domains.

3.4.2 Line Segments as (Hybrid) Zonotopes

We show how to consider input regions in other shapes beyond the
standard `∞-balls used in local robustness properties. We use the
observation that when two points with the same classification in the
training set are close enough, the points on the line between them should
be classified the same. Figure 3.2 shows an intuitive illustration. Black dots
represent data and grey regions represent the ground truth classifications.
The network learns to classify points in the yellow, green, and blue regions.
Data points only actually appear within a smaller shell within the class
boundary (dotted lines). The red lines connecting the points show how
these points are grouped into line abstractions. Marker “a” shows a bad
scenario, where one of the abstractions comes near the ground truth class
boundary. We experimented with encoding the segment between nearby
points instead of simple robustness regions, aiming to improve the result
of training. In terms of encoding, with a zonotope, we can conveniently
represent a line segment between two points x and y as follows:

(zC)i =
1
2
(xi + yi), (zE)i,1 =

1
2
|xi − yi| .

For hybrid zonotopes, we additionally consider a width parameter w:

(hC)i =
1
2
(xi + yi), (hB)i = w, (hE)i,1 =

1
2
|xi − yi| .
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3.5 experimental setup

We implemented our approach in a system called DiffAI2 and evaluated
it extensively across a range of datasets and network architectures. We
demonstrate that DiffAI training scales to networks larger than those
of prior work and that networks trained with DiffAI are more provably
robust than those trained with state-of-the-art defenses.

Our system is built on top of PyTorch [90]. For all of our experiments,
we used the Adam Optimizer [91], with the default parameters and a
learning rate (lr) of 0.0001, unless otherwise specified. Additionally, we
used norm-clipping on the weights after every batch with a max-norm of
10, 000. For training we use a batch size of 500. For testing, batch sizes
vary from network to network depending on the experiment and the GPU
used. We ran on a GeForce GTX 1080 Ti, and a K80. For all comparisons
on a single network and dataset (shown in the tables), we used the same
initial weights and presented the models with the same batches. In all
experiments, accuracy and provability is tested on 500 samples.

3.5.1 Training

While we did find that it was often possible to train entirely using the
loss function described in Section 3.4.1, we achieved better results by
combining it with a standard cross-entropy loss function during training.
Furthermore, we found that the loss in Section 3.4.1 continued to provide
gradient information to the optimizer long after the example was proven
correct, which was detrimental to learning for other examples. We found
that applying a smooth version of ReLU – softplus [92] – to this loss helped
to avoid this issue. Our combined loss is therefore

Lθ(x, y) = λ · softplus(LANθ
(x, y)) + H(softmax(Nθ(x)), y),

where λ is set to 0.1 in all of our experiments (except line training). The
total loss for a batch is obtained by adding the losses for all examples in the
batch.

Datasets.
We evaluate DiffAI on four different datasets: MNIST, CIFAR10,

FashionMNIST (F-MNIST) and SVHN in the fashion seen in Table 3.1.
Before analysis, we normalize the inputs as described by LeCun et al. [95],

2 Available at: http://diffai.ethz.ch

http://diffai.ethz.ch
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Dataset # Train Inp Dim µ σ

MNIST [52] 60000 1× 28× 28 0.1307 0.3081

F-MNIST [93] 60000 1× 28× 28 Not Normalized Not Normalized

CIFAR10 [74] 50000 3× 32× 32 [0.4914, 0.4822, 0.4465][0.2023, 0.1994, 0.2010]

SVHN [94] 73257 3× 32× 32 [0.5, 0.5, 0.5] [0.2, 0.2, 0.2]

Table 3.1: The datasets we evaluate with. All use 10 classifications.

using an approximated mean µ and standard deviation σ per channel as
X−µ

σ .

Parameters. For all experiments (except with segment training), we
trained with an L2 regularization constant of 0.01, and a λ of 0.1. We halt
training after 200 epochs. For MNIST, we used a learning rate of 10−3. For
all other experiments, the learning rate was 10−4. For both testing and
training, we used the untargeted PGD attack with k = 5 iterations. At
testing time, we used 500 examples.

3.5.2 Neural Networks Evaluated

We train six networks: one feed forward, four convolutional (without
maxpool), and one with a residual connection. In the following
descriptions, we use ConvsC×W × H to mean a convolutional layer that
ouputs C channels, with a kernel width of W pixels and height of H, with
a stride of s which then applies ReLU to every output. FC n is a fully
connected layer which outputs n neurons without automatically applying
ReLU.

FFNN. A 5 layer feed forward net with 100 nodes in each and a ReLU
after each layer. This network has a ReLU after the last layer.

ConvSmall. Our smallest conv-net with no convolutional padding.

x → Conv216× 4× 4→ Conv232× 4× 4→ FC 100→ z.

ConvMed. The same as ConvSmall, but with a padding of 1.

x → Conv216× 4× 4→ Conv232× 4× 4→ FC 100→ z.
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ConvBig. A significantly larger conv-net with a padding of 1.

x → Conv132× 3× 3→ Conv232× 4× 4

→ Conv164× 3× 3→ Conv264× 4× 4

→ FC 512→ ReLU→ FC 512→ z.

ConvSuper. Our largest convolutional network with no padding.

x → Conv132× 3× 3→ Conv132× 4× 4

→ Conv164× 3× 3→ Conv164× 4× 4

→ FC 512→ ReLU→ FC 512→ z.

Skip. Two convolutional networks of different sizes, which are then
concatenated together. This network uses no convolutional padding.

x → Conv116× 3× 3

→ Conv116× 3× 3

→ Conv132× 3× 3→ FC 200→ o1,

x → Conv132× 4× 4

→ Conv132× 4× 4→ FC 200→ o2,

CAT(o1, o2) → ReLU→ FC 200→ ReLU → z.
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Train Time (s/epoch) Total Testing Time (s)

Dataset Model Type # Hidden Units # Parameters Baseline Box Box hSwitch

MNIST

FFNN fully connected 510 119910 0.610 2.964 0.076 0.184

ConvSmall convolutional 3604 89606 0.560 4.014 0.056 0.360

ConvBig convolutional 34688 893418 1.839 7.229 0.060 7.431

ConvSuper convolutional 88500 10985962 4.391 15.743 0.080 12.856

Skip residual 71600 6301890 3.703 12.613 0.073 11.313

CIFAR10

FFNN fully connected 510 348710 1.273 4.145 0.066 1.018

ConvSmall convolutional 4852 125318 0.718 3.979 0.065 1.870

ConvMed convolutional 6244 214918 1.462 5.200 0.051 1.953

ConvBig convolutional 62464 2466858 6.585 21.539 0.062 11.372

ConvSuper convolutional 124128 16229418 23.416 74.247 0.089 40.270

Skip residual 97730 8760802 14.245 42.482 0.083 25.198

Table 3.2: A table showing the size of our networks, the time it takes to train one epoch (averaged over 200 epochs), and
the best total testing time for 500 samples, with the maximum batch size allowable by the GPU memory for
each domain and network combination. The testing times are for a baseline-trained network, the times for a
Box-trained network are similar.
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3.6 experimental results

In this section, we demonstrate that:

• Training with DiffAI is efficient and scalable.

• Testing with DiffAI is efficient and scalable.

• Segment training has potential to improve accuracy.

3.6.1 Results against Prior Defenses and Analyzers

We evaluated the performance of DiffAI using `∞-balls and Box training
against standard baseline training. We also trained with the state-of-the-
art defense of Madry et al. [41], which permutes each batch using the
untargeted PGD attack. The adversarial test error is the largest error an
adversary can achieve by perturbing all examples in the test set. As we
cannot efficiently compute the adversarial test error, we instead give lower
and upper bounds using the PGD attack and DiffAI respectively. Some
of our results are shown in Table 3.3 (all results are in the supplementary).
Scalability of Training. To our knowledge, we analyzed and defended the

largest networks considered so far in the context of provable robustness, in
terms of both number of neurons and weights. As shown in Table 3.2, we
were able to train a network (ConvSuper on CIFAR10) with 124000 neurons
and over 16 million weights in under 75 seconds per epoch for a total time
of less than 5 hours. The net trained is larger than the largest considered
by Wong & Kolter [84], who took 10 hours to train a significantly smaller
network, and do not report stand-alone testing speed. Often, DiffAI’s Box
training is even faster than PGD training with 5 iterations. For ConvSuper
on CIFAR10 in Table 3.3, Box took under 4.5 hours to train, while PGD
took over 8 hours.

Scalability of Testing. DiffAI can also analyze large networks: for a given
example, it can verify ConvSuper on CIFAR10 in under 2× 10−4 seconds
with Box and 0.1 seconds with hSwitch. This is an order of magnitude
speed-up over the current state-of-the-art [54].



6
0

a
b

s
t

r
a

c
t

i
n

t
e

r
p

r
e

t
a

t
i
o

n
f

o
r

t
r

a
i
n

i
n

g
c

e
r

t
i
f

i
a

b
l

e
n

e
t

w
o

r
k

s

Lower Bound % Upper Bound %

Dataset ε lr Model Train Method Train Time (s) Test Error % PGD Box hSwitch

MNIST 0.1 10−3

ConvBig
Baseline 367.80 0.8 3.0 100.0 100.0

PGD 1847.76 0.2 1.6 100.0 99.8

Box 1445.76 1.0 2.4 14.0 3.4

ConvSuper
Baseline 878.28 1.6 2.4 100.0 97.2

PGD 4867.56 1.2 1.6 100.0 88.8

Box 3148.68 1.0 2.8 11.8 3.6

Skip
Baseline 731.40 1.4 3.8 100.0 100.0

PGD 3935.04 1.0 2.0 100.0 83.4

Box 2734.44 1.6 4.4 13.6 5.8

CIFAR10 0.007 10−4

ConvBig
Baseline 1317.00 32.4 36.2 100.0 100.0

PGD 8574.72 31.4 35.8 100.0 100.0

Box 4307.88 55.0 58.6 76.4 61.4

ConvSuper
Baseline 4683.24 37.4 42.4 100.0 100.0

PGD 29828.52 35.4 41.0 100.0 100.0

Box 14849.40 52.8 59.2 83.8 64.2

Skip
Baseline 802.92 36.8 41.8 100.0 88.0

PGD 4828.68 33.6 40.2 100.0 82.8

Box 2980.92 38.0 45.4 72.2 47.8

Table 3.3: Results on time, test error, and adversarial bounds after 200 epochs with L2 regularization constant of 0.01 and
5 PGD iterations.
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Applicability to Complex Nets. We also trained and tested a network,
Skip, with a residual connection [96] for all datasets. Scalability results
for MNIST and CIFAR10 are shown in Table 3.2, and the adversarial
performance of Box training is shown in Table 3.3. Additional results can
be found in Appendix A.1. While Skip is quite wide, it is only 5 layers
deep with only one residual connection, using concatenation instead of
addition.

Provability. PGD defense tends to slightly improve accuracy over baseline
and those networks are typically less attackable by a PGD attack than box-
trained ones. However, box-trained networks are more provably robust
(via Box or hSwitch) than PGD-defended networks. Table 3.3 also shows
that Box training produces more provably robust networks than baseline
and often, with little loss of accuracy.

DiffAI achieved consistently below 4% test error on the MNIST
benchmark for convolutional networks, as can be seen in Table 3.3 (and
in supplementary). When trained using Box, ConvSuper achieves 1% test
error and DiffAI can prove an upper bound of 3.6% on the adversarial
test error, close to the lower bound of 2.8% given by PGD. In contrast,
baseline training produced a network which is less accurate and could not
be proved robust for any test example.

In both Table 3.3 and Table 3.4, hSwitch and zSwitch always produce
better upper bounds than Box. In theory, these domains are incomparable
to Box, however, in practice, they are typically significantly more precise.
As testing with Box is essentially free, and hSwitch is quite efficient, we
suggest testing with both and selecting the lower value.

Training with Accurate Domains. Occasionally, training with Box led to
much lower accuracy. In these cases, we attempted to improve the accuracy
by instead training with the more accurate (and more expensive) hSmooth
domain. Results can be seen in Table 3.4, where for example the FFNN
network for F-MNIST has 91.4% testing error when trained with Box and
15.6% error when trained with hSmooth.

As training with hSmooth is significantly less space efficient and cannot
be done with batches on convolutional networks, a smaller network was
used, ConvSmall, to demonstrate this point. In CIFAR10 for example,
hSmooth produced a network nearly as accurate as ConvSuper trained
using baseline. This was accomplished with little reduction to provable
robustness (when testing with zSwitch).
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Lower Bound % Upper Bound %

Dataset ε Epochs Model Train Method Train Time (s) Test Error % PGD Box zSwitch

F-MNIST 0.1 200 FFNN

Baseline 119 5.4 98.8 100.0 100.0

Box 608 91.4 91.4 100.0 100.0

hSmooth 4316 15.6 71.8 100.0 79.0

CIFAR10 0.03 20 ConvSmall

Baseline 572 35.0 54.8 100.0 83.8

Box 999 44.2 56.4 77.6 63.0

hSmooth 36493 38.0 53.6 99.8 62.6

SVHN 0.01 20 ConvSmall

Baseline 700 15.8 83.6 100.0 98.0

Box 1223 27.0 78.4 92.6 89.8

hSmooth 43859 19.6 78.4 98.4 89.0

Table 3.4: Results showing that training with hSmooth can lead to improved accuracy (and upper bounds) over training
with Box.
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(a) MNIST with w = 0.05
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Figure 3.3: Accuracy of segment training on FFNN. No regularization and
learning rate of 0.001. (a) Batch size 200 for Baseline and 20 for
hSwitch and zSmooth; λ of 105. (b) Batch size 150 for Baseline and
30 for zSmooth. λ scheduled with a power of 10 over 105 examples
starting at 10−6 and ending at 10−4.

3.6.2 Segment Training for Higher Accuracy

To test DiffAI on more complex abstract regions, we trained with line
segments connecting examples, as described in Section 3.4.2. For every
element in a batch, we built a zonotope connecting it to the nearest (in
terms of `2 distance) other element in the batch with the same class.

The plot in Figure 3.3 demonstrates that line segment training improves
accuracy. After 10 epochs and 1.5 hours, hSwitch with line segment
training reached the highest accuracy of 74.7% for SVHN. After 20 epochs
and 10 hours, zSwitch and hSwitch both reached an accuracy of 97.4% for
MNIST, significantly higher than the 70% achieved by the baseline.

3.7 outlook

At the same time as these techniques were developed, an alternate
approach was published in Wong & Kolter [84] which uses duality
from optimization theory to find bounds on provability and perform
training. Here, and in the later work by Wong et al. [97], the convex over-
approximation of the feasible set is used in an optimization problem, the
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dual of which can also be seen as a neural network. The convex relaxations
here are similar to those developed in [98].

Since publishing these works, it was discovered by [59] that significant
accuracy and certifiability boosts could be achieved by using the Box
domain and using a training schedule and refined loss function. Further
works have been developed based mostly on these techniques [99–101].

Since these results were published however, progress has stagnated and
provable training methods remain far from being able to produce networks
with certifiability anywhere near state of the art accuracy on datasets such
as CIFAR10. This dilemma has raised fundamental theoretical questions
analogous to those that have been answered for standard training: Do
certifiable networks exist? How large they would need to be? Can gradient
descent efficiently find them?

Baader, Mirman & Vechev [61] answered the first of these questions by
proving an analog to the universal approximation theorem, demonstrating
that networks exist which can be certified by interval to a specified degree
which approximate any function. Further work by Wang et al. [102] showed
hardness results for learning interval provably robust classifiers.

One promising approach that potentially circumvents these problems
is randomized smoothing developed by Cohen, Rosenfeld & Kolter [103].
Here, the notion of inference with a network is modified such that class
label is chosen by vote among outputs made by running the network on
inputs drawn from distributions around the input. This allows one to get
guarantees with high confidence that the classification was robust. Unlike
with over-approximation based methods this guarantee may be wrong
with some probability.

3.8 conclusion

In this chapter, we presented DiffAI and showed how to apply
abstract interpretation for defending neural networks against adversarial
perturbations in such a way as to also allow efficient certification. We
additionally introduced several zonotope transformers which carefully
balance precision with scalability. Our results indicate the training
approach scales to networks larger than those of prior work and the
resulting networks are more provably robust than networks trained with
state-of-the-art defenses.



4
P R O B A B I L I S T I C A B S T R A C T I N T E R P R E TAT I O N F O R
G E N E R AT I V E M O D E L S

So far we have presented techniques for verifying deterministic guarantees,
based on standard abstract interpretation. In this chapter we introduce
GenProve, the first system to apply probabilistic abstract interpretation to
neural networks. GenProve is also the first system that can verify complex
semantically meaningful properties based on generative networks.

Generative networks are powerful models capable of learning a wide
range of semantic image transformations such as altering a person’s age
or head orientation. In this chapter, we bridge the gap between (i) the well
studied but limited norm-based and geometric transformations, and (ii)
the rich set of semantic transformations used in practice. This problem
is especially hard since the generated images lie on a highly non-convex
manifold, preventing the use of existing verifiers. We present a new
verifier, called GenProve, capable of certifying the rich set of semantic
transformations of generative models. GenProve provides both sound
deterministic and probabilistic guarantees, by capturing non-convex sets
of distributions over activation states, while scaling to realistic networks.

4.1 introduction

While there has been much progress on certifying deep neural networks
for norm-constrained pixel perturbations [7, 54, 59, 85, 97, 98, 104–108]
and geometric transformations [57, 109–111], these works only capture
a restricted subset of natural changes that can occur in practice. At
the same time, to train state-of-the-art deep models, a wide range of
rich semantic transformations are often being used to improve accuracy
via data augmentation. As such transformations are hard to specify
manually, they are often learned directly from data via generative
networks [9, 112–116]. As a concrete example, a generative network can
be trained so that interpolating between the encodings of the flipped head
produces images of intermediate head orientations, as in Figure 4.1. While
generative networks provide a compelling way to express such semantic
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Our Work

certifies images from interpolations
in the generative model’s latent space

Convex Relaxation Analysis

analyzes non-realistic images from pixel-wise interpolation

Figure 4.1: Example of generated latent space images ( ) our work certifies
compared to naive pixel-wise interpolation ( ).

transformations, they have so far eluded certification due to the scale of
non-convexity that they introduce.

This Chapter: GenProve for Generative Specifications. The goal of this
chapter is to advance the state-of-the-art in verification by bridging the
gap between the norm-based and geometric transformations supported
by existing verifiers and the rich set of semantic transformations used in
practice. In particular, our verifier can certify a number of rich semantic
transformations such as: (i) robustness to addition or removal of image
features (e.g., changing shoe color or adding mustache), (ii) baldness is
robust to all head orientations, and (iii) robustness to higher dimensional
specifications that use norm-based perturbations but are applied over the
latent space of generative models.

Key Challenge: Non-Convexity of Generative Models. The fundamental
technical challenge we address is efficiently handling the non-convexity
inherent to generative models, while producing accurate bounds and
scaling to large networks. We first show that for such complex
specifications, deterministic guarantees do not hold frequently enough
to warrant certification. We then show that even though it sacrifices
soundness, sampling does not scale suitably in this case. We address
these challenges by introducing tight approximations when necessary to
otherwise exact bound computation. Further, we develop a technique
for verifying probabilistic properties, allowing us to produce tight
deterministic bounds on the probability of a probabilistic specification being
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Figure 4.2: Using GenProve to find probability bounds for latent space
interpolation of flipped images. Blue chains represent activation
distributions at each layer exactly. The orange boxes represent
the relaxation that GenProve creates, obviating the need to keep
track of the segments it covers. Each segment or box’s associated
probabilities are shown in red. The inference shown here is faithful
to the weights of the toy network in the top row. We provide
pseudocode for GenProve in Appendix 4.4.2.

satisfied. As we will see in our evaluation, this is a critical component
for certifying complex generative specifications for which the equivalent
deterministic specification holds only rarely.
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Main contributions. Our key contributions are:

• A relaxation technique that handles non-convex behaviors (Section
4.3.1) which allows us to scale to large networks with ≈ 200k
neurons.

• The first application of probabilistic abstract interpretation [117] to
neural networks, which allows us to produce tight deterministic
bounds on the probability of a probabilistic specification being
satisfied (Section 4.4).

• A verifier, GenProve, supporting rich semantic transformations,
including novel specifications using parametric curves (Section 4.4.3)
and higher dimensional specifications (Section 4.5.3).

• A thorough evaluation that shows the practical usability and
hardness of the problem – we adapted a number of existing verifiers
(Zonotope [54], DeepZono [98], ExactLine [118]) but show they either
do not scale to complex settings or their bounds are too imprecise.

4.2 overview of genprove

We start by describing the terminology used throughout our work. Let
N : Rm → Rn be a neural network which classifies an input x ∈ Rm (in our
case an image) to arg maxi N(x)i.

Specification. A robustness specification is a pair (X, Y) where X ⊆ Rm

is a set of input activations and Y ⊆ Rn is a set of permissible outputs for
those inputs.

Deterministic robustness. Given a specification (X, Y), a neural network
N is said to be (X, Y)-robust if ∀x ∈ X, we have N(x) ∈ Y. In the
adversarial robustness literature, X is usually an l2- or l∞-ball, and Y is
a set of outputs corresponding to a specific classification. In our case, X

will be represented as a segment (or a parametric curve) connecting two
encodings e1e2 produced by a generative model.

Probabilistic robustness. A limitation of deterministic robustness
properties is that the result is always binary – the property either fully
holds or does not. While useful for certifying single images, when
combined with complex generative models it becomes too restrictive.
Instead, we would like to compute a lower bound on the robustness
of complex transformations (e.g., a lower bound for different head
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orientations is 0.9) for cases when existing deterministic techniques only
output that the specification does not hold.

Formally, given a distribution µ over X (e.g., uniform distribution),
we call the bounds on the robustness probability Prx∼µ[N(x) ∈ Y] the
probabilistic [robustness] bounds.

GenProve overview. In Figure 4.2 we illustrate how GenProve computes
exact and probabilistic bounds for the robustness of a classifier based on a
latent space image transformation. In this example, the goal is to verify that
a classification network nA is robust (i.e., does not change its prediction)
when presented with images of a head from different angles, produced by
interpolating encodings in the latent space of an autoencoder. To represent
this specification, we first use the encoder, nE, to produce encodings e1
and e2 from the original image and that image flipped horizontally. It is
a common technique to use the decoder nD to get a picture of a head at
an intermediate angle, on an interpolated point e, taken from the segment
e1e2 = {e1 + α · (e2− e1) | α ∈ [0, 1]}. Decodings for e1 and e2 can be seen
in Figure 4.2(b). Our goal is to check the property for all possible encodings
on e1e2 (not only points e1 and e2).

To accomplish this, we propagate lists of line segments and interval
(box) constraints through the decoder and classifier, starting with e1e2.
At each layer, we adaptively relax this list by combining segments into
interval constraints, in order to reduce the number of points that need to
be managed in downstream layers. This relaxation is key, as without it,
the number of tracked points could grow exponentially with the number
of layers. While Sotoudeh & Thakur [118] demonstrated that this is
not a significant concern when propagating through just classifiers, for
generative models or decoders, the desired output region will be highly
non-convex (with better models producing more segments). One may think
of the number of segments produced by the model in such a case as the
model’s “generative resolution.”

Example of inference with overapproximation. Consider the simple
(instructive) two dimensional input classifier network shown in Figure 4.2,
with inputs x1,1 and x1,2. The possible inputs to this network we would like
to consider are the points in the region described by the blue polygonal
chain in Figure 4.2(b), whose axes are x1,1 and x1,2. The chain has
coordinates (1, 2), (−1, 3), (−1, 3.5), (1, 4.5), (3.5, 2) with (1, 2) representing
nD(e1) and (3.5, 2) representing nD(e2). The segments of the chain are
annotated with weights λ = 0.2, 0.2, 0.2, 0.4. These weights are such that
the distribution produced by picking segment j with probability λ(j) and
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then picking a point uniformly on that segment is the same as the
distribution of nD(e) given e ∼ U(e1e2) where U(S) is the uniform
distribution on S.

After applying the ReLU layer to this chain (marked with ReLU#), one
can observe in Figure 4.2(c) that the first and third segment of this chain are
split in half, resulting in 6 segments, which is 50% more than there were
originally. As the segments represent uniform distributions, the weights of
the new segments is the proportional weight of that part on the pre-ReLU
segment. Here, each part of the new segment obtains half the pre-ReLU
segment’s weight.

Because a 50% increase is significant, we now consolidate, moving from
exact to approximate yet sound analysis. Here, we use a heuristic (labeled
Relax), to choose segments to subsume that are small and close together.
As they are quite close together, we pick the first 5 segments, replacing
them by the (orange) box that has the smallest corner at (0, 2) and largest
corner at (1, 4.5). This box, introduced in Figure 4.2(d), is assigned a weight
equivalent to the sum 0.6, of the weights of all removed segments. Whereas
each segment represents a uniform distribution, the new box represents a
specific but unknown distribution with all its mass in the box. As a box is
represented by two points (maximum and minimum), only four points are
maintained, a significant reduction.

The last step performs matrix multiplication. As this operation is linear,
segments can be transformed by transforming their nodes, without adding
new points. Box constraints can be transformed using interval arithmetic,
also without adding points. The weights of the regions are preserved, as
the probability of selecting each region has not changed, only the regions
themselves.

Computing probabilistic bounds. Let A′(j) for j = 1 . . . k represent
the regions (either the box and segment, or all 6 segments) shown in
Figure 4.2(e), each with weight λ(j). Letting [H] be the indicator for
predicate H, we bound the probability Pt,e1e2 = Pre∈e1e2 [arg maxi nD(e)i =
t] of class t = 1 being selected by classifier nA as follows:

l ≤ Pt,e1e2 ≤ u where

l = ∑j[∀x3 ∈ A′(j).x3,1 > x3,2]λ
(j)

u = ∑j[∃x3 ∈ A′(j).x3,1 > x3,2]λ
(j)

As an example, we compute the lower bound for the case where we used
relaxations. Here, the entirety of the orange box lies within the region
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where x3,1 > x3,2, so its indicator is 1 and we use its weight. On the other
hand, the segment contains a point where x3,1 = 2.75 and x3,2 = 3 which
violates this condition, so its indicator is 0 and its weight is not used. We
can thus show a probabilistic lower bound of 0.6. Note that it is possible
to provide an exact lower bound by computing the fraction of the segment
that satisfies the condition (as described formally in Section 4.4). We now
observe that all of the regions which would have been preserved using
the exact procedure (in blue) would have contributed the same amount to
the lower bound, as they all entirely satisfy the constraint. Exact inference
would produce the same lower bound, but uses 50% more points.

4.3 certification of deterministic properties

We review concepts from prior work [54] and define GenProve for
deterministic properties. Our goal is to automatically show that images
x from a given set X of valid inputs are mapped to safe outputs from a
set Y. We write this property as f [X] ⊆ Y. For example, f might be a
decoder, X a line segment in latent space and Y the images for which a
given classifier detects a desired attribute.

Such properties compose: If we want to show that h[X] ⊆ Z for
h(x) = g( f (x)), it suffices to find a set Y for which we can show f [X] ⊆ Y

and g[Y] ⊆ Z. For example, f could be a decoder and g an attribute
detector, where Z describes the output activations that lead to an attribute
being detected.

We assume that we can decompose our network f as a sequence of l
layers: f = Ll−1 ◦ · · · ◦ L0. To show a property f [X] ⊆ Y, we will find sets
A0, . . . , Al such that X ⊆ A0, Li[Ai] ⊆ Ai+1 for 0 ≤ i < l and Al ⊆ Y.

We determine the sets in order: We pick A0 based on X such that
X ⊆ A0 and then for each 0 ≤ i < l, we pick Ai+1 such that Li[Ai] ⊆ Ai+1.
At the end, we check if we have Al ⊆ Y. If so, the verification succeeds and
the property holds. Otherwise, our procedure fails to prove the property.

Abstract interpretation. We automate this analysis using abstract
interpretation [64]: we choose the sets A0, . . . , Al such that they admit
a simple symbolic representation in terms of real parameters. An abstract
domain is a set of such symbolic representations. We write An to denote
an abstract domain where each element represents a member of P(Rn).
In our case, each abstract element a ∈ An represents a set of vectors of n
neural network activations. The concretization function γn : An → P(Rn),
which is specific to each abstract domain, maps a symbolic representation
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a ∈ An to its concrete interpretation as a set A ∈ P(Rn) of neural
network activation vectors. We will sometimes drop subscripts indicating
dimensionality when they are irrelevant or clear from context. Our
procedure will compute abstract elements a0, . . . , al such that Ai = γ(ai)
for all 0 ≤ i ≤ l.

An abstract transformer T#
f : Am → An transforms symbolic

representations to symbolic representations, overapproximating the
function f : Rm → Rn, which means it has to satisfy the soundness
property f [γm(a)] ⊆ γn(T#

f (a)) for all a ∈ Am. We will compute ai+1 =

T#
Li
(ai). The soundness property of the abstract transformer ensures that

we have Li[Ai]⊆Ai+1, as this is equivalent to Li[γ(ai)]⊆γ(T#
Li
(ai)).

By composing abstract transformers for all layers Li of the neural
network f in this fashion, we obtain an abstract transformer T#

f = T#
Ll−1
◦

· · · ◦ T#
L0

. Abstract interpretation provides a sound, typically incomplete
method to certify properties: To show that a neural network f : Rm → Rn

satisfies f [X] ⊆ Y, it suffices to show that γn(T#
f (a)) ⊆ Y, for some abstract

element a ∈ Am with X ⊆ γm(a).

Box domain. If we pick A0 as a bounding box of X, we can compute sets
Ai for 1 ≤ i ≤ l by evaluating the layers Li using interval arithmetic. The
analysis computes a range of possible values for each network activation,
i.e., the sets Ai are boxes. At the end, we check if Al’s bounds place it
inside Y.

This interval analysis is an instance of abstract interpretation. An
element of the box domain Bn is a box: a pair of vectors (a, b) where
a, b ∈ Rn. The concretization function is γn(a, b) = ∏n

l=1[al , bl ].
Abstract transformers for the box domain propagate bounds using interval
arithmetic. While fast, this is imprecise and often fails to prove true
properties.

Union domains. A list a = (a(1), . . . , a(k)) of abstract elements (potentially
from multiple different abstract domains) can be interpreted as a union
with concretization γ(a) =

⋃k
j=1 γ(a(j)). Among other possibilities, we

can obtain a union domain abstract transformer T#
f by propagating each

element of the union independently using an abstract transformer for its
abstract domain:

T#
f (a) = (T#(1)

f (a(1)), . . . , T#(k)
f (a(k))).

Soundness follows directly from soundness of the component abstract
transformers.
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For example, we can cover the set X with boxes and then propagate them
through the network independently using interval arithmetic for each box.
In the end, we have to show that all resulting boxes are within Y.

Relaxation. At any point in the analysis, we can choose to replace an
abstract element ai by an element a′i where γ(ai) ⊆ γ(a′i). This can increase
precision or reduce the number of parameters needed to represent ai.

4.3.1 GenProve for Deterministic Properties

GenProve for deterministic properties is an analysis with an union
domain where each component a(j) represents either a box or a line
segment. Let ni denote the number of neurons in layer i. Formally, γ(ai) =⋃ki

j=1 γ(a(j)
i ), where for each j either γ(a(j)

i ) = ∏ni
l=1[al , bl ] is a box with

given lower bounds a and upper bounds b, or γ(a(j)
i ) = x1x2 is a segment

connecting the given points x1 and x2 in Rni . We represent ai as a list of
bounds of boxes and a list of pairs of endpoints of segments.

Like Sotoudeh & Thakur [118], we focus on the case where the set X

of input activations is a segment. The work of Sotoudeh & Thakur [118]
discusses how to split a given segment into multiple segments that cover it,
such that a given neural network is an affine function on each of the new
segments. Essentially, it determines the points where the segment crosses
decision boundaries of piecewise-linear activation functions and splits it
at those points. In order to compute an abstract element ai+1 such that
Li[γ(ai)] ⊆ γ(ai+1), we first split all segments according to this strategy
applied to only the current layer Li. Then, we map the endpoints of the
resulting segments to the next layer by applying Li to all of them. This is
valid and captures exactly the image of the segments under Li, because
due to the splits, Li, restricted to any one of the segments, is always an
affine function. Further, we propagate the boxes through Li by applying
interval arithmetic. Note that if we propagate a segment x1x2 using this
strategy alone for all layers, this analysis produces the exact image of X,
which is equivalent to performing the analysis using Sotoudeh & Thakur
[118]’s method.

Relaxation. Before applying layer Li, we may apply relaxation
operators to turn ai into a′i, such that γ(ai) ⊆ γ(a′i). We use two
kinds of relaxation operators: bounding box operators remove a single
segment cd. The removed segment is replaced by its bounding box
∏ni

l=1[min(cl , dl), max(cl , dl)]. Merge operators replace multiple boxes by



74 probabilistic abstract interpretation for generative models

their common bounding box. By carefully applying the relaxation
operators, we can explore a rich tradeoff between pure instantiation of
Sotoudeh & Thakur [118] and pure interval arithmetic. Our analysis
generalizes both: if we never apply relaxation operators, the analysis
reduces to Sotoudeh & Thakur [118] and will be exact but potentially slow.
If we relax the initial segment into its bounding box, the analysis reduces
to interval arithmetic and will be imprecise but fast.

Relaxation heuristic. We define the following heuristic, applied before
each convolutional layer. The heuristic is parameterized by a relaxation
percentage p ∈ [0, 1] and a clustering parameter k ∈ N. Each chain of
connected segments with t > 1000 nodes is traversed in order, and each
segment is turned into its bounding box, until the chain ends, the total
number of different segment endpoints visited exceeds t/k or we find
a segment whose length is strictly above the p-th percentile, computed
over all segment lengths in the chain prior to applying the heuristic. All
bounding boxes generated in one such step (from adjacent segments) are
then merged, the next segment (if any) is skipped, and the traversal is
restarted on the remaining segments of the chain.

4.4 certification of probabilistic properties

We now define GenProve for the probabilistic case. This setting is
particularly useful when it is not possible to prove the property
deterministically (or it does not hold). Our goal is to automatically show
that images x drawn from a given input distribution µ map to desirable
outputs D with a probability in some interval [l, u]. We can write this
property as Prx∼µ[d(x) ∈ D] ∈ [l, u]. For example, we can choose d to
be a decoder, µ to be the uniform distribution on a line segment in its
latent space, D to be the set of images for which a given classifier detects
a desired attribute and [l, u] = [0.95, 1]. The property then states that for
at least a fraction 0.95 of the interpolated points, the classifier detects the
desired attribute.

Unlike with the deterministic setting, such probabilistic properties
do not compose naturally. We therefore reformulate them by defining
sets X and Y of probability distributions and a distribution transformer
f , in analogy to deterministic properties. Let d∗ be the pushforward
of d, formally defined below (intuitively, the pushforward allows a
distribution to be mapped through a deterministic function). We let
X = {µ}, Y = {ν | Pry∼ν[y ∈ D] ∈ [l, u]} and f = d∗. That is, f maps a
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distribution of inputs to d to the corresponding distribution of outputs
of d. Our property again reads f [X] ⊆ Y and can be decomposed
into properties (Li)∗[Ai] ⊆ Ai+1 talking about each individual layer.
We again overapproximate X with A0 such that X ⊆ A0 and push it
through each network layer, computing sets A1, . . . , Al . The sets Ai now
contain distributions over activation vectors. We automate this analysis
using probabilistic abstract interpretation.

Probabilistic abstract interpretation. We denote as Dn the set of
probability measures over Rn. Probabilistic abstract interpretation is a
variant of abstract interpretation where instead of deterministic points
from Rn, we abstract probability measures from Dn. That is, a probabilistic
abstract domain [117] is a set of symbolic representations of sets of
measures over program states. We again use subscript notation to
determine the number of activations: a probabilistic abstract domain An
has elements that each represent an element of P(Dn). The probabilistic
concretization function γn : An → P(Dn) maps each abstract element to
the set of measures it represents.

For a measurable function d : Rm → Rn, the corresponding pushforward
d∗ : Dm → Dn maps each measure µ ∈ Dm to a measure ν ∈ Dn, given by

ν(Y) = Pr
x∼µ

[d(x) ∈ Y] = µ(d−1(Y)),

where Y ranges over measurable subsets of Rn.
A probabilistic abstract transformer T#

f : Am → An abstracts the

pushforward f∗ in the standard way: it satisfies f∗[γm(a)] ⊆ γn(T#
f (a))

for all a ∈ Am, analogous to the deterministic setting.
Probabilistic abstract interpretation gives a sound method to compute

bounds on robustness probabilities. Namely, to show that Prx∼µ[N(x) ∈
Y] ∈ [l, u], it suffices to show that ν(Y) ∈ [l, u] for each ν ∈ γn(T#

N(a)) for
some a with µ∈γm(a).

Lifting. Note that we can reuse a deterministic abstract domain
directly as a probabilistic abstract domain, by ignoring probabilities.
More concretely, consider a deterministic abstract domain An with
deterministic concretization function γn : An → P(Rn). We can interpret
An as a probabilistic abstract domain by simply defining a probabilistic
concretization function γ′n : An → P(Dn). Namely, for some abstract
element a ∈ An representing a set A = γn(a) of (deterministic) activation
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vectors, we let γ′n(a) be the set of all probability measures whose support
is a subset of A.1

The analysis then just propagates abstract elements with the same
abstract transformers it would use in the deterministic setting. For
example, if we run probabilistic analysis with the box domain, γ(ai) is the
set of all probability measures on the box ai, and the analysis propagates
the box constraints using interval arithmetic. Of course, such an analysis
is rather limited, as it can at most prove properties with l = 0 or u = 1. For
example, it would be impossible to prove that a probability is between
0.6 and 0.8 using only this kind of lifted analysis. However, interval
arithmetic, lifted in this fashion, is a powerful component of GenProve

for probabilistic properties, detailed below.

Convex combination domains. A formal convex combination a =

∑k
j=1 λ(j) · a(j) of abstract elements (potentially from multiple different

abstract domains) can be interpreted as an abstract element whose
concretization γ(a) contains all probability measures of the form ∑ki

j=1 λ
(j)
i ·

µ(j), where each µ(j) is some probability measure chosen from the
corresponding γ(a(j)). For example, if the abstract elements a(j) represent
disjoint boxes, then a represents all probability measures for which the
probability of each box is the corresponding weight λ(j). In general, we
can think of γ(a) as the set of distributions generated by a set of random
processes: Each process first randomly selects an index j according to the
probabilities λ(j) and then samples from some fixed probability measure
µ(j) ∈ γ(a(j)). For each 1 ≤ j ≤ k, this measure is fixed in advance for each
of the random processes.

Similar to unions, we can apply abstract transformers to each abstract
element a(j) independently and to form the convex combination of the
results using the same weights:

T#
f (a) =

k

∑
j=1

λ(j) · T#(j)
f (a(j)).

This is sound because pushforwards are linear functions.

1 This is subject to some technical constraints: For example, all deterministic concretizations
have to be measurable sets.
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4.4.1 GenProve for Probabilistic Properties

Probabilistic GenProve is an analysis with a convex combination domain
where each component a(j)

i represents either a lifted box or a single
probability measure on a segment. Formally, this means

γ(ai) =
{

∑ki
j=1λ

(j)
i · µ

(j)
∣∣∣ µ(1) ∈ γ(a(1)

i ), . . . , µ(ki) ∈ γ(a(ki)
i )
}

,

where for each j, the concretization γ(a(j)
i ) is either the set of probability

measures supported at most on a box ∏ni
l=1[al , bl ] with lower bounds a and

upper bounds b, or γ(ai)
(j) = {ν}, where ν is a distribution on a segment

x1x2 with endpoints x1 and x2 in Rni . To automate analysis, we represent
γ(ai) as a list of bounds of boxes with associated weights λ

(j)
i , and a list

of segments with associated distributions and weights λ
(j)
i . If, as in our

evaluation, we consider a restricted case, where distributions on segments
are uniform, it suffices to associate a weight to each segment. The weights
should be non-negative and sum up to 1.

The element ai can be propagated through layer Li to obtain ai+1 in
a similar fashion as in deterministic analysis. However, when splitting a
segment, we now also need to split the distribution associated to it. For
example, if we want to split the segment L = cd with distribution ν and
weight λ into two segments L′ = ce and L′′ = ed with L′ ∪ L′′ = L,
we have to form distributions ν′, ν′′ and weights λ′, λ′′ where λ′ =
λ · Prx∼ν[x ∈ L′], λ′′ = λ · Prx∼ν[x ∈ L′′ \ L′], ν′ is ν conditioned on
the event L′ and ν′′ is ν conditioned on the event L′′. If distributions on
segments are uniform, this would result in the weight being split according
to the relative lengths of the new segments. To propagate a lifted box, we
apply interval arithmetic, preserving the box’s weight. In practice, this is
the same computation used for the deterministic propagation of a box.

We focus on the case where we want to propagate a singleton set
containing the uniform distribution on a segment L = x1x2 through the
neural network. In this case, each distribution on a propagated segment
will remain uniform, and it suffices to store a segment’s weight without
an explicit representation for the corresponding distribution, as noted
above. As in the deterministic case, if we apply the analysis to the uniform
distribution on a segment without relaxation, the analysis will compute an
exact representation of the output distribution. I.e., Al will contain only
the distribution of outputs obtained when the neural network is applied
to inputs distributed uniformly at random on L.
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Relaxation. As this does not scale, we again apply relaxation operators.
Similar to the deterministic setting, we can replace a probabilistic abstract
element ai by another probabilistic abstract element a′i with γ(ai) ⊆ γ(a′i).

Relaxation heuristic. Here, we use the same heuristic described for the
deterministic setting. When replacing a segment by its bounding box, we
preserve its weight. When merging multiple boxes, their weights are added
to give the weight for the resulting box.

Computing bounds. Given the abstract element, al , describing a superset
of the possible output distributions of the network, we compute bounds
on the robustness probabilities P = {Pry∼ν[y ∈ D] | ν ∈ γ(al)}. The part
of the distribution tracked using segments has all its probability mass in
determined locations, while the probability mass in a box can be located
anywhere within it. We compute bounds as:

(l, u) = (min P, max P) =

(
e + ∑

j∈L

λ
(j)
l , e + ∑

j∈U

λ
(j)
l

)
,

where e is the probability of the output being on a segment. If D is given
as a set of linear constraints, we compute e by splitting the segments to not
cross the constraints and summing up all weights of resulting segments
contained in D. L is the set of indices of lifted boxes contained in D and
U is the set of indices of lifted boxes that intersect with D.

4.4.2 Propagation Pseudocode and Example

Here we show the pseudocode for the full propagation algorithm for
GenProve, and provide an example of propagation using it. Here, we only
show linear probabilistic computation, and do not demonstrate how the
final output is verified against a constraint.

We will walk through Algorithm 1 using an example beginning with a
line segment in two dimensions a = (1, 0) and b = (0, 1), and a 1 layer
neural network with the following weights and biases:

M1 =

 2 2 3

−1 1 0

 B1 = (−1, 0, 1)

The algorithm first constructs a list D containing the single line segment
from a to b with weight one. In the first iteration of the loop, there is only
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one iteration of first inner loop, where i = 1, and thus D1 is a segment
so we proceed there. We create new start and end nodes for this segment,
a := Di,3M1 + B1 and b := Di,4M1 + B1. Specifically,

a = (1, 0)

 2 2 3

−1 1 0

+ (−1, 0, 1) = (1, 2, 4)

b = (0, 1)

 2 2 3

−1 1 0

+ (−1, 0, 1) = (−1, 1, 1).

We then fill a T with sorted zero-axis intersection times, starting with
0 and 1. Specifically, for each dimension d we calculate the time td such
that (bd − ad)td + ad = 0. We can compute this as td = −ad/(bd − ad). We
only include this time if td is strictly between 0 and 1. In the example, we
compute T = [0, 0.5, 1] as the intersection times for dimension d = 2 and
d = 3 fall outside of 0 and 1.

For each time in this list, we compute the start, ã, and end nodes, b̃
for a new segment, and the probability p corresponding to that segment.
The nodes of the segments are computed by interpolating between a and
b using the times in T whereas the probability for each segment is the
difference between the times of the nodes, multiplied by the probability of
the original segment between a and b. As T has three nodes we calculate
two segments. The first from (1, 2, 4) to (0, 1.5, 2.5) with p = 0.5 and the
second from (0, 1.5, 2.5) to (−1, 1, 1) with p = 0.5. We apply ReLU to each
dimension of the nodes of the segments, and add these to a currently
empty list, or domain element, D̃, of segments produced at that layer:

D̃ = [(Segment, 0.5, (1, 2, 4), (0, 1.5, 2.5)),

(Segment, 0.5, (0, 1.5, 2.5), (0, 1, 1))].

Next, the algorithm determines which segments to merge using the
chosen Relax heuristic, which returns a list of relaxed boxes. Pedagogically,
assume this returns a single box which contains both segments entirely.
This is a box that goes from a minimal point (0, 1, 1) to a maximal
point (1, 2, 4), or as we work with in the algorithm, has a center
point (0.5, 1.5, 2.5) and radius (0.5, 0.5, 1.5). Finally, the segments that are
contained within this box are deleted. We add this box to the list D̃
with associated probability equivalent to the sum of the deleted elements
probabilities. We note that this process also applies to merging boxes that
are already part of D̃.
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Algorithm 1 Pseudocode for inference with GenProve

Input: k network layers with weights and biases Mi, Bi, and a line segment a, b
in the input space.
Output: D a list of boxes and segments describing the probabilities of possible
regions of the output space.
D = [(Segment, 1, a, b)].
for l = 1 to k− 1 do

D̃ = []
for i = 1 to |D| do

if Di == Segment then
a = Di,3 Ml + Bl
b = Di,4 Ml + Bl
T = [0, 1]
for d = 1 to |bl | do

td = −ad
|(b−a)d |

if 0 < td < 1 then
T.push(td)

end if
end for
T.sort()
for t = 2 to |T| do

p = Tt − Tt−1
ã = (b− a) ∗ Tt−1 + a
b̃ = (b− a) ∗ Tt + a
D̃.push((Segment, Di,2 ∗ p, ReLU(ã), ReLU(b̃)))

end for
else

c = Di,3 Ml + bl
r = Di,4|Ml |p
c̃ = ReLU(c + r) + ReLU(c− r)
r̃ = ReLU(c + r)− ReLU(c− r)
D̃.push((Box, Di,2, 0.5 ∗ c̃, 0.5 ∗ r̃))

end if
end for
P̃ =Relax(D̃)
for p = 1 to |P̃| do

for i = 1 to |D̃| do
if γ(D̃i) ⊆ γ(P̃p) then

P̃p,2 = P̃p,2 + D̃i,2
delete Di

end if
end for

end for
D = D̃ + P̃

end for
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4.4.3 Generalization to Parametric Curves

The approaches presented so far relied on a number of operations on line
segments: We needed to form their image under affine transformations, we
had to determine splitting points based on ReLU decision boundaries, and
we had to be able to split a line segment into multiple segments whose
union is the original segment. For the probabilistic case, we additionally
tracked probability measures on those segments.

Therefore, we develop GenProveCurve which generalizes our analysis
to handle other one-dimensional shapes for which these operations can be
supported. Let γ : [l, u]→ Rn be a continuous function given by

γ(t) = a(0) +
k

∑
i=1

a(i) · η(i)(t),

for one-dimensional continuous functions η(i) : [l, u] → R and vectors
a(i) ∈ Rn. The function γ represents the curve γ[[l, u]] in Rn. For the
probabilistic case, we additionally consider a probability measure µ on
[l, u] describing the distribution of the curve parameter. (The probability
measure in Rn describing our probabilistic curve is then implicitly given
by ν(X) = µ(γ−1(X)).)

We can symbolically form the image of the shape γ[[l, u]] under an affine
transformation f (x) = A · x+ b as the set f [γ[[l, u]]] = ( f ◦γ)[[l, u]], where
f ◦ γ is given by

f (γ(t)) = A · γ(t) + b = (A · a(0) + b) +
k

∑
i=1

(A · a(i)) · η(i)(t).

I.e., to apply an affine transformation to our curve, it suffices to transform
the coefficient vectors a(i).

To find splitting points for ReLU decision boundaries, we need to solve
the equation γ(t)j = 0 for t for each component j ∈ {1, . . . , n}. For example,
if we consider quadratic parametric curves γ : [l, u]→ Rn of the form

γ(t) = a(0) + a(1) · t + a(2) · t2,

we have to solve a quadratic equation for each component, yielding at most
two splitting points per component, where we ignore solutions outside
[l, u]. We can split the curve at those points by restricting it to segments
between subsequent splitting points in sorted order. In the probabilistic
case, we further restrict the measure to the same segments and associate
the resulting measures to the new curves.
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CelebA
same

attributes

Zappos50k
same

subcategory

source

nE(x1) = e1

target

nE(x2) = e2

generative interpolations

e1e2

Figure 4.3: Example of a generative specification used in our work. Here, x1 and
x2 are original images with corresponding embeddings e1 and e2,
respectively. For this specification, the images are chosen such that
they contain the same attributes (for CelebA) or belong to the same
subcategory (for Zappos50k). The goal is to verify, deterministically
or probabilistically, that the network under test does not change its
prediction when presented with the interpolated images e1e2.

4.5 evaluation

In this section, we demonstrate the benefits of GenProve and the
techniques presented in our work. In particular, our goal is to answer the
following three research questions:

rq1 Is probabilistic abstract interpretation necessary for handling
complex generative specifications (as compared to traditional
abstract interpretation)?

rq2 Does GenProve produce tight bounds and scale to realistic large
networks (unlike existing methods)?

rq3 What novel specifications can be verified using GenProve (beyond
what is currently possible)?

We first answer RQ1 by showing that our application of probabilistic
abstract interpretation is key for analyzing generative specifications.
Concretely, we demonstrate that: (i) using deterministic verification
is a limiting factor for all non-trivial benchmarks and networks, (ii)
probabilistic interpretation proposed in our work improves the fraction
of samples for which tight bounds can be computed from 0.5% to up to
76.2%, and (iii) our combination of probabilistic analysis with relaxations
can produce non-trivial verified bounds for 100% of samples.
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% of samples w/ non-trivial verified bounds

Exact Verification Verification with Relaxations

(Deterministic) (Probabilistic) (Deterministic) (Probabilistic)

Dataset Network BaseLine GenProve
0 GenProve

Det0.02
100 GenProve

0.02
100

CelebA
ConvSmall 91.2% +8.8%−−−→ 100% 78.6% +21.4%−−−−→ 100%

ConvMed 9.5% +0.5%−−−→ 10% 23.8% +76.2%−−−−→ 100%

Zappos50k
ConvSmall 56% +44%−−−→ 100% 56% +44%−−−→ 100%

ConvMed 8% +3%−−→ 11% 58% +42%−−−→ 100%

Prior Work Our Work

Table 4.1: Comparing deterministic analysis with probabilistic analysis. The
number is the percentage of 100 samples evaluated on average
consistency Ĉ that did not return the full interval l = 0 and u = 1.
We note that the poor performance of BaseLine on ConvMed is due
to out of memory errors, where the full interval is returned.

We then answer RQ2 by demonstrating that GenProve scales to
realistically large networks with 200k neurons while producing bounds
that are very tight and close to zero (e.g., 5.7 · 10−5). In contrast, we show
that all prior methods fail – either because they are imprecise and produce
extremely loose bounds close to 1, or they exhaust the ample GPU memory
and crash. Note that, as we will show later in this section, only increasing
the GPU memory is not a scalable solution and a fundamentally different
approach, like the one proposed in our work, is needed.

To answer RQ3, we show the versatility of GenProve in certifying the
novel class of generative specifications in five ways: (i) we show how
GenProve can be used to certify and specify the higher dimensional
specification where a generative network defines a continuous set of
images that a classifier should categorize correctly under any possible
L∞ attack (ii) certifying robustness to different head orientations, (iii)
certifying attribute independence via adding previously absent attributes
(e.g., changing the hair color as illustrated in Figure 4.3), (iv) certifying
attribute independence over input regions that curve through areas with
previously absent attributes. and finally (v) certifying out of distribution
detection with non-uniform specifications.



84 probabilistic abstract interpretation for generative models

Experimental setup. We certify robustness of generative models using a
variety of different approaches:

• GenProve
p
k which implements both the probabilistic and determin-

istic (denoted as GenProve
Det) verifier proposed in our work. Here,

p is the relaxation percentage and k is the clustering parameter. Note
that setting the relaxation percentage to zero (denoted as GenProve

0)
instantiates our approach without relaxations, thus producing exact
results.

• BaseLine is the deterministic approach proposed by Sotoudeh &
Thakur [118], producing exact results. We note that we use our own,
more scalable and GPU-optimized, implementation of this approach.
The original implementation supports only computations on CPUs
and takes prohibitively large amounts of time when run on the large
networks we use for evaluation.

• A wide range of existing convex abstract domains for neural net-
works: Box [54], Zonotope [54], DeepZono [98], and HybridZono [55].
We adapted all of them to certification of generative models by
representing the initial segment e1e2. Note that for every domain but
Box, this step is exact and does not lose precision.

We implement GenProve in the DiffAI [55] framework, taking
advantage of the GPU parallelization provided by PyTorch [90]. Our
implementation will be made available on GitHub along with all the
models used for testing.

For a fair comparison of runtime and scalability, the verifiers used are
also implemented with GPU support. Our experiments are performed on
a machine with a Titan RTX GPU with 24 GB of GPU memory.

Generative models. We use 3 datasets of increasing complexity –
MNIST [119], Zappos50k [120, 121], and CelebA [122]. For each, we trained
a VAE [123] autoencoder with the architectures and training schemes
described in full detail below. For all datasets, the decoder and generator
have each 74 128 neurons, unless otherwise specified.

Target networks. For each dataset, we trained a variety of attribute
detectors or classifiers:

• CelebA: We trained attribute detectors on the scaled 64× 64 images
with three different architectures – ConvSmall, ConvMed, and
ConvLarge, with 24 676, 63 804 and 123 180 neurons respectively. The
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attribute detectors are trained to recognize the 40 attributes provided
by CelebA (e.g., bald, bangs, blond) [122]. Here, an attribute i is
detected in the image if the i-th component of the network output
is strictly positive.

• Zappos50k: We trained classifiers on the 64 × 64 images with the
same three architectures as for CelebA. The classifiers are trained to
recognize the 21 subcategories (e.g. heels, boots) from the Zappos50k
dataset [120, 121].

• MNIST: We used a classifier with 175 816 neurons trained with
three different techniques to recognize digits [119]. Specifically, we
used the publicly available ConvBiggest architecture from [55] and
trained it using standard training, using Box with DiffAI, as well as
FGSM [20] with ε = 0.1.

Network Architecture Details.
Our experiments use two different encoder architectures (Encoder and

EncoderSmall), two decoder architectures (Decoder and DecoderSmall),
and four different classifier/attribute detector architectures (ConvSmall,
ConvMed, ConvLarge, ConvBiggest). These are described in detail here.

Here we use ConvsC×W×H to denote a convolution which produces C
channels, with a kernel width of W pixels and height of H, with a stride of s
and padding of 1. FC n is a fully connected layer which outputs n neurons.
ConvTs,pC×W×H is a transposed convolutional layer [124] with a kernel
width and height of W and H respectively and a stride of s and padding
of 1 and out-padding of p, which produces C output channels. l refers
to the number of latent dimensions, and o refers to either the number of
attributes or number of classes. For CelebA and Zappos50k use 64 latent
dimensions, while the VAE for MNIST uses 50 latent dimensions.

• EncoderSmall is a standard convolutional neural network with 74128

neurons. It is used for encoding MNIST and Zappos50k. It is trained
with Adam [91] with a learning rate of 0.001 and a batch size of
128. The network was trained for 300 epochs for Zappos50k and 20

epochs for MNIST.

x → Conv216× 4× 4 → ReLU

→ Conv232× 4× 4 → ReLU

→ FC 100 → l.
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• Encoder is also a standard convolutional neural network, but
significantly larger with 246784 neurons, used only for encoding
CelebA. It is trained with Adam with a learning rate of 0.0001 and a
batch size of 100 for 20 epochs.

x → Conv132× 3× 3 → ReLU

→ Conv232× 4× 4 → ReLU

→ Conv164× 3× 3 → ReLU

→ Conv264× 4× 4 → ReLU

→ FC 512 → ReLU

→ FC 512 → l.

• Decoder is a transposed convolutional network which has 74128

neurons used for decoding every dataset in nearly every experiment,
unless otherwise specified. Of course, the training parameters are the
same as the respective encoders.

l → FC 400 → ReLU

→ FC 2048 → ReLU

→ ConvT2,116× 3× 3 → ReLU

→ ConvT1,03× 3× 3 → x.

• DecoderSmall is a smaller transposed convolutional network
which has 41160 neurons used for decoding CelebA for testing
GenProveCurve. The training parameters are the same as the
respective encoders.

l → FC 200 → ReLU

→ FC 2048 → ReLU

→ ConvT2,18× 3× 3 → ReLU

→ ConvT1,03× 3× 3 → x.

• ConvSmall is a convolutional network which has 24676 neurons. The
convolutions use a padding of 1. It is only used for a toy parameter
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comparison on CelebA. It was trained for 300 epochs with a batch
size of 100 using Adam with a learning rate of 0.0001. It had a test-
set accuracy of 89.87%.

x → Conv216× 4× 4 → ReLU

→ Conv232× 4× 4 → ReLU

→ FC 100 → o.

• ConvMed is a convolutional network which has 63804 neurons. Here,
the convolutions use a padding of 1. This is used as a classifier and
attribute detector for Zappos50k and CelebA experiments. For both
experiments it was trained with a batch size of 128 using Adam with
a learning rate of 0.001. For Zappos50k it was trained for 5 epochs
and acheived a test-set accuracy of 79.40%. For CelebA it was trained
for 10 epochs and acheived a test-set accuracy of 89.87%.

x → Conv112× 4× 4 → ReLU

→ Conv216× 4× 4 → ReLU

→ FC 500→ FC 200→ FC 100→ o.

• ConvLarge is a convolutional network which has 123180 neurons.
Here, the convolutions use a padding of 1. This is used as a classifier
and attribute detector for Zappos50k and CelebA experiments. For
both experiments it was trained with a batch size of 128 using Adam
with a learning rate of 0.001. For Zappos50k it was trained for 5

epochs and acheived a test-set accuracy of 82.20%. For CelebA it was
trained for 10 epochs and acheived a test-set accuracy of 89.86%.

x → Conv116× 3× 3 → ReLU

→ Conv216× 4× 4 → ReLU

→ Conv132× 3× 3 → ReLU

→ Conv232× 4× 4 → ReLU

→ FC 200→ FC 100→ o.

• ConvBiggest is a convolutional network which has 175816 neurons.
Here, the convolutions use a padding of 1. This is used as a classifier
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detector for MNIST experiments. When trained with DiffAI the
training schedule suggested by Gowal et al. [59] is used. Each method
trains it for 30 epochs.

x → Conv164× 3× 3 → ReLU

→ Conv164× 3× 3 → ReLU

→ Conv2128× 3× 3 → ReLU

→ Conv1128× 3× 3 → ReLU

→ Conv1128× 3× 3 → ReLU

→ FC 200→ o.

Evaluation metrics. We show the precision of our system by verifying
that a given model (denoted as nA for an attribute detector, and nC for a
classifier) is robust to the transformations learned by the generative model.

We formalize this concept with a metric called consistency: for a point
picked uniformly between the encodings e1 and e2 of ground truth inputs,
we determine the probability that its decoding (computed by a decoder
nD) will have (or not) the same attribute. As a concrete example, Figure 4.3
shows generative interpolations for both CelebA and Zappos50k. Formally,
consistency is defined for attribute detectors as

Ci,nA ,nD (e1, e2) = Pr
e∼U(e1e2)

[sign nA(nD(e))i = t],

and for classifiers as

CnC ,nD (e1, e2) = Pr
e∼U(e1e2)

[arg max
i

nC(nD(e))i = t].

Suppose P is a set of pairs {a, b} from the data and it holds that
sign aA,i = sign bA,i for every attribute, where aA,i is the label of
attribute i for a. We compute bounds on the average consistency as
ĈP = meana,b∈P,i Ci,nA ,nD (nE(a), nE(b)) for attribute detectors, and ĈP =
meana,b∈P CnC ,nD (nE(a), nE(b)) for classifiers, where nE is the encoding
network.

We compute a probabilistic bound, [l, u], for each method in our
evaluation such that l ≤ Ĉ ≤ u. We call u− l its width.

GenProve Refinement Schedule.
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While many refinement schemes start with an imprecise approximation
and progressively tighten it, we observe that being only occasionally
memory limited and rarely time limited, it conserves more time to
start with the most precise approximation we have determined usually
works, and progressively try less precise approximations as we determine
that more precise ones can not fit into GPU memory. Thus, we start
searching for a probabilistic robustness bound with GenProve

p
N and if

we run out of memory, try GenProve
min(1.5p,1)
max(0.95N,5) for schedule A, and

GenProve
min(3p,1)
max(0.95N,5) for schedule B. This procedure is repeated until a

solution is found, or time has run out.

4.5.1 RQ1 - Probabilistic Abstract Interpretation

We start by addressing RQ1 and demonstrate that while traditional
deterministic verification methods may be precise for deterministic
specifications, they are of limited utility when tasked with verifying
probabilistic specifications. To understand why, recall that for the
deterministic domains, there are only three possible outputs for the lower
and upper bounds: [0, 0] meaning that none of the specification was correct,
[1, 1] meaning that the specification was entirely correct, or least usefully,
the full interval [0, 1] implying that the technique was unable to verify one
way or the other how much of the specification was correct. This severely
limits the usefulness of the verification, especially for cases with imperfect
networks and imperfect specifications.

Table 4.1 demonstrates the limited applicability of deterministic
domains. Here, we report the fraction of specifications where the bounds
were strictly tighter than [0, 1]. Based on the results, we can immediately
see that GenProve provides useful bounds for 100% of the specifications
for every network and dataset. At the same time, the deterministic
methods BaseLine and GenProve

Det rarely return useful bounds for the
consistency specification. In particular, BaseLine proves at best 91.2%,
and at worst 8% of the specifications. This is because even on the large
network, GenProve

0 and BaseLine run out of memory. One should also
observe that GenProve

0 performs better than BaseLine and when it does
not run out of memory, performs better than GenProve

Det. We note that
GenProve not only always provides useful results, but is also precise and
achieved an average width (u− l) of at worst 0.0001 for CelebA (ConvMed).
In comparison, the next-best domain (BaseLine on ConvSmall) produced
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average consistency Ĉ bound width (u− l)

(≈25k neurons) (≈64k neurons) (≈123k neurons)

Dataset Domain ConvSmall ConvMed ConvLarge Precise Scalable

CelebA

Prior

Box [54] 0.98 0.98 0.98 - 3

HybridZono [55] 0.97 0.97 0.97 - 3

DeepZono [98] 1.0 1.0 1.0 - -

Zonotope [54] 1.0 1.0 1.0 - -

Our GenProve
0 0.0 0.9 0.95 3 -

GenProve
0.02
100 1.8 · 10−5 1.1 · 10−4 1.6 · 10−4 3 3

Zappos50k

Prior

Box [54] 1.0 1.0 1.0 - 3

HybridZono [55] 1.0 1.0 1.0 - 3

DeepZono [98] 1.0 1.0 1.0 - -

Zonotope [54] 1.0 1.0 1.0 - -

Our GenProve
0 0.0 0.89 0.99 3 -

GenProve
0.02
100 3.3 · 10−5 4.5 · 10−5 5.7 · 10−5 3 3

Table 4.2: Scalability and precision of our method compared to a wide range of
prior convex abstract domains. All methods are lifted probabilistically.
We report average consistency Ĉ bound widths (lower is better).

a width of at best 0.1748 (not shown in Table 4.1), which is a full four
orders of magnitude worse on a smaller network.

4.5.2 RQ2 - Precision and Scalability

Next, we address RQ2 by comparing the precision and scalability of
probabilistic GenProve to a variety of existing convex abstract domains,
as well as sampling. To study the scalability of all domains, we certify
the robustness of three networks of increasing complexity – ConvSmall
with ≈25k neurons, ConvMed with ≈64k neurons and ConvLarge with
≈123k neurons. Further, to provide variety, we certify robustness using
two datasets: CelebA and Zappos50k.

Precision. Table 4.2 shows the result of running the verifiers using the
same |P| = 100 pairs of images with either matching attributes (for CelebA)
or the same class (for Zappos50k). We report the bound [0, 1] if memory is
exhausted.

One can first observe that Box, HybridZono, Zonotope, and DeepZono
are unable to certify any samples as they almost always produce
a probabilistic interval with width 1. We posit that this is due to
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peak GPU memory in GB / OOM (%) runtime in seconds

Dataset Domain ConvSmall ConvMed ConvLarge ConvSmall ConvMed ConvLarge

CelebA GenProve
0

7 GB / 0% 22.7 GB / 90% 23.1 GB / 95% 11 sec OOM OOM
GenProve

0.02
100 3.5 GB / 0% 6.8 GB / 0% 9.4 GB / 0% 13 sec 25 sec 41 sec

Zappos50k GenProve
0

6.5 GB / 0% 22.7 GB / 89% 23.6 GB / 99% 11 sec OOM OOM
GenProve

0.02
100 6.4 GB / 0% 6.6 GB / 0% 7.1 GB / 0% 15 sec 25 sec 32 sec

Table 4.3: Comparison of the memory usage and runtime of our GenProve with
and without relaxations.

non-convexity being highly important for these kinds of specifications.
Zonotope and DeepZono run out of memory for all the samples, even
for the smallest network ConvSmall.

While GenProve
0 is theoretically complete, it also predominantly failed

to provide useful bounds as it frequently ran out of GPU memory.
However, we can see that for the small network ConvSmall, where it does
scale, it does produce exact results: the width of all bounds is 0.

GenProve
0.02
100 is the only approach that is both scalable and precise.

The bounds are tight even for the largest network ConvLarge: 5.7 · 10−5

for Zappos50k for example. Significantly, the bounds remain tight as the
network size increases. For example, when the network size increased by
500% (from ConvMed to ConvLarge), the bound width increased from
3.3 · 10−5 only to 5.7 · 10−5.

While the speed of each method can be seen in Table 4.6, these
numbers can be misleading: despite Box and HybridZono’s apparent
speed, they fail to provide any useful information for any specifications
due to aforementioned imprecision. Similarly, Zonotope, DeepZono
and GenProve

0 also appear very fast while failing to provide useful
information. These fail however due to running out of GPU memory.
In contrast, GenProve takes 41.4 seconds on the most complicated
specification and network here, but produces extremely tight and useful
bounds in every case.

Scalability. Table 4.3 shows the average runtime, peak GPU memory, and
the fraction of samples that resulted in out-of-memory (OOM) errors. For
the CelebA dataset, while the network size increased 5×, the memory
usage of GenProve

0.02
100 increased only 2.7×. The improvement in memory

usage is even better for the Zappos50k dataset, where increasing the size
2× leads to an increase in memory usage of only 1.08×. This shows
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bound width (u− l)

Domain CelebA Zappos50k

Verified Correctness GenProve
0.02
100 1.6 · 10−4 5.7 · 10−5

99.999% Confidence Sampling 2.1 · 10−4 1.5 · 10−3

Table 4.4: Comparison of the precision of our method to sampling. Our method
not only provides results that are guaranteed to be sound, but also
leads to tighter bounds. Note that the runtime of both methods (not
shown) is the same.

that the relaxation technique proposed in our work successfully reduces
the memory usage while still achieving tight bounds. The results for
runtime are similar: runtime increases sublinearly depending on network
size. Overall, the verification is fast and takes on average ≈40 seconds for
ConvLarge and ≈11 seconds for ConvSmall.

The results in Table 4.3 also detail why GenProve
0 does not scale:

the needed GPU memory increases significantly with network size. For
complex specifications, the number of segments that must be tracked often
increases exponentially.

To improve the scalability of both GenProve
0 and GenProve

0.02
100 further,

it is possible to split the specification into smaller parts. In our case, this
corresponds to partitioning the initial segment (or other one-dimensional
shapes) into multiple smaller segments that are verified sequentially and
then merged together. However, while useful for avoiding the memory
limitations, it comes at the cost of increased runtime. Given that the
number of segments can grow exponentially with the network size, we
believe that developing and incorporating techniques like the relaxation
proposed in our work is critical for scaling to state-of-the-art networks.

Comparison to sampling.
In our next experiment, shown in Table 4.4, we compare to a sampling

method, where samples are drawn from the uniform distribution over the
initial segment. We report the Clopper-Pearson interval with a confidence
of 99.999%. Notably, the probabilistic bound returned by sampling is only
guaranteed to be correct 99.999% of the time (in cases it reaches the desired
confidence), whereas for other analyses it is guaranteed to always be
correct.

The results show that the sampling does scale and also produces bound
widths with a reasonable precision. However, not only does GenProve
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Specification Illustration Certified Result

(a) head bound width (u− l)
orientation 1.0 · 10−4

(b) adding robust attributes
"brown hair" 32/40

(c) quadratic robust attributes
curve 29/40

Table 4.5: An illustration of the various specifications we support and what we
are able to certify about them. This is in addition to the specifications
shown in Figure 4.3 and certification of adversarial regions around a
generative specification (not shown).

produce bounds that are guaranteed to be correct, it also produces bounds
are up to two orders of magnitude tighter (i.e., by up to ≈ 2500%). These
results were consistent across all the networks and datasets we evaluated,
the full version of which is included in Table 4.6.
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GPU Memory

Dataset Network Neurons Domain Width (u− l) Seconds OOM (%) Peak (GB)

CelebA

ConvSmall 24676

Prior Work

Box 0.98 0.0031 0 0.07

HybridZono 0.9703 0.0042 0 0.07

DeepZono 1.0 1.3485 100 23.62

Zonotope 1.0 1.3345 100 23.62

Our Work GenProve
0 0.0 10.7657 0 7.05

GenProve
0.02
100 1.78× 10−5

12.7403 0 3.51

99.999% Confidence Sampling 3.73× 10−4
14.7877 0 0.62

ConvMed 63804

Prior Work

Box 0.98 0.0046 0 0.16

HybridZono 0.97 0.0059 0 0.16

DeepZono 1.0 1.6848 100 23.62

Zonotope 1.0 1.5015 100 23.62

Our Work GenProve
0 0.9 1.2914 90 22.77

GenProve
0.02
100 1.10× 10−4

25.3728 0 6.83

99.999% Confidence Sampling 3.11× 10−4
26.4949 0 0.70

ConvLarge 123180

Prior Work

Box 0.98 0.0040 0 0.08

HybridZono 0.97 0.0202 0 0.08

DeepZono 1.0 0.9907 100 23.62

Zonotope 1.0 0.9560 100 23.62

Our Work GenProve
0 0.95 0.7649 95 23.14

GenProve
0.02
100 1.61× 10−4

41.3746 0 9.38

99.999% Confidence Sampling 2.06× 10−4
42.2111 0 0.71

Zappos50k

ConvSmall 24676

Prior Work

Box 1.0 0.0039 0 0.04

HybridZono 1.0 0.0048 0 0.04

DeepZono 1.0 1.3525 100 23.62

Zonotope 1.0 1.3428 100 23.62

Our Work GenProve
0 0.0 11.1377 0 6.54

GenProve
0.02
100 3.26× 10−5

14.8033 0 6.39

99.999% Confidence Sampling 1.59× 10−3
15.2826 0 0.59

ConvMed 63804

Prior Work

Box 1.0 0.0053 0 0.13

HybridZono 1.0 0.0380 0 0.13

DeepZono 1.0 1.3513 100 23.62

Zonotope 1.0 1.3402 100 23.62

Our Work GenProve
0 0.89 3.4067 89 22.67

GenProve
0.02
100 4.53× 10−5

25.1927 0 6.61

99.999% Confidence Sampling 1.13× 10−3
27.0847 0 0.67

ConvLarge 123180

Prior Work

Box 1.0 0.005 0 0.046

HybridZono 1.0 0.038 0 0.046

DeepZono 1.0 1.359 100 23.623

Zonotope 1.0 1.350 100 23.623

Our Work GenProve
0 0.99 0.414 99 23.581

GenProve
0.02
100 5.7× 10−5

32.058 0 7.160

99.999% Confidence Sampling 1.53× 10−3
32.124 0 0.679

Table 4.6: Average consistency Ĉ bound widths, runtime, and memory usage. For these
metrics, lower values are better. Additionally, the percentage of runs which ran
out of memory is reported as OOM. Unnacceptably large widths, which mean
the analysis failed to provide useful bounds, are written in red.
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4.5.3 RQ3 - Novel Generative Specifications

So far, we have shown that GenProve can verify generative specifications
like those shown in Figure 4.3, which interpolate between two images
with identical attributes. We now address RQ3 and demonstrate how our
method applies to five additional generative specifications.

Certifying robustness to head orientation. As shown by Dumoulin &
Visin [124], VAEs can generate images of intermediate poses from flipped
images. An example of this transformation is shown in Table 4.5 (a). We
evaluated line specifications between encodings of horizontally flipped
images. For a head, ideally the intermediate reconstructions will be of
the intermediate 3D orientations. As pose is not a provided CelebA
attribute, the attribute detector should recognize the same attributes for
all interpolations. We evaluated GenProve

0.02
100 on images from CelebA

dataset and successfully produced tight bounds for all evaluated images.
The average bound width was only 1.0 · 10−4, with average lower bound
l = 0.8433 and average upper bound u = 0.8434. That is, we verified that
on average, the target network is robust to 84% of generated interpolations.
The results for other method follow the results shown in Table 4.2. That is,
they either do not scale or provide bound width close to 1.

Certifying attribute independence for CelebA. We use GenProve to
demonstrate that attribute detection for one feature is invariant to
transformation of an independent feature. Specifically, we verify for a
single image the effect of adding a different hair color, as shown in
Table 4.5 (b). To achieve this, we find the attribute vector m for “BrownHair“
using the 80k training images in the manner described by [125], and
compute probabilistic bounds for Cj(nE(o), nE(o) + 3m, oA,j) for j 6= 11
and the image o. Here, we used the ConvMed attribute detector. Using
GenProve we are able to prove that 32 out of the 40 attributes are entirely
robust to brown hair addition, and 8 of them were not robust. Among
the attributes which can be proven to be robust was i = 39 for “young“
for example. We are able to find that attribute i = 9 for “BlondHair”
is not entirely robust to the addition of the BrownHair vector, which is
expected. Here, our approach is able to find tight lower and upper bounds
on the robustness probability of [0.6038, 0.6039] for that attribute. The
average interval width for all attributes was 7.87 · 10−6. One can observe in
Table 4.5 (b) that this matches visually what the interpolated images show:
the first 6 or so reconstructions appear to have blond hair, whereas the rest
have brown hair.
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verification of adversarial generative interpolations

standard adversarial provable bound width
Training accuracy accuracy (PGD [41]) accuracy (Box) (u− l)

Standard 99.2% 54.5% 0.0% 0.9999
FGSM [20] 99.5% 97.1% 0.0% 1.0
DiffAI [55] 99.1% 97.7% 92.5% 0.0990

Table 4.7: Average number of fully verified images for interpolations of images
in the same MNIST class using adversarial region width ε = 0.1 for
ConvBiggest with 175 816 neurons trained in three ways.

Certifying curved specifications.
We demonstrate the first exact analysis (both deterministic and

probabilistic) of a non-convex smooth input for neural networks. Given
three encoding vectors, e0, e1, e1, we create the following quadratic curve
that passes through them at t = 0, 0.5, 1 respectively:

γ(t) = e0 + (4e1 − e2 − 3e0) · t + 2(e2 + e0 − 2e1) · t2.

We use the encoding of an image of a head for e0, the encoding of the
flipped head for e2, and the midpoint of these two encodings perturbed by
a scaled moustache attribute vector, m (found as described earlier for the
BrownHair attribute vector, but for attribute 22) for e1 := 0.5(e0 + e2) + 4m.
We visualize this specification in Table 4.5 (c).

We used GenProveCurve to demonstrate attribute independence for 29
out of the 40 different attributes. As GenProveCurve is exact, it produced
a bound width of 0. The average probability of attribute consistency is
0.85. Here, we used a smaller generator architecture, DecoderSmall with
only 41 160 neurons, the usual ConvSmall attribute detector. Even though
it is exact, GenProveCurve was able to verify the non-linear specification
in only 12.6 seconds.

Certifying adversarial regions around generative output. Unlike any
other pre-existing methods, GenProve can be easily applied to higher-
dimensional specifications. Specifically, we use generative models to
construct a base specification, which we additionally want to be
adversarially robust. We define adversarial consistency Cadv

ε,i,nA ,nD
(e1, e2) as:

Pre∼U(e1e2)
[∀a ∈ B∞,ε(nD(e)). arg maxi nA(a)i = t].

Here, B∞,ε(nD(e)) refers to the L∞ adversarial region of size ε around
the output of the generator. To handle this we propagate the interval using
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Upper Bound

Model Interpolation Bound Width

(a) VAE 0.4528 0

(b) FactorVAE 0.32 3.5× 10−5

(c) ACAI 0.29 8.8× 10−5

Table 4.8: Using an interpolation specification with an arcsin distribution
between unrelated images to compare the realism of images produced
by various generative models. We compute an upper bound on the
probability that the out-of-distribution detector (a GAN discriminator
here) successfully determines that the generated image is fake.

GenProve through the decoder nD to produce a list of segments and boxes.
We compute a box around each segment, and then enlarge each box in the
entire list, in every dimension, by ε. We then propagate the boxes through
nA. Crucially, these operations all fall under the framework developed in
our work, and so this specification can be seen as an instance of GenProve.

Because no other method is both capable of handling generative
specifications without adversarial regions, or easily extensible to handle
this specification, we only use GenProve to demonstrate the benefit
of DiffAI training. Table 4.7 shows the result of applying GenProve

to solve this specification on regularly trained networks, FGSM-trained
networks [20], and DiffAI-trained networks [55] for the MNIST dataset.
We report, in addition to the standard accuracy, the accuracy against the
PGD adversary [41] with 5 iterations, and the provability using Box. We
finally report the bound width on the generative adversarial specification
using GenProve. One can see that on a DiffAI-trained network, we are
able to provide tight bounds on the adversarial consistency.

Certifying complex specifications.
Finally, we demonstrate the full capabilities of GenProve for certifying

non-uniform specifications involving naive out-of-distribution detection
using a GAN discriminator, and autoencoders specifically trained for
disentanglement and interpolation as shown in Table 4.8. Here, we trained
two more VAEs on CelebA: (i) ACAI [126] which is designed specifically to
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produce realistic encoding interpolations, and (ii) FactorVAE [127] which
is designed to learn a latent encoding where each dimension represents
an independent disentangled feature. For out-of-distribution detection,
we used the discriminator from a vanilla GAN [128]. Each has been
modified to use MSE as their reconstruction loss to avoid sigmoids. We
use Decoder for all decoders, Encoder for the encoders and the ACAI critic,
and EncoderSmall for the GAN discriminator. Further, FactorVAE uses a
small feedforward network 5 layers deep (each layer has 100 neurons) as
its factorization critic. Each network was trained for 100 epochs, with a
batch size of 64. The autoencoders used 64 latent dimensions while the
GAN used 128. All other hyperparameters are as in the respective papers.

To demonstrate non-uniform distributions, we use the arcsine
distribution over the interpolation specification. Table 4.8 compares the
upper bound of an interpolation specification between two unrelated
images. A small number means that the discriminator was fooled by the
generator in question. We can see that the most successful generator is
ACAI, which is specifically trained to produce realistic interpolations.



4.6 related work 99

4.6 related work

Next, we review work most closely related to ours.

Certifying generative models. Dvijotham et al. [111] verifies lower bounds
on a probabilistic property for all inputs in a specification for variational
autoencoders with a latent random variable using a dual approach. In
contrast, GenProve finds tight upper and lower bounds on the probability
that a property is satisfied given a distribution over a specification. Further,
our approach scales to networks that are orders of magnitude larger – we
successfully certify CelebA networks with nearly 200k neurons compared
to the network used in Dvijotham et al. [111] which has only 3 hidden
layers of 64 units each.

Convex relaxations. PROVEN [129] proposes a technique to infer
confidence intervals on the probability of misclassification from
preexisting convex relaxation methods that find linear constraints on
outputs. In our evaluation, we show that for interpolations of generative
models, convex relaxation methods are unable to prove meaningful
bounds. This implies that the linear lower bound function used by
PROVEN would be bounded above by 0, and thus because FL

gt(0.5) ≥
FL

0 (0.5) and FL
0 (0.5) = 1, the lower bound, γL, that their system should

derive would be γL = 0. This is because even the most precise convex
relaxation over the generated images might include many images that are
not realistic. For example, the convex hull includes the pixel-wise average
of the generated endpoint images, as in Figure 4.1.

Adversarial defenses. Another line of work, smoothing, provides a
defense with statistical guarantees [103, 130–133]. In our evaluation, we
compared to a variant of this technique, sampling, and demonstrated
that GenProve computes two orders of magnitude tighter bounds
across all the datasets and models. Further, our work provides provable
guarantees compared to sampling whose bounds are correct only with
some probability (e.g., with 99% confidence).

At the same time, a number of recent adversarial defenses started to
incorporate generative models as core component or their approach [134–
136]. For all of those, incorporating techniques presented in our work is
a natural next step required to certify that the defense is provably correct.

Certifying line segments. Of particular note, the work of Sotoudeh &
Thakur [118] also restricts the network inputs to line segments. They
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used this method to certify non norm-based properties [137] and to
improve Integrated Gradients [138]. In our work we built on the results
of Sotoudeh & Thakur [118] and extended them in several major aspects
by: (i) computing tight deterministic bounds on the probability of a
probabilistic specification, (ii) introducing relaxations that enable scaling to
large networks, (iii) ensuring the correctness of the probabilistic guarantees
in the presence of these relaxations, and (iv) exploring novel specifications
including parametric curves and higher dimensional specifications.

4.7 discussion

In this chapter, we demonstrated GenProve’s use to certify transforma-
tions given by generative models. While generative models are intended
to represent the underlying data distribution, physical limitations imply
they actually generate slightly different distributions. Unfortunately, it is
usually not possible to certify how much a given generative model differs
from the ground truth. This is because for most real-world applications,
the ground truth is only approximated from data. In such cases, our
domain is useful for either verifying that the generative model satisfies
some property given by a trusted downstream classifier, or verifying
that the downstream classifier obeys a property specified by a trusted
generator. In this chapter, we predominantly consider verifying classifiers
based on a trusted generator. The experiment shown in Table 4.8 is an
example where one might consider the converse case: we can evaluate the
generator against a trusted classifier that judges whether the produced
images appear to be real.

4.8 conclusion

We presented GenProve, a scalable non-convex relaxation approach to
certify neural network properties when subjected to transformations
learned by generative models. Our method supports both deterministic
and probabilistic certification and is able to verify, for the first time,
interesting visual transformation properties based on latent space
interpolation, beyond the reach of prior work.

We provided an evaluation which demonstrated: (i) that probabilistic
abstract interpretation was necessary for analyzing complex semantic
specifications, (ii) that GenProve scales to large networks (200k neurons),
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even beating sampling, and (iii) that GenProve enables verification of
novel semantic specifications.





5
C O N C L U S I O N A N D F U T U R E W O R K

In this thesis, we developed two frameworks, AI2 and DiffAI, and
extended DiffAI to handle semantic probabilistic specifications with
generative models with GenProve. These frameworks constitute the first
scalable systems for making sound guarantees on neural networks.

Doing this involved three key insights: (i) we can use the flexible and
well researched techniques of overapproximation by abstract interpretation
for neural network verification, (ii) we can introduce abstract interpretation
into the training pipeline to produce efficiently verifiable networks, and
(iii) we can use probabilistic abstract interpretation to verify semantic
properties with generative models. Through these contributions we
demonstrated that sound verification is feasible for production-scale neural
networks, thus opening the gates to a plethora of verification possibilities
that before were considered either too costly, or too restrictive for usage in
deep learning.

The systems presented here have had significant impact on neural
network verification: At the time of writing, DiffAI has 186 stars on github
and 23 forks, and has been used in industrial applications [58]. Further
research has been developed extending the concept of optimizing a primal
overapproximation with backpropagation [99, 139]. Furthermore, since we
introduced AI2 and DiffAI, much work has been developed extending the
idea of verified, provable learning to new networks and properties, and
with new methods [57, 60, 106, 109, 110, 140–143].

5.1 future work

The work of this thesis points towards four main directions of future work:
(i) improvements in pure verification, (ii) understanding, and fixing, the
provable training gap, (iii) applying our techniques to other areas, and (iv)
utilizing the guarantees.
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5.1.1 Verification Outlook

While AI2 made neural network verification practical for the first time,
verification has yet to tackle nets such as GPT-2 [144], and is still mostly
limited to adversarial ball type queries. Here we discuss possible areas for
future research.

Expanding on Sound Guarantees. While perturbation radius style
verification addresses the first generation of adversarial examples, a
common concern is that these kinds of specifications are too limited in
terms of what they consider adversarial. With GenProve we began to
expand the types of guarantees that neural network verification systems
can make; however it still largely addresses point-wise verification. An
important step for neural network verification would be in handling
domain invariants, where guarantees are made about all inputs. While
methods that verify or find Lipschitz constants for neural networks [145]
present global verification in a sense, the scale of invariants such as change
of perspective, lighting, and even image translation, are often far beyond
what would be meaningful here.

Paulsen, Wang & Wang [146] demonstrated a promising direction with
a system that could compare the relative capabilities of neural networks.
This technique, however, has yet to be shown to extend to convolutional
networks. A possible way to extend this kind of work to larger networks
would be by applying the methods of DiffAI.

Improving Verification Speed and Accuracy. Since releasing AI2 we have
improved the speed and accuracy of the zonotope domain by introducing
new transformers [147]. Further improvements have since been made
constructing abstract domains and transformers specifically for neural
networks [57]. As probabilistic abstract interpretation is a new concept
in neural network analysis, we believe that similar improvements can be
made to construct domains for generative models like GenProve.

5.1.2 Training Outlook

Since releasing DiffAI, it was discovered by [59] that significantly better
accuracy and certifiability could be achieved by using the Box domain and
using a training schedule and refined loss function. While not included in
the scope of this thesis, we have since significantly improved the usability
of this system and provided an updated evaluation [49] using this training
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schedule and loss function. We furthermore demonstrated that DiffAI
could scale to deep residual networks with up to 4.5 million neurons, or
up to 25 million parameters.

An Open Problem: The Provable Training Gap. While there have been
many later works improving on the training results shown here [59, 97,
99, 139], progress has plateaued and provable training methods remain
far from being able to produce networks with certifiability anywhere near
state-of-the-art accuracy on relatively simple datasets such as CIFAR10.
COLT [148] for example, which is based on different methods entirely,
achieves a record breaking certified robustness of 60.5% on a radius of
2/255 on CIFAR10, compared with 45.5% for DiffAI. Compared with a
standard state-of-the-art accuracy of above 95% for CIFAR10, the lack of
progress presents a barrier to practical adoption of provable training.

This dilemma has raised fundamental theoretical questions analogous
to those that have been answered for standard training: Do certifiable
networks exist? How large would they need to be? Can gradient descent
efficiently find them?

In Baader, Mirman & Vechev [61] we answer the first of these questions
by proving an analog to the universal approximation theorem: we
demonstrate that networks exist that can be certified, with interval, to
robustly approximate any function. Wang et al. [149] extends this idea by
showing that such networks can be constructed in a constant number of
layers.

While it is reassuring to know that a search for provable networks is
not in vain, this result runs counter to what is observed in practice [150].
We therefore prove in Mirman, Baader & Vechev [62] that there is a
fundamental theoretical barrier to training such networks with known
techniques (beyond the known barriers to training standard and robust
networks) and that provably robust networks must be deeper than their
simply robust counterparts.

On the other hand, an entirely different direction is possible: designing
new kinds of models which are certifiable by construction. Recent works
such as Cohen, Rosenfeld & Kolter [103] take this approach: instead of
providing sound guarantees with 100% certainty on a standard model, they
provide high certainty guarantees on a model with a modified notion of
inference. Other works have taken similar approaches [130, 151, 152].
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5.1.3 Further Application of Our Techniques

In this thesis we demonstrated that formal verification could scale to
systems of unprecedented size. We furthermore demonstrated that even at
that scale, it is possible to train networks to fit verification goals. As neural
networks can be considered program templates (they can even literally be
used to learn explicit algorithms [153–155]), one can consider DiffAI a
form of program synthesis [156–160], and in particular a way to solve a
kind of quantitative synthesis problem [50].

A natural direction is thus to determine if the methods which apply
to building certifiable neural networks transfer to other domains, such
as for generating programs that are built to formal specifications in
human readable target languages, or even learning analytical networks
(e.g., NTMs) which satisfy specifications. Similarly, the theoretical results
that have arisen may also generalize to fundamental questions in program
synthesis.

5.1.4 Utilizing Sound Guarantees

Finally, perhaps the least explored direction is to use these newfound
neural network certification capabilities as part of larger systems. As seen
in Chapter 4, sound techniques can sometimes outperform even sampling.
This suggests that they might be used in place of sampling in some
systems. Many systems might benefit from robustness tests, such as those
in environments where a user is well aware of the presence of a network
(e.g., awareness checking in self-driving cars). How should such systems
behave when it is discovered that robust decisions can not be shown?



A
A P P E N D I X

a.1 extended diffai results

Here we include further results for scalability and training efficacy of
DiffAI.
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Lower Bound % Upper Bound %

Model Train Method Train Time (s) Test Error % PGD Box hSwitch

FFNN

Baseline 121.92 2.4 40.8 100.0 100.0

PGD 368.76 1.0 3.8 100.0 100.0

Box 592.80 5.6 13.6 33.0 53.0

ConvSmall

Baseline 123.36 1.2 2.4 100.0 49.8

PGD 515.64 0.8 1.8 100.0 22.2

Box 690 2.4 4.4 17.8 5.8

ConvBig

Baseline 367.80 0.8 3.0 100.0 100.0

PGD 1847.76 0.2 1.6 100.0 99.8

Box 1445.76 1.0 2.4 14.0 3.4

ConvSuper

Baseline 878.28 1.6 2.4 100.0 97.2

PGD 4867.56 1.2 1.6 100.0 88.8

Box 3148.68 1.0 2.8 11.8 3.6

Skip

Baseline 731.40 1.4 3.8 100.0 100.0

PGD 3935.04 1.0 2.0 100.0 83.4

Box 2734.44 1.6 4.4 13.6 5.8

Table A.1: MNIST with ε = 0.1
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Lower Bound % Upper Bound %

Model Train Method Train Time (s) Test Error % PGD Box hSwitch

FFNN

Baseline 120.84 3.0 99.0 100.0 100.0

PGD 357.48 2.0 10.2 100.0 100.0

Box 570.84 13.4 50.6 77.8 84.4

ConvSmall

Baseline 124.44 1.6 20.2 100.0 100.0

PGD 518.64 1.8 4.6 100.0 100.0

Box 678.36 3.2 9.0 28.2 19.4

ConvBig

Baseline 368.76 2.4 18.2 100.0 100.0

PGD 1863.12 1.6 4.0 100.0 100.0

Box 1436.40 3.4 6.2 23.2 18.0

ConvSuper

Baseline 895.56 1.2 15.0 100.0 100.0

PGD 5021.28 1.0 1.0 100.0 100.0

Box 3216.72 2.8 8.0 19.0 23.0

Table A.2: MNIST with ε = 0.3
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Model Train Method Train Time (s) Test Error % PGD Box hSwitch

FFNN

Baseline 254.52 53.4 73.8 100.0 100.0

PGD 956.64 45.4 53.6 100.0 100.0

Box 829.08 48.6 57.8 84.4 65.4

ConvMed

Baseline 292.44 40.2 44.0 100.0 54.0

PGD 1472.16 38.8 43.6 100.0 52.4

Box 1040.04 42.8 46.4 74.6 47.8

ConvBig

Baseline 1317.00 32.4 36.2 100.0 100.0

PGD 8574.72 31.4 35.8 100.0 100.0

Box 4307.88 55.0 58.6 76.4 61.4

ConvSuper

Baseline 4683.24 37.4 42.4 100.0 100.0

PGD 29828.52 35.4 41.0 100.0 100.0

Box 14849.40 52.8 59.2 83.8 64.2

Skip

Baseline 802.92 36.8 41.8 100.0 88.0

PGD 4828.68 33.6 40.2 100.0 82.8

Box 2980.92 38.0 45.4 72.2 47.8

Table A.3: CIFAR10 with ε = 0.007
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Model Train Method Train Time (s) Test Error % PGD Box hSwitch

FFNN

Baseline 263.16 57.6 96.8 100.0 100.0

PGD 1000.68 46.6 46.6 61.4 100.0

Box 849.00 52.2 68.8 90.0 82.6

ConvMed

Baseline 98.20 40.4 61.8 100.0 100.0

PGD 1546.92 42.2 54.8 100.0 97.8

Box 1061.52 45.8 60.0 85.8 64.8

ConvBig

Baseline 1329.48 37.2 61.6 100.0 100.0

PGD 8733.84 41.6 56.2 100.0 100.0

Box 4355.76 51.6 61.4 83.2 75.8

ConvSuper

Baseline 4724.76 39.8 66.2 100.0 100.0

PGD 31140.72 39.6 56.2 100.0 100.0

Box 15314.76 54.2 64.6 83.8 87.6

Skip

Baseline 805.32 39.6 69.4 100.0 100.0

PGD 4916.04 37.0 54.0 100.0 100.0

Box 2789.52 52.6 68.6 90.8 78.0

Table A.4: CIFAR10 with ε = 0.03
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Model Train Method Train Time (s) Test Error % PGD Box hSwitch

FFNN

Baseline 151.50 22.6 13.8 100.0 93.8

PGD 459.61 19.2 24.0 100.0 88.6

Box 722.46 43.8 10.0 66.2 32.2

ConvMed

Baseline 144.32 15.0 19.8 100.0 54.8

PGD 624.59 14.0 4.4 100.0 40.0

Box 838.21 23.6 9.0 66.2 32.2

ConvBig

Baseline 533.31 11.6 9.6 100.0 98.4

PGD 2745.82 14.0 3.6 100.0 96.4

Box 2065.11 22.2 7.4 57.4 20.8

Skip

Baseline 969.48 13.8 10.4 100.0 96.8

PGD 5844.00 13.6 5.0 100.0 86.8

Box 3352.24 25.0 6.6 53.6 23.0

Table A.5: SVHN with ε = 0.01
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Model Train Method Train Time (s) Test Error % PGD Box hSwitch

FFNN

Baseline 121.08 3.4 99.2 100.0 100.0

PGD 345.24 3.6 13.8 100.0 100.0

Box 568.68 99.1 91.0 100.0 100.0

ConvMed

Baseline 123.36 1.6 61.6 100.0 100.0

PGD 507.84 1.0 5.4 100.0 100.0

Box 668.04 3.4 14.8 28.6 28.2

ConvBig

Baseline 368.40 1.6 48 100.0 100.0

PGD 1819.08 1.2 3.0 100.0 100.0

Box 1429.56 1.8 4.2 11.8 22.0

Skip

Baseline 687.72 1.4 58.6 100.0 100.0

PGD 3791.76 1.2 3.4 100.0 100.0

Box 2310.12 3.2 10.0 20.6 29.4

Table A.6: F-MNIST with ε = 0.1
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