
Politecnico di Milano
Dipartimento di Elettronica, Informazione e Bioingegneria

Dottorato di Ricerca in Ingegneria dell’Informazione

Towards the Definition of a
Methodology for the Design of
Tunable Dependable Systems

Doctoral Dissertation of:
Matteo Carminati

Advisor:
Prof. Cristiana Bolchini

Tutor:
Prof. Donatella Sciuto

Supervisor of the Doctoral Program:
Prof. Carlo Fiorini

2014 – XXVII

Politecnico di Milano
Dipartimento di Elettronica, Informazione e Bioingegneria

Piazza Leonardo da Vinci, 32 I-20133 — Milano

Abstract

The problem of guaranteeing the correct behavior in digital systems even
when faults occur has been investigated for several years. However, the
researchers’ efforts have been mainly devoted to safety- and mission-
critical systems, where the occurrence of faults (both transient and per-
manent) can be extremely hazardous. Nowadays, the need to provide
reliability also for non-critical application environments is gaining a lot
of momentum, due to the pervasiveness of embedded systems and their
increasing susceptibility due to technology scaling. While in critical ap-
plications the budget devoted to reliability is almost unlimited and it
is not to be compromised, in non-critical scenarios the limited available
budget used to guarantee the best performance and energy consumption
is to be shared for providing reliability as well.
In the past, great effort has been devoted to provide strict reliability

management. This led to the shared belief that reliability is to be con-
sidered from the early stages of the embedded systems design process.
In fact, as this process is becoming more and more complex, approaches
that do not consider reliability throughout all the design steps may lead
to expensive or not-optimized solutions. Moreover, considering reliabil-
ity in a holistic way allows to drive the several decisions by exploiting the
synergy of both the most classical aspects and reliability-oriented ones.
Postponing the reliability assessment to the later phases of the design
flow on a system prototype is not appealing, because failure in achiev-
ing the desired level of reliability would be detected too late. However,
the complexity of managing reliability, performance and power/energy
consumption all at the same time grows exponentially, especially when
several decision variables are available in the considered system. For
this reason it is not possible to envision a system able to properly react
to any possible scenario on the basis of decisions precomputed at de-
sign time; a new paradigm based on self-adaptability is to be designed.
Self-adaptive systems are becoming quite common when dealing with
such complex systems: relevant examples are available in literature if
performance management is considered.
Given these motivations, we argue that the self-adaptive paradigm is

to be implemented when designing embedded systems with the aim of
considering reliability as a driving dimension. In particular, in this thesis

5

we propose a comprehensive management framework for dealing with re-
liability in multi/manycore embedded systems. Reliability is considered
both for permanent/transient faults management and components aging
mitigation. This framework implements a well-known control loop where
the status of the system and the environment are sensed (observe), adap-
tation is defined through decisions made at runtime to meet the specified
goals and constraints (decide), and the values of the system parameters
are modified accordingly (act). The designed framework is integrated
in a two-layer heterogeneous multi/manycore architecture which is con-
sidered as the reference hardware platform. Self-adaptability is enabled
through independent control layers implemented on top of the reference
architecture. At the top-level, the manycore one, a control cycle en-
sures the combined optimization of the overall architecture lifetime and
of the energy consumption due to communication among nodes. On the
other hand, within each node, two control cycles have been designed: one
for dealing with faults occurrence (through the selection of the proper
scheduling technique) and another one for mitigating components aging
and minimizing energy consumption (thanks to smart mapping algo-
rithms). Moreover, in the considered optimization process, performance
is always considered as a constraint, in the form of applications deadlines,
in order to guarantee a satisfying quality of service.
In addition to the above contributions, two more ones deserve to be

considered. First, the definition of a model to describe and classify self-
adaptive computing systems on the basis of their driving dimensions
(goals and constraints), the available measures and acting parameters.
Second, a tool for estimating the reliability function and the expected
lifetime of complex multi/manycore architectures, able to tolerate mul-
tiple failures and considering varying workloads.

6

Sommario

Il problema di garantire il corretto funzionamento dei sistemi digitali è da
molti anni oggetto di ricerca accademica. Tuttavia, gli sforzi dei ricerca-
tori si sono concentrati soprattutto su sistemi il cui fallimento causa gravi
ripercussioni sulla salute delle persone o sulla buona riuscita di progetti
particolarmente onerosi. Al giorno d’oggi, invece, sta diventando sempre
più importante la necessità di rendere affidabili anche quei sistemi che
non possono essere definiti critici, ma che hanno raggiunto una grande
diffusione e risultano sempre più proni alla rottura a causa delle ridotte
dimensioni dei loro componenti. Mentre in scenari critici le risorse allo-
cate per far fronte a problemi di affidabilità sono pressochè illimitate e
non si deve scendere a compromessi, in scenari che non presentano crit-
icità le risorse a disposizione sono limitate e devono essere sfruttate per
ottimizzare il funzionamento del dispositivo stesso, anche in termini di
prestazioni ed energia consumata.
Le ricerche svolte in passato hanno portato alla luce la necessità di con-

siderare i requisiti di affidabilità del sistema sin dal principio del processo
di progettazione. Infatti, a causa della sempre crescente complessità di
questo processo, approcci che non considerano il livello di affidabilità
richiesto in tutti i passi di progettazione rischiano di portare a soluzioni
eccessivamente costose e/o non ottimizzate. Considerare, invece, gli as-
petti di affidabilità come parte integrante di tutto il processo di pro-
gettazione permette trarre giovamento sia da tecniche classiche che da
tecniche esplicitamente orientate all’affidabilità. Postporre la verifica del
livello di affidabilità raggiunto al termine del processo di prototipazione
non è invece una pratica saggia, poichè, in caso di fallimento, può causare
la perdita di tempo e denaro. Questa necessità di integrazione causa però
un aumento della complessità di progetto, in particolar modo quando i
parametri su cui è possibile agire sono molti. Per questo motivo non è
pensabile un sistema capace di reagire correttamente ad ogni possibile
situazione sulla base di decisione pre-calcolate; è necessario adottare un
paradigma di progettazione che preveda l’auto adattamento del sistema
a tempo di esecuzione. I sistemi auto-adattativi per la gestione di sis-
temi complessi stanno infatti diventando sempre più comuni, soprattutto
nell’ambito dell’ottimizzazione delle prestazioni.
Sulla base di queste motivazioni, sosteniamo che il paradigma di pro-

7

gettazione basato su auto-adattatività debba essere impiegato anche
quando si ha a che fare con sistemi embedded che richiedano un de-
terminato livello di affidabilità. In particolare, in questa tesi si propone
un’infrastruttura completa per la gestione dell’affidabilità in sistemi em-
bedded composti da multi/manycore. L’affidabilità viene considerata sia
in termini di gestione dei guasti (sia transitori che permanenti) sia come
mitigazione dell’invecchiamento dei componenti. L’infrastruttura pro-
posta realizza un ciclo di controllo proposto in letteratura e composto
da tre fasi fondamentali: l’osservazione dello stato interno del sistema
e dell’ambiente in cui vive (osserva), l’adattamento attraverso decisioni
prese a tempo di esecuzione per rispettare i vincoli e gli obiettivi prece-
dentemente specificati (decidi) e l’attuazione delle decisioni prese at-
traverso la modifica dei parametri del sistema (agisci). L’infrastruttura
è stata progettata in modo da integrarsi all’interno dell’architettura
di riferimento, composta da due livelli: ad un livello più alto una pi-
attaforma manycore, in cui ogni nodo, a livello più basso, è composto
da un sistema multicore. Il sistema è reso auto-adattativo tramite la
realizzazione di cicli di controllo indipendenti che lavorano ai diversi liv-
elli di astrazione. Ad alto livello, un primo ciclo di controllo garantisce
l’ottimizzazione congiunta dell’invecchiamento dei nodi e del consumo
di energia dovuto alla comunicazione tra gli stessi. All’interno di ogni
nodo sono stati realizzati altri due cicli di controllo: il primo si occupa
di gestire le occorrenze di guasti (attraverso la selezione della tecnica
di scheduling più adatta tra quelle disponibili), mentre il secondo di bi-
lanciare l’invecchiamento dei componenti e di minimizzare l’energia con-
sumata (grazie ad algoritmi di mapping intelligenti). Nel corso di questo
processo di ottimizzazione, le prestazioni del sistema vengono sempre
considerate come un vincolo da rispettare, nella forma di deadline tem-
porali, in modo tale che il sistema garantisca sempre una soddisfacente
qualità del servizio erogato.
Altri due contributi di questa tesi meritano di essere citati, a comple-

mento di quelli già descritti in precedenza. In primo luogo, la definizione
di un modello per descrivere e classificare i sistemi auto-adattativi sulla
base delle dimensioni che guidano il loro adattamento, dei dati disponi-
bili e dei parametri sui quali è possibili agire. In secondo luogo, uno stru-
mento per stimare l’affidabilità e il tempo di vista atteso di un’architettura
complessa come quella di riferimento, sottoposta a carichi di lavoro vari-
abili nel tempo e capace di tollerare la rottura di alcuni suoi componenti.

8

Contents

1 Introduction 17
1.1 Thesis Statement . 19
1.2 Overview of Research . 20
1.3 Contributions . 22
1.4 Publications . 24
1.5 Thesis Organization . 25

2 Background & Preliminaries 27
2.1 Background . 27

2.1.1 Multi/Manycore Systems 27
2.1.2 Dependable Systems 32
2.1.3 Self-Adaptive Systems 35

2.2 Working Scenario . 37
2.2.1 Reference Platform 38
2.2.2 Baseline . 39
2.2.3 Key Performance Indicators 40
2.2.4 Case Study . 41

3 Self-Adaptive Systems Design 43
3.1 Orchestrator . 43

3.1.1 Monitoring Infrastructure 44
3.1.2 Decision Policies 46
3.1.3 Actuating Elements 47

3.2 A Model for Self-Adaptive Computing Systems 47
3.2.1 The Context Concept 50
3.2.2 Formalization . 55
3.2.3 Validation . 57

3.3 Final Remarks . 60

4 Runtime Transient Fault Management 61
4.1 Background . 61
4.2 State of the Art . 62
4.3 Fault Tolerance through Self-Adaptiveness 64

4.3.1 Fault Management Mechanisms 65
4.3.2 Layer Internals . 67

9

Contents

4.3.3 Orchestrator Design 68
4.4 Experimental Results . 76

4.4.1 Experimental Set-up 77
4.4.2 First Experimental Session 78
4.4.3 Second Experimental Session 81

4.5 Final Remarks . 84

5 Runtime Aging Management 87
5.1 Background . 87
5.2 Aging Evaluation . 91

5.2.1 State of the Art . 91
5.2.2 The proposed framework 92
5.2.3 Experimental evaluation 97

5.3 Aging Mitigation through Self-Adaptiveness 104
5.3.1 Single Node . 107
5.3.2 Multi Node and Computation Energy 115
5.3.3 Multi Node and Communication Energy 118
5.3.4 Putting it all together 128

5.4 Final Remarks . 131

6 Conclusions & Future Works 133

10

List of Figures

1.1 A graphical overview of the proposed system composition. 21

2.1 Representation of the defined architectural concepts. . . . 28
2.2 A simple application represented by a task-graph. 31
2.3 The Observe-Decide-Act (ODA) control loop. 36
2.4 Graphical representation of the reference platform. 39

3.1 Overview of the proposed framework. 45
3.2 Graphical representation of the context meta-model; each

rectangle represents a context dimension, those with rounded
corners are the driving dimensions. Dotted rectangles in-
dicate dimensions that might not exist in some contexts.
Segments represent relations among dimensions. 54

3.3 Context meta-model and dimension domains for self-adaptive
computing systems. 54

3.4 Context dimensions and domains for METE research project. 59
3.5 Context dimensions and domains for Into The Wild project. 59
3.6 Context dimensions and domains for Metronome project. . 60

4.1 Context dimensions and domains for the fault tolerance
management self-adaptive system. 61

4.2 System structure overview: the FM layer acts between the
applications and the OS. 64

4.3 Duplication with Comparison (DWC) technique applied
to all the tasks of the sample application of Figure 2.2. . . 65

4.4 Triplication (TMR) technique applied to all the tasks of
the sample application of Figure 2.2. 66

4.5 Duplication with Comparison and Re-execution (DWCR)
technique applied to all the tasks of the sample application
of Figure 2.2. 67

4.6 The Observe–Decide–Act control loop. 68
4.7 Application’s task–graph hardened at the two different

levels of granularity: the colored dashed tasks represent
the voter nodes added to make fault mitigation possible. . 71

11

List of Figures

4.8 If PE0 is permanently faulty, the presented mapping of
the tasks on three processing cores, PE0, PE1 and PE2,
causes TMR to fail. 72

4.9 A FSM representation of the decision process in the case
reliability is the constrained dimension. 75

4.10 Task-graph for the edge detector application. 78
4.11 Overall execution times for the edge detector on the vari-

ous architectures stimulated by each fault list. 80
4.12 Metrics computed over the overall experiment execution. . 82
4.13 Throughput for the edge detector on the architecture with

12 processing cores, stimulated with a fault list presenting
a variable failure rate and a permanent fault. 84

5.1 Model of a PE’s temperature profile over time. 88
5.2 Reliability curve considering temperature changes. 89
5.3 Workflow of the proposed framework. 93
5.4 Example of application execution and thermal profile. . . 95
5.5 Simulations execution times w.r.t. number of failures k. . 102
5.6 Iterations number w.r.t. different architectures topologies. 102
5.7 Coefficient of variation w.r.t. number of failures k. 102
5.8 Comparison vs. past works for constant workloads. 103
5.9 Reliability curve for different workload change’s periods. . 105
5.10 Context dimensions and domains for the aging mitigation

self-adaptive system. 105
5.11 Energy consumption vs. lifetime optimization. 107
5.12 Block diagram for the reference energy optimization frame-

work. 110
5.13 Block diagram for the proposed lifetime and energy opti-

mization framework. 110
5.14 Extension of the proposed framework to a mult-node ar-

chitecture. 110
5.15 The proposed approach compared with the baseline frame-

work in a single node architecture. 115
5.16 Control flow chart for the dispatching algorithm. 116
5.17 The proposed approach compared with the baseline frame-

work in a multi-node architecture. 118
5.18 Overview of the proposed methodology. 122
5.19 MTTF performance of the proposed approach. 126
5.20 MTTF performance with multi-application and multi-throughput

scenarios. 128
5.21 Communication energy performance for the proposed tech-

nique. 129

12

List of Figures

5.22 Overview of the proposed approach when both communi-
cation and computation energy consumptions are optimized.131

6.1 A graphical representation of the research contribution of
this thesis, organized in self-adaptive layers. 134

13

List of Tables

2.1 Baseline summary. 40

3.1 Model constraints for the METE self-adaptive system. . . 58

4.1 Qualitative performance comparison between TMR and
DCR techniques. The comparison refers to the same level
of granularity. 70

4.2 Qualitative evaluation of the described techniques with
reference to reliability aspects (FD: Fault Detection – FT:
Fault Tolerance). 73

4.3 Execution times for voting and checking various amount
of data. 77

5.1 Comparison of the state the art frameworks (Architecture:
single core (S), multicore (M) – Aging Models: exponential
distribution (E), Weibull distribution (W) – Workload :
average temperature (Avg T), average aging factor (Avg
α) during the considered period). 92

5.2 Energy performance of the proposed dynamic approach
with MTTF optimization only 127

5.3 Parameters for multi-application and multi-throughput . . 127

15

1 Introduction

The trend of building new complex systems by integrating low-cost, in-
herently unreliable Commercial Off-The-Shelf (COTS) components is
one of today’s challenges in the design, analysis and development of
modern computing systems [55]. In fact, the last decade has seen the
complexity of electronic systems grow faster and faster, because of the
decrease of the components’ size and cost. However, this harsh technol-
ogy scaling has led to an increase of the susceptability to both permanent
and transient faults due to the variations in the manufacturing process
and to the exposition of devices to radiations and noise fluctuations [55].
More precisely, the aggressive CMOS scaling exploited to boost computa-
tional power, generates higher temperatures, causing physical wear-out
phenomena that increase the probability for permanent faults due to
components aging to appear. This susceptability is further exacerbated
when considering systems constituted by several computational units (to
achieve high performance) because of the additional environmental in-
teractions between the hardware and the software of the different units.
A permanent fault, also known as hard fault, indicates the permanent

going out of commission of a component; on the other hand, a tran-
sient fault, or soft fault, does not damage a component permanently,
but causes glitches in the elaboration, randomly corrupting either the
computed data or the control flow being executed, thus jeopardizing the
output results [61]. Radiations are among the main causes of transient
faults [40]; they are particularly frequent in space, but are becoming an
issue also at ground level [77]. Permanent faults are, instead, closely
related to devices usage and wear-out phenomena, which are strictly
dependent on temperature, operating frequency, voltage and current-
density.
All these considerations, particularly hazardous in safety- and mission-

critical systems (such as automotive devices and controls, railways, aero-
space systems and plant control systems), seriously affect ordinary de-
vices as well, when considering the embedded system’s pervasiveness in
today’s life (consumer electronics and home appliances) [100]. There-
fore, reliability is increasingly adopted as one of the main optimization
goals, together with performance and energy optimization, and it needs
to be taken into account from the initial phases of the design process.

17

1 Introduction

In non-critical environments, where the available budget to be spent
for reliability is limited, it must be leveraged in order not to introduce
too high costs and/or stringent requirements. This scenario is further
complicated by the current shift towards parallel architectures, such as
multicores and manycores. In the last years indeed, a lot of attention has
been devoted to the design of architectures integrating multiple cores on
a single die, to benefit from the relatively low cost of the computational
power, while offering high performance through the parallel execution of
different applications [14]. The number of computing resources and their
power/performance profiles characterize the overall architecture, that
can be classified as multicore (several units) or manycore (several tens of
units), and homogeneous (all identical units) or heterogeneous (units with
different profiles). However, this opportunity increases the difficulty of
managing the available resources, considering the complexity of selecting
the most appropriate resource mixture where to run the workload, and
the fact that, even when homogenous in terms of power/performance,
each resource will have its own history, making it heterogeneous from
other points of view (e.g. aging and wear-out levels).

Another level of complexity is introduced by the high dynamism of the
working scenario the considered systems live in. In particoular: i) op-
timization goals may vary at runtime (performance, energy consump-
tion, reliability), ii) the workload may not be known in advance, and
iii) permanent and transient faults may occur, dynamically affecting the
behavior of the system.

As mentioned, in many scenarios the need for reliability may change
during the system’s activity, depending on the specific working scenario,
or it cannot be foreseen at design-time due to the unpredictability of the
environment. Moreover, knobs allowing the runtime configuration of the
cores’ working conditions (as for instance, dynamic voltage/frequency
scaling – DVFS) are usually available. For these reasons, a new way
to dynamically tune the reliability management based on the working
scenario is needed, taking into consideration the incidence of both per-
manent and transient faults. The challenge in identifying a suitable
solution for this problem is given by the need for finding a satisfying
trade-off between benefits and costs at runtime. Since the overall relia-
bility problem is not new, although becoming more and more relevant,
literature offers a wide set of reliability-oriented approaches; however,
most of them tackle the problem of permanent and transient faults sin-
gularly or do not take into consideration the possibility for the system
requirements to vary at runtime, thus needing the initial solution to be
recomputed.

18

1.1 Thesis Statement

1.1 Thesis Statement

The previous discussion highlighted the necessity for a new paradigm
to be employed in embedded system design, where reliability is to be
considered as a leading dimension of the design process from its early
stages. It would be unfeasible for the designer to manually evaluate
all the constraints and optimize the system for a wide range of scenar-
ios: conditions change constantly, rapidly, and unpredictably. For this
reason, the resulting solutions space would be too wide for an exhaus-
tive exploration, even at design-time. It would be desirable to have the
system able to autonomously adapt to the mutating environment at run-
time. Self-adaptiveness proved to be the answer to most of the problems
previously described. A self-adaptive system is able to adapt its behavior
to autonomously find the best configuration to accomplish a given goal
(e.g. a performance level, an energy budget) according to the changing
environmental conditions and given constraints. However, the design of a
self-adaptive system able to dynamically adapt, taking away this burden
from the user, is a complex engineering problem. Such a system needs
to monitor itself and its context, discern significant changes, determine
how to react, and execute decisions. Runtime data are exploited to better
perform the hard problem of tuning all the system’s parameters (which
hardening technique to select, how to map and schedule applications on
the available cores, etc.). Similarly, different types of quantities can be
considered and monitored in order to make the system aware of itself and
able to better perform (cores temperature, power consumption, applica-
tions performance, etc.). By coupling one (or more) resource(s) with one
(or more) quantity(ties), many different aspects of self-adaptiveness can
be implemented.
An entity implementing such an intelligence has been envisioned and

dubbed orchestrator. As its name suggests, this component takes care
of managing (orchestrate) all the self-adaptive aspects of the system: it
gathers information about its status, makes decisions about the best val-
ues for the system’s parameters, and sets the chosen value through the
system’s knobs. Since the effects of each knob are not necessarily inde-
pendent from one another, the orchestrator must also be able to identify
possible disruptive interactions and unexpected side effects, and to solve
them. All these tasks are to be performed at runtime to have updated in-
formation about the system status and prune the complex solution space;
it would be unfeasible for the problem to be tackled at design time both
because of the huge dimension of a solution space considering any pos-
sible scenario and because of the lack of certain information, which can
be retrieved only when the system is actually executing. However, the

19

1 Introduction

runtime execution requires the orchestrator to have a reduced overhead
for the advantages introduced by self-adaptiveness not to be wasted.

1.2 Overview of Research

In this context, the research developed in these years and presented in
this thesis addresses permanent and transient faults and attempts to pro-
vide a unified reliability framework to support and achieve fault tolerance
and aging mitigation capabilities for multi/manycore architectures. It is
important to highlight that reliability features are to be incorporated
in the system while meeting possible performance or energy/power con-
straints. Even when constraints are not specified for such dimensions,
reliability must be leveraged and trade-offs are to be exploited to mini-
mize costs and overheads.
In recent years, the idea of self-adaptive (computing) systems has re-

ceived a lot of attention [60], however none of these initial concepts
included reliability in the picture. Moreover, often self-adaptiveness has
been designed and implemented implicitly without a foundational ap-
proach. Thus, we studied and developed a model for describing and
classifying self-adaptive computing systems, clearly showing the goals
and the constraints of the modeled system. It describes the available
knobs and how these knobs can interact with the goal/constraint di-
mensions; it also analyzes the sensing portion of the system at different
abstraction levels: from raw data to how they are processed and ag-
gregated in order to extract knowledge from them. Even if developed
for analyzing self-adaptive reliable systems, the model permits to for-
mally describe, classify and analyze self-adaptive computing systems in
general.
The developed model allowed us to focus and convey our efforts in

the design of a central entity able to coordinate all the aspects of a
self-adaptive system and governing the available resources, the orches-
trator. As mentioned, the orchestrator is a runtime manager that makes
smart decisions on how to set the system’s parameters on the basis of
the information gathered during the execution. Again, even if actually
implemented for dealing with reliability, such a component is potentially
usable in any kind of scenario.
The problem of dealing with both transient faults and wear-out phe-

nomena simultaneously is a hard one, mainly for the different timescales
at which they are to be managed. The occurrence of faults (both soft
and hard ones) requires a prompt reaction to prevent the propagation
of faulty results; on the other hand, architecture lifetime extension is

20

1.2 Overview of Research

Hete
rog

en
eo

us
Platf

orm
Agin

g M
itig

atio
n &

 E
ne

rgy
 Con

sum
ptio

n

 O

ptim
iza

tion
 La

yer

ARM

 big.LI

TT
LE

big clu
ste

r
LIT

TL
E

 c

lus
ter

Manycore
Level

Multicore
Level

A

Agin
g M

itig
atio

n &

 C
om

pu
tat

ion
 Ene

rgy

 O

ptim
iza

tion
 La

yer
C

Tran
sie

nt
Fau

lts

 M

an
ag

em
en

t L
aye

r
B

Figure 1.1: A graphical overview of the proposed system composition.

obtained through a wise use of the resources based on algorithms that
proactively distributes the workload on the basis of the past components
wear-out. For these reasons the problem has been tackled separately
on two different architectural levels; Figure 1.1 gives an overview of the
proposed system composition. The first tackled problem is the combined
optimization of lifetime reliability and energy consumption at the many-
core level (layer A in Figure 1.1). Energy consumption is considered
both in terms of communication and computation energy. The designed
orchestrator is in charge of selecting the best initial mapping of the work-
load and to dynamically adapt it to achieve the user’s specified goals.
At the multicore level, a two step optimization takes place. First, tran-

sient faults are managed at a higher abstraction level (layer B in Figure
1.1), by selecting the best reliable scheduling technique at runtime, to
optimize the reliability/performance trade-off. The decisions made by
this layer are further optimized (layer C in Figure 1.1) for taking com-
ponents aging and computation energy consumption into consideration.
This two step optimization process does not lead to a suboptimal result
since the two approaches are perfectly complementary. In fact, the fault
management layer, which selects the reliability technique to be applied,
the number of replicas to be created and the need for executing a vot-

21

1 Introduction

ing or checking task, lays at a higher abstraction than the one where
the orchestrator designed for aging and energy optimization acts. This
orchestrator can make decisions on tasks mapping and DVFS without
having any information about what each task actually represents (e.g.
the original version of the task, a replica, or even a voter or a checker). On
the other hand, being at a higher abstraction level, the decisions taken
by the fault management layer are not influence by the actual mapping
of the tasks on the PEs or by the frequency at which the clusters are
running.
Thus, in the overall picture, in this thesis it will be presented a system

able to deal with both transient faults as well as aging and wear-out
phenomena, by autonomously adapting to the evolving scenario, without
negatively impacting performance and energy consumption.

1.3 Contributions

The research has addressed the various aspects related to the design
and (prototype) implementation of a self-adaptive reliable computing
system. Indeed, the main innovative contributions are summarized in
the following.

A model for self-adaptive computing systems. A deep investigation
on the concept of context-awareness and self-adaptiveness in the field of
computing systems. While in different research areas, such as database
and software engineering, they have received a lot of attention, we wit-
ness a direct exploitation of an adaptive, context-aware behavior, im-
plicitly resorting to a model of context without its precise introduction.
The research effort brought to the definition of a model for self-adaptive
computing systems able to express the elements affecting their behavior
and triggering adaptation, including the relationships and constraints
that exist among them. The model is the first building block of a frame-
work for modeling, developing and supporting the implementation of
self-adaptiveness in computing systems.

Self-adaptive fault tolerance for transient faults in multicore architec-
tures. Study and definition of a novel approach in the design of mul-
ticore with self-adaptive fault tolerance, acting at the thread scheduling
level. The adoption of fault management strategies at such abstraction
level is a well known problem; however, it has been tackled by the ex-
isting approaches at design-time. A fault management layer has been
introduced at the operating system level, implementing a strategy for

22

1.3 Contributions

dynamically adapting the achieved reliability. This self-adaptive system
has been designed by exploiting the models described in the previous
point. It consists of a runtime manager (the orchestrator) in charge of
making decisions concerning the adaptation of the system to changing
resource availability. More precisely, the methodology we envision is
suited for application scenarios where the reliability requirements need
to be enforced only in specific working conditions (e.g., when an emer-
gency situation arises) and/or for limited time-windows. In these cases,
the system can adapt its behavior and expose robust properties with
possibly limited performance overhead, or the other way around. This is
mainly due to the fact that performance and reliability are usually con-
flicting goals. The role of the orchestrator is to balance this trade-off, by
making decisions on task scheduling.

A tool for estimating multi/manycore lifetime. An in-depth study of
wear-out mechanisms and their effects on multi/manycore architectures.
Because components aging is hard to be measured due to the lack of
sensors on commercial platforms, stochastic models have been built to
estimate the reliability of a system. When the considered system is a
multi/manycore one and multiple failures can be tolerated, things are
more complicated, both from a theoretical and a computational point
of view. The contribution on this topic is twofold: on one hand we
provide a clear formalization of the problem and, on the other hand, we
present techniques for making the computation feasible. The outcome is
a framework for the lifetime estimation of multicore architectures, based
on Monte Carlo simulations and random walks.

Techniques for lifetime extension in multi/manycore architectures.
Integration of the proposed lifetime reliability evaluation framework with
a self-adaptive system for lifetime extension in multi/manycore architec-
tures. Overall system lifetime can be improved by selecting which among
the available healthy cores to use and how intensively; an orchestrator
has been designed to make decisions about applications mapping, aiming
at maximizing architecture lifetime, while considering the aging status
of the architecture in each instant of time. Together with reliability op-
timization, other dimensions have been taken into consideration, such
as energy consumption and performance. This research direction was
carried out in collaboration with the National University of Singapore -
School of Computing, in the person of Prof. Tulika Mitra.

23

1 Introduction

1.4 Publications

Most of the ideas described in this thesis have been presented at interna-
tional conferences and appear in the associated proceedings or have been
published in other international journals. Other papers are presently
submitted for possible publication. The list of the related publications
follows.

• C. Bolchini, M. CARMINATI, A. Miele and E. Quintarelli, A
Framework to Model Self-Adaptive Computing Systems, in Proceed-
ings of NASA/ESA Conference on Adaptive Hardware and Systems
- June, 2013 - pp. 71–78.

• C. Bolchini, M. CARMINATI, and A. Miele, Towards the Design of
Tunable Dependable Systems, in Proceedings of Workshop on Man-
ufacturable and Dependable Multicore Architectures at Nanoscale
- June, pp. 2012 - 17–21.

• C. Bolchini, M. CARMINATI and A. Miele, Self-Adaptive Fault
Tolerance in Multi-/Many-Core Systems, Journal of Electronic Test-
ing: Theory and Applications - Volume 29 Issue 2, April 2013 - pp.
159–175.

• C. Bolchini and M. CARMINATI, Multi-Core Emulation for De-
pendable and Adaptive Systems Prototyping, in Proceedings of Work-
shop on Manufacturable and Dependable Multicore Architectures
at Nanoscale - March 2014 - pp. 1–4.

• C. Bolchini, M. CARMINATI, M. Gribaudo and A. Miele, A light-
weight and open-source framework for the lifetime estimation of
multicore systems, in Proceedings of International Conference on
Computer Design - October, 2014 - pp. 1–7.

• C. Bolchini, M. CARMINATI, A. Miele, A. Das, A. Kumar and B.
Veeravalli, Run-Time Mapping for Reliable Many-Cores Based on
Energy/Performance Trade-Offs, in Proceedings of Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems
- October, 2013 - pp. 58-64.

• C. Bolchini, M. CARMINATI, T. Mitra and T. Somu Muthukarup-
pan, Combined On-line Lifetime-Energy Optimization for Asym-
metric Multicores, Technical Report, submitted to Conference on
Design, Automation and Test in Europe, 2015.

24

1.5 Thesis Organization

1.5 Thesis Organization

The ideas at the basis of the proposed research are presented in this
thesis as follows. Chapter 2 provides a short overview of the context,
presenting some background knowledge (namely, multi/manycore archi-
tectures, reliability, and self-adaptive systems) and defining the working
scenario in terms of case studies, baseline for comparison and evaluation
of the results (key performance indicators – KPIs).
The model for self-adaptive computing systems is presented in Chap-

ter 3. The concepts here introduced allow us to describe the proposed
approach from a high abstraction level and to focus on the orchestra-
tor design and implementation. Then, the subsequent two chapters will
dwelve in the detailed presentation of how self-adaptive systems for tran-
sient faults management and aging mitigation have been implemented.
Chapter 4 describes transient fault management: the state of the art on

fault-tolerance for multi/manycore architectures will be presented and its
main common points with the proposed research highlighted. The need
for self-adaptivity will be discussed by showing that a solution computed
at the time the system is designed might not identify the optimal working
condition with respect to the active context. As a consequence, the
advantages of having designed a centralized entity able to manage the
available resources at the time of execution, the orchestrator, is shown.
In this context, it is in charge of selecting among the available reliable
task scheduling techniques, which provide increasing levels of reliability
at different costs. The best scheduling technique is to be chosen at each
instant of time, according to the context in which the system is executing
and to the required reliability level.
The design of the self-adaptive system for dealing with lifetime reli-

ability is presented in Chapter 5. Differently from what has been done
in the previous chapter, the identification of proper metrics for the eval-
uation of different wear-out effects required a deep and detailed study.
This is mainly due to the stochastic nature of the concept of failure: it
is hard to quantify the probability for a given component to fail at a
certain time. It is even more difficult when a complex system, consisting
of many components interfering each other, is considered. Task map-
ping algorithms for aging mitigation on multi/manycore architecture are
presented step by step. First, the single node scenario is considered; in
this case the orchestrator is in charge of making decisions about how to
move tasks inside the node and how to manage DVFS. The attention is
then moved to the multi-node scenario, where the application mapping
problem is tackled as well. The decision making process is mainly led by
the aging accumulated by each component and their thermal interaction.

25

1 Introduction

Last, Chapter 6 draws some conclusions and identifies possible future
research directions are discussed.

26

2 Background & Preliminaries

The aim of this chapter is twofold. First, we introduce the background
knowledge at the basis of the work proposed in this thesis. Second, we
present the considered working scenario, the baseline against which we
will compare the proposed solutions in terms of architecture and case
studies.

2.1 Background

This background section is divided into three main parts: multi/manycore
systems, dependable systems, and self-adaptive ones. Each of them will
be described in the following sections.

2.1.1 Multi/Manycore Systems

In the last years a lot of attention has been devoted to the design of
architectures integrating multiple cores on a single die, moving away from
the old paradigm of having a single core, extremely powerful and power-
hungry. This direction change allows the new architectures to benefit
from the relatively low cost of the computational power, while offering
high performance through the parallel execution of different applications.
The number of computing resources and their power/performance pro-

files characterize the overall architecture, that can be classified as multi-
core (several units) or manycore (several tens of units). The properties
of the units that compose the architecture allow us to classify them un-
der another point of view: homogeneous or symmetric, when all units
are identical, and heterogeneous or asymmetric, if units have different
profiles. This asymmetry can be further classified as performance or
functional one. Performance asymmetry means that cores support iden-
tical instruction set architectures (ISAs), but exhibit power-performance
heterogeneity because of differences in their hardware design or config-
uration. Examples of such an architecture are the ARM big.LITTLE
[3] and the NVIDIA Tegra [78]. Functional asymmetry occurs when a
subset of cores has different computational capabilities, exposed, for ex-
ample, through ISA extension; this is the case, for example, of hardware
accelerators.

27

2 Background & Preliminaries

H
et

er
og

en
eo

us
 P

la
tfo

rm

node
1

node
2

node
n-1

node
n

Interconnecting
Infrastructure

node

cl
us

te
r 2

cluster 3

cl
us

te
r 1

PE

PE PE PE

PE PE

PE PE

Figure 2.1: Representation of the defined architectural concepts.

Regardless of the number of units in the architecture and their type,
each one of them is generically referred to as processing element (PE).
Homogeneous PEs characteristics are usually grouped into clusters, which
usually have their own parameters (such as the voltage-frequency work-
ing point) and represent the lowest aggregation level. At a higher level,
clusters can be organized into nodes; within an architecture, these nodes
can be homogeneous or not. Thus, a system can be defined as homoge-
neous if looking at the nodes only, while it is heterogeneous if considering
the PEs; Figure 2.1 provides a graphical representation of the expressed
concepts.
Several communication, programming, and execution models are typ-

ical of multicore or manycore architectures and will be discussed in the
following paragraphs.

Communication Models

When dealing with a small number of processing elements communica-
tion is usually implemented through a bus-like infrastructure. However,
when the number of connected elements approaches ten, the bus sys-
tem will produce a performance bottleneck problem [56]. An alternative
communication solution is a fully crossbar system. It is a non-blocking
switch, connecting multiple inputs to multiple outputs in a matrix man-
ner (“non-blocking” means that other concurrent connections do not pre-
vent connecting an arbitrary input to any arbitrary output). However,
as the number of components increases, the complexity of the wires could
be dominant over the logical parts.
Finally, the Network on Chip (NoC) interconnection system has been

28

2.1 Background

introduced as the solution to these problems [10]. NoC entails a unified
solution to on-chip communication and the possibility to design scalable
systems at supportable levels of power consumption. NoCs can pro-
vide a flexible communication infrastructure, consisting of three main
components on a NoC-based system [39]: i) the Network Interface Con-
troller (NIC), which implements the interface between each component
and the communication infrastructure, ii) the router (also called switch),
in charge of forwarding data to the next queue according to the imple-
mented routing protocol, and iii) the links, the specific connections that
provide communication between components.
NoCs can be classified according to the implemented switching method:

circuit switching and packet switching. In the former, a path from source
to destination is reserved before the information is emitted through the
NoC components; all data are sent following the reserved path, that is
released after the transfer has been completed. In the latter, there is not
a reserved path; instead, data are forwarded hop by hop using the in-
formation contained in the packet. Thus, in each router the packets are
buffered before being forwarded to the next router. Since NoC intercon-
nection systems have replaced traditional bus interconnection systems,
many topologies have been proposed. In this thesis regular (mesh-like)
and direct (where all nodes are attached to a core) topologies only will
be considered.

Programming Models

Having a scalable communication system is not sufficient to achieve full
scalability: it is mandatory for the programmer to have tools to design
applications that will run efficiently on multi/manycore systems. The
programming model is the necessary mean to abstract the logic of appli-
cations and translate it to the hardware platform system. It must pro-
vide scalability, that is, to an increase in the system hardware resources
it must correspond an increase in its performance. The main program-
ming models relevant for this work will be now briefly presented; for a
more comprehensive discussion, the reader can refer to [59, 92].
In the shared-memory model, communication occurs implicitly through

a global address space accessible to all cores. This model forces the pro-
grammer to explicitly handle data coherence and synchronization. Sys-
tems based on this model can suffer of a performance bottleneck due to
the congested accesses to the memory hierarchy.
This bottleneck can be avoided by explicitly moving data between

sender and receiver: this kind of model is called message passing. Mes-
sage passing implies a set of cores with no shared address and explicit

29

2 Background & Preliminaries

collaboration between sender and receiver. The most common primitives
used for communication in this model are send and receive, and always
a send operation must match a receive one. This model could overcome
the non-determinism and the scalability limits that cache coherence pro-
tocols introduce in shared memory architectures. The main drawbacks
of message passing are that the programmer must explicitly implement
parallelism and data distribution, dealing with data dependencies and
inter-process communication and synchronization.
Other programming models that explicitly take parallelism into con-

sideration are the thread -based and the data-based ones. The former
considers a process as composed by multiple threads. Each thread repre-
sents an independent execution domain and can run independently from
the others; thread-based parallelism focuses on distributing execution
threads across the available PEs. On the other hand, data parallelism
focuses on distributing data across the available PEs, i.e. the parallelism
is determined by the data partitioning. A more detailed presentation
of these models is available in [64], however additional aspects useful to
follow the discussion will be introduced when necessary.

Execution Models

The smallest independent execution unit is usually referred to as appli-
cation. An application can be run potentially infinite times with dif-
ferent input data; each one of these run is an application instance. The
introduction of tens or hundreds of cores on the same chip pushes the se-
quential application execution to be replaced by a parallel one. To make
the execution parallel, the application model must be further detailed in
order to identify the code sections that do not show any dependency and
can be simultaneously executed.
A widely adopted way of describing parallel applications is the fork-

join model, used for instance by Open-MP [95]. The key element in this
programming model is the thread ; each thread corresponds to a different
portion of the application’s static code. In addition to their code, threads
are characterized by their input and output data, i.e. data that is used
and produced by the thread, respectively. An application is composed
by a master thread that may fork to create child threads; when it does,
the master execution is blocked by means of a barrier mechanism waiting
for the termination of all its children; only when this occurs, it resumes.
Similarly, each child thread can fork to create other threads and will be
blocked until their termination. Such an application can be represented
by means of a direct acyclic graph, as the example shown in Figure 2.2.
Each node in this graph represents the execution of a task, a segment

30

2.1 Background

E

F

J

E

Thread 0

Thread 0

Thread 2Thread 1

Attribute
Output

dimension

Figure 2.2: A simple application represented by a task-graph.

of the program code (a thread or a part of it), while the arrows represent
data dependency among the nodes. More precisely, the fork-join graph
is composed by four different types of tasks, characterized on the basis
of the topology of the task-graph and the thread primitive called in the
associated code segment: elaborate (E), fork (F), join (J), and join_fork
(FJ). For the sake of completeness, it is worth noting that a fork node
always generates child tasks belonging to different threads, while the join
node is part of the same thread the fork node belongs to. Hence, in our
example, node F and node J belong both to the same master thread
that generates the two children threads containing the E nodes. Each
node in the task-graph is annotated with the amount of produced data
for the final result. In fact, as the example in Figure 2.2 shows, in the
considered applications, data processing is split into several parallel elab-
oration tasks, while the other nodes have a synchronization and control
functionality.
As it will be later discussed when introducing the proposed case stud-

ies, the considered application scenario is the one of image and video
processing applications. This means that the overall algorithm repre-
sented by the task-graph is continuously repeated in a cyclic fashion in
order to process each received data chunk; this execution model is usu-
ally referred to as data-driven multithreading (DDM). This is a nonblock-
ing multithreading execution model that tolerates inter-node latency by
scheduling threads for execution based on data availability. The synchro-
nization part of a program is separated from the computation part, that
represents the actual instructions of the program executed by the PE.

31

2 Background & Preliminaries

The synchronization part contains information about data dependencies
among threads and is used for thread scheduling. In the DDM model,
scheduling of threads is determined at runtime based on data availabil-
ity, i.e., a thread is scheduled for execution only if all of its input data
is available in the local memory. As with all dataflow models, DDM
major benefit is the fact that it exploits implicit parallelism. Effectively,
scheduling based on data availability can tolerate synchronization and
communication latencies.

2.1.2 Dependable Systems

Dependability is a general term indicating the property of a (computer)
system such that reliance can justifiably be placed on the service it de-
livers [66]. Under the umbrella of this definition, a plethora of proper-
ties has been better formalized: reliability, availability, safety, integrity,
maintainability, testability, etc.. Reliability, R(t), is defined as the prob-
ability for a given system to operate continuously and correctly, in a
specified environment, in the time interval [0, t]. On the other hand,
availability, A(t), is the average fraction of time over the same [0, t] in-
terval during which the system is performing correctly [61]. It is usually
meaningful to refer to the reliability of a system when, in the considered
scenario, even a momentary disruption can prove costly; when continu-
ous performance is not vital but it would be expensive to have the system
down for a significant amount of time, availability is the measure which
to refer to.
System reliability is closely related to Mean Time To Failure (MTTF)

and Mean Time Between Failures (MTBF). The former is defined as the
average time the system operates until a failure occurs, considering a
non-repairable system, which would thus fail as soon as a fault occurs.
MTBF is the average time between two consecutive failures, a measure
usually adopted when dealing with repairable systems. The difference
between the two is the time needed to repair the system following a
failure (Mean Time To Repair – MTTR). Given these definitions, the
availability of a system can also be written as:

A =
MTTF

MTBF
=

MTTF

MTTF +MTTR
.

These quantities will be computed or evaluated for characterizing the
dependability of a system, taking into account the specific adopted fault
models, presented in the following.

32

2.1 Background

Fault Models

A comprehensive classification of faults has been initially presented in
[61]; we here recall the relevant elements for our discussion. In the con-
text of this thesis, a fault is defined as a hardware defect. An error
is, instead, a manifestation of such fault, i.e. a deviation of the system
from the required operation. Finally, a failure happens when the system
fails to perform its required function. Hardware faults can be further
classified according to several aspects. If the duration is considered, it
is possible to distinguish between: permanent faults, when the system
permanent goes out of commission, transient faults, when the malfunc-
tioning is reduced in time and after that time the system functionality
is fully restored, and intermittent faults, which oscillate between being
quiescent and active. Permanent faults are usually due to hardware de-
sign defects or to components wear-out and aging. On the other hand,
the source of transient and intermittent faults is usually considered to
be random: a common example of random fault origin is radiations [8].
Another classification of hardware faults is into benign and malicious

ones. A fault that just causes the system to switch-off is called benign.
Even if counter-intuitive, such faults are the easiest ones to deal with.
In fact, far more insidious are the faults, called malicious or Byzantine,
that cause a unit to produce reasonable-looking, but incorrect, outputs.
Given the abstraction level adopted in the characterization of the ar-

chitecture and applications, the fault model adopted in this thesis tries
to capture the effect of physical faults in a processing core executing
a task. The fault model is referred to as processor failure and it may
be caused by transient, permanent or intermittent faults. In particu-
lar, when a fault affects one processing core, the tasks executed on such
core will exhibit an incorrect behavior. Moreover we adopt the single
processor failure assumption: at each time instant, only one failure can
affect the architecture (independently from the number of physical faults
causing it), and a subsequent failure will occur only after an amount of
time that allows the detection of the previous one. This is a commonly
adopted assumption, that does not impose particular restrictions. In
fact, the cardinality of the physical faults is not limited, but rather the
area of their impact is restricted to a single core of the architecture.
Furthermore, more cores can fail however not all the same time instant.
In case of a transient fault, the task being executed on the affected PE
will exhibit an incorrect behavior and a re-execution of the task should
produce no errors. In the case of a permanent or intermittent fault, all
the tasks running on the faulty PE produce erroneous data or behave
incorrectly.

33

2 Background & Preliminaries

Hardening Techniques

When designing a dependable system, fault management requirements
are expressed, to determine how the faults should be dealt with [24]:

• fault ignore: no fault management capability is required;

• fault detection: the occurrence of any error has to be detected;

• fault mitigation: the correctness of the result has to be guaranteed.

The three classes are ordered and, in particular, fault mitigation in-
cludes fault detection. Fault diagnosis can also be included within these
dependability requirements, even if it can be combined with both fault
detection and mitigation. It describes the system capability of identify-
ing the faulty component. This can be done by running further diagnosis
task, or by analyzing historical data.
Literature offers a wide set of techniques that can be used to provide

any of the presented levels of dependability to the system; all of them
are based on properly managing and exploiting redundancy to detect
or mask the errors. It is possible to identify several different forms of
redundancy; the interested reader can refer to [61] for an exhaustive dis-
sertation on the topic. Since the hardening techniques exploited in this
work are at the processor level, only some of them proved to be use-
ful: namely space and time redundancy. Space redundancy is provided
by more resources (using more PEs) than strictly required to be able
to identify the occurrence of a failure or mitigates its effects. For ex-
ample, replicas of the same task are created and executed on different
PEs. Fault detection requires the output of at least two replicas to be
compared. If a mismatch in the output data is observed, then a fault
has occurred. Duplication with comparison (DC) uses two replicas and
provides the system with fault-detection capabilities, but does not al-
low to straightforwardly diagnose which of the two PE is faulty. Given
the described fault model, diagnosis is made easier if three replicas and a
majority voter are employed. This technique, dubbed Triple Modular Re-
dundancy (TMR), provides fault mitigation as well; in fact, when a fault
occurs, at least two out of three replicas will provide the correct match-
ing output. These are example of static redundancy, since redundancy is
exploited regardless the appearance of a fault. A different form of space
redundancy is dynamic redundancy, where spare replicas are activated
upon the failure of a currently active component. An example of such
a category is Duplication with Comparison and Re-execution (DWCR),
where the third replica is issued only in case an error is detected within
the first two executions.

34

2.1 Background

When the various replicas are executed on the same PE in subsequent
time frames, time redundancy is exploited. This kind of approach effec-
tive for systems with no hard real-time constraints and against transient
faults. Compared with the other forms of redundancy, time redundancy
has much lower hardware and software overhead, but incurs in high per-
formance penalty [61].
Information redundancy is a third redundancy technique that is not

directly exploited in this thesis, but will be mentioned with reference to
error detection and correction coding. Here, additional information (e.g.
bits) is added to the original data so that an error can be detected or
even corrected. Error-detecting codes (EDCs) and error-correcting codes
(ECCs) are widely used in memory units and various storage devices.

2.1.3 Self-Adaptive Systems

In the last few years, the growing trend in the architecture complexity, as
in the number of processing element per chip and their specialization, has
raised the need for a further abstraction layer between the hardware and
the programmer to hide the complexity of the underlying system by intro-
ducing the self-management of its resources. Taking into consideration
self-adaptation capabilities while designing new computing systems al-
lows developers to ignore to a certain extent parallelism, energy efficiency,
reliability and predictability issues. Implementing self-adaptivity implies
adopting the dynamic optimization paradigm. Dynamic approaches can
adapt the behavior of the system they govern to cope with evolving
environments (changing resource availability, unknown application sce-
nario, varying requirements and constraints, etc.). Their main drawback
is that they usually suffer from execution time overhead or partial so-
lution space exploration (which means sub-optimal solutions). On the
other hand, the usual lack of a complete description for the forthcom-
ing execution scenario represents the key limitation of static approaches.
Moreover, even in the case in which all the possible execution scenarios
are known in advance, it could be unfeasible (in terms of execution time)
to exhaustively explore the whole solution space.
In order to build computing systems that show self-adaptive capa-

bilities, a specific design paradigm is to be adopted. This paradigm is
a classic close loop approach; a computing system designed and imple-
mented around this solution is said to harness an autonomic control loop.
In fact, it is characterized by a recurrent sequence of actions that con-
sists in gathering information about the internal state of the system and
the environmental conditions (achieving self- and context-awareness), de-
tecting possible issues with respect to the objectives and constraints,

35

2 Background & Preliminaries

D
decide

O
observe

A
act

Goals &
Constraints

Environment
& Internals Output

Figure 2.3: The Observe-Decide-Act (ODA) control loop.

eventually deciding a set of corrective actions to be performed and then
applying them.
Various definitions and descriptions of this control loop can be found in

literature: from the one given in [46] emphasizing the separation between
the detection and decision phases, to the one dubbed MAPE-K (Monitor-
Analyze-Plan-Execute with Knowledge) [60], which focuses on the shared
knowledge each phase of the control loop contributes to build. The
Observe Decide Act (ODA) loop [86], shown in Figure 4.6, represents a
third version of the autonomic control loop. Even if it can be considered
equivalent to the other interpretations, the ODA loop better captures the
essence of autonomic computing, by clearly dividing the system design
in three simple and sharply distinct stages.

Observe-Decide-Act

The Observe-Decide-Act abstraction defines a protocol consisting of three
phases guiding the design of a self-adaptive system.

• The observation phase consists in sensing both the external envi-
ronment and the internal behavior of all the sub-systems in order
to maintain and update information about the state of the system.
The sensing task is accomplished by monitors; it can be done di-
rectly (through thermometers, voltmeters or any other device able
to directly measure the dimension of interest) or indirectly (when a
direct measure is not available and the dimension is to be estimated
trough a mathematical model).

• The information gathered in the observation phase must be ex-
ploited to create knowledge and make smart choices on how to

36

2.2 Working Scenario

correct system’s parameters: this is the aim of the decision phase.
This phase is performed taking into account the data obtained by
the monitors, possibly considering the past iterations of the auto-
nomic control loop, and an high-level goal. The knowledge of the
goal guides the logic of the system in coming up with a suitable
decision, a set of actions, which should approach the state of the
system to the desired one. The decision making process is usually
carried out by adaptation policies, based on high-level objectives
and constraints.

• Once the decision has been taken, it is put into practice in the
action phase through the actuators. Actuators, that can be either
physical or virtual, are able to modify some system parameters, or
knobs, in order to alter its behavior.

A central entity in charge of coordinating the three phases is also
defined. Throughout all this thesis it will be named orchestrator, but it
is also known in literature as coordinator or central governor [79]. The
aim of the coordinator is to extract knowledge from the data gathered
by the monitors; to understand whether the current status of the system
reflects the desired one or not; if this last is the case, it must identify
which are the best actions to be taken to bring the system closer to
the desired state, possibly exploiting the results achieved in previous
iterations.

2.2 Working Scenario

In this section we exploit the previously introduced background concepts
to define the working scenario. Furthermore, we will introduce the base-
line for comparing the outcomes of our proposal, in terms of a set of case
studies presented and a list of key performance indicators (KPIs).
The aim of this work is to improve dependability of multi/manycore ar-

chitectures through system-level techniques, considered both in terms of
availability and reliability. Availability is mainly analyzed (but not only)
when coping with transient and intermittent faults, that cause system’s
components to fail for limited intervals of time; in this case, redundancy
techniques are exploited to detect and mitigate faults, not to impact on
the required reliability level. On the other hand, system-level techniques
can be exploited to extend components lifetime, i.e. the overall system’s
reliability. Both availability and reliability will be analyzed with respect
to the entire system, being it a multi/manycore architecture.

37

2 Background & Preliminaries

2.2.1 Reference Platform

The reference architecture we adopted is a manycore one consisting of
varying number of nodes (e.g. 2 × 2, 3 × 3, 3 × 4 depending on the
experiments) connected through a NoC infrastructure. All the nodes in
the architecture are homogeneous, i.e. they expose the same hardware
characteristics. Such a model is implemented by several real examples,
such as the ST/CEA P2012 platform [93] or the Teraflux one [94]. The
computational resources within a node are heterogeneous and organized
as in the ARM big.LITTLE [3]: a LITTLE cluster, consisting of two
Cortex-A7 cores, and a big one, consisting of two Cortex-A15 cores.
Communication among cores and clusters within a node is made possible
through a bus and the shared-memory programming model is considered.
The reference architecture is assumed to be equipped with per-cluster

energy monitors (to derive energy and power consumption) and per-core
temperature and wear-out sensors [43]. We also assume dynamic voltage
and frequency scaling (DVFS) to be available per-cluster; this means that
all the cores within a cluster run at the same frequency [3]. The refer-
ence architecture can seamlessly migrate applications across the clusters
within a node during runtime, thanks to the shared memory architec-
ture. This allows the dynamic mapping of applications to the available
cores at runtime. According to the adopted fault model, we assume that
data belonging to different threads of execution are organized in sepa-
rate segments of the memory and no thread can access the segment of
any other thread; watchdogs are used for terminating tasks in infinite
execution loop.
The whole system’s activity is coordinated by a special node, named

fabric controller. This node is in charge of dispatching the applications
to the available nodes and it is connected to the NoC infrastructure
through a special link. We assume it is hardened by design so to achieve
fault tolerant properties, and it is assumed not to influence the thermal
profile of the system. Each node contains also a controller core, provided
with a (minimal) operating system: it functions as an interface towards
the rest of the platform and performs the boot of the issued applications
(the execution of an application is currently limited within one node).
The controller manages thread synchronization and scheduling as well.
In specific scenarios, the role of the controller core can be played by
a regular core or even distributed among the other cores. A graphical
representation of the overall reference platform is given in Figure 2.4.
Even if validated on the described platform, the reliability framework

proposed in this thesis has been designed to be adaptable to the underly-
ing architecture. A two-layer heterogeneous architecture allows to obtain

38

2.2 Working Scenario

H
et

er
og

en
eo

us
 P

la
tfo

rm

node
1

node
2

node
3

AR
M

bi
g.

LI
TT

LE

LI
TT

LE
cl

us
te

r
bi

g
cl

us
te

r

node
4

L2
 c

ac
he

L2
 c

ac
he L3

 c
ac

he

M
ai

n
M

em
or

y

Figure 2.4: Graphical representation of the reference platform.

the best from our framework. However, it can be exploited to optimize
the reliablity/performance/energy consumption trade-off even when the
available architecture misses some features. For example, a single-layer
architecture won’t implement the communication energy optimization
layer, but it will benefit from the remaining multicore optimization lay-
ers. Again, in a double-layer homogeneous architecture it won’t be possi-
ble to select the proper execution resource on the basis of the application
phase, but it will be still possible to optimize the energy consumption by
minimizing NoC consumption at the top level and through the dynamic
selection of the resources execution frequency within the nodes.

2.2.2 Baseline

The definition of a basis for comparison is pivotal to properly evaluate
the advantages of any proposed solution. In the context of this work,
two baselines are defined for dealing with transient faults and aging phe-
nomena, respectively.
The baseline for transient faults management is a multicore system

with a single node platform, a bus-based communication model and a
shared-memory architecture. The controller core is in charge of managing
applications mapping and scheduling and to provide fault management
capabilities to the system. An off-line exploration phase is run for se-
lecting the most suitable reliable technique to be applied, based on the
information available at design-time. Since a safety-critical scenario is
considered, the reliable technique chosen for the baseline system is TMR,
which guarantees a complete fault coverage. This technique is applied
during the whole system’s lifetime to all the running tasks, without the
possibility to adapt it at run-time.
When considering mapping and scheduling techniques for aging and

wear-out mitigation, the baseline to be considered is a two-level architec-

39

2 Background & Preliminaries

Managed Aspect Architecture Baseline Technique

Transient faults Multicore TMR on every task

Wear-out & Aging 2-level Manycore Ubuntu Linaro Scheduler

Table 2.1: Baseline summary.

ture with several nodes, each node consisting of an ARM big.LITTLE
processor. The running operating system implements a Linux sched-
uler supporting multicore architectures, such as the one included in the
Ubuntu Linaro distribution [68]. Such a scheduler is aware of the ap-
plications performance and schedules them to optimize the exploitation
of performance/power consumption trade-off. However, it is not aware
of the cores aging status and its scheduling decisions are not made to
maximize the architecture lifetime.
The characteristics of the chosen baseline are summarized in Table 2.1.

2.2.3 Key Performance Indicators

Key performance indicators define a set of values against which to mea-
sure the effectiveness of the proposed methodology if compared to the
given baseline. The indicators chosen for evaluating the work described
in this thesis are listed below, together with a brief description.

Applications Throughput Throughput is defined as the amount of data
processed by the system in a unit of time and represents a metric for
performance estimation. In particular, throughput is computed as the
ratio between the amount of processed data and the time elapsed between
the execution start and end times. Thus, it is measured in bits per second
[bit/s]. The throughput of an application should be as close as possible
to a defined threshold: a lower throughput can cause the subsequent data
processing tasks to stop or poor outcomes to be produced; a throughput
higher than strictly required, on the other hand, means an unnecessary
use of computational power and of energy. While in the past performance
has been adopted as an optimization goal, as the number of processing
resources increases, making it usually not too difficult to achieve good
performance, throughput has become a constraint to be fulfilled while
optimizing other aspects (e.g. reliability and/or energy consumption).

Architecture Lifetime Architecture lifetime estimates how long a sys-
tem can work while meeting the given constraints; lifetime is usually

40

2.2 Working Scenario

measured in years [y]. We are interested in evaluating the expected life-
time of the overall architecture, not the one of single cores.

Error Rate The error rate the frequency at which the considered system
produces incorrect results. We will measure it as the ratio between the
number of wrong bits in the output and the overall number of output bits.
Being a ratio, it is a dimensionless number representing the percentage
of incorrect result.

Architecture Energy Consumption Energy consumption measures how
much energy is used by the considered architecture and is measured in
Joules [J]. The used Joules is the integral over time of the instantaneous
power consumption.

2.2.4 Case Study

The evaluation of the proposed solutions will be carried out by consid-
ering a workload consisting of several applications with different perfor-
mance/reliability constraints. The applications are kernels performing
image/video processing. We envision this kind of workloads running on
(embedded) systems used in (as two examples) 1. the medical environ-
ment (in a surgery room) with stringent reliability requirements, 2. scien-
tific computing where eventually reliability requirements may vary based
on the user’s profile. A brief description of the basic kernels follows, while
a more specific characterization of the workloads characteristics will be
introduced later on in the thesis.

• Edge Detection: is the name for a set of mathematical methods
that aim at identifying points in a digital image at which the image
brightness has discontinuities; these points are typically organized
into a set of curved line segments termed edges.

• Motion Detection: is the process of detecting a change in posi-
tion of an object relative to its surroundings or the change in the
surroundings relative to an object.

• Erosion Filter: is a morphological filter that changes the shape
of objects in an image by reducing, or eroding, the boundaries of
bright objects, and enlarging the boundaries of dark ones; it is
often used to reduce, or eliminate, small bright objects.

• RGB to Grey: is a simple algorithm for converting RGB color
images into greyscale ones.

41

2 Background & Preliminaries

• Gaussian Filter: is a two dimensional convolution operator that
uses a Gaussian function for calculating the transformation to ap-
ply to each pixel in the image; it is usually used to blur images and
remove detail and noise.

• Template Matching: is a technique in digital image processing for
finding small parts of an image which match a given template im-
age.

These tasks are usually characterized by high parallelization, since the
processing of each pixel is independent from the other ones, or depends
only on the very near ones. These basic operations can be individually
used or combined to obtained more complex functionalities. Both the
cases are considered in this work.

In this chapter we have introduced the basics related to dependability
and self-adaptiveness. The next chapter focuses on the system architec-
ture we propose to define a self-adaptive dependable system, formalizing
the model to design and implement such kind of systems.

42

3 Self-Adaptive Systems Design

This chapter introduces the core of a self-adaptive system, the orchestra-
tor, in charge of managing the available resources in order to achieve the
goals set by the user. Based on its functionality we developed a formal
to define, design and implement self-adaptive systems.

3.1 Orchestrator

In a self-adaptive system, the orchestrator is the entity that implements
the observe-decide-act paradigm. It plays a central and fundamental
role in allowing the system to have self-adaptive capabilities. A graphical
representation of the orchestrator and of the context it works in is shown
in Figure 5.13.
The orchestrator can perform its job provided that some input data

are available. In particular:

• a description of the underlying architecture, in terms of quantity
and quality of the processing elements, and its topology. For each
PE, its operating points (frequency – voltage) are to be listed and
a characterization of its performance and energy consumption is to
be provided. The topology of the architecture is to be described
as well: the coordinates of each node in the network (if any) and
its composition (how many clusters and PEs in each cluster). This
kind of information is available at design-time, even if it can be
necessary to update it at runtime in case, for example, if a occurs
and a resource is temporarily or permanently damaged;

• a characterization of the workload that the architecture will ex-
ecute. It is not realistic to assume that the arrival times of all
the applications are known a-priori; however, it is reasonable to
assume that the applications that are going to be executed are
known in advance. This allows the system to perform an off-line
profiling phase and get an insight of the duration of the applica-
tion’s tasks and possibly other information. Thus, part of these
data is supposed to be available at design-time (by means of a
profiling phase), while other will be gathered at runtime (e.g., the
applications’ arrival times);

43

3 Self-Adaptive Systems Design

• a set of user’s defined goals and constraints. Goals are those quan-
tities that the system must optimize during its execution (e.g.,
performance); constraints are, on the other hand, quantities that
the system must keep above or below a certain threshold (e.g.,
throughput, energy consumption). It is the user who will set these
and they can change at runtime.

All the other information regarding the system’s status and the sur-
rounding environment will be gathered during the observation phase
through the monitoring infrastructure. Knowledge is to be extracted
from these data and manipulated using suitable decision policies; in-
deed, another task of the orchestrator is to select the best decision pol-
icy to properly exploit the available actuating elements and obtain the
desired results. These three categories will be further investigated in the
following paragraphs.

3.1.1 Monitoring Infrastructure

The monitor infrastructure allows the observation phase to take place.
It consists of a set of monitors and the infrastructure needed to commu-
nicate the sensed values to the orchestrator. A monitor is a component
that is in charge of periodically sensing the value of a specific quantity.
Monitors are classified as real or virtual ones. The former ones are phys-
ical components that can directly read the value of the quantity they
measure; a thermometer is a real monitor for measuring temperature,
voltmeter is a real monitor for electrical voltage. When real monitors
are not available or cannot be used, mathematical models can be ex-
ploited to estimate the value of the parameter of interest. As an ex-
ample, temperature sensors are often virtual, as they are not typically
available on boards. Rather temperature is computed starting from a
model that takes into consideration the component self-activity and the
neighbors load. While real monitors provide direct measures, virtual
monitors represent an indirect measure since they rely on different quan-
tities to compute the value of the desired one. As said, mathematical
models for temperature estimation are widely used in literature [37], as
well as aging ones [90].
Performance, power/energy consumption, reliability and aging are the

quantities of interest for this research. Depending on the execution sce-
nario, performance will be measured through a real or a virtual monitor.
Application Heartbeat [45] can be considered as a real monitor: it can
measure the progress of an instrumented application based on the num-
ber of heartbeats it emits; the higher the number of heartbeats, the
higher the performance of the application. In other contexts, where it

44

3.1 Orchestrator

ORCHESTRATOR

methods

DE
CI

DE

task
mapping

co
nt

ro
l a

ct
io

ns
ACT

ra
w

da
ta

OBSERVE dvfs

cores
on/off

temperature
r/v sensors

resource
utilization

heartbeat
monitor

monitoring
infrastructure

actuating
elements

heuristics control
theory

machine
learning

price
theory

constraints & goals
(system & apps)

aging
r/v sensors

power
r/v sensors

task
replication
task
priority

. . .

workload

heterogeneous
platform

CPU resources GPU resources FPGAs

decision
policies

Figure 3.1: Overview of the proposed framework.

45

3 Self-Adaptive Systems Design

has not been possible to exploit the heartbeat mechanism, performance
has been measured indirectly by looking at the throughput, i.e., the
amount of data processed by the application in a unit of time.
Power and energy are usually measured through real sensors. In fact,

it is quite common for development boards (as the ones used in the ex-
perimental sessions [3]) to be equipped with sensors for measuring power
consumption. Since power consumption is defined as energy used per
unit of time, energy consumption can be directly and straightforwardly
computed from the power data.
There are no real sensors for measuring reliability, but several metrics

for its estimation exist. We measured reliability as error rate, i.e., the
percentage of erroneous data in the output over the overall processed
data.
Components aging represents the hardest quantity to be evaluated.

Even if real aging sensors have been designed [15], their diffusion is so
limited that virtual sensors are often used. The work described in this
thesis relies on a aging model taken from literature [90] and capable of
describing the aging of each component, given the phenomena of interest
and its temperature.

3.1.2 Decision Policies

Several techniques have been used in literature to enable the self-adaptive
computing systems to make smart decisions; all of them are considered
in the decision policies groups. The orchestrator can choose among the
available techniques how to manage the available actuating elements to
pursue the set goals and meet the constraints. A brief overview of the
most common decision policies, taken from [70], is provided in the fol-
lowing paragraphs.
Heuristic solutions start from a guess about the system behavior and

subsequently adjust this guess. They are designed for computational
performance or simplicity at the cost of potential loss in accuracy or
precision. Such solutions generally cannot be proven to converge to the
optimum or desired value.
Control-based solutions employ canonical models, such as discrete-time

linear models and discrete event systems, and apply standard control
techniques such as Proportional Integral (PI) controllers or Proportional
Integral and Derivative (PID) controllers. Assuming the model to be
correct, some properties may be enforced, among which stability and
convergence time are probably the most important ones, thereby provid-
ing formal performance guarantees. More complex control-based solu-
tions exist, requiring complex models and advanced control techniques,

46

3.2 A Model for Self-Adaptive Computing Systems

but they will not be exploited in this thesis.
Another interesting category of decision policies is based on machine

learning techniques; they describe a framework that can be exploited to
learn system behavior and adjust tuning points online. This solutions are
extremely appealing, in particular in the case of self-adaptive systems;
they are not directly treated in this work, but represent an attractive
future development.

3.1.3 Actuating Elements

The last category of elements the orchestrator must interact with is the
actuating elements one, which corresponds to the act phase of the ODA
loop. In a self-adaptive systems, the available actuating elements, also
known as knobs, are strictly dependent on the underlying architecture
characteristics and the implemented software layers.
Architecture dependent knobs that will be exploited in the proposed

self-adaptive systems include: DVFS, which allows to dynamically change
the processors working points in terms of voltage and frequency, and the
possibility to power on and off single PEs or whole clusters. More knobs
are available at a software level: tasks and applications mapping al-
lows to select the PEs on which workloads are executed; the selection
of the reliability technique to be applied allows to exploit the reliabil-
ity/performance trade-off according to the current needs.

The overview of the system provided in the first part of this chap-
ter highlights the complexity of the elements composing a self-adaptive
computing system and thus the need for defining a model of context in
order to deal with them in a more meticulous way; this is the aim of the
remainder part of the chapter. In particular, the presented model has
been proposed in [21].

3.2 A Model for Self-Adaptive Computing
Systems

While context/self-awareness and self-adaptation are common denom-
inators for some of the most recent research topics in the computing
systems domain, the idea of rigorously modeling the concepts at the ba-
sis of these topics have often been neglected or overlooked, leading to
several different partial definitions. Indeed, while in different research
areas (e.g., database [6] and the software engineering [44] areas) the
concept of context and self-adaptiveness has received a lot of attention

47

3 Self-Adaptive Systems Design

in other communities we witness a direct exploitation of an adaptive,
context-aware behavior, implicitly resorting to a model of context with-
out its precise introduction. In fact, it is possible to find in literature
many examples of approaches where the context plays a fundamental
role without being formalized. This is the case for research projects re-
lated to the reduction of power consumption in mobile devices [85], to
the optimization of resource usage in various computing systems [86], to
the thermal control of sensitive environments [5], to the smart manage-
ment of reliability in critical systems [18], and so forth. On the other
hand, a notable contribution within the self-aware/adaptive area is pre-
sented in [9], where the authors identify the fundamental elements of
a self-aware system as public self-awareness, private self-awareness and
self-expression. The work poses the basis for an architectural framework
for the representation and design of self-adaptive systems, but it only
provides a preliminary general overview, not followed by a rigorous and
systematic definition.
Even if the lack of a formal, rigorous model may not represent a limi-

tation when the number of possible contexts is somehow small and when
the real adaptive features are only a few, as the number of elements de-
termining the context grows and the adaptive behaviors become more
and more refined, the quest for a flexible and powerful support arises.
Indeed, it is paramount to define what situations may arise, which one(s)
should be avoided, what actions need to be taken (for both normal adap-
tation and/or self-healing management), and what configurations should
be adopted in each situation. Part of these issues are informally analyzed
at design time, implicitly, while defining the adaptive part of the system;
others may pass unnoticed. Thus, last but not less relevant, a rigorous
model can contribute to specification and documentation. Therefore, the
designer could benefit from a rigorous approach in the modeling phase.
Moreover, we envision the model at the basis of a framework to be used as
a design/validation instrument to support the designer in his/her choices
and in defining the skeleton of such self-adaptive systems.
When considering a self-adaptive computing system, it would be in-

teresting to be able to describe it in a complete, correct, and robust way.
The first aspects to be considered are the elements that come into play,
paying particular attention to the ODA step we are considering.

• The Observation phase is in charge of observing high-level ele-
ments, that may represent an aggregation of lower-level quantities
computed on raw direct/virtual observations of system and envi-
ronment.

• The Decide phase must know which are the aspects to reason on,

48

3.2 A Model for Self-Adaptive Computing Systems

i.e., the constrained elements and the ones to be optimized.

• For the Act phase, it is necessary to know the parameters on which
the system can act and the strategies to manage them.

Elements alone do not suffice for providing a description of the system
as the one we desire: relations between them are equally crucial. In fact,
when making a decision on how to react to changes in the context, it
is important to know the quantitative values of the observed elements,
and the effects of the planned actions. The possibility to have indirect
relations must also be taken into consideration.
The envisioned framework should be able to capture the contextual in-

formation typical of as many self-adaptive computing systems scenarios
as possible. To this end, a suitable model must support the representa-
tion of all information that the self-adaptive system will use to (re)act,
also highlighting the relation between the various parameters and data,
and possible requirements and constraints. Do note that the flexibility
of the model is related to the number of different contexts it is able to
capture and represent, not to the number of contexts a given system will
possibly experience/manage. Moreover, while we will aim at providing
a model that is as complete as possible, the adopted approach should be
flexible enough to allow the addition of elements that have been omitted
or that might become of interest in the future. As a result, the output
of the modeling process is the means to:

• help the computing systems designer in understanding what re-
sources are needed to be able to pursue its goal (e.g., performance
optimization, energy minimization, . . .);

• document the system to provide a common and systematic classi-
fication of self-adaptive computing systems;

• describe, at run-time, the current context ;

• provide an active support to system development by automating
some crucial step (e.g., the creation of standard rule-based decision
engines).

To exemplify the proposed model, we first introduce a running ex-
ample, for an immediate application of the introduced concepts. Among
the various self-adaptive systems proposed in literature, a “standard” one
has been selected to exemplify the context model concepts. METE [84]
implements a framework for QoS improvement in multi-core platforms
through system-wide resource management. The aim of this system is to

49

3 Self-Adaptive Systems Design

satisfy a performance constraint specified by each application, by adapt-
ing to the changing context of the system. Self-adaptation consists in
dynamically provisioning sufficient on-chip resources to meet the con-
straint: cores, shared caches and off-chip bandwidth. METE employs
a feedback-based system to manage these knobs, designed as a Single-
Input, Multiple-Output (SIMO) controller with an Auto-Regressive-Mov-
ing-Average (ARMA) model to capture the behavior of different appli-
cations, pursuing an optimized resource utilization goal.

3.2.1 The Context Concept

Let us first look at the model from an informal point of view, to iden-
tify all elements that contribute to the self-adaptive behavior, and then
formally define the context meta-model. This definition derives from
the analysis of the peculiar aspects characterizing existing self-adaptive
systems, from the investigation of existing context models from different
application areas, and from the significant elements identified by other
studies in this same area. The meta-model is also to be defined: it cap-
tures and allows to represent all and only the relevant information for
the definition and realization of a self-adaptive computing system.

Context categories

A context dimension, or simply dimension, is defined as any element
such that when a change occurs in its values, the system will change its
behavior and adapt (as in [23]). Eventually, when envisioning a proac-
tive self-adaptive behavior, the system may also anticipate changes in
the context dimensions and thus evolve autonomously as a look-ahead
adaptation. In this perspective, all elements referring both to the sys-
tem itself and to the environment (including the user’s inputs and the
application workload) are included in the unique context concept.
The three categories of context defined in [83] have been extended to

four, for a more refined differentiation. The functional context includes
all those elements characterizing the overall primary functionality the
system has to provide, in a self-adaptive fashion, that is the possible
goals the system tends to, the requirements or constraints it has to fulfill,
and eventually some additional variables it can observe, to have a better
understanding of its context.
The application context is related to the characterizing elements of the

workload being executed on the system, which might change over time,
in terms of the kind of applications, their criticality (i.e., the request for
fault tolerant execution), and the size of the workload itself. There are

50

3.2 A Model for Self-Adaptive Computing Systems

situations where the application context is rather “static” (such as the
embedded systems application scenario) and others where the workload
is not known in advance and varies a lot (such as in today “on-demand
computing” scenario).
The architectural context covers all those elements related to the sys-

tem itself, in terms of the characteristics that may change during the sys-
tem lifetime and such changes would affect the system behavior. These
aspects are mainly related to the resources constituting the system ar-
chitecture and their status; examples are the amount of used resources,
their availability due to the occurrence of failures or to a dynamic archi-
tecture where the number of nodes is not fixed a-priori (a cloud providing
a number of resources based on the workload/user).
Finally, the environmental context gathers all relevant elements char-

acterizing the ambient the system interacts with, that have impact on
its behavior. This context is crucial when considering cyber-physical
systems (which usually interact with other systems) or dangerous envi-
ronment (e.g., radiations exposure).

Context Dimensions, Domains and Relations

The envisioned context dimensions belong to one of the above mentioned
categories, and cover all elements having an impact on a self-adaptive
system behavior; in the following a brief explanation for each one of them
is provided, introducing their relations as well.

• goals. When designing a self-adaptive system, the user may express
one or more goals to be pursued in terms of an optimization func-
tion (performance) or as a trade-off between different contrasting
objectives (e.g., high performance vs. energy consumption). With
respect to the selected running example, METE pursues an optimal
resource exploitation goal.

• requirements. This dimension models the functional constraints
the system must satisfy; it can be both a strict constraint (e.g.,
throughput must not decrease below a given threshold) or a soft
one (e.g., throughput should be within a given window). In the
METE example, there is a requirement on the system performance,
set on the weighted number of Instructions Per Cycle (IPC).

• observations. An additional dimension has been introduced to
model those elements that constitute an interesting facet of the
context, worth observing although it might not directly fall into
one of the first two dimensions, since they are neither optimized

51

3 Self-Adaptive Systems Design

nor constitute a constraint. In the running example no observation
elements are identified.

The next set of dimensions captures the information on the collected data
from real as well as virtual sensors, that are opportunely aggregated,
weighted and abstracted to be feed the self-adaptive engine acting on
the perceived part of the context. They represent the data sensing and
elaboration sphere and include all elements constituting the private and
public self-awareness defined in [9].

• raw data. This dimension gathers all collected information, rep-
resented at the lowest abstraction level, directly coming from the
observation of a physical phenomenon through real and virtual
monitors. The METE scenario collects information on the number
of instructions being executed and on the resources being allocated
to each application. Do note that the identification of the raw data
to be collected allows the system designer to focus the attention of
the necessary sensors that should be available in the architecture
in order to access that specific kind of information. In the running
example no specific physical sensor is necessary.

• measures. This dimension models the first refinement of raw data.
The same raw data can be aggregated to define different measures,
that constitute a more abstract view of the observed variables.
The measures adopted in METE are the number of Instructions
Per Cycle (IPC) and the overall number of allocated resources. A
measure uses a number of raw data that varies from 1 to n: if
more than one data is combined, then all of them are necessary to
compute the measure. This aspect will be clarified soon.

• metrics. This dimension represents a further abstraction of the
measures and the raw data, to model how the contextual infor-
mation is weighted and combined to define either the optimization
function or the constraints exploited by the goals, requirements
and observations dimensions. Indeed, the same measures com-
bined in a different metric lead to a different behavior, therefore
this dimension can further refine the contextual characteristics of
the system being designed. Some metrics may be particularly sim-
ple and directly exploit raw data, without any specific aggrega-
tion/manipulation. Again, a metric can refer to 1 to n measures;
if more measures are specified, then all of them are necessary. The
metrics adopted in METE are the weighted IPC and resource uti-
lization.

52

3.2 A Model for Self-Adaptive Computing Systems

The last two dimensions model the actions the self-adaptive system can
control and the methods or strategies that are exploited to drive such
actions. These dimensions, with respect to the EPiCS framework [9],
pertain to the self-expression of the overall system.

• methods. This dimension models the general policies the self-
adaptive engine may enact to pursue a goal or to fulfill a require-
ment. These methods need be provided and be made available.
With reference to the running example, the exploited method is
the feedback loop made up of the SISO controller and an ARMA
model.

• control actions. A control action is the elementary action that
can be performed by acting on a knob, expressing the physical or
virtual actuators that are available (or need to be) in the system
architecture. In METE the feedback loop method takes as input
the value of the QoS metric and outputs three control actions on the
available system knobs: number of cores assigned to an application,
cache dimension and off-chip bandwidth size. The same control
actions may be exploited by different methods, as well as a method
may need more than one (at least one) control action.

It is worth highlighting a few considerations. Given a self-adaptive
system, not all dimensions might be of interest, such that in the specific
scenario one dimension may not exist or not have an impact on the
behavior, either because there is no cause-effect relation or the system is
not able to observe such aspect/phenomenon or is not designed to react
to it. There might be other dimensions that have not been here listed;
the proposed model is flexible and supports any number of dimensions.
Dimensions goals and requirements are the most important ones in the
design of the system, where everything else is exploited in order to pursue
the goal and satisfy requirements. Therefore they have been identified
as driving dimensions, referring to the others as secondary dimensions.
The self-adaptive engine implementing the ODA loop and the necessary
intelligence, although having a state itself is not part of the context
model.
The set of presented dimensions actually defines a context meta-model

for a self-adaptive computing system; it provides a general-purpose frame-
work to represent any system according to the listed dimensions (or to a
subset of them). A graphical representation of the meta-model is shown
in Figure 3.2, where the driving dimensions are shown with rounded cor-
ner rectangles. Indeed, once we consider a given self-adaptive comput-
ing system, such as METE, we have specific values for the dimensions,

53

3 Self-Adaptive Systems Design

observations

measuresmetrics raw datacontrol
actions methods requirements

goals

Figure 3.2: Graphical representation of the context meta-model; each
rectangle represents a context dimension, those with rounded
corners are the driving dimensions. Dotted rectangles indi-
cate dimensions that might not exist in some contexts. Seg-
ments represent relations among dimensions.

control actions methods metrics measures raw data goals/requirements/observations
✦ #Allocated Cores
✦ Off-Chip Memory
 Bandwidth
✦ Shared Cache
 Space
✦ Idle Cycle Injection
✦ Core Frequency
✦ . . .

✦ SIMO controller
 & ARMA model
✦ Controlled Task
 Scheduling
✦ Round Robin
✦ FIFO
✦ Constant Value
✦ . . .

✦ Performance
✦ Resource Exploitation
✦ Power
✦ Temperature
✦ Reliability
✦ Area
✦ Manufacturability
✦ . . .

✦ Weighted IPC
✦ Harmonic
 Speed-Up
✦ Resources
 Utilization
✦ Mean Time To
 Failure
✦ . . .

✦ Instructions per
 Cycle (IPC)
✦ Average
 Resource Usage
✦ Execution Time
✦ Transactions per
 Second
✦ . . .

✦ Cores Temperature
✦ Screen Brightness
✦ Acceleration
✦ Execution Time
✦ Memory Usage
✦ CPU Utilization
✦ Cache Hits
✦ . . .

Figure 3.3: Context meta-model and dimension domains for self-adaptive
computing systems.

those we mentioned through the presentation. Therefore, for a given
self-adaptive computing system, the context model is defined as a set of
(dimension,value) pairs.

Dimensions domain

Each one of the identified dimensions, as well as any additional one the
designer might introduce, has a domain of values whose selection will de-
fine the specific context model. A number of self-adaptive systems in the
literature has been surveyed (namely, [84, 85, 86, 5, 18]) to extract some
of the most common values of the domains for the listed dimensions,
presented in Figure 3.3. Each domain is extensible according to the pe-
culiarities of each working scenario. It is worth noting that the domains
for the goals, requirements and observations coincide (and for clarity rea-
sons have not been replicated in Figure 3.3, but listed once, in a shared
fashion). In fact, the specific goal being pursued in a self-adaptive com-
puting system (e.g., performance optimization) can be a requirement for
another self-adaptive computing system (e.g., a minimum performance
level).

54

3.2 A Model for Self-Adaptive Computing Systems

Relations among dimensions

As shown in Figure 3.2, relations exist among the dimensions, expressing
dependencies among values, such that “given a system, when a dimen-
sion value exists, a related value, or set of values, must exist in another
dimension for the system to be consistent”. For example, in METE the
IPC measure is function of the number of instructions and the elapsed
time, that are raw data. In particular, both data are necessary to com-
pute the measure; an AND operator characterizes the relations between
measures and raw data dimension values, as well as between metrics and
measures. As another example, the same method adopted for pursuing
a goal can use one or more control actions, therefore in this case, an OR
operator characterizes the relations between the methods and control
actions dimension values.
As a result, the context meta-model allows for the representation of

relations among dimensions, and the context model for relations among
dimension values, also supporting the AND/OR constraint definition. In
the graphical representation, relations are segments, with a single end
on one side and a multi-point end on the other, expressing a 1 to n ≥ 1
cardinality; a circle on the segment characterizes an AND constraint.
All these aspects are captured in the following formalization of the

context meta-model and model for self-adaptive computing system.

3.2.2 Formalization

The proposed context meta-model is based on the notions of dimension
and the relations between different dimension values.
The set of context dimensions CD is partitioned into two disjoint sub-

sets: the set DD of driving dimensions, and the set SD of secondary
dimensions, whose values, in each model, can depend on the values as-
sumed by the driving dimensions. The two identified sets are:

DD =
{
goals, requirements

}
SD =

methods, control actions,
observations, metrics,
measures, raw data

Each dimension has an associated domain that depends on the model.

A context is a set of pairs C = {(d1, v1), . . . , (dk, vk)} (with k ≥ 5, i.e,
at least one among goals and requirements, then methods, control
actions, metrics, and raw data), where each di ∈ CD = DD ∪ SD is a
dimension and vi its value, chosen from the domain V(di).

55

3 Self-Adaptive Systems Design

Each context C has to satisfy the following general constraints (leading
to k ≥ 5):

1. ∀C((goals, v1) ∈ C ∨ (requirements, v2) ∈ C);

2. ∀di ∈ SD s.t. di 6= observations ∧ di 6= measures ∃(di, vi) ∈ C.

The first constraint imposes that at least one dimension between goals

and requirements exist in each context, a fundamental aspect to define a
self-adaptive computing system. The second constraint imposes that for
each context, each dimension and an associated value must exist, except
for observations and measures. In our graphical representation of the
context meta-model, the observations and measures dimensions are
represented with dashed lines, because their presence in the context is
not mandatory.
Given a self-adaptive computing system, its Context model has to

specify the domain for each dimension in CD. For example, if we consider
the METE research project, the domains for the metrics and measures

dimensions are:

V(measures) =

{
Instructions Per Cycle (IPC),
Average Resource Usage

}

V(metrics) =

{
Weighted IPC, Harmonic Speed-Up,
Resources Utilisation

}
In general, V(metrics) contains also ad-hoc functions defined in each

specific model. Moreover, for each model some model-dependent con-
straints must be defined, with the following forms:

if (di, vi) ∈ C then
∧

(dj , vj) ∈ C

when the constraint specifies a relation between measures and raw data,
or between metrics and measures,

if (di, vi) ∈ C then
∨

(dj , vj) ∈ C

otherwise. These relations allow the specification of what elements con-
tribute to making the system self-adaptive and how, from the raw data

to the control actions the objectives are achieved. In particular, re-
lations among dimension values model what elements can be found in a
self-adaptive computing system for a given context. To exemplify these
concepts, we report for the METE project, in a given context C, three
relationships:

56

3.2 A Model for Self-Adaptive Computing Systems

• if (requirements, Performance) ∈ C
then (metrics, Weighted IPC) ∈ C
∨ (metrics, Harmonic Speed-Up) ∈ C.

• if (goals, Resource Exploitation) ∈ C
then (metrics, Resource Utilization) ∈ C.

• if (metrics, Resource Utilization) ∈ C
then (measures, Average Resource Usage) ∈ C.

The first relationship states that requirement Performance uses either
the Weighted IPC or the Harmonic Speed-Up metric (but not Resource
Utilization). The second relationship states that when pursuing the
Resource Exploitation goal, the Resource Utilizationmetric is adop-
ted (and no other available metric). Finally, the last relationship defines
the link between the Resource Utilization metric and the measures it
uses.

3.2.3 Validation

The complete application of the context model to some self-adaptive
systems taken from the literature is now presented as a proof of concept
for showing its effectiveness.

System-wide Resource Management in Multi-Cores

Considering, as a first case study, the running example, the METE self-
adaptive system can be modeled as shown in Figure 3.4, where the con-
text dimensions and domains are presented. Performance is monitored
through the weighted IPC and harmonic speed-up, both referring, with
different semantics, to the IPC number, computed using the executed
instructions count and the execution time. Resources exploitation is
evaluated in terms of the resources usage, computed by accounting the
number of used resources at each time. We can see how the available
system knobs are the number of cores, the memory bandwidth and the
shared cache space allocated for each application.
The graphical representation of the context model in terms of the

appropriate dimensions, domains and relations/constraints is reported
in Figure 3.4. The corresponding formal textual description is reported
for the list of relations/constraints (Table 3.1), while the dimensions
and domains definition can be straightforwardly inferred, following the
previously given definitions.

57

3 Self-Adaptive Systems Design

if (requirements, Performance) ∈ C
then (metrics, Weighted IPC) ∈ C
∨(metrics, Harmonic Speed-Up) ∈ C.

if (goals, Resource Exploitation) ∈ C
then (metrics, Resource Utilization) ∈ C.

if (metrics, Resource Utilization) ∈ C
then (measures,

∑
Allocated Cores) ∈ C

∧(measures,
∑

Off− Chip Memory Bandwidth) ∈ C
∧(measures,

∑
Shared Cache Space) ∈ C.

if (metrics, Weighted IPC) ∈ C
then (measures, IPC) ∈ C.

if (metrics, Harmonic Speed-Up) ∈ C
then (measures, IPC) ∈ C.

if (measures, IPC) ∈ C
then (raw data,#Exec. Instructions) ∈ C
∧(raw data, Execution Time) ∈ C.

if (measures,
∑

Allocated Cores) ∈ C
then (raw data,#Allocated Cores/App) ∈ C.

if (measures,
∑

Off− Chip Memory Bandwidths) ∈ C
then (raw data, Off− Chip Memory Bandwidth/App) ∈ C.

if (measures,
∑

Shared Cache Space) ∈ C
then (raw data, Shared Cache Space/App) ∈ C.

if (methods, SIMO Ctrl.&ARMA model) ∈ C
then (control actions,#Allocated Cores)
∨(control actions, Off-Chip Memory Bandwidth)
∨(control actions, Shared Cache Space) ∈ C.

if (goals, Resource Exploitation) ∈ C
then (methods, SIMO Ctrl.&ARMA model) ∈ C.

if (requirements, Performance) ∈ C
then (methods, SIMO Ctrl.&ARMA model) ∈ C.

Table 3.1: Model constraints for the METE self-adaptive system.

58

3.2 A Model for Self-Adaptive Computing Systems

 goals requirementscontrol actions methods metrics measures raw data
✦ #Allocated Cores
✦ Off-Chip Memory
 Bandwidth
✦ Shared Cache
 Space

✦ SIMO controller
 & ARMA model

✦ Performance
✦ Resources
 Exploitation

✦ Weighted IPC
✦ Harmonic
 Speed-Up
✦ Resources
 Utilization

✦ Instructions per
 Cycle (IPC)

✦ ∑ Allocated Cores
✦ ∑ Off-Chip
 Memory Bandwidth
✦ ∑ Shared Cache
 Space

✦ #Executed
 Instructions
✦ Execution Time
✦ #Allocated Cores/App
✦ Off-Chip Memory
 Bandwidth/App
✦ Shared Cache
 Space/App

Figure 3.4: Context dimensions and domains for METE research project.

 goalscontrol actions methods metrics measures raw data
✦ Cores Frequency

✦ Display
 Brightness

✦ On Demand
 DFS
✦ Gradual
 Reduction

✦ Resources
 Exploitation
✦ Power

✦ Resources
 Utilization
✦ Power Model

✦ Average
 Resource Usage

✦ #Used Resources
✦ CPU Utilization
✦ System Up-Time
✦ Screen Brightness
✦ Connections
 Utilization
✦ SD Card Accesses

Figure 3.5: Context dimensions and domains for Into The Wild project.

Power Optimization for Mobile Architectures

The Into the Wild [85] project aims at optimizing power consumption
in mobile architectures, by acting on the architecture parameters. A
regression-based power estimation model and a metrics built directly on
raw data are used to guide towards power optimization. A preliminary
analysis shows how the screen and the CPU are the two largest power
consuming components: the brightness of the former and the frequency
of the latter are the knobs on which the self-adaptive computing system
can act.
The graphical representation that summarizes the context model di-

mensions, domains and relations/constraints is shown in Figure 3.5.

Performance Management via Self-Adaptivity

The Metronome [86] project is another adaptive system having a per-
formance requirement and aiming at optimizing the resource usage. In
particular, the system keeps track of the running applications’ progress
by monitoring the heartbeat signals they emit and by aggregating them
in a heartrate measure. For each application, a performance goal is
specified in terms of a maximum and a minimum heartrate, i.e., a range
within which this measure must stay, to maintain a uniform behavior.
Moreover, to achieve this goal the system acts with a scheduling pol-
icy that adjusts the amount of processor time assigned to a given task
(called virtual runtime) to fulfill the performance requirement and, at
the same time, to preserve the scheduler fairness, also avoiding useless
computation.

59

3 Self-Adaptive Systems Design

 goals requirementcontrol actions methods metrics measures raw data
✦ Virtual
 Run-Time

✦ Scheduling
 Policy

✦ Performance
✦ Resources
 Exploitation

✦ Application
 Progress

✦ Heartrate ✦ Heartbeat
✦ Execution Time

Figure 3.6: Context dimensions and domains for Metronome project.

The graphical representation of the system, according to the proposed
model, is shown in Figure 3.6, reporting dimension values and relations
among them.

3.3 Final Remarks

The context model defined in this chapter supports the definition, design,
and implementation of a self-adaptive computing system. At present, the
model supports the designer in specifying what are the characterizing
elements with respect to which the system will exhibit self-adaptiveness
properties, also relating the various elements among themselves. As such
the context model can be used for organizing the specific self-adaptive
aspects in a structured and systematic way, and for providing a shared
dictionary for their documentation, as well as for preliminary validation
of the architectural/implementation choices to make sure all necessary
objects (sensors and actuators) are available.

Among all the dimensions considered in the model, reliability is the
one on which the following chapters will be focused. The design of a
self-adaptive system for dealing with transient faults is described in the
next chapter. Such a system implements the proposed framework in the
design phase and exploits different redundancy scheduling techniques
to guarantee a level of system’s reliability which changes at run-time
according to the current needs.

60

4 Runtime Transient Fault
Management

This chapter presents the novel approach we propose to support runtime
adaptive management of transient faults that may occur. We first in-
troduce an overview of solutions available in literature, highlighting the
limitations our solution aims at tackling. Then, the approach is presented
together with the experimental campains to validate our proposal.

4.1 Background

The approach defines a layer at the operating system level that achieves
fault detection/tolerance/diagnosis properties by means of thread repli-
cation and re-execution mechanisms. The layer applies the most conve-
nient hardening mechanism to achieve the desired trade-off between re-
liability and performance by adapting at run-time to the changes of the
working scenario. Figure 4.1 shows the context dimensions and domains
of the proposed self-adaptive system according to the model introduced
in the previous chapter. The proposed strategy has been applied to a
set of experimental sessions considering part of the case studies already
introduced, to evaluate its benefits on the final system with respect to
various strategies selected at design time. A comprehensive description
of different aspects of the self-adaptive system here proposed can be
found in [18, 19, 16].

The adoption of fault management strategies at such abstraction level
has been preliminary investigated in [25]. In the scenario of a multi-
core architecture, the authors proposed a reliable dynamic scheduler,

 goals requirementscontrol actions methods metrics measures raw data
✦ Wrong bytes
✦ Output bytes
✦ Tasks start time
✦ Tasks end time✦ Applications

 Execution Time

✦ Reliability
 Technique
✦ Granularity
✦ Switch-off PEs

✦ Rule-based
 Engine

✦ Reliability
✦ Performance

✦ Error Rate
✦ Detected
 Error Rate
✦ Throughput
✦ Average
 Exec. Time

Figure 4.1: Context dimensions and domains for the fault tolerance man-
agement self-adaptive system.

61

4 Runtime Transient Fault Management

describing a unique hardening technique, but focusing their attention on
a broader spectrum of issues, including diagnosis, components aging and
more. We propose a fault management layer at the operating system
level, implementing a strategy for dynamically adapting the reliability
level. The layer lies on top a revised version of a previously presented
scheduler [25], and introduces new elements to define the overall adapt-
able reliable system. The performance/reliability trade-off is evaluated
at runtime and the most convenient fault management technique, ac-
cording to globally defined metrics, is chosen, while not considering, at
the moment, other issues.
The methodology we envision is suited for application scenarios where

the dependability requirements need to be enforced only in specific work-
ing conditions (e.g., when an emergency situation arises) and/or for lim-
ited time-windows. In these cases, the system can adapt its behavior
and expose robust properties with possibly limited performance, or the
other way around. This is mainly due to the fact that performance and
reliability are usually conflicting goals. To balance this trade-off, the
methodology can act both on the hardware-level (e.g., FPGA-based sys-
tems, on which dynamic partial reconfiguration can be exploited to vary
the required reliability of a hardware component) and on the software-
level (as the multicore scenario here proposed), based on i) how harden-
ing techniques can be applied and ii) how the tuning of the hardening is
managed.

4.2 State of the Art

The proposed self-adaptive system is based on the autonomic control loop
paradigm. This paradigm has been implemented in many research fields
with promising results; in particular, various approaches, as Angstrom
Project [98], Barrelfish [7], and K42 by IBM [4], focus their attention
on enhancing operating systems with self-adaptive capabilities through
the introduction of an autonomic control loop. Their goal is to improve
the system performance in terms of throughput or execution time and,
sometimes, balance performance with power consumption, by applying
self-adaptation to different aspects of the system (e.g., process scheduling
or memory access management).
When considering reliability issues, several approaches for multicore

systems have been proposed in literature. Some of them consider per-
manent faults only, but they worth being mentioned for some of the fea-
tures they propose. In particular, the approach proposed in [49] features
a thread remapping mechanism for recovering from permanent faults;

62

4.2 State of the Art

however the recovery schemes are defined at design time, thus offering
a limited number of recoveries. An on-line approach for task remapping
has been proposed in [73], to deal with the occurrence of permanent
processor failures. The authors propose a runtime manager in charge
of making decisions concerning the adaptation of the system to chang-
ing resource availability. In particular, it identifies the most convenient
resource on which to remap the task, by means of online task remap-
ping heuristics. Although the proposal exposes dynamic adaptability
characteristics, they are exploited for the decision of the best remapping
candidate, with respect to a static precomputed solution, whereas there
is no dynamic tuning of the achieved reliability.
Approaches that deal with transient faults as well are closer to the

topics covered in this chapter; a comprehensive survey discussing, among
the others, solutions based on redundant execution to achieve fault de-
tection/tolerance, is presented in [41]. Most of the works surveyed (e.g.
[75, 65]) are based on application-level replication, re-execution or check-
pointing. However, they adopt a single hardening technique, thus repre-
senting a rigid solution which is not able to adapt to the possible changes
in the environment or in the system. Most of them limit their considera-
tions to single threaded application, an assumption that does not fit to-
day data-intensive applications. Some others (e.g. [2]) require a custom
architectural support to manage the replicated threads and the check-
ing/voting activity. Few approaches present a limited adaptability to
the evolving scenario. For instance, in [65, 2], two different strategies for
dynamically coupling processors are presented, aimed at re-configuring
the system architecture after the identification of a permanently faulty
core.
The approach presented in [99] offers the possibility to switch on and

off the application duplication strategy depending on the specified re-
quirement, that may be performance or reliability. An interesting adap-
tive approach is proposed in [30]: it is based on a set of simple rules
for changing the checkpoint schema at run-time according to the ar-
chitecture’s health and current configuration aiming at optimizing the
performance. Finally, in [25], an adaptive approach for multi/manycore
systems executing parallel applications is proposed. The approach ap-
plies a single fault tolerance strategy and tries to perform a load bal-
ancing of the threads on the available processing units to optimize the
performance while fulfilling reliability requirements. Moreover, the ap-
proach is able to adapt in case a unit is switched off after the detection
of a permanent failure.
In most of the existing runtime adaptable approaches for achieving a

dependable and high-performance system, the overall goal is to achieve

63

4 Runtime Transient Fault Management

dependability while minimizing performance degradation, by adapting
the execution of the application or the hardening to a changing plat-
forms, affected by faults. Therefore, most efforts are devoted to deter-
mine, at runtime, which new system configuration can provide the best
performance, with a modified (partially faulty) architecture. No solution
has yet tried to address the issue of dynamically adapting and leveraging
the achieved level of dependability, according to the evolving modified
architecture, as faults occur, in order to still balance the dependabil-
ity/performance trade-off.

4.3 Fault Tolerance through Self-Adaptiveness

The adaptive mechanisms that we envision are implemented by a fault
management layer introduced on top of the architecture and of the op-
erating system, as shown in Figure 4.2. The main goal of this layer is to
harden the execution of the issued applications and, at the same time,
to balance reliability and performance according to a set of conditions
that may evolve in time. This new layer borrows some concepts from
the one presented in [25], as far as hardening strategies are concerned,
although we here generalize the approach in this respect, while focusing
the attention of the new self-adaptive features.
The architecture of the fault management layer is now introduced,

while the design of the orchestrator will be discussed later in this section.
Do note that the work here presented mainly focuses on the proposal
of the adaptive fault tolerant strategy from a functional point of view.
Therefore, we present some details on the internals of the fault tolerant
layer, but we will not delve into its implementation-specific aspect, since
these aspects are strictly related to the specific target architecture and
operating system.

4.3.1 Fault Management Mechanisms

The fault management layer introduces reliability properties (fault detec-
tion or fault tolerance) in the application execution, by means of mecha-
nisms based on replications and re-executions of the overall applications
or some of its threads. These mechanisms are also used for perform-
ing diagnosis activities in order to identify suspect cases of permanently
damaged processing cores. In particular, the following techniques are
supported at present.

• Duplication with Comparison (DWC). As shown in Figure 4.3,
the technique guarantees the fault detection property by creating

64

4.3 Fault Tolerance through Self-Adaptiveness

Th
re

ad

Th
re

ad

Th
re

ad

Thread Th
re

ad

Th
re

ad

FM Layer

Operating System

Orchestrator

Figure 4.2: System structure overview: the FM layer acts between the
applications and the OS.

E

F

J

F

J

C

C C

C

E EE

Figure 4.3: Duplication with Comparison (DWC) technique applied to
all the tasks of the sample application of Figure 2.2.

a replica of the application and by comparing the outputs. In par-
ticular, a checker task is issued at the end of each node of the
application’s task-graph to identify discrepancies in the (interme-
diate) results.

• Triplication (TMR). This technique creates two replicas of the
original application, so to have three results to be voted by spe-
cific 2-of-3 majority voter tasks that mitigate the possible occurred
faults (Figure 4.4). Besides the fault tolerance property, the tech-
nique is also able to achieve fault diagnosis features, by identifying
the core producing the erroneous mismatching value.

• Duplication with Comparison and Re-execution (DWCR).
Similarly to the DWC technique, the original application is dupli-

65

4 Runtime Transient Fault Management

E

F

J

F

J

F

J

E
V

V V

V

E E E E

Figure 4.4: Triplication (TMR) technique applied to all the tasks of the
sample application of Figure 2.2.

cated, to have the possibility to detect possible errors by comparing
two results by means of a checker task. If an error is detected, a
third replica of the task is created and executed: in this way a voter
task is able to identify the correct result. Figure 4.5 shows an ex-
ample. This technique provides the fault tolerance property, and
may provide fault diagnosis features as well. It is characterized
by a limited overhead for achieving the fault tolerance property,
because the third replica is used and scheduled only after a prob-
lem has been detected. As a result the technique exhibits a time-
redundancy style of mitigation causing a delay in computing the
correct results, when compared against the previous techniques. In
fact, the technique aims at limiting the overheads in the most com-
mon case of fault-free execution, while incurring in an additional
timing overhead when a fault occurs.

Since we need to guarantee the correctness of the voters and checkers
results, these tasks must be executed on the controller core, which is
the only unit hardened by-design. Moreover, their duration is variable
and, in particular, it depends on the amount of data they are testing.
Finally, when a join node has only a synchronization functionality and
does not generate any output data, the voter will check only the correct
termination of its replicas.
Do note that the architecture uses a communication model based on a

shared memory. Therefore, there is no actual transmission to the control
core of the data to be compared/voted, that may cause a communication
congestion. At the end of a task, the PE will signal the termination and,

66

4.3 Fault Tolerance through Self-Adaptiveness

V
E

F

J

F

J
C C

C

E EE

C

R

Fault

Figure 4.5: Duplication with Comparison and Re-execution (DWCR)
technique applied to all the tasks of the sample application
of Figure 2.2.

during the execution of the voter/checker task, the controller core will
access the data in the memory region where the task wrote the results.

4.3.2 Layer Internals

In order to perform the additional hardening activities for enabling self-
adaptive reliability, similarly to [62], the layer wraps a set of system-
calls to the underlying operating system which are: thread_create,
thread_join and thread_ exit, devoted to thread start, termination
and synchronization, respectively, and _start and _exit, for the start
and termination of the main application thread.
Let us explain the basic mechanism through a simple example. Con-

sider a single-threaded application requiring fault tolerance properties,
on which TMR is applied; when it is started, the layer intercepts the
_start call and creates two additional thread replicas. In turn, the tile
scheduler will execute the replicas, and, after their termination identi-
fied by trapping the _exit call, the layer creates and executes a task
that votes the obtained results. To implement the exemplified behav-
ior, the layer collects the information of the threads; in particular, it
keeps track of the corresponding replicas of the same thread, to issue
voting/checking tasks upon their termination. The FIFO scheduler uses
a number of queues equal to the number of generated replicas and adopts

67

4 Runtime Transient Fault Management

D O

A

O
pe

ra
tin

g
Sy

st
em

Raw
Observations

Modify
Knobs

Decisions

Processed
Metrics

Application
Goals

FM
layer

Figure 4.6: The Observe–Decide–Act control loop.

a round-robin policy for selecting the current queue from which pops the
task to be executed; in this way it guarantees a balancing in the execution
of the various replicas. Moreover, to avoid that the use of permanently
failed PE for executing more than a replica could mine the effectiveness
of the hardening techniques, the scheduler maps corresponding replicas
on different cores.
The selection of the fault management mechanism to be applied is the

most critical activity, because each strategy provides specific reliability
properties and presents a different overhead on the performance due to
the number of generated replicas. Thus, an ad-hoc version of the orches-
trator has to be designed for performing this decision, and is presented
in the following section.

4.3.3 Orchestrator Design

The innovative aspect of the proposed approach is the inclusion of the
orchestrator in the fault management layer. It can act on the fault
management mechanisms and the scheduler behavior. The dynamism of
the environment consists in changes in the kind of issued applications,
the application requirements (performance vs. reliability), health status
of the processing core within the architecture, and the system workload.
The self-adaptive behavior has been implemented in the system by

means of the, already introduced, Observe–Decide–Act (ODA) control
loop, shown in Figure 4.6. The implementation of the three phases is
discussed in details in the following subsections.

Observe

A crucial step in designing the observe phase is the definition of the
quantities to be sensed and in the way they are aggregated into met-

68

4.3 Fault Tolerance through Self-Adaptiveness

rics. They provide a description of the system’s current status as much
complete and concise as possible to be useful to make decisions in the
subsequent phase. The following metrics have been identified in order
to observe the two main aspects of interest in the considered multicore
scenario: the performance, since such architectures are used as intensive
data processing applications, and the reliability, due to the increasing
failure trend.
For estimating the performance, the classical metrics measuring the

execution time are adopted: in particular, the average execution time,
and the throughput. In an application modeled through a task-graph
(as the example in Figure 2.2) the execution time of a single application
cycle is measured by evaluating the elapsed time between the beginning
of the execution of the first fork node and the end of the execution of
the last join node:

exec_timeoverall = tend − tstart. (4.1)

Then, the average execution time is computed on a window of the last
n executed cycles.
An alternative metric is the throughput. To evaluate this metric, the

orchestrator considers a window of the last n executed cycles of the
application and computes the ratio between the amount of produced
data and the overall execution time for that window:

throughput =
n · dout

tendn − tstart1
(4.2)

where dout is the amount of data produced during a single cycle and the
cycles are numbered from 1 to n.
When referring to reliability, the most relevant issue of the considered

data-intensive computing applications is related to the amount of errors
they may experience. Thus, the defined reliability-oriented metric mea-
sured by the adaptive environment is the detected error rate. Moreover,
it is computed on a window of the last n cycles of the application ex-
ecution. When considering the application model, we can estimate the
error rate by quantifying the portions of the results produced by faulty
tasks. Do note that in quantifying the error rate, fault propagation, task
crashes, and the detection method in use have to be taken into account
too.
Not all the hardening strategies are able to mitigate the detected er-

rors: in fact, DWC is not able to mitigate errors, and in some scenar-
ios other techniques may potentially fail, as discussed in the following.
When an error is not mitigated, it will be observed on the final output of

69

4 Runtime Transient Fault Management

Detected #Resources
Error Ratio low high

low TMR < DWCR TMR ∼ DWCR

high TMR ∼ DWCR TMR > DWCR

Table 4.1: Qualitative performance comparison between TMR and DCR
techniques. The comparison refers to the same level of gran-
ularity.

the application. Therefore, we also defined the not-mitigated error rate
which computes this percentage of errors.

Act

During the act phase, the system directly acts on the system knobs,
according to the choices taken in the decision phase. In our scenario
we can identify several knobs: the selection of the fault management
mechanism to be applied, the selective application of the mechanism, the
granularity at which it is applied, the possibility to activate or deactivate
a processing unit or changing its frequency, and so on. We here focus on
a subset of them presented in the following; all the other knobs are left
for a future investigation.
The first considered knob is mechanism selection, that is the choice of

the fault management mechanism to be applied on the running applica-
tion. As discussed, each technique has specific properties (fault detec-
tion, fault tolerance and fault diagnosis) and performance overhead. In
particular, the performance for the two mechanisms offering fault toler-
ance is listed in Table 4.1. TMR can achieve a greater throughput when
there is a high number of available processing cores and the system is
experiencing a high error rate: this is due to the fact that resources
are better exploited when running the three replicas in parallel; DWCR
would not be able to exploit these resources since the third replica would
be executed strictly after the first two and a voter will be also executed
in addition to the checker. On the other hand, DWCR proved to achieve
a higher throughput in a scenario with a low error rate and a reduced
number of resources since the third replica is optionally executed. In
the other two cases the performance of the two techniques depends on
the specific scenario and cannot be classified a-priori. Experimental ev-
idences of these considerations will be shown later on.
The second knob is the granularity the mechanism is applied at. The

70

4.3 Fault Tolerance through Self-Adaptiveness

granularity represents the possibility to perform a varying placement
strategy of the voter/checker tasks introduced by each fault management
mechanism, thus offering another way to tune the performance/reliability
trade-off. We consider only two different granularity levels, even if other
intermediate ones could be added:

• Coarser : checker/voter tasks (according to the considered mecha-
nism) are added only after the execution of an independent part of
the program: after join and fork_join tasks.

• Finer : checker/voter tasks are placed after each task in the task-
graph.

The concept of granularity can be, in theory, applied to all the hard-
ening techniques. Figure 4.7 shows an example applying the TMR at
the two different levels of granularity on the sample application of Fig-
ure 2.2. It is worth noting that in the coarser level only the final results
are checked/voted, while the possible intermediate results are discarded.
Moreover, when the join task has only a synchronization role and has
no data as final output, the voter will test the output data of the child
elaboration threads.
From a reliability point of view, some combinations of granularity level

and fault management mechanism do not offer any advantage. This is
the case of the DWC that offers the same features for both configurations;
however, as discussed later, the performance of the two configurations
depends on the specific working scenario and therefore it is not possible
to choose the best configuration a-priori. At the opposite, DWCR and
TMR offer different reliability properties according to the granularity.
When the coarser granularity-level is selected, it is not possible to

guarantee diagnosis features since error propagation effects would be in-
troduced and the source of the error would not be identifiable. Moreover,
in case of permanent faults, mechanisms offering fault tolerant proper-
ties cannot guarantee a 100% coverage, i.e. not all the faults occurring
in the system can be actually mitigated by the technique. In fact, the
mapping constraint of the sibling replicas discussed in Section 4.3.2 al-
lows a single permanent processor failure to invalidate tasks belonging to
different group of replicas before they are voted, as shown in Figure 4.8.
In order to guarantee a 100% coverage, the PEs should be partitioned in
a number of groups equal to the number of generated replicas, i.e. three.
However, since in general the number of processing unit is not multiple
of three, this partitioning would imply lower performance. Neverthe-
less, even if not providing the full error coverage, these mechanisms still
provide 100% fault detection coverage.

71

4 Runtime Transient Fault Management

E

F

J

E

V

(a) Coarser Level

E

F

J

E

V

V

V V

(b) Finer Level

Figure 4.7: Application’s task–graph hardened at the two different levels
of granularity: the colored dashed tasks represent the voter
nodes added to make fault mitigation possible.

E

F

J

E E

F

J

E E

F

J

E

Original 1st Replica 2nd Replica

PE0

PE0

PE0

PE1

PE1

PE1

PE1

PE2 PE0

PE2

PE2

PE2

V

Figure 4.8: If PE0 is permanently faulty, the presented mapping of the
tasks on three processing cores, PE0, PE1 and PE2, causes
TMR to fail.

72

4.3 Fault Tolerance through Self-Adaptiveness

Granularity #Replicas 100% FD 100% FT Diagnosis

Duplication with Comparison (DWC)

Coarser 2 Yes No No
Finer 2 Yes No No

Duplication with Comparison and re-Execution (DWCR)

Coarser 2/3 Yes No No
Finer 2/3 Yes Yes Yes

Triplication (TMR)

Coarser 3 Yes No No
Finer 3 Yes Yes Yes

Table 4.2: Qualitative evaluation of the described techniques with refer-
ence to reliability aspects (FD: Fault Detection – FT: Fault
Tolerance).

The placement of voter and checker tasks after each node allows DWCR
and TMR to achieve a 100% fault tolerance coverage; moreover, this
placement offers also diagnosis capabilities. Table 4.2 summarizes the
reliability aspects presented above.
The granularity level has also an impact on performance. Usually,

the selection of the finer granularity level incurs in a higher overhead on
the execution latency with respect to the coarser level, because a larger
number of checker/voter tasks is introduced. However, in some specific
situations the opposite behavior may occur, as we will show in the exper-
imental results. More precisely, when the architecture is composed by a
small number of processing units and the application generates a large
number of parallel threads, the finer granularity level offers the possibil-
ity to better schedule on the controller core a larger number of checker/
voter tasks comparing the results of the elaboration threads, since the
other processing units are overloaded with the execution of the tasks’
replicas. Due to this reason, DWC applied at the finer granularity level
has not been discarded even if it does not offer any advantage from the
reliability point of view. Finally, do note that the considerations drawn
in Table 4.1 hold at each level of granularity and, more precisely, these
relations are exacerbated as the level of granularity becomes coarser. In
particular, if the system experiences a high detected error rate, DWCR
is highly disadvantageous with respect to TMR since it would require a
considerable number of tasks to be re-executed.

73

4 Runtime Transient Fault Management

The last knob is the resource activation/deactivation. As discussed in
the description of the fault management techniques, during the execu-
tion, the orchestrator may diagnose a suspected damaged PE. In this
case, it can deactivate the PE in order to further analyze it by means of
specific diagnosis tasks. A PE can be deactivated by simply removing it
from the list of the available resources used by the scheduler. Later, if
the result of the accurate analysis is negative, the PE can be reactivated
and used again for executing the application.
As a final remark, do note that knobs can be adjusted only between two

different iterations of the application execution for allowing the context
switch. This is particularly true for the fault management mechanisms
since it is quite complex, even not unfeasible, to adapt internal data
and synchronizations related to replicas and checker/voter tasks from a
mechanism to another one.

Decide

The decision phase is implemented by the orchestrator through a rule-
based decision policy. From a high-level point of view, it evaluates the
system’s current status on the basis of the sensed metrics acquired in the
observe step, and makes a decision on the actions to be taken through the
knobs to reach the desired goal, specified as input when the application
has been issued.
As discussed in the previous sections, the two conflicting aspects on

which the proposed system focuses are performance and reliability; more-
over, each one of the considered hardening mechanisms together with
the granularity level of its application imply a specific impact on each
one of the two aspects: some mechanisms obtain a reduced performance
overhead but limited reliability properties, while other ones achieve high
reliability but incurring in a large performance overhead. Thus, the aim
of the system is to decide the most suitable mechanism to be adopted in
each situation to achieve a good trade-off between the two aspects. In
particular, the designed orchestrator allows one to specify the goal for
each issued application, by specifying which of the two aspects has to be
considered as constraints; consequently, the system will try to adapt its
behavior to optimize the remaining dimension. The adaptation is even
more necessary if we consider that the system conditions can evolve: in
particular, different applications with different goals may be issued, and
the architecture may change due to the deactivation of some faulty units.
The goal is specified as a threshold on the value of the metrics rep-

resenting the aspect to be controlled (not-mitigated/detected error rate
for the reliability, or average execution time/throughput for the perfor-

74

4.3 Fault Tolerance through Self-Adaptiveness

Fault Tolerance

DWCR
F/C

TMR
F/C

TUNING

Fault Diagnosis

DWCR F

TMR F

Fault Detection

DWC F

DWC C

TUNING

Figure 4.9: A FSM representation of the decision process in the case
reliability is the constrained dimension.

mance). Do note that the orchestrator will try to fulfill the specified
constraint, however, there is no guarantee that it will be satisfied com-
pletely ; in fact, the various decisions are made at run-time, and therefore
only at that time it will be possible to know whether the goal can be
reached.
The implemented decision policy is a simple rule–based system. The

specified goal is used by the system, first to identify the constrained
variable and the free one, and then to set a threshold used to take a
decision. In particular, the idea is to start the execution by choosing,
among the hardening mechanisms, the one having, in theory, the best
expected result for the unconstrained dimension and to analyze the ef-
fects on the constraint variable. The value specified as a constraint on
the application is compared with the current value of the metrics: if
the constraint is met, the mechanism currently in use does not need to
be changed; otherwise, a more appropriate technique is selected. This
first threshold is strict and a mechanism change occurs every time the
threshold is reached. Other thresholds can be determined at run-time by
estimating the effects of the available mechanisms on the current status
of the system.

We discuss here the decision policy design when setting the reliability
as the constrained dimension. The goal is specified together with the
input task-graph as a not-mitigated error rate R1 not to be reached. The
decision policy can be modeled with a hierarchical finite state machine
(FSM) is shown in Figure 4.9. The initial macro-state, labeled fault
detection, forces the system to apply the DWC mechanism, that is the
one that has the smallest impact on performance and allows to perfectly
keep track of the value of the current detected error rate. As discussed
DWC will only detect the errors without mitigating them. In particular,

75

4 Runtime Transient Fault Management

the first step is a tuning phase that aims at evaluating the performance
achieved by DWC when applied at finer and coarser granularity levels:
each one of the two levels is tested for one cycle. Then, the system
evolves in a second state where DWC is applied at the granularity level
that obtained better performance.

If the not-mitigated error rate threshold R1 is reached, then a mech-
anism enforcing the required fault coverage needs to be applied. This
will have the effect of reducing the error rate, while penalizing perfor-
mance. Therefore, the system evolves in the fault tolerance macro-state.
In this macro-state, the decision policy first performs a tuning phase for
profiling the two hardening mechanisms. In particular, for each mecha-
nism both the granularity levels are evaluated, and the less convenient
one is discarded; then, the decision policy selects the mechanism offering
higher performance and consequently evolves in the related sub-state.
Do note that the performance of DWCR depends on the number of re-
quired re-executions while the TMR one is almost constant. For this
reason, the adaptation stage will switch among the two mechanisms (at
the granularity level identified during the tuning phase) according to the
performance monitored during the execution.

If the detected error rate does not decrease in a given executions’ win-
dow, it means that some permanent failures may affect the architecture.
Therefore, to perform fault diagnosis, the system evolves to the fault
diagnosis macro-stage, which behaves similarly to the previous one but
exploiting only the finer granularity level. Note that the tuning step is
not necessary since the techniques have been already tested in the pre-
vious macro-state. During the diagnosis activity, based on the analysis
of the fault detection on each PE, if a unit is determined to be faulty,
it is switched off, and then the orchestrator evolves to the DWC state.
Finally, if the detected error rate decreases, the system evolves from a
macro-state to the previous one.

The FSM derived for the case of setting reliability as the constrained
dimension can be straightforwardly adapted to the case where perfor-
mance is the constrained dimension, or the case where a set of batch
applications is issued. In particular, the same thresholding mechanism
will be used, while the specific actions/techniques applied in each state
will be different. Moreover, the described decision phase is clearly ex-
tensible with new mechanisms, automatically taken into account during
the tuning state.

76

4.4 Experimental Results

4.4 Experimental Results

In this section we present the experimental sessions carried out to demon-
strate the effectiveness of the orchestrator. First, the experimental set-up
is illustrated and, later, the results of the experiments are discussed in
two different paragraphs.

4.4.1 Experimental Set-up

We adopted and enhanced the simulator previously defined for the ex-
perimental sessions presented in [25]. The original tool consists of a
SystemC transaction level model [1] of the discussed architecture able
to simulate the execution of applications modeled in terms of fork-join
graphs. Thus, we implemented in the SystemC model all the considered
fault management mechanisms, the support for the granularity levels and
the discussed orchestrator.
In the performed experimental sessions, we considered a set of com-

monly used parallel applications taken from the case studies. In particu-
lar, we present here the results obtained on a specific application aligned
with the application scenario we refer to, that it the edge detector. We
characterized it with a static analysis on the source code for building the
task-graphs annotated with the amount of data processed by each task.
Moreover, we used an instruction set simulator running a sequential ver-
sion of the application for estimating the execution times of the various
tasks, as in [67]; such execution times contains also bus and memory
access latencies. Indeed, as noted in [67], when working at this level of
abstraction, interactions among tasks (e.g., resources conflicts) are not of
interest since they are later considered in more accurate lower-level sim-
ulations. In particular we used the ReSP simulation environment [80] for
simulating an ARM7 unit working at 333MHz connected to a memory
through a bus, each one with a transmission latency equal to 10ns/word.
Finally, we also estimated the execution times of the voters and checkers
for the different amount of data to be compared. The resulting task-
graph is shown in Figure 4.10, while a subset of the execution times for
the voters and checkers are presented in Table 4.3.
We generated fault lists according to an exponential probability distri-

bution over the experiment duration, since it is well suited for describing
transient faults. They were created by varying the failure rate of the dis-
tribution in order to stimulate the system in different ways, thus causing
mutating environmental conditions. The generated lists obey the single
failure model assumption. Note that, the considered fault probabilities
have been created with a high frequency with respect to fault occurrence

77

4 Runtime Transient Fault Management

567
us

1859
us

50
us

567
us

567
us

567
us

14398
us

14398
us

14398
us

14398
us

1859
us

0 bytes

2000 bytes each

6000 bytes each

0 bytes

0 bytes

RGB to
grayscale

edge
detection

Figure 4.10: Task-graph for the edge detector application.

Data (byte) Checker Voter

2000 byte 423µs 920µs

6000 byte 1237µs 2550µs

Table 4.3: Execution times for voting and checking various amount of
data.

78

4.4 Experimental Results

in the real world; the aim is to perform a sort of accelerated experi-
ment to better highlight the capability of the orchestrator to adapt to
the environment stimuli. Therefore, we expect the system to behave
in the same way in the real world scenario, although on a longer time
window. It is worth noting that the accelerated experiment requires the
size of the window for the metric computation to be shrunk to make the
orchestrator more reactive to the higher external stimuli.

4.4.2 First Experimental Session

The goal of the first experimental session is to show how each single
fault management mechanism behaves differently according to the spe-
cific scenario, offering a different performance/reliability trade-off. More-
over, the orchestrator is able to select, during the execution, the most
suitable fault management mechanism at each time, outperforming the
single statically-selected strategies. We considered four different archi-
tectures composed of 6, 8, 10 and 12 processing cores, respectively, and
we generated three fault lists F1, F2 and F3 with a failure rate (i.e.,
probability of a single processor failure) equal to 0.0005, 0.001 and 0.003
every 200µs.
In this experimental session we ran the application hardened with all

the available mechanisms, selected at design-time, and with the pro-
posed decision policy. Moreover, we tested all the strategies on each pair
<architecture, fault list>. The comparison of the various approaches
was performed by executing the application for a specific number of cy-
cles (equal to 200), thus mimicking the elaboration of a fixed amount of
data. We considered a threshold for the not-mitigated error of the 5%
and a window for the metrics computations of 10 cycles.
The results of the experimental session are presented in Figure 4.11,

where the overall execution times are reported. Each chart presents the
results obtained for each fault distribution when adopting various mecha-
nisms on the considered architecture. The average of not-mitigated error
rates confirmed the expected values: 0% for all fault tolerance strategies
(since no permanent fault was injected), less than 5% for the proposed
adaptation policy, while DWC is not able to mitigate any error. We did
not report them in the figure.
From an accurate analysis of the bar charts we can notice that, as ex-

pected, there is not a mechanism that is always prevailing on the other
ones, and each of them achieves better performance in a specific scenario.
Moreover, the following empirical rules can be inferred. In general, even
if coarser granularity level introduces a smaller number of voter/checker
tasks, the finer one is preferable when the number of available processing

79

4 Runtime Transient Fault Management

DWC COARSER
DWC FINER
DWCR COARSER
DWCR FINER
TMR COARSER
TMR FINER
ORCHESTRATOR

6 8 10 12
Number of Cores

Ex
ec

ut
io

n
Ti

m
e

[μ
s]

4×106

5

6

7

8

9

10×106

(a) Fault list F1.

DWC COARSER
DWC FINER
DWCR COARSER
DWCR FINER
TMR COARSER
TMR FINER
ORCHESTRATOR

Number of Cores
6 8 10 12

Ex
ec

ut
io

n
Ti

m
e

[μ
s]

4×106

5

6

7

8

9

10×106

(b) Fault list F2.

DWC COARSER
DWC FINER
DWCR COARSER
DWCR FINER
TMR COARSER
TMR FINER
ORCHESTRATOR

6 8 10 12
Number of Cores

Ex
ec

ut
io

n
Ti

m
e

[μ
s]

4×106

5

6

7

8

9

10×106

(c) Fault list F3.

Figure 4.11: Overall execution times for the edge detector on the various
architectures stimulated by each fault list.

80

4.4 Experimental Results

cores is small, as already motivated in Section 4.3.3. In particular, this
can be observed from the results reported in Figure 4.11 for the archi-
tectures with six cores. A detailed investigation of the scheduling Gantt
charts allowed us to highlight the following situation: when the num-
ber of PE is limited, voter tasks analyzing intermediate results used in
DWC/F do not overload the control core thus achieving an overall better
performance than DWC/C, that postpones all results’ checking at the
end of the application’s replicas execution. This phenomenon is exploited
by the proposed technique that thus achieves better performance.
Moreover for DWC and TMR, the break-even point is represented

by the value obtained by multiplying the maximum number of parallel
threads generated by the application by the number of replicas required
by the mechanism (for instance, for the edge detector, 4×3 for TMR and
4×2 for DWC); on the other hand, it is not possible to identify an exact
break-even point for DWCR even if the trend is similar. The second
consideration is that the performance of the two granularity levels for
DWCR depends also on the fault frequency: in fact, when the frequency
is high the finer level is more convenient since it allows to re-execute only
a reduced portion of the application. A final consideration is that TMR
seems not to be convenient in any scenario; however, as shown in the
following experiment, it will outperform the other mechanisms when the
error frequency is even higher, i.e., when a permanent fault affects the
architecture.
When considering the proposed adaptation policy (last bar in each

chart), we can notice that it outperforms all the statically selected ap-
proaches (DWC should not be considered since it is not able to mitigate
the errors thus producing corrupted results). As expected, the orches-
trator is able to select the best mechanism in each instant of time, thus
maximizing the performance while meeting the specified threshold on the
not-mitigated error ratio. The performance improvement on the best of
static approaches in each scenario spans from 1% to 13%. In one sce-
nario only the orchestrator exhibits worse performance than the DWCR
applied at finer granularity (i.e. on the architecture with 6 cores stimu-
lated by the fault list F3); indeed, the limited number of processing units
in the considered architecture causes a high latency to execute a single
cycle, and, consequently, the orchestrator evolves too slowly to select the
appropriate mechanism to mitigate the high frequency of faults.
Even if the scenarios presented so far showed the necessity for a dy-

namic mechanism selection, they are not the situations in which the
proposed orchestrator shows its effectiveness. In fact, the considered
fault lists have been generated by means of a constant failure rate and
no permanent fault has been injected. Therefore, in a second experi-

81

4 Runtime Transient Fault Management

mental session, we aimed at showing the adaptation capability of the
orchestrator by considering a fault list generated with a variable failure
rate and a permanent fault corrupting a single processing core.

4.4.3 Second Experimental Session

In the second experimental session, we executed the edge detector in a
scenario with evolving environmental conditions in terms of fault dis-
tribution. For about the first 4, 000s the system experiences a failure
rate equal to 0.001 every 200µs; then, from time 4000s to 10, 000s this
probability is increased to 0.003 every 200µs: in this way the behavior
of the system when a varying failure rate occurs is tested. To make the
scenario more complete and complex, at time 10s a permanent failure
is injected in one of the architecture cores. The edge detector is run for
600 cycles on an architecture made up of 12 cores.
The first plot (Figure 4.12(a)), aims at showing which is the system’s

behavior perceived from the outside. The top part of the graph shows the
number of detected and not-mitigated errors experienced at each cycle
by the system. This allows to figure out the role played by the fault
mitigation techniques in reducing the number of visible faults. Finally,
the gray vertical areas describing the used hardening approach in each
time interval.
The second plot (Figure 4.12(b)) shows the internal status of the or-

chestrator, and in particular presents the values of the metrics on which
the orchestrator makes decisions on the mechanism to select at each
execution cycle. On the top graph, the average window values for the
detected and not-mitigated error rates are plot (for this experiment a
window value of 20 cycles was chosen), while the dashed horizontal line
at value 0.05 represents the reliability constraint specified by the user. In
the bottom plot the average window value for the performance is shown.
Therefore, the orchestrator selects a specific mechanism according to the
current values of the metrics; the selected mechanism is reported by
means of gray areas of different intensity.
By looking at all the graphs, it is possible to see how the proposed

approach actually allows to adapt the behavior of the considered system
to cope with the mutating fault distribution. Indeed, at the beginning
of the execution, when the failure rate is relatively low, the orchestrator
decides not to mitigate any fault, but only to detect them. When the
number of detected errors becomes too high, the orchestrator performs
a tuning phase, analyzing the performance of the techniques providing
fault tolerance. Thus, in this first phase, DWRC at the finer level is
selected to be executed alternatively to DWC at the coarser level. When

82

4.4 Experimental Results

TMR C TMR C

DWC C DWC C DWC CDWC C TMR F

TUNING DWCR F

Number of Not Mitigated Errors
Number of Detected Errors

C: coarser granularity
F: finer granularityDWC C

Permanent Fault InjectedEx
ec

ut
io

n
Ti

m
e

[μ
s]

30000

40000

N
um

be
r o

f E
rro

rs
 [b

it]

0

10000

20000

Execution Cycle
0 50 100 150 200 250 300 350 400 450 500 550 600

(a) Execution latency, and number of detected/not-mitigated errors at each cycle.

TMR C TMR C

DWC C DWC C DWC CDWC C TMR F

TUNING DWCR F

DWC C

Not Mitigated Error Rate
Detected Error Rate

C: coarser granularity
F: finer granularity

Permanent Fault InjectedEx
ec

ut
io

n
Ti

m
e

[μ
s]

25000

30000

Er
ro

r R
at

io

0

0.2

0.4

0.6

0.8

Execution Cycle
0 50 100 150 200 250 300 350 400 450 500 550 600

(b) Average execution latency and detected/not-mitigated error rates over the specified
window.

Figure 4.12: Metrics computed over the overall experiment execution.

83

4 Runtime Transient Fault Management

the failure probability increases, DWRC performance is no more satis-
fying and TMR at the coarser level becomes the chosen fault tolerant
mechanism, to be executed in alternative to DWC. Finally, from about
the 370th execution cycle, the orchestrator identifies an even higher er-
ror ratio suspecting the presence of a permanent fault and definitively
switches to TMR applied at the finer level to perform the fault diagnosis;
if the response is positive, the orchestrator will switch-off the damaged
PE and will apply again DWC.
As a final note, Figure 4.13 compares the throughput achieved by the

presented approach with all the other statically selected mechanisms also
with respect to the plain execution; on each bar the relative percentage
value with respect to the plain execution is reported. As discussed above,
DWC applied at both levels obtains best performance but it violates the
reliability requirement on the error ratio. Then, when considering the
other strategies, the orchestrator obtains an improvement of only the 5%
with respect to the TMR at coarser level; however, this mechanism is
not able, in the second part of the experiment, to perform fault diag-
nosis. Thus, a fair comparison can be performed only with TMR and
DWCR applied at finer level since they offer all the discussed reliability
properties; in such a scenario, the orchestrator obtains an improvement
of 18% and 23% respectively, thus demonstrating its effectiveness. As
a final note, the throughput of the plain execution is not considerably
higher than hardened ones as it may expect. This is due to the fact that
the number of threads generated by each fork is decided at design-time
(equal to 4) and therefore it is not possible to fully exploit the archi-
tecture capabilities; a possible future development of the approach may
consider the dynamic decision of the number of threads as also supported
in OpenMP [95].

4.5 Final Remarks

In this chapter we introduced the design of an self-adaptive system and
related orchestrator for fault management in multicore architectures,
able to monitor and adapt itself in order to pursue the desired perfor-
mance/reliability trade-off. The orchestrator is implemented in a fault
management layer working on top of the operating system, in charge
of providing reliability properties when desired. The proposed solution
dynamically selects and applies fault detection/tolerance mechanisms to
mitigate the effects of faults while optimizing performance. Experimen-
tal results performed in the image processing scenario show that the
provided self-adaptability feature allows to achieve better performance

84

4.5 Final Remarks

NOT HARDENED
DWC FINER
DWC COARSER
DWCR FINER

DWCR COARSER
TMR FINER
TMR COARSER
ORCHESTRATORFault Detection

Fault Detection & Mitigation

72.97%100% 79.10% 54.80% 48.55% 57.33% 64.31% 67.46%

Reliable Technique

Th
ro

ug
hp

ut
 [K

B/
s]

0

200

400

600

800

1000

1200

1400

Figure 4.13: Throughput for the edge detector on the architecture with
12 processing cores, stimulated with a fault list presenting
a variable failure rate and a permanent fault.

while fulfilling the reliability requirements with respect to traditional,
static solutions.

In the next chapter a self-adaptive system for extending architecture
lifetime through age mitigation (while minimizing energy consumption)
will be presented. It is based on the same autonomic control loop
paradigm, but exploits different monitors, decision policies and knobs
to achieve such goal.

85

5 Runtime Aging Management

This chapter describes a novel self-adaptive system for mitigating aging
in multi/manycore architectures. In the first part of the chapter the
lifetime evaluation process will be presented and the design of a frame-
work for lifetime estimation discussed. The remainder is devoted to the
presentation of runtime resource management policies for extending ar-
chitecture lifetime, both at the node and at the multi-node level, while
minimizing energy consumption and meeting performance constraints.

5.1 Background

The first step in extending the system lifetime is to be able to measure
it. This activity is particularly challenging when considering a com-
plex multicore architecture with possibly multiple and subsequent PE
failures, and when supporting runtime resource management strategies,
whose effects on cores’ aging and wear-out is a-priori unknown. Should
sensors be available, it would be a matter of accessing their information.
However, in a generic architecture such sensors are not available and it is
necessary to estimate the aging of a core or a system by referring to the
performed activity and the working conditions. When these aspects vary
during the life of the system, the computation may be particularly com-
plex. We here first discuss how we estimate the aging, then we introduce
the tool to support such computation.

Reliability of a single system at time t, R(t), is usually referred to
as the probability that the system has been operational until t. As
suggested by the JEDEC Solid State Technology Association [57], the
lifetime reliability of a single digital component, such as a PE, can be
modeled according to the Weibull distribution

R(t, T) = e
−
(

t
α(T)

)β
, (5.1)

being t the current instant of time (generally measured in hours), T
the (steady-state) PE temperature (Kelvin degrees), β the Weibull slope
parameter (considered to be independent of the temperature), and α(T)
the scale parameter [52]. The lifetime of the PE is estimated in terms of

87

5 Runtime Aging Management

its Mean Time To Failure (MTTF), defined as the area underlying the
reliability function R(t, T):

MTTF =

∫ ∞
0

R(t, T) · dt. (5.2)

The α(T) parameter formulation depends on the wear-out effects to be
modeled, such as [57]: electromigration (EM), thermal cycling (TC),
time-dependent gate oxide breakdown (TDDB), or negative-bias tem-
perature instability (NBTI). As a proof of concept, EM related wear-out
failures will be considered for the framework validation in the experi-
mental results. In the EM model, Black’s equation is used to compute
α(T):

α(T)EM =
A0(J − Jcrit)

−ne
Ea
kT

Γ
(

1 + 1
β

) (5.3)

where A0 is a PE-dependent constant, J is the current density, Jcrit is
the critical current density for the EM effect to be triggered, Ea is the
activation energy for EM, k is the Boltzmann’s constant, n is a material-
dependent constant, β the slope parameter of the Weibull distribution
and Γ() is to the gamma function. However, it is possible to integrate
other effects either as standalone contributes or by using the sum-of-
failure-rates (SOFR) approach for any combination of the above failure
effects [90]. In fact, in the second part of the chapter (when DVFS
comes into play), thermal cycling will also be considered. Coffin-Manson
equation [57] can be used to model TC effects and α(T) can be written
as:

α(T)TC = C0(∆T −∆T0)
−qf. (5.4)

where ∆T represents the temperature cycling range and ∆T0 the elastic
portion of the thermal cycle (typically, ∆T0 << ∆T , thus ∆T0 can be
dropped from Equation 5.4); C0 is a material dependent constant, q is
the Coffin-Manson exponent, and f is the frequency of thermal cycles.
In conclusion, by exploiting the SOFR model, α(T) due to both TC and
EM is given by the sum of α(T)EM and α(T)TC .
To formulate R(t) for the general scenario of a multicore system shar-

ing a variable workload, the above formulas need to be revised to con-
sider two specific aspects: i) temperature changes due to a variation
in the workload, and ii) system composition in terms of its resources
and its capability to survive beyond the first failure. These two aspects
are here now briefly presented in relation to the scenario of the pro-
posed approach; for a more precise formulation, it is possible to refer

88

5.1 Background

timeline0 t1 t2 ti-1 ti

T1 T2 Ti
Temperature:

Figure 5.1: Model of a PE’s temperature profile over time.

R
R

EM
AP

t1 t

R(t)

workload change

R(t,T1)
R(t - t1 + t1,T2)^

R
el

ia
bi

lit
y

0

1

Time [h]
0 1×105

R
R

EM
AP

t1t1̂

R(t,T2) has to
be rightshifted
to connect the
two curves in t1

R(t,T1)
R(t,T2)

R
el

ia
bi

lit
y

0

1

Time [h]
0 1×105

Figure 5.2: Reliability curve considering temperature changes.

to [69, 51]. When the temperature changes as shown in Figure 5.1 (to
keep the computation manageable, steady-state temperatures are con-
sidered), the exact computation of the R(t) function is computed using
Equation 5.1 and its inverse function, R−1(r, T), defined as:

R−1(r, T) = α(T) · (−log(r))1/β (5.5)

being r a reliability value. The R−1(r, T) function returns the elapsed
time t, starting from time 0, when the system reaches the reliability
value of r, under the influence of a fixed temperature T . In particular,
the R(t, T1) function can be directly applied only to a new PE (i.e.,
when t < t1, being t1 the time when a load redistribution takes place
causing a change in the steady-state temperature). On the other hand,
when t ∈ (t1, t2], the PE reliability is equal to R(t − t1 + t̂1, T2), where
t̂1 = R−1(r1, T1) and r1 is the reliability value in t1 [69]. Similarly, the
system’s reliability for values of t in the next steps can be computed
with a recursive approach by using the above-mentioned formulas. From
a graphical point of view (shown in Figure 5.2), R(t, T) is a curve starting
from t = 0 (and R(0, T) = 1) with a varying shape that depends on the
temperature T . Therefore, at each temperature change it is necessary
to right-shift the new reliability curve in order for it to intersect the old
reliability value. Finally, the R(t) formula considering a variable PE’s

89

5 Runtime Aging Management

temperature can also be rewritten in the following way [101]:

R(t) = e
−
(∑i

j=1

τj
αj(T)

)β
. (5.6)

where τj represents the duration of each period of time with constant
temperature Tj up to time t (i.e., t =

∑i
j=1 τi).

All the equations discussed so far refer to the case of a system with a
single PE. Let us now move to a system consisting of n PEs subject to a
sequence of k failures, causing a redistribution of the workload after each
failure occurrence. Such scenario is usually referred to as a load-sharing
k-out-of-n:F system, made up of non-independent and non-identically
distributed (non-i.i.d.) variables with arbitrary distribution. k (≤ n) is
the minimum number of PEs that have to fail before the entire system
becomes out-of-service. The reliability of such system is computed by
using the total probability formula:

R(t) = Pno_f (t) + P1_f (t) + · · ·+ Pk−1_f (t). (5.7)

Pno_f (t) is the probability that no failure occurred and is computed as
the product of the reliability of all PEs:

Pno_f (t) =

n∏
i=1

Ri(t). (5.8)

We call the MTTF to the first failure the integral between 0 and +∞
of such formula; as discussed above, several works [50, 58, 29, 54] ap-
proximate the system MTTF to such value. P1_f (t) is the sum of the
probabilities of occurrence of n different cases where a single PE fails
and its load is redistributed onto the other working units:

P1_f (t) =

n∑
i=1

∫ ∞
0

fi(t1) ·
n∏

j=1,j 6=i
Rj(t|ti1)dt1 (5.9)

where fi(t) is the probability density function of Ri(t), i.e., the probabil-
ity that the failure occurred on PE i at a specific time t1, and Rj(t|ti1)
is the conditioned reliability function of PE j knowing that PE i failed
at time t1. It is worth noting that conditioned reliability functions can
be computed by using the formulas for load remapping, as shown in [69].
Similarly, P2_f (t) is computed as:

P2_f (t) =

n∑
i=1

n∑
j=1,j 6=i

∫ ∞
0

∫ t2

0
fi(t1) · fj(t2|ti1)· (5.10)

·
n∏

m=1,m6=i 6=j
Rm(t|ti1, t

j
2) · dt1 · dt2 (5.11)

90

5.2 Aging Evaluation

by using probability density functions and the reliability function con-
ditioned by the previous sequence of failures, the first one occurred at
t1, the second one at t2>t1. Finally, the general scenario considering the
sequence of k − 1 failures is a (k − 1)-dimensional integral that can be
written recursively on the basis of Equations from (5.7) to (5.10).

5.2 Aging Evaluation

The existing solutions for aging evaluation and lifetime estimation ([50,
58, 101, 43]) are either too simplistic (e.g., they consider the system to fail
after the first PE fails) or are limited in the features (e.g., homogeneous
workload distribution and static design-time mapping), not allowing the
designer to fully estimate the system’s lifetime in a dynamic working
scenario. In the following we report a review of the literature highligthing
the limitations our proposal aimed at overcoming.

5.2.1 State of the Art

Devices aging and wear-out mechanisms (such as EM, TC, TDDB, and
NTBI) have been accurately studied and modeled [57]. These models
usually consider a homogeneous device and assume a single steady-state
operation mode at fixed (worst-case) temperature. These aspects con-
stitute a significant limitation when taking into account modern systems
composed of many processors, working in highly dynamic contexts, in
terms of both the executed workload and its distribution on the PEs,
elements that highly affect system’s aging rate.
One of the first system-level models for lifetime reliability evaluation

is presented in [90]; it uses a SOFR approach to take into account several
aging mechanisms. The proposed approach, as well as subsequent ones,
considers a single core architecture [33] or adopts exponential failure
distributions [58] that are though unable to capture accumulated aging
effects. As a result, they are not suitable for multicore architectures
supporting load-sharing.
When using Weibull or lognormal distributions to consider the aging

history, as in [50] and [101], an important issue related to the computa-
tional complexity of the lifetime reliability evaluation arises. In fact, in
each instant of time, the reliability of each component is a function of
the current working conditions and the aging effects accumulated in the
previous periods of activity. Actually, the simulation of the overall life
of the system capturing the workload evolutions is a prohibitive time-
consuming activity. Therefore, many approaches [58, 50, 101] simulate
and trace only a subset of representative workloads for a reduced period

91

5 Runtime Aging Management

[90] [33] [58] [50]/[54] [101]/[51] [29] [43]

Architecture S S M M M M M

Aging Model W W E W W W sensors

Workload static Avg T Avg T Avg α Avg α Avg T sensors

Toler. Faults × × × × X × X

Table 5.1: Comparison of the state the art frameworks (Architecture: sin-
gle core (S), multicore (M) – Aging Models: exponential dis-
tribution (E), Weibull distribution (W) – Workload : average
temperature (Avg T), average aging factor (Avg α) during the
considered period).

of time with a fine granularity, then extrapolating the average tempera-
ture [58] or an average aging rate [50, 101] to be considered during the
MTTF computation. However, while the former strategy is highly in-
accurate (as shown in [50]), the latter is able to capture only workload
changes in the short period of time considered for the simulation; they do
not capture the evolution of the lifetime reliability curve due to changes
that fall outside the simulation window.

Another issue in the computation of the lifetime reliability is the fact
that the system may tolerate a given number of failures by remapping
the workload from the failed PE to the healthy ones. As shown in some
theoretical works [69, 51, 81], the system reliability formula is based on
a multidimensional integral, whose dimension is given by the number of
failures the system can tolerate. In practice, its analytical solution is
unfeasible because the direct numerical computation is not affordable in
terms of execution time. As a consequence, many approaches [50, 58,
29, 54] consider the entire system not to survive beyond the first failure,
while others [42] compute the MTTF iteratively by selecting at each step
the lowest MTTFs. Both solutions are inaccurate.

Finally, other approaches [51, 101, 43] adopt Monte Carlo simulation to
quickly and accurately compute the multidimensional integral. However,
they take into account only a “static” working scenario, with lack of
generality and offering only a theoretical discussion of lifetime reliability
estimation. In this work, we aim at overcoming such shortcomings. Table
5.1 summarizes the features of the cited state of the art frameworks.

92

5.2 Aging Evaluation

Lifetime R
Evaluator

W
or

klo
ad

s

Ar
ch

ite
ct

ur
e

O
pe

ra
tin

g
Co

nfi
g.

Re
po

Estimation
Parameters

Aging Rates
x Mapping

System
Simulator

Aging
Models and
Parameters

R(t)
MTTF

Figure 5.3: Workflow of the proposed framework.

5.2.2 The proposed framework

The preliminary discussion on the MTTF computation has shown that
the direct numerical evaluation of the reliability of a k-out-of-n:F system
subject to a variable workload is computationally feasible only for small
values of k and, therefore, motivates once more the proposed approach.
This is the reason why we developed CALIPER (monte CArlo LIfetime p
reliability EstimatoR) [17]. It supports: i) common failure mechanisms
that model component failures as non-independent and non-identically
distributed (non-i.i.d.) variables, ii) the computation of the lifetime of a
system composed of n processors sharing a workload and able to tolerate
a given number of k failures by means of load redistribution, and iii) the
reliability curve analysis for long-period evolving workload scenarios. A
block diagram for the framework is shown in Figure 5.3. It takes as inputs
the specifications of i) the system’s architecture, ii) the workloads (made
up of a set of applications), iii) the failure mechanisms of interest, and
iv) the representative operating configurations. In particular, the archi-
tecture and application specifications are models that can be simulated,
with the former one being characterized from a thermal point of view;
moreover, the parameters characterization of the failure mechanisms is to
be provided. The last input is the description of all possible working con-
ditions of the architecture, corresponding to different healthy/failed PEs
with different workload distributions. These operating configurations are
organized in a tree-based structure, called operating configuration repos-
itory, where the root represents the initial architecture and each path
starting from it is a sequence of PE failures to be considered; therefore,
first-level nodes correspond to single PE failures, i-level nodes to i failed
PEs. The depth of the tree is bounded by k failures, according to the

93

5 Runtime Aging Management

designer’s specifications. Each node (called operating configuration) in
the tree is annotated with a set of mappings, each one describing how
the workload is distributed on the healthy PEs. There will be a single
mapping in the scenario where changes in the workload distribution are
only triggered by a PE’s failure. Otherwise, when a dynamic workload
scenario is envisioned, the time plan of the various workloads will be
provided, by listing the set of considered mappings, each one with its
own duration.
CALIPER is internally organized into two modules: the lifetime reli-

ability evaluator and a supporting system simulator. The first module,
the core of the proposed work, performs the lifetime reliability evalua-
tion for the overall system by means of Monte Carlo simulations; more
precisely, it estimates the system’s reliability curve R(t) and its expected
lifetime, in terms of MTTF. To perform such computation, the evalua-
tor module requires the aging characterization for the architecture’s PEs.
This characterization must be computed under the influence of the ex-
ecuted workload in all operating configurations (and related mappings)
considered in each specific Monte Carlo simulation. Therefore, the sys-
tem simulator is invoked once for each considered mapping to estimate
the thermal profile of the PEs and to derive their aging rates α(T). The
internals of the two modules are described in details in the following.

Aging rates estimation

The simulation engine is a service module used to characterize the life-
time reliability of the system at processor level; it receives as input the
operating configuration and the mapping, and produces as output the
reliability characterization of each PE within the architecture for that
scenario, in terms of the average aging rate. To this end, the main ac-
tivity of this module is to estimate the thermal profile of each PE with
respect to the given workload distribution.
Within the same operating configuration mapping, PE’s temperature

varies significantly from application to application and, at a finer granu-
larity, with different applications’ tasks; moreover, it is also affected by
thermal interferences with neighbor units on the architecture floorplan.
As an example, Figure 5.4 reports the thermal profile associated with
the execution of a given application, modeled by a periodic task graph,
with respect to a given mapping (containing also the scheduling infor-
mation): the temperature of a PE depends also on the activity of the
neighbor units, running their part of the application. Thus, architecture
and application models have to capture all these aspects; more details
will be provided in Section 5.2.3 for the specific solution we adopted in

94

5.2 Aging Evaluation

2

1

2 3

4

C2

C1 1 3 4

t0 t1 t2 t3 t4

T10 T11 T12 T13

T20 T21 T22 T23
timeline

Figure 5.4: Example of application execution and thermal profile.

the proposed framework prototype.
Since for each mapping in the operating configuration repository the

workload is almost stationary, as shown in [101], it is not necessary to
simulate the system for its complete life and to compute the reliability
curve by means of Equation 5.6; such activity would be actually compu-
tationally non affordable. Indeed, it is possible to compute the average
aging rate by tracing the system execution for a representative time pe-
riod and by using the following formula:

α =

∑p
i=0 τi∑p

i=0
τi

αi(T)

(5.12)

where τi represents the duration of the p atomic steps (with constant
temperature on each PE) within the simulated period. Then, the reli-
ability evaluator uses such values as input parameters in Equations 5.1
and 5.5 to derive the lifetime reliability of the overall system. As a final
note, even if simulated times may span from few microseconds to several
hours, the result is the average aging per time unit, since Equation 5.12
is a ratio between the accumulated aging rates and the time window;
considering the units of measure of the various parameters, the α value
is generally referred per hour.

Reliability computation

The second module of the framework is devoted to the evaluation of
the lifetime reliability curve R(t) of the entire system and the related
MTTF. Since numerical evaluation of the model presented in Section 5.1
is computationally unsustainable for more than 4 subsequent failures (as
shown in Section 5.2.3), this activity is performed by means of Monte
Carlo simulations to greatly reduce the computational time while ob-
taining accurate results. In the following paragraphs, the basic approach
is discussed in details, and two improvements are then presented: i) the

95

5 Runtime Aging Management

automatic tuning of the number of simulations needed to obtain a cer-
tain confidence in the obtained results and ii) the handling of variable
workloads.
The basic scenario we consider (non-i.i.d. load-sharing) is character-

ized by a change in the workload distribution on the healthy PEs only
when a PE fails. Multiple subsequent failures are considered: the whole
system fails when the number of healthy PEs is below a threshold spec-
ified by the designer. The pseudo-code for the lifetime computation is
shown in Algorithm 1 and here briefly explained. Before getting into the
details, for readability’s sake, it is worth redefining the two functions R()
and R−1(), describing the reliability of a single PE, to take as input the
α parameter, computed by means of the system simulator, in place of
the temperature T . The inputs of the algorithm are: i) the number n of
PEs in the architecture, ii) the number of failures k that causes the entire
system to become out-of-service, and iii) the number of simulations to
be performed #iter.
A single Monte Carlo test consists of a simulation of a randomly-

chosen sequence of PE failures’ events; the goal is to compute the time
to failure (TTF) of the overall system during that specific simulation.
To compute the lifetime reliability, the same procedure must be iterated
#iter times. After an initialization phase (Lines 2–5), the random walk
step takes place and is repeated until the number of healthy PEs reaches
n-k (Lines 7–27). Starting from a completely healthy architecture, for
each iteration a specific subset of healthy PEs with a given workload dis-
tribution is selected and a failing event happens; the PE failing at time t
is randomly chosen among the healthy ones. This failure triggers the up-
date of the system reliability based on the ones of the remaining healthy
PEs. To compute the α values for each step, the getAlpha() function is
used; it invokes the simulation engine by specifying the current operating
configuration currConfig. For all the healthy PEs i, a new reliability
value randR is randomly chosen within [0, currR[i]] (Line 11): it repre-
sents the reliability at which that PE will fail. The corresponding time
instant t (all times are measured in hours) for such failure is computed
(Line 12). Moreover, the time period between the current failure and
the subsequent one needs to be computed, by evaluating the equivalent
time eqT and subtracting it to t (Lines 13–14, please refer to Section 5.1
for the theoretical details). After having computed the failure times for
all healthy PEs, the smallest one is selected to identify the next event,
i.e., the next PE to fail; the simulation is thus advanced until such t,
the PE is removed from the list of healthy ones (Lines 21–22), and the
reliability values of all remaining PEs are updated (Line 24), to begin
with a new iteration. At the end of each simulation, the value called

96

5.2 Aging Evaluation

MTTFm is updated by computing the sample mean of the system’s TTF
values experienced in the last m iterations (Line 29).
When all the simulations have been performed, collected data are sum-

marized by generating the system reliability curve (Lines 32–39); for each
time t corresponding to a failure, the value of R is computed as the ratio
between the number of simulations with time greater than the current
time and the total number of performed simulations. Finally, the algo-
rithm displays the reliability curve and returns the MTTFm, representing
the MTTF of the system updated to the last iteration.

Since Monte Carlo simulations are a stochastic approach, it is neces-
sary to assess a certain level of accuracy in the obtained results. Thus,
the basic algorithm has been enhanced to automatically tune the number
of tests #iter to be performed to obtain a given confidence level. The
program iterates the simulations until either a specified percentage c%
of the width of the confidence interval for the MTTFm value is less than
a given threshold th, or the maximum number of iterations #maxiter is
reached (to avoid starvation). The first condition is expressed as:

2 ·Ψ−1
(

1 + c%

2

)
· cv[TTFm]√

m
≤ th (5.13)

where m is the number of performed tests, cv[TTFm] is the coefficient of
variation of the m TTF samples considered (i.e., the same ones used to

estimate MTTFm), computed as
√
V ar[TTFm]

MTTFm
, and Ψ−1(x) is the inverse

of the cumulative normal distribution. c%, th and #maxiter are received
as input in place of #iter.

Frequent workload remappings can be approximated by using average
aging rates as demonstrated in literature [50]; however, when considering
long-term workload changes, such method may not be accurate enough.
To this purpose, the framework supports the specification of a sequence
of mappings for each operating configuration, each one provided with its
duration. Algorithm 1 has been slightly revised to support such aspect;
more precisely, the computation of the new reliability value (Line 12) is
replaced with the code snippet listed in Algorithm 2: it performs a step-
by-step update of the reliability value and related elapsed time by using
R() and R−1() functions (as already described in Section 5.1) based on
the specified workload time plan. Do note that getCurrMapping() and
getTimeToNextChange() functions return the mapping and the related
period for the current operating scenario. Correspondingly, the reliability
computation of the remaining healthy PEs upon a PE failure (Line 24
in Algorithm 1) needs to be adapted as well, with a similar strategy.

97

5 Runtime Aging Management

Algorithm 1 Monte Carlo-based reliability computation
1: for m = 1 to #iter do
2: currConfig = getInitConfig()
3: healthy = {0, 1, ..., n− 1}
4: currR = {1, 1, ..., 1}
5: totalT ime = 0
6: TTFAccumulator = 0
7: while size(healthy) > n− k do
8: failingPE = −1
9: alpha = getAlpha(currConfig)
10: for all i in healthy do
11: randR = random() · currR[i]
12: t = R−1(randR, alpha[i])
13: eqT = R−1(currR[i], alpha[i])
14: t = t− eqT
15: if failingPE == −1 or failT ime > t then
16: failingPE = i
17: failT ime = t
18: prevEqT ime = eqT
19: end if
20: end for
21: totalT ime = totalT ime+ failT ime
22: healthy.remove(failingPE)
23: for all i in healthy do
24: currR[i] = R(failT ime+ prevEqT ime, alpha[i])
25: end for
26: currConfig = updateConfig(failingPE)
27: end while
28: TTFAccumulator = TTFAccumulator + totalT ime
29: MTTFm = TTFAccumulator/m
30: stats[totalT ime] + +
31: end for
32: currHealthyIter = #iter
33: precT = 0
34: for all t in stats.keys() do
35: currHealthyIter = currHealthyIter − stats[entry]
36: currRvalue = currHealthyIter/#iter
37: precT = t
38: print t, currRvalue
39: end for
40: return MTTFm

98

5.2 Aging Evaluation

Algorithm 2 Computation of the next PE to fail for dynamic workload
changes
Input: currConfig, randR, currR[i], alpha[i], totalT ime
Output: t
1: currMapping = getCurrMapping(currConfig, t)
2: period = getT imeToNextChange(currConfig, t)
3: t = totalT ime
4: alpha = getAlpha(currConfig, currMapping)
5: eqT = R−1(currR[i], alpha[i])
6: testR = R(eqT + period, alpha[i])
7: while testR > randR do
8: t = t+ period
9: currR[i] = testR

10: currMapping = getCurrMapping(currConfig, t)
11: period = getT imeToNextChange(currConfig, t)
12: alpha = getAlpha(currConfig, currMapping)
13: eqT = R−1(currR[i], alpha[i])
14: testR = R(eqT + period, alpha[i])
15: end while
16: if currR[i] > randR then
17: eqT = R−1(currR[i], alpha[i])
18: lastT = R−1(randR, alpha[i])
19: t = t+ lastT − eqT
20: end if
21: return t

99

5 Runtime Aging Management

5.2.3 Experimental evaluation

A SystemC discrete event simulator (with a structure similar to [54,
36, 21, 50]) has been developed, while HotSpot [87] has been used to
characterize the architecture’s thermal profile. Do note that CALIPER
can be integrated in a state-of-the-art framework, such as the one in [32].

The system considered in the experimental sessions is a mesh-based
System-on-Chip architecture with N ×M PEs, spanning from 2 × 1 to
3 × 4. The system executes a workload that is uniformly distributed
among the healthy PEs, such that all PEs have a 50% occupation in the
initial healthy architecture. The workload is then redistributed after the
occurrence of each failure and/or a given period. In the experiments, we
consider the system to be out-of-service when, after a remapping, the
workload per PE is higher than 100%. Finally, the EM-related parame-
ters have been borrowed from [54].

Approach Validation

The approach has been validated against the exact formulation presented
in Section 5.1 based on multidimensional integrals. The exact model has
been solved by means of numerical methods (step discretization and rect-
angles). The discretization step has been set to 500 hours, causing an
overall negligible error, since the R() curve is almost equal to zero at
400, 000 hours, in a 1-out-of-2:F scenario. Due to the high computa-
tional complexity of exact approaches, validation against them has been
feasible for architectures with at most 2 × 3 PEs, tolerating up to 3
failures. In all the performed tests, the observed difference between the
MTTF computed by means of exact approaches and the one computed
by means of CALIPER is lower than 1%; do consider that such error
may also be related to the discretization step. All the scalability experi-
ments discussed in this section have been run with a constant workload
throughout the whole system lifetime.
The main scalability problem of the exact method is related to the

(k − 1)-dimensional integral to be solved for a system failing after k
failures (Equation 5.7). Such an integral has an asymptotic complexity
O(tk), being t the overall simulation duration. In fact, when considering
a 2 × 3 architecture, the exact method took less than 3 seconds for
computing the MTTF for k = 1 or k = 2 failures; the computation
time increased to 1 minute and 10 seconds for 3 failures, while requiring
more than 2 hours for 4 failures. On the other hand, the execution
complexity of CALIPER scales almost linearly w.r.t. the number of

100

5.2 Aging Evaluation

performed iterations and the number of simulated failures, as shown in
Figure 5.5, which considers a 3× 4 architecture. We measured the same
error (< 1%) in the experiments for which we were able to perform the
validation. Do consider that aging rates have been precomputed and
tabulated in an input file to perform an analysis of the performance of
the Monte Carlo simulations approach only.
It is also interesting to analyze how the number of iterations for a fixed

width of the confidence interval (c% = 95%) and threshold parameter
(th = 0.1) changes with reference to the considered architecture and the
number of failures k. Figure 5.6 shows that the number of iterations is
almost constant if k is fixed, regardless of the considered architecture’s
dimension and topology, and more important, it decreases as k grows.
This could seem to be a surprising result, but the explanation is actually
intuitive: as it can be seen in Equation 5.13 the width of the confidence
interval (i.e., the left side of the inequality) is proportional to the coef-
ficient of variation cv[TTFm]. By increasing the number of failures, the
coefficient of variation decreases and the number of required iterations
for the algorithm to converge decreases as well. Figure 5.7 empirically
proves this trend. A theoretical proof of this behavior can be provided
for the exponential case, since the corresponding distribution becomes
hypoexponential; the same idea holds for the Weibull case.

Constant workload scenarios: comparison

CALIPER has been compared against some state-of-the-art approaches
assuming a constant workload scenario:

• the Mean Time To First Failure (FF), adopted in [50, 58, 29, 54],
where the whole architecture is considered to be out-of-service
when the first PE fails. In this case the reliability is computed
by exploiting Equation 5.7;

• the sum of MTTF (Sum), proposed in [42]: in this case, at each
step, the PE selected to fail is the one with the lowest MTTF,
the reliability for the healthy PEs is updated and a new step is
computed, until the architecture cannot reach the required perfor-
mance;

• the worst case temperature (wc) [57]: at each step, the worst case
temperature in the architecture is considered for computing the
system aging.

Figure 5.8 reports the obtained results for such a comparison. While all
the considered approaches have comparable execution times (same trend

101

5 Runtime Aging Management

100,000
250,000
500,000
1,000,000

Iterations

Ti
m

e
[s

]

0

20

40

60

Number of Failures k
0 1 2 3 4 5 6 7

Figure 5.5: Simulations execution times w.r.t. number of failures k.

1
2
3
4

5
6
7

FailuresIte
ra

tio
ns

0

1

2

3

4×106

Architecture
2x1 3x1 2x2 2x3 2x4 3x3 2x5 3x4

Figure 5.6: Iterations number w.r.t. different architectures topologies.

2x1
3x1
2x2
2x3

2x4
3x3
2x5
3x4

Architecture

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

0.2

0.3

0.4

0.5

Number of Failures k
1 2 3 4 5 6 7

Figure 5.7: Coefficient of variation w.r.t. number of failures k.

102

5.2 Aging Evaluation

7h failure
6th failure
5th failure
4th failure

3rd failure
2nd failure
1st failure

C
AL

IP
ER

Fi
rs

t F
ai

lu
re

M
TT

F
Su

m
W

or
st

 C
as

e
te

m
p.

C FF Su
m

w
c

C FF Su
m

w
c

C FF Su
m

w
c

C FF Su
m

w
c

C FF Su
m

w
c

C FF Su
m

w
c

C FF Su
m

w
c

M
TT

F
[y

ea
rs

]

0

10

20

30

40

Architecture
2x1 3x1 2x2 2x3 2x4 3x3 2x5 3x4

Figure 5.8: Comparison vs. past works for constant workloads.

for FF and wc and around 1 second for sum), estimated lifetimes are very
different. The simplification considering only the first failure clearly un-
derestimates the real estimated lifetime of the architecture. As expected,
the error increases as the number of PE failures k increases: from 33.1%
(1-out-of-n:F) to 185.4% (6-out-of-n:F). The sum approach proves to be
even less precise, by highly overestimating the evaluated system lifetime.
Again, the error range depends on k, reaching 256.9% for the 6-out-of-
n:F case. These two approaches show trends in the successive failures
that are not proportional at all; this means that the results produced by
the sum approach are affected by a considerable non-systematic error.
wc is the approach that provides the closest results to the CALIPER
ones. The lifetime is here underestimated as well, but the error is sig-
nificantly smaller, at an average of 14.2%. It is worth noting that this
approach obtains exact results when the worst case temperature corre-
sponds to the actual one: this is usually true for very small architectures
(namely, 2× 1 and 2× 2 in our experiments), since, when the workload
is uniformly distributed, temperatures of all PEs are almost the same.
In conclusion, as a side note, it is interesting to highlight how, given

the same starting workload for each PE in each architecture, smaller
architectures have longer lifetimes. This is due both to the higher ther-
mal interferences that take place in bigger architectures and to the fact
that the actual overall workload is bigger; in fact, if the same workload
had been used for all the experiments, bigger architectures would have
had longer lifetime than smaller ones, however they would be highly re-

103

5 Runtime Aging Management

dundant with reference to the workload and the cost would have been
unjustified.

Varying workload scenarios: comparison

The aim of the last experimental session is to show how CALIPER is
able to provide more accurate estimations of lifetime reliability than
state-of-the-art techniques in scenarios considering varying application
workloads. Here a 3 × 4 architecture is considered, with 5 as a maxi-
mum number of tolerated failures and a uniformly distributed workload
periodically changing among 60%, 40%, and 15% single PE utilization
of the initial architecture. Figure 5.9 shows the reliability curves for
various workload-change period spanning from 1 month to 5 years and
compares them against average aging rates computed based on Equa-
tion 5.12 [101, 50]. From the figure it is possible to note how the ap-
proach in [101, 50] is able to accurately approximate workload changes
with periods up to some months (curve oscillations are actually imper-
ceptible), but it fails with longer periods. Obtained MTTFs slightly differ
w.r.t. the average approximation up to 9% with the 5-year period; how-
ever, the maximum difference in the reliability curve with the average
approximation spans from 0.07 of the 1-year period, to 0.15 of the 3-year
period, to 0.19 of the 5-year period (over the (0, 1] reliability range). Do
note that having a precise estimation of the shape of the reliability curve
is fundamental, for example, in computing which are the most proba-
ble failure periods, beside the estimated MTTF. In practical scenarios,
the higher accuracy of the proposed tool has a considerable relevance in
the overall evaluation of systems expected to experience highly different
working phases during their operational life, with long-term periods with
intensive workloads and periods of resources’ underutilization.

Once it is clear how to evaluate the lifetime of an architecture consist-
ing of several processing elements having independent characteristics, it
is possible to move the research attention to the optimization side. The
rest of this chapter will be devoted to the design of algorithms for the
extension of architectures lifetime. In particular, the focus will be first
on mitigating the aging at the node level, then moving to multi-node
architectures.

5.3 Aging Mitigation through Self-Adaptiveness

When dealing with components wear-out mechanisms (which are mostly
related with temperature) another dimension is to be carefully taken into

104

5.3 Aging Mitigation through Self-Adaptiveness

Average
1 month period
1 year period
3 years period
5 years period

R
el

ia
bi

lit
y

0

0.2

0.4

0.6

0.8

1.0

Time [years]
4 6 8 10 12 14 16 18 20 22

Figure 5.9: Reliability curve for different workload change’s periods.

 goals requirementscontrol actions methods metrics measures raw data
✦ PID Controller
✦ Heuristics

✦ Heartbeat
✦ Tasks start time
✦ Tasks end time
✦ PEs status
✦ PEs frequency
✦ Transmitted data
✦ Router & Links
 Power Consum.

✦ Heartrate

✦ Exec. Time
✦ Temperature &
 Aging Models

✦ DVFS
✦ Task Mapping
✦ Task Migration
✦ Resources
 Switch-off

✦ Performance
✦ Lifetime
✦ Energy
 Consumption

✦ Application
 Progress
✦ Deadline
 Misses
✦ MTTF
✦ Computat. En.
✦ Communic. En.

Figure 5.10: Context dimensions and domains for the aging mitigation
self-adaptive system.

consideration together with performance: energy consumption. In fact,
all the knobs exploited for aging mitigation impact energy consumption
as well: the selection of the kind of PE on which to run the application,
the frequency at which the selected PE is set, and even the position
of the select PE influence the architecture energy consumption, both in
terms of computation and communication energy. Figure 5.10 gives a
representation of the self-adaptive system that will be presented in the
remainder of this chapter by means of the model proposed in Chapter 3.

Shrinking transistor geometries and aggressive voltage scaling are neg-
atively impacting the dependability of the processing elements and the
communication backbone of multi/manycore systems [26]. Permanent
device defects have gained a lot of research focus over the past decades
due to their adverse effects in the deep sub-micron technologies. Quite a
few research works were directed towards application mapping on many-

105

5 Runtime Aging Management

core platforms with the objective of balancing the temperature of the
cores [27, 28, 96]. Although lifetime reliability of a PE is closely re-
lated to temperature, other aging factors, such as operating frequency,
voltage and current-density, are not captured. If resource management
decisions are taken without keeping components aging explicitly into con-
sideration, some PEs can age faster than others, thereby reducing the
operational life of a system. As already mentioned, energy consumption
represents another key point to be considered in the lifetime optimiza-
tion of multi/manycore architectures. Architecture energy consumption
is usually considered to be devided into two main contributions: compu-
tation and communication energy. The former one refers to the energy
spent by the PEs for running the applications on the available PEs; the
latter one considers the energy needed to power up routers and links to
make the data trasmission among different PEs possible.
Asymmetric architectures have already been proven to be beneficial

in improving performance and computation energy consumption [89].
However, if the adopted policies do not take into account how they af-
fect the system lifetime, the architecture reliability might be significantly
affected. On the other hand, those approaches that focus only on lifetime
improvement ([54], [74]) may lead to non-optimal solutions in terms of
energy consumption. This is due to the fact that the selection of the
execution resource is driven only by the health state of the architecture
and aggressive frequency scaling tend to be avoided. This is the reason
why a combined on-line lifetime/energy optimization self-adaptive sys-
tem is to be built. The idea of relying on an existing energy optimization
framework is motivated by the possibility of easily merging its decisions
with reliability-driven ones, as better explained in the following.
It may seem that the optimization of the computation energy con-

sumption would naturally lead to the improvement of the system life-
time, being both aspects mainly related to temperature. As shown in
Figure 5.11, the side-effects of the strategies purely devoted to the en-
ergy minimization have a negative impact on lifetime, and viceversa.
The shown results are referred to a set of five benchmarking applications
(characterized by different shapes in the graph and presented in the ex-
perimental evaluation section) running on the reference asymmetric ar-
chitecture (refer to Section 2.2.1 for further details). All the applications
have been executed with an approach optimized for energy-consumption
only [89] (black shapes) or for lifetime improvement only [20] (white
shapes). The dashed lines in the plot connect the points sharing the same
workload, where the leftmost point represents the best result for energy
consumption and the rightmost the best one for lifetime. In between, an
infinite set of points exploiting the trade-off among the two quantities

106

5.3 Aging Mitigation through Self-Adaptiveness

Energy Consumption Optimization
Lifetime Optimization

En
er

gy
 [j

ou
le

]

0

5

10

15×106

MTTF [years]
3 4 5 6 7 8 9 10

Figure 5.11: Energy consumption vs. lifetime optimization.

can be found. Therefore, a new solution taking into account both goals
is necessary and for this purpose we have defined a resource management
self-adaptive system, designed as an evolution of the solution presented in
[89], which is focused on a power management technique for asymmetric
multicores that can provide satisfactory user experience while minimiz-
ing energy consumption. We aim at building our lifetime optimization
framework on the top of it, to make it aware of the components aging
and exploit resource management so to extend the overall system lifetime
without negatively impacting energy consumption. In particular, among
all the wear-out phenomena affecting electronical components, we ex-
plicitly target electromigration and thermal cycling, even if the adopted
model can straightforwardly integrate other effects. To mitigate their ef-
fects, the proposed framework acts on applications mapping and on the
voltage/frequency points at which the different resources work (DVFS).
Details on the work here described can also be found in [22].

5.3.1 Single Node

Before getting into the details of the proposed system, it is worth clari-
fying a few points. Serial applications only are considered in this work,
possibly characterised by various phases. Each application i is character-
ized by an expected performance constraint qosi, expressed by means of
a Quality of Service (QoS) measure, for which we exploited the concept
of heartrate [45]. It is defined as the throughput of the critical kernel in
an application, such as the number of frames per second for a video en-
coder application. This value is provided together with the application

107

5 Runtime Aging Management

at its arrival time Ti, assumed not to be known a-priori. The archi-
tecture must try to meet the given performance constraint, according
to the soft real-time paradigm. Multiple instances of the same applica-
tion and different applications are allowed to be executed simultaneously,
partially or completely overlapping. However, we assume that only one
application is allowed to be executed on a core at each instant of time.
We adopt a hierarchical approach in estimating the MTTF of the entire

system. The MTTF of the node is estimated by using the framework
described in Section 5.2.3; the MTTF of the entire system is estimated by
using the first failure model, which offers a pessimistic estimation, since
the system could still survive although with a lower QoS. The extension
of the lifetime estimation framework to support two-level architectures
will be considered as a future work.
Within a node, for each PE, the energy consumption depends on the

specific core characteristics and on the voltage levels related to the op-
erating points it has been working at (particularly relevant when DVFS
is enabled), in addition to the execution time. The energy consumption
of a node is given by summing each PE’s contribution, and the overall
energy consumption is computed by adding the contributions for all the
nodes.

State of Art

There are a few recent approaches aimed at resource management for
either power consumption and/or lifetime optimization in symmetric
[34, 21, 54, 37] or asymmetric [43, 29] architectures. The authors in [37]
propose an off-line technique to improve the lifetime reliability of MP-
SoCs, while [54] describes a combination of design-time and runtime tech-
niques to optimize it. It is commonly agreed upon that online adaptation
is essential when dealing with aging, temperature, or energy related op-
timization, due to the lack of significant information that could drive a
design-time solution space exploration. Thus, when moving to on-line
optimization, [34] is one of the first approaches considering both life-
time reliability and energy consumption in MPSoCs; however, the two
dimensions are optimized separately. Energy and reliability optimiza-
tion is considered in [21] as well: the proposed hybrid approach does
not consider computational energy optimization and DVFS-enabled ar-
chitectures.
All the above-mentioned works deal with symmetric architectures. On

the asymmetric side, in [29], the authors introduce dynamic reliability
aware task scheduling without taking into account energy consumption
optimization. Finally, among all the approaches proposed in literature,

108

5.3 Aging Mitigation through Self-Adaptiveness

[43] is the one that offers a solution similar to ours; however, it does
not consider combined energy and lifetime reliability optimization and
the reference architecture does not support DVFS, an important asset
to improve energy consumption.

We here also briefly introduce the architecture of the framework pre-
sented in [89], on top of which our proposal is built. The original solution
manages energy consumption at the node level, where the node has an
ARM big.LITTLE architecture, integrating two high performing, com-
plex, out-of-order ARM Cortex-A15 and three energy-efficient, simple,
in-order ARM Cortex-A7 cores on the same chip.
Three are the relevant components for the discussion. At the node

level there are a Balancer and a Migrator. The former guarantees that
the cores within the clusters are evenly balanced with respect to the load,
by mapping incoming tasks based on the resources past utilization. The
latter is in charge of migrating the applications from one cluster to the
other one, when the present mapping is not the best choice in terms of
energy/performance trade-off. More precisely, it moves applications that
do not achieve their target QoS at the maximum frequency on the A7
cluster to the A15 cluster. Dually, it moves applications from the A15
cluster to the A7 one when the measured QoS is above the maximum
target QoS at the minimum frequency in the A15 cluster.
Finally, a per-cluster DVFS Controller is employed. This controller

manipulates the voltage-frequency levels to meet the target performance
goals of all the applications in the cluster while minimizing the energy
consumption. This component is based on a PID controller using a
control-theoretic approach. Since the cores working points can be manip-
ulated only at the cluster level, the target QoS of the PID controller is de-
termined by the application with the highest computational demand. By
meeting the performance target at the lowest possible voltage-frequency
level, the energy consumption is minimized.

Orchestrator Design

The decision taken by the components of the base framework are com-
pletely aging unaware. We aim at introducing an orchestrator for sup-
porting the aging-aware resource management and to improve the life-
time of the system with a limited impact from the computation energy
point of view. The approach we propose is a two-level one: single node
and multi-node scenario. While the first one is an extension of the ex-
isting architecture for incorporating the combined lifetime-energy opti-
mization, the latter is a completely innovative solution.

109

5 Runtime Aging Management

D
VF

S
C
on

tro
lle

r

bi
g

LI
TT

LE

Ba
la
nc

er

M
ig
ra
to
r

Figure 5.12: Block diagram for the reference energy optimization
framework.

D
VF

S
C
on

tro
lle

r

bi
g

LI
TT

LE

Ag
e

Ba
la
nc

er

H
el
pe

r

Figure 5.13: Block diagram for the proposed lifetime and energy opti-
mization framework.

bL
bL

bL
bLEn

try
 L

ev
el

D
is

pa
tc

he
r

Figure 5.14: Extension of the proposed framework to a mult-node
architecture.

110

5.3 Aging Mitigation through Self-Adaptiveness

Algorithm 3 Age Balancer algorithm
1: mappings = {0}
2: clusters = getClusters()
3: for all c in clusters do
4: PE = getCores(clusters[c])
5: apps = getApplications(clusters[c])
6: for all a in apps do
7: bestCluster = getBestCluster(apps[a])
8: if bestCluster! = clusters[c]

and isFree(bestCluster) then
9: bestCluster.addApp(apps[a])

10: apps.remove(apps[a])
11: end if
12: end for
13: sortedPE = coreAgeSort(PE)
14: sortedA = appsInverseAgeSort(apps)
15: for all i in sortedA do
16: mappings[clusters[c]].add(sortedA[i], sortedPE[i])
17: end for
18: end for
19: return mappings

For the single node scenario, as shown in Figure 5.13, the Balancer
and the Migrator have been modified and merged into a single compo-
nent, the Age Balancer. Its aim is to re-map running applications, by
selecting the best cluster for exploiting the energy/performance trade-off
and the best PE for balancing the cluster aging. A new component, the
Helper Controller, has been introduced to support the DVFS controller
decisions. This component explicitly aims at reducing wear-out phenom-
ena related to thermal cycling due to aggressive voltage and frequency
scaling.

Age Balancer. The first mapping of each application is computed
according to its worst-case QoS; the less energy-hungry resource able to
satisfy the worst-case performance requirement is selected. However, the
average QoS of an application is typically much lower than the worst-case
QoS, which can be gathered by looking at the applications‚Äô execution
traces. Thus, the initial mapping usually represents a over-provisioned
design decision; for example, during phases of low computational re-
quirements, the application could be migrated to a different cluster type
and still meet the performance requirements with a much lower energy
consumption. The Age Balancer merges the Balancer and the Migrator

111

5 Runtime Aging Management

tasks into a single component, in charge of periodically adjusting the ap-
plications mapping, considering both their current QoS (with reference
to the desired one) and the aging of the PEs.
Algorithm 3 shows the pseudo-code of the Age Balancer heuristics.

The algorithm iterates through all the clusters in the node and within
each cluster, through all the applications, to find a different cluster where
to move the application so that the performance requirement is satisfied
and energy consumption is minimized. At the same time, within the
cluster, the application that contributed the most to the aging in the
previous interval is mapped onto the PE aged the least. By doing this,
the algorithm achieves a balanced aging across all the PEs.

Helper Controller. The aim of this controller is to assist the DVFS
controller in manipulating the voltage-frequency levels of the cores; one
controller for each cluster is needed, since the DVFS is available per-
cluster. As mentioned, the PID controller is in charge of guaranteeing the
performance target to be met at the lowest voltage-frequency level. How-
ever, the dynamic phases of an application can make the PID controller
switch aggressively between these levels. Although aggressive scaling im-
proves energy consumption, it also has significant negative impact on the
lifetime reliability through thermal cycling. To avoid this phenomenon,
we propose a Helper Controller that prevents the drastic modification
in voltage-frequency level as follows. By reading the power sensors, this
controller can measure the actual power consumption of the cluster. It
estimates the power consumption at different voltage-frequency levels by
using equation P = A × C × V 2 × F , where A is the activity factor, C
is the load capacitance, V is the voltage and F is the frequency. The
target power consumption can be estimated given the target voltage and
frequency. Using the estimated power consumption, the helper controller
employs the widely used thermal RC model [87] to estimate the temper-
ature at various voltage-frequency levels. From the current temperature
measurement and Equation 5.4, the helper controller can prune the set
of voltage-frequency levels that can potentially affect the lifetime relia-
bility of the system by a certain threshold. In our work, we assume the
threshold to be 10% of the actual MTTF of the system. More precisely,
to prevent TC, when the PID controller is transitioning from higher to
lower frequency, the DVFS controller selects the highest values between
the PID controller and the minimum of the frequencies computed by
helper controller. When the transition is from lower to higher frequency,
the DVFS controller selects the lowest value between the PID controller
and the maximum frequency computed by the helper controller.

The orchestrator is in charge of coordinating the different components

112

5.3 Aging Mitigation through Self-Adaptiveness

and invoking them with a proper frequency. The per-cluster DVFS con-
troller is invoked at a higher frequency compared to the Age balancer.
There are three major reasons behind the aforementioned choice. First,
the age balancer focuses primarily on improving the lifetime reliability of
the system. It has been a well-established phenomenon that the lifetime
reliability of a microprocessor is significantly related to the temperature.
As the temperature changes occur slowly [87], the age balancer can be
invoked at a much lower frequency. Second, the overhead of invoking
the age balancer is high if compared to the one of DVFS controller. In
ARM big.LITTLE, the overhead of migrating application across clusters
is in the order of milliseconds (from 2 to 4 ms) [89]. Therefore, the
age balancer has to be invoked very infrequently. Lastly, the overhead
of changing voltage-frequency levels is quite minimal [89]. Changing
voltage-frequency levels can positive impact the energy consumption of
the system; therefore, the DVFS controller is invoked at a higher fre-
quency.

Experimental Evaluation

The experimental sessions here described aim at demonstrating how the
proposed framework improves the results obtained by the base frame-
work in terms of architecture lifetime without heavily impacting on en-
ergy consumption and achieves almost the same lifetime improvements
as a dedicated lifetime optimization framework, also improving energy
consumption. More precisely, we take as reference for our comparison
two single objective frameworks optimizing energy (i.e, Energy-only [89])
or lifetime (a heuristic for MTTF maximization inspired by [20], MTTF-
only).

The experimental platform is a four-node architecture, where each
node is an ARM big.LITTLE. A single node is considered for the first
experimental session. We collected applications power and performance
traces by running applications on a real ARM big.LITTLE core using a
Versatile Express development platform [3], built at 45nm GP technol-
ogy. The test chip consists of two core Cortex-A15 (big) cluster and three
core Cortex-A7 (LITTLE) cluster. Since no per-core thermal sensors are
available on-board, we developed a simulation environment, based on
SystemC/TLM, integrating the models of collected real data character-
izing both the applications and the board. The simulator is fundamental
in estimating the architecture thermal profile: it implements a steady-
state temperature model, validated by means of HotSpot [87], that takes
into account the self-activity of each core, the operating frequencies and

113

5 Runtime Aging Management

the neighbor cores’ temperature. The obtained temperatures are pro-
cessed and used to compute the cores’ reliability according to Equations
5.1–5.4. We referred to [54] for choosing the values of the parameters
related to EM, and to [76] for the ones related to TC.
Real-life applications selected from the one listed as case studies in the

introductory chapter have been used to run the experiments. These ap-
plications have been selected to represent a good mix of heterogeneous
behaviors. All the applications have been executed on both the A15
and on the A7 core for each of the available working frequencies; from
500MHz to 1.2GHz, with a 100MHz step, for A15; from 600MHz to
1.0GHz, with a 100MHz step, for A7. Most of the applications execut-
ing under 600MHz on A7 experienced very poor performance, therefore
we discarded the related traces. For each <app, freq> pair a trace file
is computed and stored, containing the application’s power consumption
and its performance at regular time intervals. The power sensors in ARM
big.LITTLE have been used to measure power consumption. The QoS
of the applications are expressed in terms of heartrate; we inserted the
heartbeat register points as mentioned in [89].
Ideally, each single application has to be profiled individually to esti-

mate the speedup for various voltage-frequency levels, resulting in com-
plex off-line analyses. To avoid extensive profiling, we assume a linear
relationship between frequency and heartrate for all the applications.
The invocation frequency of age balancer is 200ms; the DVFS controller
one is 50ms, which is much higher than the Linux scheduling epoch
(10ms). Both frequencies have been empirically selected to obtain the
best accuracy/overhead trade-off. The overhead of changing voltage-fre-
quency levels is assumed to be 50µs; application re-mapping within the
same cluster takes 200µs, 4ms across clusters [89].

For the first execution scenario, we defined five different use cases
(UCsx) consisting of 50 applications, randomly selected among the ap-
plications previously presented. For each application: i) the arrival time
is computed according to a Poisson distribution (described by its pa-
rameter λ) and ii) the expected heartrate is computed as the average
heartrate of a randomly selected trace among the available ones. The λ
value is constant and chosen such that the architecture is fully loaded
with no waiting queues.
Figure 5.15 shows the results for this first campaign. In the top

graph, we report the ratio between the computed MTTF and the MTTF
achieved by the lifetime-only optimization approach (dashed horizontal
line, [20]). As expected, both the energy-only and the propose approach
are not as effective, however on average they reach 80.6% and 92.3% of

114

5.3 Aging Mitigation through Self-Adaptiveness

Energy-only Proposed MTTF-only

N
or

m
al

iz
ed

 E
ne

rg
y

MTTF

Energy

only

only

0

0.5

1.0

1.5
N

or
m

al
iz

ed
 M

TT
F

0

0.5

1.0

UCs1 UCs2 UCs3 UCs4 UCs5

Figure 5.15: The proposed approach compared with the baseline frame-
work in a single node architecture.

the optimal lifetime, respectively. The bottom part of the graph reports
the corresponding energy ratio with respect to the energy consumption of
the energy-only optimization approach (dashed horizontal line, [89]). In
this case, the energy overhead for Proposed is, on average, 1.8% higher,
while the lifetime optimization framework deteriorates the best results
by 25.4%.

5.3.2 Multi Node and Computation Energy

In the multi-node scenario the architecture is considered to be made
of multiple nodes, where each node has a ARM big.LITTLE configu-
ration. As far as computation energy is concerned, the communication
infrastructure is not relevant. However, since we will also consider com-
munication energy, we adopt a NoC infrastructure.

Orchestrator Design

When considering a multiple node architecture, a new component for
managing the overall architecture is introduced. The aim of this entity,
dubbed Entry Level Dispatcher (as shown in Figure 5.14), is to select the
best initial mapping for the incoming applications; it must take nodes
aging into consideration and, if possible, select the best energy-aware
solution as well. The dispatcher takes decisions based on the:

• application profiles, consisting of its worst-case required QoS and
its average power consumption, for each different core type;

115

5 Runtime Aging Management

• system status, i.e. the number of active and free clusters/nodes.

These profiles are obtained using off-line analysis. The worst-case
required QoS and average power consumption are measured at the max-
imum voltage-frequency level for each core type. Assuming a linear rela-
tionship between QoS and voltage-frequency level, we can estimate the
performance at different frequency levels; similarly, the power consump-
tion can be estimated as well, as already explained. We assume that
the asymmetric multicore is equipped with per-core sensors measuring
power, energy, voltage, frequency and temperature. We also assume that
each core is equipped with wear sensors similar to the ones exploited
in [43]. The dispatcher can access the sensors information to determine
the system status. The dispatcher schedules the incoming applications
to the appropriate node and cluster, aiming at improving the lifetime re-
liability while minimizing the energy, with performance as a constraint.
The flow chart is shown in Figure 5.16.
The arriving applications are enqueued in a FIFO queue. Using the

application profile, the dispatcher can estimate the best cluster type and
its voltage-frequency level that can satisfy the applications performance
constraint at a minimal energy consumption. First, the dispatcher iden-
tifies already powered-on clusters of the same type having free PEs: these
are the ideal candidates. For a lifetime reliability-aware mapping, the
dispatcher selects the cluster that is least aged among the clusters with
similar voltage-frequency levels. However, if the dispatcher does not find
any powered-on cluster with free PEs, it powers up a free cluster similar
to the type previously estimated. If no such cluster is available, the dis-
patcher selects another cluster type that can meet the performance at
the lowest possible energy cost. Last, if no free clusters are available, it
waits until a PE becomes free.

Experimental Evaluation

We have extended the policies of the reference framework to the multi-
node scenario in a straightforward manner, to have a baseline reference.
The same application scenario has been adopted, while the value of λ
has been tuned again to have the architecture constantly busy, but to
avoid waiting queues.
The results, plotted in Figure 5.17 for the 4-node architecture, show

almost the same trend of the previous experimental session. The pro-
posed technique proves to still be able to mimic the optimal results in
terms of lifetime, achieving, on average, 90.6% of the optimal lifetime.
On the other hand, the lifetime obtained by the aging unaware solution
drops to 47.8%. Results for energy consumption are more similar to

116

5.3 Aging Mitigation through Self-Adaptiveness

Free
& powered on

cluster?

Free cluster?

Select cluster
with similar frequency

Application
arrived

Application
Dispatched

YESNO

Wait for a free core

More
than one?

NO

Select
least aged cluster

YES

Other
clusters meet

requirem?

Get best cluster
and frequency

NO

Select
new cluster

YES

YES

NO

Figure 5.16: Control flow chart for the dispatching algorithm.

117

5 Runtime Aging Management

Energy-only Proposed MTTF-only
MTTF
only

only
Energy

N
or

m
al

iz
ed

 E
ne

rg
y

0

0.5

1.0

N
or

m
al

iz
ed

 M
TT

F

0

0.5

1.0

UCm1 UCm2 UCm3 UCm4 UCm5

Figure 5.17: The proposed approach compared with the baseline frame-
work in a multi-node architecture.

the previous scenario. The Proposed solution maintains an average 1.3%
overhead with respect to the best energy consumption values, while the
overhead of the energy unaware solution is 21.1%.

As expected, the frameworks optimizing a single objective (energy or
lifetime) excel with respect to the metric they adopt, being characterized
by high impact on the other aspect; the energy-optimization framework
also has some limitations in terms of scalability. On the other hand, the
combined solution we propose achieves results that are more similar to
the optimal ones, for both lifetime and energy consumption; it shows
a negligible overhead in energy consumption and a significant lifetime
extension. More precisely, we can also note that although lifetime is
related to temperature as well as energy-optimization policies, it is nec-
essary to consider lifetime reliability as a first-class citizen to actually
obtain optimal results with respect to such aspects. Furthermore, ex-
perimental results show that the combined optimization introduces only
marginal overheads on the independent metrics, thus only reducing the
potential optimal condition of a single goal optimization. Altogether,
the introduction of a second important optimization objective has an
overhead that is very limited with respect to the benefits it introduces
when compared to the single objective solution.
It is also worth noting how, when moving from the single to the multi-

node scenario, the combined approach shows good scalability: energy
overhead from 1.8% to 1.3% and lifetime from 92.3% to 90.6% of the opti-
mal value. Conversely, the expected lifetime of the base framework heav-

118

5.3 Aging Mitigation through Self-Adaptiveness

ily drops when considering multi node architectures, leading to greater
relative improvements when compared with the other approaches.

5.3.3 Multi Node and Communication Energy

Most recent multi-node systems consist of processing nodes intercon-
nected via networks-on-chip (NoCs) in a mesh-based architecture. Data
processing applications mapped onto these platforms are typically char-
acterized by large data exchange among the tasks. Therefore, task al-
location is pivotal in determining energy consumption associated with
communication among dependent tasks of the application. Data com-
munication agnostic mapping of these applications can lead to a sig-
nificant energy consumption on the NoC communication infrastructure,
contributing to as much as ≈ 40% of the overall application energy con-
sumption [47, 12].
We here propose the design of an orchestrator and a self-adative sys-

tem to dynamically adapts a set of pre-computed, design-time decisions,
based on run-time application dynamism. The objective of the mixed
design-time/runtime approach is to mitigate aging in a manycore sys-
tem and minimize application communication energy while satisfying
throughput requirements to provide the desired quality-of-service to end
users. The solutions here presented have been published in [20].

State of the Art

The problem of scheduling dependent tasks with precedence constraints
on a finite set of processing elements, with the aim of maximizing or
minimizing an objective function, is NP-complete. Energy/reliability-
aware task mapping and scheduling fall within this set of problems; it
can be performed at design-time [63] or at run-time [27]. Design-time
approaches can devote much more time in finding the best solution, since
the computation is performed statically and off-line once in the entire sys-
tem lifetime [53, 54, 91, 35, 36]. In [53] and [54], a simulated annealing-
based technique is proposed to address the lifetime reliability-aware task
mapping problem with the objective of maximizing system lifetime mea-
sured as mean time to failure, MTTF. Another reliability-driven task
mapping approach is proposed in [91]: a cluster-based allocation tech-
nique to cope with fault-tolerant issues by smartly allocating the extra
tasks needed for this purpose. In [35], two static energy-aware heuristics
for task mapping are presented to optimize performance with respect to
energy consumption. Finally, a convex optimization-based mapping gen-
eration technique to maximize system MTTF is proposed in [36]. Many

119

5 Runtime Aging Management

mapping solutions for several use cases are computed at design-time and
stored; at run-time, the best pre-computed solution is applied accord-
ing to the current fault-scenario. This approach assumes to know all
the possible run-time scenarios and requires substantial amount of mem-
ory to store a mapping database; moreover, it does not consider energy
consumption.
The main limitation of all these static design-time policies is the fact

that they assume a-priori knowledge of the workload (e.g., task-graph
composition, execution times, and applications’ schedules) and of the
system (e.g., faulty nodes, and architecture aging trend). These as-
sumptions are admissible when considering a static application scenario,
but they do not hold in scenarios where the applications number and
their characteristics are unknown in advance and can change in an un-
predictable manner. The aim of the approach here presented is to simul-
taneously optimize the three dimensions: components aging, reliability
and communication energy consumption while adapting the system to
runtime dynamism.
Dynamic approaches are more suitable to adapt task mapping at un-

known runtime scenarios. An interesting work is the one presented in
[43]: simple mapping configurations are statically computed and then
enhanced through run-time heuristics, allowing to track actual compo-
nents aging. In [29], a run-time task mapping technique is proposed to
explicitly optimize system lifetime; application mapping is computed at
run-time together with the frequency at which the re-mapping algorithm
needs to be invoked. While these approaches share some common points
with the one this paper introduces, they do not take into account energy
consumption which is critical for modern embedded systems. The work
that is more closely related to the one here proposed is [31]; although
data-communication is optimized together with reliability, it does not
guarantee maximization of the system lifetime.

Background

In this context, applications are modelled as fork-join task-graphs and are
supposed to be executed in a mutually exclusive fashion on the reference
architecture. This means that all applications are known at design-time,
but not the workload in terms of the order of execution and the starting
times, thus leading to a highly-variable workload scenario and the need
for a run-time mapping policy.
Each processing node has a specific position in the NoC architecture

described by its (x, y) integer coordinates; a node can communicate with
any other node in the architecture by means of messages sent through

120

5.3 Aging Mitigation through Self-Adaptiveness

the NoC routing elements. The location of the nodes is fundamental to
properly model the communication among them, in terms of message
latency and energy consumption, as explained in Section 5.3.3. The fab-
ric controller is in charge of dispatching the applications to the other
processing nodes, by computing the best mapping and scheduling con-
figuration, according to specific ad-hoc designed metrics. This special
node is connected to the NoC infrastructure through a special link, it
is hardened by design so to achieve fault tolerant properties, and it is
assumed not to influence the thermal profile of the system.
Computation energy consumption is considered almost constant, re-

gardless of the mapping, when considering homogeneous architectures [48].
For this reason it is neglected in the following analysis. Communication
energy consumption, on the other side, is mapping-dependent and rep-
resents ≈ 60% of the overall application energy consumption. In [102],
the authors defined bit energy (Ebit) as the energy consumed when one
bit of data is communicated through the routers and links of a NoC.

Ebit = ESbit + ELbit (5.14)

where ESbit and ELbit are the energy consumed by the switch and the link,
respectively. The energy per bit consumed in transferring data between
task vi and vj mapped on processor p and processor q, respectively, and
positioned nhops(p, q) away is given by Equation 5.15 according to [48].

Ebit(p, q) =

{
nhops(p, q)ESbit + (nhops(p, q)− 1)ELbit if p 6= q

0 otherwise
(5.15)

where nhops(p, q) is the number of routers between processors p and q.
The total communication energy is thus given by

CE =
∑

(i,j)∈E

dij × Ebit(p, q). (5.16)

Orchestrator Design

The problem that the proposed self-adaptive system aims at solving
can now be better formalized. Given i) a set of n applications A =
{a1, a2, . . . , an}, modeled as directed graphs G = (V,E) and executed in
a mutually exclusive fashion, ii) a computing architecture composed of
m processing elements, each one described by its coordinates (x, y) and
connected through a NoC infrastructure to the others, and iii) a user-
defined throughput constraint, which may vary during the execution, the

121

5 Runtime Aging Management

given applications must be mapped on the available processing nodes so
as to meet the given constraint. Moreover, the mapping policies must be
chosen so as to minimize the energy consumption and to maximize the
nodes lifetime, by balancing the components aging to extend the system
lifetime.

The designed solution combines a static approach together with a dy-
namic one to solve the mapping problem in the presence of conflicting
optimization goals (as performance, reliability and energy consumption)
while retaining the best from both worlds.
An overall schema of the proposed approach is presented in Figure

5.18: it exploits design-time strategies to compute good mapping solu-
tions to start from; these solutions are then dynamically optimized. In
this proposal, we considered a state-of-the-art static strategy [36] aim-
ing at optimizing reliability under a performance constraint; this ap-
proach is able to exploit all the needed information (the applications
task-graphs, the architecture topology, the performance constraint and
reliability/performance metrics – grouped by a dashed line in Figure
5.18) available at design-time and to perform an accurate design space
exploration devoted to the identification of the best solution. The output
of this first step is a database of solutions (Mapping Database), which
contains the best mapping for each input application. Note that, al-
though the static mapping of [36] is used as the starting mapping in the
proposed dynamic approach, the strategy is orthogonal with respect to
the static mapping generation and can be used in conjunction with other
existing static techniques (e.g., [53]).
The dynamic approach selects the best mapping for an application

from the database and uses it at run-time to optimize energy and re-
liability (measured as mean time to failure, MTTF) while fulfilling the
throughput constraint.

In particular, the dynamic part is based on an orchestrator running on
the architecture’s fabric controller, able to monitor the system behavior
and status (both architectural parameters and application ones), and
consequently take decisions and act to modify the working conditions
and parameters with the aim to improve the pursued goals.
In the observe phase the throughput is computed according to the start

and end time of each application iteration and the energy consumption
is estimated according to the current mapping. However, the orchestra-
tor cannot compute the actual MTTF because it would require to be
able to predict changes in the architecture. Indeed, a good parameter
representing the current aging status of each of the core is α(T) (refer

122

5.3 Aging Mitigation through Self-Adaptiveness

Mapping
Database

Design-Time Computation

Performance

Re
lia

bi
lit

y

Run-Time Optimization

Performance

C
om

m
. E

ne
rg

y

Performance

Re
lia

bi
lit

y

Constraints &
Run-Time Metrics

Reliability

Performance

Comm. Energy
Consumption

Constraints &
Design-Time

Metrics

ArchitectureSet of Applications

Performance

Reliability

Figure 5.18: Overview of the proposed methodology.

to Equation 5.3), and it can be computed by monitoring temperature
variations in time by means of hardware sensors.
The decide phase is entered when a specified activation condition on

the monitored metrics is triggered. It is possible to set an activation
condition when a core is aging faster than the others (how much faster is
defined by the designer) or to make the orchestrator adapt periodically.
This phase is devoted to the identification of the most convenient task, or
set of tasks, to be remapped and the selection of the node where to move
them, in order to improve the current values of the optimization met-
rics while fulfilling the given performance constraint on the throughput.
We considered only the relocation of a single task per move, however,
multiple relocations are under investigation to speed up the adaptation
process.
The algorithm for the definition of the remapping moves is shown in

Algorithm 4. The basic idea is to improve the architecture lifetime by
periodically unloading the eldest core and distributing a part of the tasks
mapped on it to other units, while trying at the same time to limit the
energy consumption. Thus, the orchestrator selects the eldest node Co
and a set of the k youngest ones CN = {Cn1 , ..., Cnk} (Lines 1-6). Then,
it defines all the possible moves as a single relocation of a task tj from Co
to Cni (Lines 7-11), and sorts them according to the following priority
order: considering the age of the node Cnk (youngest first, since it is
the most unstressed one) and, in case of same value, considering task
tj duration (largest first, since it is the one mainly contributing to core
aging – Line 12). Moreover, to pursue energy saving, in the sorting

123

5 Runtime Aging Management

process, the age of the moves causing an increase in the communication
energy will be weighted by the energy variation ∆CEtj ,Cni . It is worth
noting that the energy variation contribution can be turned-off while
optimizing reliability only.
The orchestrator evaluates each move’s costs/benefits ratio by apply-

ing it for one cycle to analyse the achievable make-span and, conse-
quently, whether the throughput constraint is met or not. Indeed, differ-
ently from the energy variation that is estimated according to a defined
model, the current make-span cannot be measured off-line, since it de-
pends on the actual execution of the application on the architecture; in
fact, an estimation of such a value would require the scheduling to be
known in advance, and this computation would be too time-consuming
to be performed on-the-fly on the fabric controller. Therefore, in the act
phase the engine will attempt a move per cycle in the given order; if
the move is accepted, the engine will sleep until the activation condition
will be triggered another time, otherwise it will try with the subsequent
move in the list (Lines 13-21).

Algorithm 4 Task remapping strategy
1: TC ← specified throughput constraint
2: Co ← eldest node in the architecture
3: Cn ← k youngest nodes in the architecture
4: To ← set of tasks mapped on Co
5: CEref ← Energy consumption of the current mapping
6: M← � – Set of candidate moves
7: for each tj ∈ To ∧ Cni ∈ Cn do
8: define move tj : Co → Cni
9: ∆CEtj ,Cni ← CEref − CEmove
10: M←M ∪ {tj : Co → Cni}
11: end for
12: Sort M according to priority function f(αCni , τj ,∆CEtj ,Cni)
13: apply first tj : Co → Cni ∈M
14: run the application per 1 cycle
15: T ← current throughput
16: while T < TC do
17: undo previous move
18: apply next tj : Co → Cni ∈M
19: run the application per 1 cycle
20: T ← current throughput
21: end while
22: return

124

5.3 Aging Mitigation through Self-Adaptiveness

Experimental Evaluation

We compare the effectiveness of the proposed dynamic approach with
the Static MaxMTTF one, proposed in [36]. A functional simulator has
been implemented using SystemC/TLM [1] to model the dynamic engine
together with the described NoC-based manycore architecture running
applications modeled as task-graphs. A set of six real-life applications
taken from the case studies is considered, namely FFT, MPEG Decoder,
MWD, Picture-in-Picture (PiP), VOPD, and Romberg Integration, from
[11]; two different architectural platforms are selected, composed of a
3 × 3 and 3 × 4 mesh NoC, respectively. The bit energy (Ebit) for
modeling communication energy of an application is calculated using ex-
pressions provided in [102] for packet-based NoC using 65nm technology
parameters from [103]. The following parameters are used for comput-
ing aging [36]: current density J = 1.5 × 106A/cm2, activation energy
Ea = 0.48eV , slope parameter β = 2, temperature T = 295K and
n = 1.1. HotSpot [87] has been used to characterize the temperature
of the cores to account both the self-activity and the temperature of
neighbour cores. The considered performance requirement is computed
by taking the best performance possible on the given architecture (com-
puted at design-time through a design space exploration) and by adding
to it an extra 20%. This value has been chosen to be consistent with the
application scenario and with the state of the art [36].
The introduction of an orchestrator providing self-adaptiveness may

cause both a performance and energy communication overhead. The for-
mer one is due to the actual time needed by the orchestrator to compute
the next move; in the considered system, it is completely hidden since
such computation is performed during the applications’ execution. How-
ever, changing the mapping of the architecture implies communicating
information to the cores, thus introducing delays and increasing the used
communication energy. Indeed, although this aspect has been partially
neglected, we expect the impact to be limited, if not negligible, with re-
spect to the overall performance/energy consumption, being the amount
of data very small.

Figure 5.19 plots the normalized aging of the proposed dynamic tech-
nique with respect to the maximum MTTF obtained using the static
approach for the adopted experimental setup. In this experiment, en-
ergy optimization was disabled, and the proposed dynamic orchestrator
migrates tasks on nodes to optimize MTTF. The reported MTTF values
are normalized with respect to the MTTF of an unstressed architecture.
A few considerations can be drawn. First of all, for all applications con-

125

5 Runtime Aging Management

fft mpeg mwd vopd romberg pip
0

0.2

0.4

0.6

0.8

1

Applications

N
or

m
al

iz
ed

 M
T

T
F

(a) 3x3 NoC

fft mpeg mwd vopd romberg pip
0

0.2

0.4

0.6

0.8

1

Applications

N
or

m
al

iz
ed

 M
T

T
F

(b) 3x4 NoC

Static MaxMTTF Proposed Dynamic

31.5%

14.9%

11.8%

9.0% 5.1%

22.7%

32.7%

48.2%

16.8%
22.4%

16.1%

20.6%

Figure 5.19: MTTF performance of the proposed approach.

sidered (including those not shown explicitly in the figure), the MTTF
obtained using the proposed dynamic approach is better than the one
achieved in the Static MaxMTTF scenario, as indicated on the bars for
the proposed technique. This is due to the adaptation of the architec-
ture to balance the stress of different units thereby improving the overall
MTTF. For the six considered applications, the proposed technique im-
proves MTTF by 16% on average. Moreover, the MTTF improvement
increases as the number of cores in the architecture grows. This is be-
cause the adaptation engine is able to better balance the architecture
load/aging by switching between the unused units.
Table 5.2 reports a comparative analysis of the communication energy

between the static and the proposed dynamic technique (with energy
optimization turned off) on the two different architectures. Energy con-
sumption increases by an average of 9% and of 15%, on the two archi-
tectures, due to the adaptation engine that uses extra energy for task
migration.

Figure 5.20 plots the result for three multi-application and three multi-
throughput test cases on the 3 × 3 architecture. The multi-application
and multi-throughput scenarios are generated by randomly selecting the
applications to increase the workload, in a not homogeneous way. The
number of iterations for each application in the test cases are specified
in Table 5.3. As an example, one iteration of MultiApp01 consists of
2.000 iterations of VOPD, 10.000 of Romberg, and 4.000 of FFT; this
workload is repeated infinitely. The iteration of multi-throughput appli-

126

5.3 Aging Mitigation through Self-Adaptiveness

Applications Static MaxMTTF Proposed Dynamic
3× 3 3× 4

FFT 1 1 1.162704082
MPEG 1 1.017674265 1
MWD 1 1.040284091 1
VOPD 1 1.138318841 1.286558603

Romberg 1 1 1.052919355
PiP 1 1.346435185 1.430726496

Average 1 1.090452064 1.155484756

Table 5.2: Energy performance of the proposed dynamic approach with
MTTF optimization only

MultiApp01 MultiApp02 MultiApp03

VOPD (2,000) MPEG (5,000) MPEG (10,000)
Romberg (10,000) MPEG (1,000) PiP (5,000)

FFT (4,000) Romberg (4,000) VOPD (4000)
MPEG (1,000) PiP (8,000)

MultiThr01 MultiThr02 MultiThr03

MPEG1 (10,000) VOPD1 (10,000) PiP1 (10,000)
MPEG2 (10,000) VOPD2 (10,000) PiP2 (10,000)

Table 5.3: Parameters for multi-application and multi-throughput

cation MultiThr01 consists of 10.000 iterations of MPEG with the same
deadline used in the static scenario, and 10.000 iterations with deadline
relaxed by 2×.
The static approach generates application mappings considering an

unused architecture, i.e., age of all the nodes are 0. As a result, when
applications are switched at run-time, the static pre-computed mappings
are no-longer optimal in terms of MTTF because they ignore the cur-
rent age of the different cores. Such information, on the other hand,
is exploited by the dynamic approach that can adapt accordingly and
produce MTTF optimized solutions. For all the three multi-applications
considered, the proposed technique improves the architecture MTTF by
27% on average.
Applications are often characterized by varying throughput require-

127

5 Runtime Aging Management

MultiApp01 MultiApp02 MultiApp03 MultiThr01 MultiThr02 MultiThr03
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 M
T

T
F

Static MTTF
Proposed Dynamic

Figure 5.20: MTTF performance with multi-application and multi-
throughput scenarios.

ments. Computing the application mapping at design-time for all ap-
plications and for all throughput requirements results in an explosion
in the design space. With 20 applications having on average two dif-
ferent throughput requirements, the number of application mappings
to be pre-computed at design-time is 220. This imposes a significant
overhead in terms of storage for the mapping, and of time to retrieve
the information at runtime. An alternative approach adopted for most
design-time approaches is to generate one mapping for each of these ap-
plications by using the stricter throughput requirement. Therefore, such
approach gives good results when the throughput requirement is strict,
but is not able to optimize the MTTF when the requirement is relaxed.
Indeed, the dynamic approach is able to adapt to this changing scenario.
Although, the initial mapping for the dynamic approach is the one pre-
computed at design-time with a stricter deadline, the adaptive engine is
able to explore different other mappings fulfilling the relaxed through-
put requirement, possibly achieving better results. Experimental results
for the three multi-throughput applications indicate that the proposed
technique improves system MTTF by 22%, on average, when compared
to the one using static mapping without adaptation.

Figure 5.21 plots the normalized communication energy of the pro-
posed technique compared to the static approach, when optimizing both
communication energy and MTTF. Similarly to the previous experi-
ments, the initial mapping for this experiment is the best MTTF map-
ping coming from the static approach. However, the orchestrator in-
corporates communication energy and system lifetime when selecting a
local move. For a more comprehensive comparison, we report results with
and without the communication energy optimization, to highlight how

128

5.3 Aging Mitigation through Self-Adaptiveness

Proposed Dynamic
Proposed Dynamic with Energy Optimization

Static MaxMTTF

N
or

m
al

iz
ed

 C
om

m
. E

ne
rg

y

0

0.5

1.0

1.5

N
or

m
al

iz
ed

 M
TT

F

0.5

1.0

1.5

fft mpeg mwd vopd romberg pip

Figure 5.21: Communication energy performance for the proposed
technique.

MTTF and energy consumption are affected. All values are normalized
with respect to the data obtained using the static approach. As it can be
seen, MTTF-communication energy joint optimization results in energy
savings between 25% to 75% for all the applications considered with an
average 5% MTTF improvement. Thus by trading-off MTTF, the com-
munication energy can be minimized by 50%, if considering the average
of the results obtained on the considered benchmark applications.

5.3.4 Putting it all together

The last step in optimizing the lifetime/energy consumption trade-off is
to consider communication and computation energy together in a multi-
node architecture.

Each node has a ARM big.LITTLE architecture and the nodes are con-
nected through a NoC communication infrastructure (both these aspects
are relevant in this case). Applications are modeled as fork-join task-
graphs and not as serial applications, since data exchange among tasks
is fundamental for evaluating communication energy consumption. Per-
formance constraints are considered both in terms of worst case heartrate
and a deadline not to be missed. The communication energy model is the
same as the ones presented in Section 5.3.3, while computation energy
consumption is modeled as described in Section 5.3.2. In particular, the
communication energy consumption will be considered for the NoC only,
neglecting internal contributions, since bus-based architectures usually

129

5 Runtime Aging Management

consume way less energy than NoC-based ones, since they consist of
fewer elements and do not have links and routers to be powered-up [97].

Orchestrator Design

At the multi-node level, the orchestrator behavior is inspired by the hy-
brid technique described in Section 5.3.3, where good mapping solutions
computed at design-time are optimized at runtime. The same state-of-art
static strategy [36] has been exploited for computing such design time so-
lutions. It performs an accurate design space exploration by considering
the information available at design-time (the applications task-graphs,
the architecture topology, and the performance constraint). The fact
that computation energy is not considered during the design space ex-
ploration does not represents a limitation, since at this level all the nodes
are homogeneous and, at time 0, they share the same initial status. Com-
putation energy optimization is considered in the runtime phase of the
architecture, where the mappings retrieved from the database are opti-
mized. Algorithm 4 has been modified in order to keep into consideration
computation energy consumption as well when sorting the selected moves
(Line 9); the score of each move is computed as in Algorithm 4 by con-
sidering an aging contribution and an energy one, where the latter one
considers both communication and computation energy, in particular:

∆Etj ,Cni = α ·∆CompEtj ,Cni + β ·∆CommEtj ,Cni = (5.17)

= α · (CompEref − CompEmove) + β · (CommEref − CommEmove)
(5.18)

where α and β are weighting coefficients and CommEref , CommEmove
have the same meaning as CEref and CEmove in Algorithm 4, respec-
tively, while CompEref refers to the computation energy consumption of
the current solution and CompEmove to the one of the move under test.
In this way, moves resulting in an increase of energy consumption will
receive a negative score, placing them at the end of the list, while moves
with the highest energy saving will be at the top. The orchestrator can
find mappings characterized by a low computation energy consumption
at runtime by exploiting, for example, already powered on clusters or
by grouping on the same node tasks requiring the same performance
level. As in the inspiring approach, the orchestrator needs to evaluate
the make-span due to the new mapping by actually running the system
for one cycle. In case the make-span for the current move is lower than
the deadline, the move is accepted and the orchestrator will remain in-
active until the activation condition will be triggered another time. If

130

5.3 Aging Mitigation through Self-Adaptiveness

Mapping
Database Performance

En
er

gy

Constraints &
Run-Time Metrics

Reliability

Performance

Energy
Consumption

Constraints &
Design-Time

Metrics

ArchitectureSet of Applications

Performance

Reliability

Performance

Re
lia

bi
lit

y

Performance

Re
lia

bi
lit

y

DVFS
Controller

big

LITTLE

Age
Balancer

Helper
De

sig
n-

Ti
m

e
Co

m
pu

ta
tio

n

Ru
n-

Ti
m

e
O

pt
im

iza
tio

n

Multi-node Intra-node

Figure 5.22: Overview of the proposed approach when both communica-
tion and computation energy consumptions are optimized.

the make-span exceeds the deadline, the current move is discarded and
the next move in the sorted list is selected for evaluation, and so on.

It is worth noting that the coefficients α and β can be tuned to prop-
erly weight the contributions of computation energy and communication
energy in the moves score. α should be grater than β in computing-
intensive scenarios; in case of high data exchange applications the rela-
tionship between α and β will be the other way around. In particular,
when α = 0 communication energy only is optimized at the multi-node
level and the approach leads back to the one described in Algorithm 4.
On the other hand, when β = 0 computation energy only is considered
and an approach similar to the one proposed in Section 5.3.2 is obtained.

At the single node level, since communication energy is neglected, the
solution proposed in Section 5.3.1 has been exploited. Thus, an Age
Balancer and a DVFS Controller (together with its Helper) are imple-
mented, per node, to manage the energy computation/lifetime reliability
trade-off. The proposed approach is summarized in Figure 5.22, where
the runtime optimization box has been updated with reference to Fig-
ure 5.18 and contains both a multi-node and an intra-node optimization
policy.

131

5 Runtime Aging Management

5.4 Final Remarks

This chapter presented a self-adaptive infrastructure for extending multi-
/manycore architectures lifetime. First, an enabling tool was designed
to make the lifetime estimation fast and precise. Then this tool was
exploited to evaluate the effectiveness of the implemented orchestrator,
aiming at maximizing lifetime, while reducing energy consumption and
meeting performance constraints. To achieve this goal, the orchestrator
has to properly coordinate different components acting on the appli-
cations mapping and scheduling, on the resources status and on their
working voltage-frequency points. The problem is faced gradually, con-
sidering first a single node and computation energy only, then moving to
a more complex architecture and to communication energy optimization
as well.

In the next chapter, the idea of designing a system exploiting both
the self-adaptive systems presented in this chapter and in the previous
one will introduced and discussed. Moreover, some concluding remarks
for the whole work described in this thesis will be drawn, together with
possible future developments.

132

6 Conclusions & Future Works

The research presented in this thesis has proposed a novel self-adaptive,
reliable framework for in multi/manycore architectures. The work is
motivated by the necessity of dynamically exploiting reliability/energy
consumption/performance trade-offs when considering highly evolving
working scenarios. Runtime resource management solutions are to be
designed to properly adapt the system’s behavior to the changing envi-
ronment; this is the reason why classical design-time (static) approaches
do not suffice in providing satisfying result and the adoption of a new
protocol (the Observe-Decide-Act control loop) was needed.
The objective of this research is to design a system with self-adaptive

capabilities, able to make smart decisions at runtime and get the most
out of the considered trade-offs. Reliability represents the main optimiza-
tion dimension. Energy consumption minimization has been introduced
because it is directly and considerably affected by the knobs the frame-
work was exploiting. Perfomance has been considered as a constraint
to be satisfied according to the soft real-time paradigm. The result is a
cross-layer self-adaptive system for the combined optimization of relia-
bility (treated both as fault management and components lifetime) and
energy consumption (both communication and computation one) under
performance constraints. The proposed framework autonomously takes
care of the resource management problem, hiding its complexity and tak-
ing its burden away from the programmer. The overall work is organized
in several layers as shown in Figure 6.1 and summarized in the following.
At the multi-node level, the designed framework employs a hybrid ap-

proach to minimize aging while optimizing communication and computa-
tion energy consumption (Layer A in Figure 6.1). A runtime orchestrator
has been designed to smartly map tasks on the available nodes starting
from pre-computed optimal mappings. Tasks are then re-mapped, at
runtime by means of heuristics, to cope with the evolving conditions (Sec-
tion 5.3.4). Transient fault management is considered at the intra-node
level only, since creating, scheduling, and gathering results of redundant
threads and voters/checkers benefit from a shared-memory bus-based
architecture such as the intra-node one (Layer B in Figure 6.1). A rule-
based system has been designed to guide the orchestrator in selecting,
at each instant of time, the best redundancy-based reliable technique to

133

6 Conclusions & Future Works

Hete
rog

en
eo

us
Platf

orm
Agin

g M
itig

atio
n &

 E
ne

rgy
 Con

sum
ptio

n

 O

ptim
iza

tion
 La

yer

ARM

 big.LI

TT
LE

big clu
ste

r
LIT

TL
E

 c

lus
ter

Multi-node
Level

Intra-node
Level

A

Agin
g M

itig
atio

n &

 C
om

pu
tat

ion
 Ene

rgy

 O

ptim
iza

tion
 La

yer
C

Tran
sie

nt
Fau

lts

 M

an
ag

em
en

t L
aye

r
B

Figure 6.1: A graphical representation of the research contribution of this
thesis, organized in self-adaptive layers.

satisfy the user’s reliability requirements and minimize the perfomance
overhead (Chapter 4). This layer is located, in each node, on top of
another adaptation layer that takes care of aging mitigation and com-
putation energy optimization (Layer C in Figure 6.1). This is achieved
by acting on different knobs (tasks mapping and scheduling, resource
switch-on/off, DVFS) through the synergic orchestration on ad-hoc de-
signed controllers (Section 5.3.1). Each adaptive layer has been validated
in a simulation environment by executing application traces collected
from execution on real architectures. The obtained results proved the
effectiveness of the proposed approach, obtaining remarkable improve-
ments in terms of lifetime extension and energy consumption reduction,
while meeting performance constraints.
The envisioned framework and the design of the presented adaptation

layers represent the main innovative contribution of this research work.
The preliminary investigation on self-adaptive systems led to the formal-
ization of a model for describing and organizing this kind of systems in
a structured and systematic way, as well as for preliminary validating
them. Moreover, the need for estimating complex architectures lifetime
motivated the development of a lightweight framework for MTTF esti-

134

mation, based on Monte Carlo simulations and random walks. These
topics, discussed in Chapter 3 and Section 5.2.3, respectively, represent
further contributions of this thesis.
Although many aspect have been covered in this research work, some

others are yet to be explored. Thus, there are several directions for future
work; the more relevant ones are listed below.

Extend the proposed framework to consider process variability. With
technology scaling, core-to-core parameters variations pose a major chal-
lenge to high-performance microprocessor design, negatively impacting
cores frequency and leakage power [82], thus motivating the need for
variation-aware optimization algorithms to be integrated in the proposed
framework. The literature on self-adaptive variability-aware approaches
should be surveyed (i.e., [38, 13]) and the possibility to integrate vari-
ability management within the proposed framework investigated.

Further integration of the system components. A possible extension
of the various designed components is their integration in a unique re-
source manager. This would allow to overcome an important disadvan-
tage of the proposed layered adaptive system: an application cannot be
mapped in more than one node due to the node-granularity solution of
layer B for transient faults. A mechanism to manage and coordinate
architecture across nodes is to be design, in order not to limit the ap-
plication parallelism. Moreover, the MTTF evaluation tool presented
in Section 5.2.3 could be used at runtime to make the decision mak-
ing process even more aware, and not only for the off-line estimation.
Last, the model for self-adaptive systems presented in Chapter 3 could
be exploited in the system implementation phase, for the development
of a framework able to generate, in a template-fashion, a stub of the
orchestrator according to the driving dimensions value.

Exploration of new reliable techniques. The reliable scheduling tech-
niques considered in Chapter 4 are all based on the idea of indiscrim-
inately replicating all the tasks in a task-graph, even if with different
granularities or a varying number of times. An interesting development
is to consider scheduling techniques based on selective replication; ac-
cording to this approach, only a given percentage of tasks in the elabo-
ration phase is actually replicated. This idea can be applied only if the
required fault tolerance coverage is not 100%, but it allows to further
exploit the reliability/performance trade-off.

135

6 Conclusions & Future Works

Improvement of the decision making process. The decision making
process was carried out mainly through heuristics and rule-based algo-
rithms, which fail in providing any kind of guarantee about their con-
vergence and the obtained system’s stability; the only exception is rep-
resented by the DVFS controller that exploits a control theory-based
approach. More advanced control theoretical approaches [72, 71], ma-
chine learning algorithms [70] and even price theory-based techniques
[88] proved their effectiveness in dealing with the resource management
problem and the possibility to integrate them in the proposed framework
should be investigated.

136

Bibliography

[1] Accelera Systems Initiative. http://www.accellera.org.

[2] N. Aggarwal, P. Ranganathan, N. P Jouppi, and J. E. Smith.
Configurable isolation: building high availability systems with
commodity multi-core processors. In International Symposium on
Computer Architecture, pages 470–481, 2007.

[3] ARM Ltd. http://www.arm.com/products/tools/development-
boards/versatile-express/index.php, 2011.

[4] M. Auslander, D. Dasilva, D. Edelsohn, O. Krieger, M. Ostrowski,
B. Rosenburg, R.W. Wisniewski, and J. Xenidis. K42 overview.
Technical report, IBM T. J. Watson Research Center, August 2002.

[5] P. Bailis, V. J. Reddi, S. Gandhi, D. Brooks, and M. Seltzer.
Dimetrodon: Processor-level preventive thermal management via
idle cycle injection. In Design Automation Conference, pages 89–
94, 2011.

[6] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on context-
aware systems. International Journal on Ad Hoc and Ubiquitous
Computing, 2(4):263–277, 2007.

[7] A. Baumann, P. Barham, P.E. Dagand, T. Harris, R. Isaacs, S. Pe-
ter, T. Roscoey, A. Schüpbach, and A. Singhania. The multikernel:
a new OS architecture for scalable multicore systems. In Syposium
on Operating Systems Principles, pages 29–44, 2009.

[8] R.C. Baumann. Radiation-induced soft errors in advanced semi-
conductor technologies. Transactions on Device and Materials Re-
liability, 5(3):305–316, Sept 2005.

[9] T. Becker, A. Agne, P. R. Lewis, R. Bahsoon, F. Faniyi, L. Es-
terle, A. Keller, A. Chandra, A. R. Jensenius, and S. C. Stilkerich.
EPiCS: Engineering Proprioception in Computing Systems. In In-
ternational Conference on Computational Science and Engineer-
ing, pages 353–360, 2012.

137

Bibliography

[10] L. Benini and G. De Micheli. Networks on chips: A new soc
paradigm. IEEE Computer, 35(1):70–78, 2002.

[11] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou,
L. Benini, and G. De Micheli. Noc synthesis flow for customized
domain specific multiprocessor systems-on-chip. Transactions on
Parallel and Distributed Systems, 16(2):113–129, 2005.

[12] L. Bin, P. Li-Shiuan, and P. Patra. Impact of process and temper-
ature variations on network-on-chip design exploration. In Inter-
national Symposium on Networks-on-Chip, pages 117–126, April
2008.

[13] G. Bizot, F. Chaix, N.E. Zergainoh, and M. Nicolaidis. Variability-
aware and fault-tolerant self-adaptive applications for many-core
chips. In International On-Line Testing Symposium, pages 37–42,
July 2013.

[14] G. Blake, R.G. Dreslinski, and T. Mudge. A survey of multicore
processors. Signal Processing Magazine, 26(6):26–37, November
2009.

[15] J. Blome, F. Shuguang, S. Gupta, and S. Mahlke. Self-calibrating
online wearout detection. In International Symposium on Microar-
chitecture, pages 109–122, Dec 2007.

[16] C. Bolchini and M. Carminati. Multi-core emulation for depend-
able and adaptive systems prototyping. In Workshop on Manu-
facturable and Dependable Multicore Architectures at Nanoscale,
pages 1–4, March 2014.

[17] C. Bolchini, M. Carminati, M. Gribaudo, and A. Miele. A
lightweight and open-source framework for the lifetime estimation
of multicore systems. In International Conference on Computer
Design, pages 1–7, October 2014.

[18] C. Bolchini, M. Carminati, and A. Miele. Towards the design
of tunable dependable systems. In Workshop on Manufacturable
and Dependable Multicore Architectures at Nanoscale, pages 17–21,
June 2012.

[19] C. Bolchini, M. Carminati, and A. Miele. Self-adaptive fault toler-
ance in multi-/many-core systems. Journal of Electronic Testing,
29(2):159–175, 2013.

138

Bibliography

[20] C. Bolchini, M. Carminati, A. Miele, A. Das, A. Kumar, and
B. Veeravalli. Run-time mapping for reliable many-cores based
on energy/performance trade-offs. In International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems,
pages 58–64, 2013.

[21] C. Bolchini, M. Carminati, A. Miele, and E. Quintarelli. A frame-
work to model self-adaptive computing systems. In Conference on
Adaptive Hardware and Systems, pages 71–78, 2013.

[22] C. Bolchini, M. Carminati, T. Mitra, and T. Somu Muthukarup-
pan. Combined on-line lifetime-energy optimization for asymmetric
multicores. In Technical Report, 2014.

[23] C. Bolchini, C. Curino, E. Quintarelli, F. A. Schreiber, and
L. Tanca. Context information for knowledge reshaping. Inter-
national Journal of Web Engineering and Technology, 5(1):88–103,
2009.

[24] C. Bolchini, A. Miele, and C. Sandionigi. A novel design method-
ology for implementing reliability-aware systems on SRAM-based
FPGAs. Transactions on Computers, 60(12):1744–1758, 2011.

[25] C. Bolchini, A. Miele, and D. Sciuto. An adaptive approach for
online fault management in many-core architectures. In Conference
on Design, Automation Test in Europe, pages 1429–1432, March
2012.

[26] S. Borkar, T. Karnik, and V. De. Design and reliability chal-
lenges in nanometer technologies. In Design Automation Confer-
ence, pages 75–75, 2004.

[27] E. Carvalho, N. Calazans, and F. Moraes. Heuristics for dynamic
task mapping in NoC-based heterogeneous MPSoCs. In Interna-
tional Workshop on Rapid System Prototyping, pages 34–40, 2007.

[28] T. Chantem, R. P. Dick, and X. S. Hu. Temperature-aware schedul-
ing and assignment for hard real-time applicationson MPSoCs. In
Conference on Design, Automation and Test in Europe, pages 288–
293, 2008.

[29] T. Chantem, Y. Xiang, X.S. Hu, and R.P. Dick. Enhancing mul-
ticore reliability through wear compensation in online assignment
and scheduling. In Conference on Design, Automation and Test in
Europe, pages 1–6, 2013.

139

Bibliography

[30] Z. Chen, M. Yang, G. Francia, and J. Dongarra. Self adaptive
application level fault tolerance for parallel and distributed com-
puting. In International Symposium on Parallel and Distributed
Processing, pages 1–8, 2007.

[31] C.L. Chou and R. Marculescu. FARM: Fault-aware resource man-
agement in NoC-based multiprocessor platforms. In Conference on
Design, Automation Test in Europe, pages 1–6, 2011.

[32] S. Corbetta, D. Zoni, and W. Fornaciari. A temperature and reli-
ability oriented simulation framework for multi-core architectures.
In International Symposium on VLSI, pages 51–56, 2012.

[33] A.K. Coskun, T. Simunic, K. Mihic, G. De Micheli, and
Y. Leblebici. Analysis and optimization of MPSoC reliability. Jour-
nal of Low Power Electronics, pages 56–69, 2006.

[34] A.K. Coskun, R. Strong, D.M. Tullsen, and T. Simunic Rosing.
Evaluating the impact of job scheduling and power management
on processor lifetime for chip multiprocessors. In International
Conference Measurement and Modeling Computer Systems, pages
169–180, 2009.

[35] A. Das, A. Kumar, and B. Veeravalli. Communication and mi-
gration energy aware task mapping for reliable multiprocessor sys-
tems. Future Generation Computer Systems, 2013.

[36] A. Das, A. Kumar, and B. Veeravalli. Reliability-driven task map-
ping for lifetime extension of networks-on-chip based multiproces-
sor systems. In Conference on Design, Automation and Test in
Europe, pages 689–694, 2013.

[37] A. Das, A. Kumar, and B. Veeravalli. Temperature aware energy-
reliability trade-offs for mapping of throughput-constrained appli-
cations on multimedia MPSoCs. In Conference on Design, Au-
tomation and Test in Europe, pages 1–6, 2014.

[38] S. Dighe, S.R. Vangal, P. Aseron, S. Kumar, T. Jacob, K.A.
Bowman, J. Howard, J. Tschanz, V. Erraguntla, N. Borkar, V.K.
De, and S. Borkar. Within-die variation-aware dynamic-voltage-
frequency-scaling with optimal core allocation and thread hopping
for the 80-core teraflops processor. Journal of Solid-State Circuits,
46(1):184–193, Jan 2011.

140

Bibliography

[39] E. Fernandez-Alonso, D. Castells-Rufas, J. Joven, and J. Carra-
bina. Survey of NoC and programming models proposals for MP-
SoC. International Journal of Computer Science Issues, 9(2):22–
32, 2012.

[40] European Cooperation for Space Standardization. Methods for the
calculation of radiation received and its effects, and a policy for
design margins. Technical Report ECSS-E-ST-10-12C, November
2008.

[41] D. Gizopoulos, M. Psarakis, S.V. Adve, P. Ramachandran, S.K.S.
Hari, D. Sorin, A. Meixner, A. Biswas, and X. Vera. Architectures
for Online Error Detection and Recovery in Multicore Processors.
In Conference on Design, Automation and Test in Europe, pages
533–538, 2011.

[42] Z. Gu, C. Zhu, L. Shang, and R. P. Dick. Application-specific
MPSoC reliability optimization. Transactions on VLSI Systems,
16(5):603–608, 2008.

[43] A.S. Hartman and D.E. Thomas. Lifetime improvement through
runtime wear-based task mapping. In International Conference
on Hardware/software codesign and system synthesis, pages 13–22,
2012.

[44] K. Henricksen and J. Indulska. A software engineering framework
for context-aware pervasive computing. In Conference on Pervasive
Computing and Communications, pages 77–86, 2004.

[45] H. Hoffmann, J. Eastep, M.D. Santambrogio, J.E. Miller, and
A. Agarwal. Application heartbeats: A generic interface for spec-
ifying program performance and goals in autonomous computing
environments. In International Conference on Autonomic Com-
puting, pages 79–88, 2010.

[46] P. Horn. Autonomic Computing: IBM’s Perspective on the State
of Information Technology, 2001.

[47] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. S. Borkar. A
5-ghz mesh interconnect for a teraflops processor. Micro, IEEE,
27(5):51–61, Sept 2007.

[48] J. Hu and R. Marculescu. Energy-aware communication and task
scheduling for network-on-chip architectures under real-time con-
straints. In Conference on Design, Automation and Test in Europe,
pages 234–239, 2004.

141

Bibliography

[49] J. Huang, J.O. Blech, A. Raabe, C. Buckl, and A. Knoll. Analy-
sis and optimization of fault-tolerant task scheduling on multipro-
cessor embedded systems. In International Conference on Hard-
ware/software codesign and system synthesis, pages 247–256, 2011.

[50] L. Huang and Q. Xu. AgeSim: A simulation framework for evaluat-
ing the lifetime reliability of processor-based SoCs. In Conference
on Design, Automation and Test in Europe, pages 51–56, 2010.

[51] L. Huang and Q. Xu. Lifetime reliability for load-sharing redun-
dant systems with arbitrary failure distributions. Transactions on
Reliability, 59(2):319–330, 2010.

[52] L. Huang, R. Ye, and Q. Xu. Customer-aware task allocation
and scheduling for multi-mode MPSoCs. In Design Automation
Conference, pages 387–392, 2011.

[53] L. Huang, F. Yuan, and Q. Xu. Lifetime reliability-aware task
allocation and scheduling for MPSoC platforms. In Conference on
Design, Automation and Test in Europe, pages 51–56, 2009.

[54] L. Huang, F. Yuan, and Q. Xu. On task allocation and scheduling
for lifetime extension of platform-based MPSoC designs. Transac-
tions on Parallel and Distributed Systems, 22(12):2088–2099, 2011.

[55] International Technology Roadmap for Semiconductors – Emerg-
ing Research Devices Section. http://public.itrs.net/, 2010.

[56] A. Jantsch and H. Tenhunen. Will networks on chip close the
productivity gap? In Networks on Chip, pages 3–18. Springer US,
2003.

[57] JEDEC Solid State Technology Association and others. Failure
mechanisms and models for semiconductor devices. JEDEC Pub-
lication JEP122G, 2010.

[58] E. Karl, D. Blaauw, D. Sylvester, and T. Mudge. Multi-mechanism
reliability modeling and management in dynamic systems. Trans-
actions on VLSI Systems, 16(4):476–487, 2008.

[59] K.M. Kavi, R. Giorgi, and J. Arul. Scheduled dataflow: execution
paradigm, architecture, and performance evaluation. Transactions
on Computers, 50(8):834–846, 2001.

[60] J.O. Kephart and D.M. Chess. The vision of autonomic computing.
Computer, 36:41–50, 2003.

142

Bibliography

[61] I. Koren and C.M. Krishna. Fault-Tolerant Systems. Elsevier Sci-
ence, 2010.

[62] A. Kouadri, O. Heron, and R. Montagne. A lightweight API for
an adaptive software fault tolerance using POSIX-thread replica-
tion. In International Conference on Architecture of Computing
Systems, pages 16–19, 2011.

[63] Y.K. Kwok and I. Ahmad. Static scheduling algorithms for allocat-
ing directed task graphs to multiprocessors. Computing Surveys,
31(4):406–471, 1999.

[64] C. Kyriacou, P. Evripidou, and P. Trancoso. Data-driven mul-
tithreading using conventional microprocessors. Transactions on
Parallel and Distributed Systems, 17(10):1176–1188, 2006.

[65] C. LaFrieda, E. Ipek, J. F. Martinez, and R. Manohar. Utilizing
dynamically coupled cores to form a resilient chip multiprocessor.
In Conference on Dependable Systems and Networks, pages 317–
326, 2007.

[66] J.C. Laprie. Dependable computing: Concepts, limits, challenges.
In International Conference on Fault-tolerant Computing, pages
42–54, 1995.

[67] M. Lattuada, C. Pilato, A. Tumeo, and F. Ferrandi. Performance
modeling of parallel applications on MPSoCs. In International
Conference on System-on-Chip, pages 64–67, 2009.

[68] Linaro Ubuntu release for Vexpress. http://releases.linaro.
org, 2014.

[69] H. Liu. Reliability of a load-sharing k-out-of-n:G system: non-iid
components with arbitrary distributions. Transactions on Relia-
bility, 47(3):279–284, 1998.

[70] M. Maggio, H. Hoffmann, A.V. Papadopoulos, J. Panerati, M.D.
Santambrogio, A. Agarwal, and A. Leva. Comparison of decision-
making strategies for self-optimization in autonomic computing
systems. Transactions on Autonomous and Adaptive Systems,
7(4):36:1–36:32, 2012.

[71] M. Maggio, H. Hoffmann, M.D. Santambrogio, A. Agarwal, and
A. Leva. Power optimization in embedded systems via feedback
control of resource allocation. Transactions on Control Systems
Technology, 21(1):239–246, Jan 2013.

143

Bibliography

[72] M. Maggio, F. Terraneo, and A. Leva. Task scheduling: A control-
theoretical viewpoint for a general and flexible solution. Transac-
tions on Embedded Computing Systems, 13(4):76:1–76:22, 2014.

[73] P. Meloni, G. Tuveri, L. Raffo, E. Cannella, T. Stefanov, O. Derin,
L. Fiorin, and M. Sami. System adaptivity and fault-tolerance in
NoC-based MPSoCs: the MADNESS project approach. In Con-
ference on Digital System Design, pages 517–524, 2012.

[74] P. Mercati, A. Bartolini, F. Paterna, T.S. Rosing, and L. Benini.
Workload and user experience-aware dynamic reliability manage-
ment in multicore processors. In Design Automation Conference,
pages 2:1–2:6, 2013.

[75] S.S. Mukherjee, M. Kontz, and S.K. Reinhardt. Detailed design
and evaluation of redundant multi-threading alternatives. In In-
ternational Symposium on Computer Architecture, pages 99–110,
2002.

[76] H.V. Nguyen. Multilevel Interconnect Reliability: On the Effects
of Electro-Thermomechanical Stresses. PhD thesis, University of
Twente, Twente, Netherland, 2004.

[77] E. Normand. Single event upset at ground level. Transactions on
Nuclear Science, 43(6):2742–2750, 1996.

[78] NVidia Corporation. The benefits of multi-
ple cpu cores in mobile devices., 2011. http:
//www.nvidia.com/content/PDF/tegra_white_papers/
Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.
2.pdf.

[79] J. Panerati, M. Maggio, M. Carminati, F. Sironi, M. Triverio, and
M.D. Santambrogio. Coordination of independent loops in self-
adaptive systems. Transactions on Reconfigurable Technology and
Systems, 7(2):12:1–12:16, 2014.

[80] Politecnico di Milano. ReSP web site: http://code.google.com/
p/resp-sim/, 2011.

[81] E.T. Salehi, M. Asadi, and S. Eryilmaz. Reliability analysis of
consecutive k-out-of-n systems with non-identical components life-
times. Journal of Statistical Planning and Inference, 141(8):2920–
2932, 2011.

144

Bibliography

[82] S.R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari,
and J. Torrellas. Varius: A model of process variation and resulting
timing errors for microarchitects. Transactions on Semiconductor
Manufacturing, 21(1):3–13, Feb 2008.

[83] B. Schilit, N. Adams, and R. Want. Context-aware computing
applications. In Workshop on Mobile Computing Systems and Ap-
plications, pages 85–90, 1994.

[84] A. Sharifi, S. Srikantaiah, A. K. Mishra, M. Kandemir, and C. R.
Chita. METE: meeting end-to-end QoS in multicores through
system-wide resource management. In International Conference
on Measurement and modeling of computer systems, pages 13–24,
2011.

[85] A. Shye, B. Scholbrock, and Gokhan G. Memik. Into the wild:
studying real user activity patterns to guide power optimizations
for mobile architectures. In International Symposium on Microar-
chitecture, pages 168–178, 2009.

[86] F. Sironi, D. B. Bartolini, S. Campanoni, F. Cancare, H. Hoffmann,
D. Sciuto, and M. D. Santambrogio. Metronome: operating system
level performance management via self-adaptive computing. In
Design Automation Conference, pages 856–865, 2012.

[87] K. Skadron, M.R. Stan, K. Sankaranarayanan, W. Huang,
S. Velusamy, and D. Tarjan. Temperature-aware microarchitec-
ture: Modeling and implementation. Transactions on Architecture
Code Optimization, 1(1):94–125, 2004.

[88] T. Somu Muthukaruppan, A. Pathania, and T. Mitra. Price the-
ory based power management for heterogeneous multi-cores. In In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems, pages 161–176, 2014.

[89] T. Somu Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mi-
tra, and S. Vishin. Hierarchical power management for asymmetric
multi-core in dark silicon era. In Design Automation Conference,
pages 174:1–174:9, 2013.

[90] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers. The case for
lifetime reliability-aware microprocessors. In International Sympo-
sium on Computer Architecture, pages 276–287, 2004.

145

Bibliography

[91] S. Srinivasan and N.K. Jha. Safety and reliability driven task
allocation in distributed systems. Transactions on Parallel and
Distributed Systems, 10(3):238–251, 1999.

[92] K. Stavrou, D. Pavlou, M. Nikolaides, P. Petrides, P. Evripidou,
P. Trancoso, Z. Popovic, and R. Giorgi. Programming abstractions
and toolchain for dataflow multithreading architectures. In Inter-
national Symposium on Parallel and Distributed Computing, pages
107–114, 2009.

[93] STMicroelectronics and CEA. Platform 2012: A many-core pro-
grammable accelerator for Ultra-Efficient Embedded Computing
in Nanometer Technology. In Research Workshop on STMicroelec-
tronics Platform 2012, 2010.

[94] Teraflux. Definition of ISA extensions, custom devices and Ex-
ternal COTSon API extensions. In Teraflux: Exploiting dataflow
parallelism in Tera-device Computing, 2011.

[95] The OpenMP API specification for parallel programming. http:
//openmp.org/wp/, 2011.

[96] L. Thiele, L. Schor, Y. Hoeseok, and I. Bacivarov. Thermal-
aware system analysis and software synthesis for embedded multi-
processors. In Design Automation Conference, pages 268–273,
2011.

[97] A.N. Udipi, N. Muralimanohar, and R. Balasubramonian. Towards
scalable, energy-efficient, bus-based on-chip networks. In Interna-
tional Symposium on High Performance Computer Architecture,
pages 1–12, Jan 2010.

[98] Various Authors. The MIT Angstrom Project: Universal Tech-
nologies for Exascale Computing - http://projects.csail.mit.
edu/angstrom/index.html, 2011.

[99] P. M. Wells, K. Chakraborty, and G. S. Sohi. Mixed-mode multi-
core reliability. In International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pages
169–180, 2009.

[100] M. Wirthlin, E. Johnson, N. Rollins, M. Caffrey, and P. Gra-
ham. The reliability of FPGA circuit designs in the presence of
radiation induced configuration upsets. In Symposium on Field-
Programmable Custom Computing Machines, pages 133–142, 2003.

146

Bibliography

[101] Y. Xiang, T. Chantem, R.P. Dick, X.S. Hu, and L. Shang. System-
level reliability modeling for MPSoCs. In International Conference
on Hardware/Software Codesign and System Synthesis, pages 297–
306, 2010.

[102] T.T. Ye, L. Benini, and G. De Micheli. Packetized on-chip in-
terconnect communication analysis for MPSoC. In Conference on
Design, Automation and Test in Europe, pages 344–349, 2003.

[103] W. Zhao and Y. Cao. Predictive technology model for nano-CMOS
design exploration. Journal on Emerging Technologies in Comput-
ing Systems, 3(1):1–17, 2007.

147

