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Unbiased estimation of population density is a major and unsolved problem in animal
trapping studies. This paper describes a new and general method for estimating density
from closed-population capture�/recapture data. Many estimators exist for the size (N)
and mean capture probability (p̄) of a closed population. These statistics suffer from an
unknown bias due to edge effect that varies with trap layout and home range size. The
mean distance between successive captures of an individual (/d̄) provides information on
the scale of individual movements, but is itself a function of trap spacing and grid size.
Our aim is to define and estimate parameters that do not depend on the trap layout. In
the new method, simulation and inverse prediction are used to estimate jointly the
population density (D) and two parameters of individual capture probability,
magnitude (g0) and spatial scale (s), from the information in N̂; p̄ and d̄: The
method uses any configuration of traps (e.g. grid, web or line) and any choice of closed-
population estimator. It is assumed that home ranges have a stationary distribution in
two dimensions, and that capture events may be simulated as the outcome of competing
Poisson processes in time. The method is applied to simulated and field data. The
estimator appears unusually robust and free from bias.
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Population density is the single parameter of greatest

intrinsic interest to biologists studying population dy-

namics (Krebs 1985, Buckland et al. 1993, Turchin

1998). More population data probably have been col-

lected on small mammals by trapping than by any other

method (Thompson et al. 1998), yet the relationship

between these data and population density remains

obscure.

Data from capture�/recapture and removal studies

may be analysed by a variety of increasingly sophisti-

cated methods to estimate the size of the trappable

population N (Otis et al. 1978, Seber 1982, 1986, 1992,

Pollock et al. 1990, Pledger 2000, Williams et al. 2002,

Chao and Huggins in press). Population size is often

treated as a surrogate for density, or converted to density

by dividing by an estimate of the spatial extent of the

trappable population (the ‘‘effective trapping area’’).

Trapping area A is difficult both to define and to

measure accurately, and density estimates based upon

it are widely distrusted. Little progress has been made

since Dice (1938) suggested adding a strip, equal in

width to one home range radius W, to the area AG of the

trapping grid itself. Direct estimates of home range size

and W from trapping data are inevitably biased by the

truncation of trap-revealed ranges at the edge of the

trapping grid. An array of alternative methods have been

suggested for estimating W from capture�/recapture and

removal data, but none has been used widely (Hansson

1969, Tanaka 1972, 1974, 1980, Hagen et al. 1973,

Stenseth et al. 1974, Smith et al. 1975, Swift and

Steinhorst 1976, Otis et al. 1978, Stenseth and Hansson

1979, Schroder 1981, Van Horne 1982, Bondrup-Neilsen

1983, Wilson and Anderson 1985a, Jett and Nichols

1987, Gurnell and Gipps 1989, Thompson et al. 1998,

Parmenter et al. 2003). The ‘‘nested sub-grid’’ method

for estimating W (MacLulich 1951, Otis et al. 1978,

White et al. 1982) succeeds only when the population is

evenly distributed at high density and is trapped with a
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large grid; even then, estimates may be very biased

(Wilson and Anderson 1985b).

Several methods exist that avoid estimating W. The

‘naı̈ve’ density N̂/AG differs from true density by a factor

P̄A equal to the average proportion of time that

trappable individuals spend within the perimeter of the

grid. P̄A may be estimated by radiotelemetry (Boutin

1984, White and Shenk 2001) or possibly by other

tracking methods (Marten 1972). Precise estimation of

P̄A is likely to be expensive because a large and

representative sample of locations is required. There is

also a risk of positive bias because a sample of animals

caught on the grid will be biased towards those with

higher than average PA. Another way of combining

radiotelemetry data with the Petersen estimator was

suggested by Eberhardt (1990).

Alternative methods for trapping data alone rely on

specific trap configurations, particularly trapping webs

(Anderson et al. 1983, Wilson and Anderson 1985c,

Link and Barker 1994). As currently implemented, these

methods do not use information from recaptures. A

recent validation study of trapping webs gave equivocal

results for fenced populations of desert rodents that were

later trapped exhaustively to determine their true density

(Parmenter et al. 2003). Expert analysts using a variety

of methods generally failed to estimate density reliably,

although this failure was in part due to the sparseness of

the data. Distance analyses with a uniform detection

function were found to produce estimates reasonably

close to the true values. Model selection by AIC often

indicated a different detection function that, empirically,

produced much poorer estimates. Doubts remain about

the conditions under which distance analyses of trapping

web data can produce reliable estimates of density

(Lukacs 2002).

This study focuses on the estimation of population

density from trapping data, given the extensive use of

trapping grids and their appeal as a sampling tool. A

new and general method is proposed for density estima-

tion that avoids many of the problems with previous

approaches. A simple simulation model, incorporating a

2-parameter spatial detection function, is used to

represent the capture process. The relationship between

the parameters and statistics from simulated samples is

described by fitting a linear model. The model is then

inverted and applied to statistics from the field sample.

Population density may thereby be inferred from closed-

population capture�/recapture data without the inter-

mediate step of estimating effective trapping area. The

performance of the method is assessed using simulated

data from small and large trapping grids with a range of

parameter values for the detection function and two

orders of magnitude variation in density. The robustness

of the method to the form of the detection function and

other design decisions is also assessed by simulation.

Field examples use mark�/recapture data on the brush-

tail possum Trichosurus vulpecula Kerr and house mouse

Mus musculus L. in New Zealand.

Methods

Model

At the core of the new method is a conceptual model of

the trapping process. Animal range centres are distrib-

uted across the study area as a spatial point process with

intensity (density) D. During a closed-population sam-

pling session each animal is assumed to occupy a home

range centred at an unknown location, and each trap is

set at a known location and can catch at most one

animal. Considering only one animal and one trap, the

probability of capture is a declining function of distance

d between the range centre and trap, directly analogous

to a detection function g(d) in distance analysis (Borch-

ers et al. 2002). For this function we require a minimum

of two parameters, g0 for overall magnitude and s for

the spatial scale over which capture probability declines.

Although a half-normal detection function (Fig. 1) is

assumed for most of this paper, a step function was also

tested (i.e. uniform probability P�/g0, dB/�/s; P�/0,

d�/s). The parameters (D, g0, s) and the trap locations

define an individual-based model of the capture process.

The parameters are not easy to estimate directly

because in a trapping experiment the radial distances

are not observed (range centres are unknown) and there

are many simultaneous competing processes, one for

Fig. 1. Half-normal model for probability of capture (P)
as a function of distance (d) from home range centre to trap,
in the absence of competition. P�/g0 exp (�/d2/(2s2). In this
example g0�/0.4.
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each of the N�/k pairwise combinations of N animals

and k traps. In other words, the sample obtained when

traps are checked after a period of time reflects both the

intrinsic probabilities arising from the relative locations

of home ranges and traps, and the competition among

animals for traps and among traps for animals.

Simulation and inverse prediction

Joint estimation of D, g0 and s appears at present to be

analytically intractable. However, conventional closed-

population estimates clearly contain relevant informa-

tion and a numerical approach is feasible. Robust

estimators exist for local population size (N) and mean

capture probability (p̄) (Otis et al. 1978). The mean

distance between successive captures of the same in-

dividual (/d̄) provides information on the scale of

individual movements. For constant g0 and s we expect

N̂ to be an increasing function of D. Likewise, for

constant D and s, we expect p̄ to be an increasing

function of g0, and, for constant D and g0, we expect d̄

to be an increasing function of s. Simulations confirm

these relationships (Fig. 2). The actual functions in each

case depend in unknown ways on the trap layout and

number of trapping occasions.

Monte Carlo simulation and inverse prediction

(Brown 1982, Pledger and Efford 1998) allow us to

circumvent analytical intractability and exploit the

monotonic relationships of Fig. 2. The relationships

may be summarised as follows. Let yi�(N̂i; p̂i; d̄i) be an

observation vector (in the sense that any data set i may

readily be summarised as yi, given a closed population

estimator) and u�(D; g0;s) be the vector of parameters

prevailing in the population from which yi is drawn. The

joint model is then

yi�FT(u)�oi

where the oi are assumed multivariate normal with mean

zero and FT is a function representing the sampling

process for a given trap layout T. By inverting FT we can

in principle obtain an estimate of u:

û�F�1
T (yi)

Carothers (1979) was the first to apply the approach to a

capture�/recapture problem: he estimated heterogeneity

of resighting probability among fulmars (Fulmarus

glacialis ) and adjusted survival estimates for the con-

sequent bias. The core of the present method is a

simulator that generates pseudorandom samples from

populations with known D, g0 and s, using the same

design (trap layout and number of occasions) as used in

the field. From each simulated capture�/recapture sam-

ple we may calculate the statistics N̂; p̂ and d̄: By

averaging over sufficient samples we approximate the

unique point in statistic space that corresponds to the

original (D, g0, s) in parameter space. Observed values

of (/N̂; p̂; d̄) for arbitrary (D, g0, s) provide the data we

need to approximate FT. We assume FT may be

approximated by a linear function over a small region

of parameter space near the true value of (D, g0, s;

below).

Monte Carlo simulation of trapping is not straightfor-

ward because of competition effects as described above.

Previous simulators (Zarnoch and Burkhardt 1980,

Steiner 1983) introduced spatial structure and beha-

Fig. 2. Relationships between statistics estimated from data and
the parameters of the spatial population-and-trapping process
from which they were generated. Simulated data for Poisson-
distributed population within a 25-ha arena sampled with a
centrally placed square grid of 81 traps over five occasions.
Means of 100 replicates; curves are quadratic fitted by least
squares. (a) Population size N̂ as a function of density D for
three different estimators N̂0 k, N̂J ', Mt�1 X. Other
parameters held constant (g0�/0.2, s�/30 m). (b) Capture
probability p̂ as a function of intrinsic trappability g0. Symbols
correspond to different estimators as in (a). Other parameters
held constant (D�/11.1 ha�1, s�/30 m). (c) Recapture
distance d̄ as a function of the scale of movements s. Other
parameters held constant (D�/11.1 ha�1, g0�/0.2).
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vioural complexity that is not relevant to our problem

while only partly solving the problems of competition.

A robust solution is to simulate a system of N�/k

simultaneous competing Poisson processes in continuous

time, representing the N�/k potential capture events

where there are N animals and k traps. Each process has

a rate parameter determined by the separation of the

home range centre and the trap, and a random time to

next event is drawn from an appropriate exponential

distribution. Events are accepted in temporal sequence

up to the limit of one time unit (a trapping occasion). At

each event the row and column corresponding to the

relevant animal and trap are deleted from the shrinking

N�/k matrix. The algorithm is described in more detail

in the Appendix.

Many possible methods are available for conducting

the search of parameter space. Software has been

developed that uses a simple planar interpolation with

FT fitted by least squares to data from simulations at the

vertices of a cuboid centred on a starting value in

parameter space. If the value of û inferred from FT
�1(yi)

lies outside the cuboid then simulations and least squares

model fit are repeated for a new cuboid centred on û:
Once an acceptable solution has been found (i.e. û is

inside the cuboid used to estimate FT), further simula-

tions are performed at the solution point to estimate the

variance�/covariance matrix and obtain an approximate

prediction interval for the estimates (Pledger and Efford

1998).

Software to perform these calculations (Program

DENSITY) may be downloaded from www.landcarere-

search.co.nz/services/software/density/.

Design issues

In designing software to implement the general approach

outlined above it was necessary to resolve a number of

practical issues not central to the method. These

decisions, or the options offered, are outlined below.

Choice of closed-population estimator

Any appropriate estimator may be used to obtain N̂ and

p̂. Heterogeneity of individual capture probabilities is

intrinsic to the present model because animals outside

the grid have access to fewer traps than animals centred

within its perimeter. By the logic of conventional model

selection, an estimator should at least be robust to

heterogeneity (i.e. include model Mh, Otis et al. 1978).

Four such estimators or groups of estimators are

Burnham and Overton’s (1978) jackknife, Chao’s

(1987) N̂h; Lee and Chao’s (1994) sample coverage

estimators for model Mth, and Pledger’s (2000) mixture

estimators (Norris and Pollock 1996). Temporal and

behavioural variation (Otis et al. 1978) may also be

present in the field data, but there is a lack of proven

estimators that combine these effects with individual

heterogeneity. Mixture models are promising here, and

offer the added attraction of model selection within a

maximum likelihood framework (Pledger 2000).

It is unclear what properties are required of a closed

population estimator in the context of spatial simulation

and inverse prediction. Intuitively, estimators should be

robust to sources of heterogeneity that are present in the

data and not encompassed by the simulation model.

Such sources potentially include temporal variation in

trappability (model Mt), learned trap responses (model

Mb) and non-spatial individual heterogeneity. Further

work is needed on model selection. In the interim it is

noted that sample coverage estimators for model Mth

(Lee and Chao 1994) appear to yield inverse prediction

estimates of D with a satisfactory trade-off of robustness

and precision in many field situations (unpubl.). Trials

reported below suggest that biased N̂ may yield precise

and nearly unbiased D̂; so model selection may not be

critical.

Spatial distribution of range centres

Simulation must occur within a notional arena that

contains all individuals likely to be caught. Under the

half-normal model, the population at risk of capture is

unbounded, although capture becomes very unlikely for

animals centred far from any trap. Some compromise is

needed regarding size of arena. Animals with a capture

probability of less than 0.001g0 in any trap are essentially

untrappable and unlikely to affect estimates. All animals

with range centres at least 3.72 s outside the grid meet

this criterion. Larger buffers may be preferred where s is

uncertain.

Consider a stationary spatial point process (distribu-

tion) with known intensity (density) D. The expected

number of points within a two-dimensional region may

be calculated (N�/D.A), but the actual number varies

between realizations depending on the spatial variance

of the process. A large local population in the vicinity of

a trapping grid may result from globally high density or

as a random local cluster in a process with lower global

density. Inverse prediction incorporates this variance

into the uncertainty of the estimate, although the exact

contribution of Poisson spatial variance to prediction

error is unknown because the area A is undefined. This

is appropriate on two conditions: (1) we are concerned to

generalize to the entire spatial process rather than just

measure the density of one realization in the vicinity of

the grid, and (2) the study animal has a spatial Poisson

distribution. For the purpose of estimating local density

on a single grid I suggest it is often more appropriate to

use a model that distributes animals evenly in two

dimensions. Even distributions are likely to occur

naturally only when animals space out from each other,

as in strictly territorial species. In other cases the use of

an even distribution in the simulation model is a device
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to remove an unwanted spatial component of variance.

Spatial variance may then be estimated between grids.

The software defaults to an even distribution, con-

structed as follows. A strictly regular arrangement of

range centres entails the risk of artefacts due to the

interaction between animal spacing and trap spacing.

The simulation arena was therefore tiled with square cells

of area 1/D, each containing a single animal, and the

location of each individual was randomised uniformly

within its cell. A completely random (Poisson) distribu-

tion is allowed as a software option; density estimates

with Poisson simulations were less precise although

confidence interval coverage was superior where the

aim was to estimate global rather than local density (see

Results).

Habitat is seldom uniform, and trapping studies may

adjoin areas of nonhabitat. The software allows the user

to provide a habitat ‘‘mask’’, a raster map in which each

1-m2 cell of the simulation arena is classified either as

habitat or as nonhabitat in which no animal’s range may

be centred. This is only a partial solution because it does

not allow for likely distortion of circular ranges at a

habitat edge.

Search options: starting values and number of replicates

The numerical search starts from values for D, g0 and s
provided by the user, or from an approximate û
calculated automatically.

Simulation is time-consuming (estimation typically

takes 0.5�/5 minutes on an 866 MHz Pentium III

computer), which is an incentive to limit the number of

replicate samples. When replicates are too few, sampling

error prevents the algorithm from converging on a

solution. One hundred replicates appears adequate for

typical analyses (/N̂�/50, p̂�/0.2, number of occasions

�/3).

Testing with simulated data

The method was validated using simulated data from

square grids of 36 and 144 traps at 30 m spacing. Home

range centres were distributed at 10 ha�1 randomly

(Poisson distribution) throughout an area extending

200 m beyond the grid in both x- and y- directions.

Trapping was over five occasions. Initial trials simulated

trapping only on the larger (12�/12) grids and with

single detection function (g0�/0.1, s�/40 m) over a

range of densities. Density was estimated both by inverse

prediction and by the nested subgrid method of Otis et

al. (1978) as implemented in program CAPTURE. Sub-

grids were 6�/6, 8�/8, 10�/10 and 12�/12 traps in size.

N̂ and p̂ were obtained with the maximum likelihood

estimator for the null (equal capture probability) model

M0 of Otis et al. (1978) (/N̂0):

The actual dispersion of home range centres and the

shape of the detection function are usually unknown.

Trials were conducted with alternative dispersions (Pois-

son and even) and detection functions (half normal and

uniform) to assess the effect of using the wrong model

for estimation.

A further trial assessed the effects of variation in

parameters of the detection function and of choosing a

different closed population estimator. One hundred

simulations were conducted at all combinations of two

levels of g0 ( 0.1, 0.4) and two levels of s (20 m, 60 m).

Two estimators were compared: N̂0 and Burnham and

Overton’s (1978) jackknife (/N̂J) that is designed to be

robust to individual variation in the probability of

capture.

The performance of the density estimator was assessed

in terms of precision, bias and coverage of confidence

intervals. Precision was measured as the coefficient of

variation of the estimate CV(D̂)�SE (D̂)=D: Relative

bias was measured as RB(D̂)�[E(D̂)�(D)]=D: Con-

fidence interval coverage COV was the percentage of

nominal 95% intervals (D̂91:96 ŜE(D̂)) that contained

the true value.

Applications to field data

The new method was applied to two field data-sets as

described below.

Example 1. Brushtail possum Trichosurus vulpecula in

New Zealand

Brushtail possums are 2�/4 kg largely arboreal marsu-

pials that have become pests of forests and farmland in

New Zealand since their introduction from Australia in

the nineteenth century. Their population dynamics in

mixed native forest have been studied by capture�/

recapture in the Orongorongo Valley near Wellington

over many years (Crawley 1973, Efford 1998). Since 1996

a grid of 167 traps at 30-m spacing in an area of about 14

ha has been operated for 5 consecutive days three times

each year (Efford 2000, unpubl. results). A broad shingle

riverbed forms two edges of the study grid. Possums

breed seasonally, causing an influx of newly independent

juveniles in the first trapping of each calendar year.

Density has been estimated previously by applying an ad

hoc calculation of effective trapping area to Jolly�/Seber

estimates: an 83-m strip equal in width to half the

asymptotic trap-revealed range length (Jett and Nichols

1987) was added to the forested edges of the grid (Efford

1998). Precise estimates of population density are needed

for quantitative modelling of the consumption by

possums of leaves and fruit.

Density was estimated for each trapping session by

simulation and inverse prediction. A raster habitat map

was used to mask areas of non-habitat, i.e., simulated
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range centres were placed only within forest. The

parameter search started from the values D�/14 ha�1,

g0�/0.15, and s�/20 m in each case. Three further

population estimators were used in addition to N̂0 and

N̂J (above); these were the number of individuals caught

(Mt�1 in the notation of Otis et al. 1978), the maximum

likelihood estimator for model Mt (/N̂t) which allows for

temporal variation in capture probability (Otis et al.

1978), and an alternative model Mh estimator (/N̂h) due

to Chao (1987). Values of N̂t were numerically almost

identical to N̂0 (differenceB/1%) and results are there-

fore not presented separately.

Example 2. House mouse Mus musculus on Mana Island,

New Zealand

High population densities of the introduced house

mouse threatened endangered native invertebrates and

skinks on Mana Island until they were eradicated in the

1980s. Pickard (1984) conducted an intensive live trap-

ping study on a 1.44-ha coastal site at Shingle Point over

the period March 1981 to February 1982. Traps were set

on a square grid at 20-m spacing for 3�/5 days per month

and checked daily. Mice on Mana bred in spring and

early summer (August�/February) each year, driving a

strong seasonal fluctuation in density (Pickard 1984,

Efford et al. 1988). Pickard (1984) estimated an average

home range size of 0.26 ha from 61 mice with at least 15

captures or tracking records. Jackknife population

estimates varied seasonally between 37 and 202. Daily

capture rates were high�/between 20% and 81% of the

estimated population size.

Density estimates were obtained by simulation and

inverse prediction with the half-normal model for 10 of

the trapping sessions. In the remaining two (August and

September 1981) the search algorithm failed, apparently

because the spatial distribution of capture probability

could not be fitted with the half-normal model. The

algorithm converged when a circular uniform model was

substituted; this allowed for consistently high capture

probability over a circular range with an abrupt edge.

The circular uniform model used two parameters

analogous to g0 and s, but with slightly different

interpretations (uniform probability and range radius).

Results

Simulated data

Simulated trapping of populations with known density

yielded a wide range of mean sample sizes (10 to 514

marked animals; Table 1a). Trap saturation was extreme

for the most dense populations (99% of traps occupied).

The inverse prediction estimator of density showed no

systematic tendency to positive or negative bias over two

orders of magnitude variation in actual density (Table

1b). Relative precision increased rapidly as density was

increased from 0.5 to 5.0 ha�1, but varied little at higher

densities. Coverage of nominal 95% confidence intervals

averaged 93%. Estimates of g0 showed a tendency

towards positive bias, while estimates of s were effec-

tively unbiased (Table 1b).

Estimates of density by the nested subgrid method

were poor by comparison. Relative bias exceeded 10% at

all densities less than 20 ha�1 and, despite confidence

intervals being wider, confidence interval coverage was

less than 80% for all densities less than 50 ha�1 (Table

1c).

The present implementation of inverse prediction

requires an arbitrary choice of dispersion model and

detection function (see Methods). D̂ remained an

unbiased estimator of D even when inverse prediction

used an inappropriate dispersion or detection function

(Table 2, 3), although this result is based on trials with

only one combination of parameter values (D�/10

ha�1, g0�/0.1, s�/40 m). Coverage of nominal 95%

confidence intervals was reduced if inverse prediction

fitted an even dispersion of home ranges when the actual

dispersion was Poisson (Table 2).

Further trials varied the number of traps, the closed

population estimator and parameters of detectability

(Table 4). All results were consistent with the inference

that the inverse prediction D̂ was an unbiased estimate

of D (RB(/D̂):/0). The jackknife estimator N̂J produced

density estimates that did not differ systematically from

those of the null model estimator, except that they were

less precise. Inverse prediction ĝ0 was negatively biased

for large g0 (Table 4).

Brushtail possums

The various closed-population methods yielded diver-

gent estimates of the number of brushtail possums

trappable from the Orongorongo Valley grid over

1996�/2001 (Fig. 3a). For the inverse prediction density

estimates this variation collapsed into two curves: one

for Mt�1 and N̂0; and one for the Mh estimates N̂J and

N̂h (Fig. 3b). Separation was least at low, stable densities

in 1997 and 1998. Within-year seasonal patterns varied

little between estimators in all years except 1999 when

the model Mh estimators showed a much larger pulse of

recruitment in February than was indicated by the other

estimators.

The estimated scale of movements (/ŝ) showed a major

fluctuation in 1999 (Fig. 3c). Heavy fruiting of native

trees Nothofagus truncata and Elaeocarpus dentatus

occurred only in early 1999 within the study period (P.

Cowan, pers. comm.). Possums enlarge their normal

ranges to feed on these foods (Ward 1978), which may

explain the peak in ŝ:
The boundary strip width W for an effective trapping

area that would result in the observed density estimates

was obtained by solving a quadratic in W. Over the 16
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trapping sessions it ranged from 27 m to 42 m for N̂0

(mean9/SE 35.49/1.0 m) and from 58 m to 80 m for N̂J

(65.09/1.7 m).

Feral house mice

The average density estimated by inverse prediction

(31.29/7.1 ha�1; Table 5) agreed closely with that

estimated previously by Dice’s (1938) boundary strip

method (33.29/5.4; 29-m boundary strip calculated from

0.26-ha circular range). However, the new estimates

indicated greater seasonal variation in density (Fig. 4).

This resulted from variation in the scale of movements

(s). Mice moved substantially further between captures

at lower densities in May to December than at peak

density between January and April. Calculations with a

constant effective trapping area therefore underesti-

mated density when it was high and overestimated it

when it was low. One consequence of this bias is that

population rates of increase and decrease would be

underestimated. The approximate doubling of s at low

density (10�/30 ha�1) compared to high density (50�/70

ha�1) corresponded to a four-fold variation in range

area. Seasonal fluctuations in the density of house mice

on Mana were modest compared to variation between

years in mainland New Zealand Nothofagus forests

(Murphy and Pickard 1990) or Australian wheat fields

(Singleton and Redhead 1990). In these situations it is

imperative to allow for varying spatial behaviour when

comparing density estimates. Krebs et al. (1994) sug-

gested that recapture distances of mice in Australian

wheat fields did not change over a 50-fold variation in

density (10�/20 ha�1 to 700 ha�1), but this matter

deserves more intensive study.

Table 1. Comparative performance of ‘inverse prediction’ and ‘nested sub-grid’ estimators applied to simulated mark�/recapture
samples from populations differing in density D. Detection function g0�/0.1, s�/40 m; 144 traps, 5 days. Null closed-population
estimator N0. Mean9/SE of 100 simulations for D�/0.5 ha�1 and 98 simulations for D�/0.5 ha�1 (neither density estimate could
be calculated for two simulations when only 2 individuals were caught).

(a) Statistics common to both density estimators. Recaptures�/mean number of recaptures; TS�/proportion of traps occupied; see
text for other statistics

D (ha�1) Mt�1 Recaptures / N̂0 / p̂ / d̄ (m) TS (%)

0.5 10.3 15.8 10.49/0.3 0.5099/0.008 61.49/1.1 3.79/0.12
1 19.1 29.2 19.39/0.5 0.5069/0.006 62.29/0.7 6.79/0.17
2 38.8 55.6 40.29/0.7 0.4739/0.005 62.49/0.6 13.19/0.23
5 93.0 125.5 97.69/1.0 0.4489/0.002 62.49/0.3 30.39/0.30

10 174.1 202.6 188.69/1.2 0.4009/0.002 62.59/0.2 52.49/0.39
20 308.3 263.4 362.69/1.7 0.3169/0.001 63.29/0.3 79.49/0.22
50 514.3 196.6 874.59/4.9 0.1639/0.001 63.49/0.2 98.89/0.07

(b) Inverse prediction estimate of density and detection function parameters

D (ha�1) /D̂ (ha�1) CV(/D̂) (%) RB(/D̂) (%) COV (%) /ĝ0 /ŝ (m)

0.5 0.539/0.02 32.49/1.04 6.149/3.39 93 0.1159/0.004 39.89/0.71
1.0 0.979/0.03 21.89/0.42 �/3.019/2.71 86 0.1119/0.003 40.59/0.54
2.0 2.039/0.04 14.79/0.19 1.709/1.82 90 0.1009/0.002 40.39/0.42
5.0 5.009/0.06 9.49/0.07 �/0.049/1.12 89 0.1029/0.001 40.19/0.24

10.0 10.029/0.11 7.09/0.08 0.179/1.07 94 0.1019/0.002 40.19/0.24
20.0 19.799/0.11 6.49/0.04 �/1.039/0.54 97 0.1049/0.001 40.19/0.18
50.0 50.389/0.29 6.49/0.04 0.779/0.58 99 0.0939/0.001 39.89/0.16

(c) Nested subgrid estimates of density (Otis et al. 1978)

D ha�1
/D̂ ha�1 CV(/D̂)% RB(/D̂)% COV (%)

0.5 0.659/0.04 51.99/13.9 29.939/7.19 55
1 1.239/0.05 20.49/1.3 22.919/5.32 49
2 2.779/0.08 14.89/0.5 38.339/4.10 42
5 6.069/0.14 11.19/0.2 21.299/2.87 48

10 11.229/0.22 9.99/0.2 12.209/2.25 61
20 21.179/0.34 10.49/0.1 5.839/1.70 79
50 48.889/0.94 17.89/0.4 �/2.249/1.87 92

Table 2. Effect of actual and fitted dispersion of home range centres on estimates of density by inverse prediction. Mean of
simulated data for D�/10 ha�1 as in Table 1; 100 replicates. ‘Even’ distribution of home range centres is described in the text.

Dispersion Properties of estimates

Actual Fitted CV(/D̂) (%) RB(/D̂) (%) COV (%)

Poisson Poisson 6.969/0.05 �/0.949/0.70 96
Poisson Even 4.859/0.04 �/1.029/0.70 84
Even Poisson 8.169/0.05 �/1.179/0.49 100
Even Even 4.759/0.03 �/1.219/0.49 93
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Discussion

The new method provided nearly unbiased estimates of

population density from simulated mark�/recapture

data. As the estimates are also quite precise (CV (/D̂)
B/10% with typical data) it is natural to suspect that

they depend upon restrictive assumptions. Certainly, the

method implements a specific spatial model of the

trapping process. However, its parameterisation appears

simple and robust to violations of some assumptions.

The half-normal model of intrinsic trappability was

initially described by Calhoun and Casby (1958), and

has much in common with detection models used in

analysing distance data and trapping webs (Buckland et

al. 1993, Link and Barker 1994, Borchers et al. 2002).

The fundamental assumption of distance analysis is that

individuals located exactly on a transect or at a detection

device are recorded with certainty (g0�/1). Trapping

studies of brushtail possums and house mice yielded

empirical estimates of daily g0 mostly in the range 0.1 to

0.5. Cumulative g ?0 over a trapping session of t occasions

(g ?0�/1�/(1�/g0)t) may approach 1.0, especially at the

centre of a dense grid or web, but this should not be

assumed uncritically. Inverse prediction may occasion-

ally fail with the half-normal model, requiring the

substitution of an alternative uniform model as in the

case of Pickard’s (1984) Mana mouse data from August

and September 1981.

It is a fundamental assumption of the method that

animals occupy home ranges (in mathematical terms,

capture locations are drawn at random from a stationary

distribution). The method cannot be assumed to work

where a high proportion of individuals are nomadic or

transient, and its robustness in these circumstances has

yet to be investigated.

The weakest aspect of the new method is probably the

assumption that d̄; the observed mean distance between

successive captures of an individual, provides reliable

information on s, the spatial scale of the detection

function. This assumption is justified when successive

trapping occasions are independent. It is not justified if

being caught affects the likely location of an individual’s

next capture. In that case initial captures are governed by

one value of s, about which we have no information, and

recaptures by another s? indexed by d̄: This is a spatial

analogue of the ‘‘learned trap response’’ (model Mb Otis

et al. 1978). Methods for testing this assumption are a

priority for further research. We might expect any

disruptive effect of capture on the routine movements

of an animal to diminish over time after release. A

simple test is to compare d̄ based on immediate

recaptures (first and second captures of animal i at times

t and t�/1) with d̄ based on recaptures separated by at

least one sampling occasion (first and second captures of

animal i at times t and t�/j, j�/1). Interpretation of a

significant difference may be difficult because the sample

of immediate recaptures will be biased towards more

trappable animals whose recapture distances may also

deviate from the population mean. Nevertheless, it is

worth noting that no significant effects were found when

this test was applied to either the brushtail possum or

mouse data-sets reported here.

Other breaches of assumptions appear more likely to

affect the precision of estimates than to cause significant

bias. Non-circular ranges, clumped dispersion of indivi-

duals, and individual variation in g0 and s, are all likely

to affect the variance of density estimates by the present

method. All are open to investigation by simulation.

The coverage of confidence intervals for global density

calculated from prediction standard errors was close to

nominal levels when a Poisson distribution was used for

home range centres. To achieve such coverages it was

necessary to simulate spatial variance in local density. As

argued in the Methods, biologists will frequently prefer a

confidence interval for local density rather than for

global density. By using the ‘even’ distribution in

simulations for inverse prediction we can effectively

remove uncertainty due to spatial variance and achieve

tighter confidence limits on local density, DL. The gain

in precision can be large (e.g. 30% reduction in CV (/D̂)
for ‘even’ model fitted to Poisson data in Table 2). It is

not clear how to test the coverage of confidence intervals

for DL based on the ‘even’ model because the parametric

value of DL is unknown even in simulations. However,

the results give no reason to expect poor coverage of

intervals for DL based on the ‘even’ model.

The simulation method appears robust to the choice

of closed-population estimator. When the only source of

Table 3. Effect of actual and fitted shape of detection function on estimates of density by inverse prediction. Mean of simulated data
for D�/10 ha�1 as in Table 1, 100 replicates. ‘Normal’ refers to data simulated with a half�/normal detection function g0�/0.1, s�/

40 m. ‘Uniform’ data were simulated with capture probability P�/0.054 for rB/�/77.5 m and P�/0 otherwise (values chosen to
match mean fitted uniform detection function values when data were half normal with g0�/0.1, s�/40 m).

Detection function Estimates

Actual Fitted /D̂ (ha�1) CV(/D̂) (%) RB(/D̂) (%) COV (%) /ĝ0 /ŝ (m)*

Normal Normal 9.919/0.07 6.969/0.05 �/0.949/0.70 96 0.1039/0.001 39.99/0.2
Normal Uniform 10.029/0.07 7.469/0.08 0.249/0.70 97 0.0549/0.001 77.59/0.3
Uniform Uniform 9.999/0.08 6.949/0.05 �/0.079/0.84 91 0.0559/0.001 77.49/0.4
Uniform Normal 9.889/0.08 7.319/0.07 �/1.239/0.84 91 0.1069/0.001 39.99/0.2

* ŝ of a ‘uniform’ fitted detection function is the estimated value at which P drops to zero.
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Table 4. Inverse prediction estimator of density with varying detection function, closed population estimator and grid size. D�/10 ha�1, 5 trapping days on square grids of traps 30 m
apart, 100 replicates. Recaptures�/mean number of recaptures.

g0 s Mt�1 Recaptures /N̂0 /p̂ /d̄ (m) /D̂ (ha�1) CV (/D̂) (%) RB (/D̂) (%) COV (%) /ĝ0 /ŝ (m)

(a) Null estimator, 6�/6 grid
0.1 20 26.9 11.0 44.79/1.3 0.1799/0.004 30.79/0.68 9.829/0.29 34.09/1.0 �/1.839/2.87 95 0.1049/0.004 20.69/0.40
0.4 20 42.5 49.8 45.59/0.7 0.4099/0.004 29.29/0.31 9.949/0.17 16.29/0.2 �/0.599/1.72 93 0.3649/0.008 20.59/0.19
0.1 60 81.4 64.7 97.89/1.1 0.3019/0.003 68.49/0.49 10.089/0.23 23.69/0.5 0.799/2.30 93 0.1019/0.002 60.29/0.96
0.4 60 89.9 89.2 101.09/0.9 0.3579/0.003 68.59/0.43 9.679/0.20 21.59/0.3 �/3.329/1.95 93 0.2909/0.006 62.29/0.89

(b) Null estimator, 12�/12 grid

0.1 20 97.6 45.6 148.99/2.0 0.1949/0.002 31.39/0.30 9.989/0.14 12.99/0.2 �/0.209/1.40 92 0.1029/0.002 19.79/0.17
0.4 20 150.1 210.1 157.19/1.4 0.4609/0.002 31.79/0.16 10.109/0.09 8.49/0.1 0.999/0.92 93 0.3539/0.003 20.59/0.09
0.1 60 230.3 314.7 242.19/1.3 0.4519/0.001 87.79/0.33 9.979/0.07 7.29/0.1 �/0.309/0.68 93 0.1019/0.001 59.99/0.28
0.4 60 252.6 443.0 257.59/1.3 0.5419/0.002 87.39/0.28 10.049/0.07 6.19/0.1 0.389/0.74 87 0.3689/0.006 61.59/0.26

(c) Jackknife estimator, 6�/6 grid
0.1 20 25.8 10.2 49.59/1.2 0.1529/0.004 30.39/0.75 10.959/0.36 39.79/1.2 9.519/3.58 96 0.0949/0.004 20.79/0.49
0.4 20 42.2 50.0 53.39/0.9 0.3519/0.004 29.89/0.34 9.729/0.19 20.69/0.3 �/2.849/1.91 95 0.3549/0.008 20.99/0.24
0.1 60 82.4 64.9 133.89/1.8 0.2249/0.003 69.49/0.49 9.999/0.24 28.79/0.5 �/0.139/2.36 96 0.0969/0.003 62.09/1.05
0.4 60 91.2 88.0 140.09/1.9 0.2619/0.004 68.79/0.41 10.029/0.26 27.39/0.4 0.219/2.57 94 0.2439/0.006 62.09/0.85

(d) Jackknife estimator, 12�/12 grid

0.1 20 98.0 46.6 178.99/2.7 0.1649/0.002 31.99/0.28 10.049/0.16 15.49/0.2 0.439/1.63 93 0.0999/0.002 20.19/0.15
0.4 20 149.0 210.7 176.79/1.7 0.4099/0.002 31.79/0.14 9.969/0.09 8.19/0.1 �/0.399/0.94 90 0.3579/0.003 20.59/0.08
0.1 60 230.4 313.1 309.49/3.0 0.3549/0.003 87.79/0.32 9.899/0.12 12.09/0.2 �/1.119/1.23 97 0.1029/0.002 60.09/0.28
0.4 60 251.1 444.6 328.99/2.9 0.4269/0.004 87.49/0.25 9.899/0.12 12.09/0.2 �/1.089/1.19 94 0.3709/0.012 61.79/0.24
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individual heterogeneity was locational, as in the tests

with simulated data-sets, both model M0 and model Mh

estimators were unbiased. Comparable results were

obtained even when N̂ was the number of individuals

caught (Mt�1), without adjustment for animals present

but not caught (unpubl.). Intuitively, simulation ‘‘adjusts

for’’ any bias that is inherent in the spatial model.

Systematic deviation between results with model M0 and

model Mh estimators appeared in the analysis of brush-

tail possum density. This may be explained hypotheti-

cally by the presence of individual heterogeneity

unrelated to location, such as age-related variation in

g0, or by behavioural responses (model Mb). Yearling

possums were recaptured within a session much less

often than adults (mean9/SE of number of captures:

yearlings 0.789/0.06, adults 1.509/0.03), but the differ-

ence between model Mh estimates and other density

estimates remained when yearlings were excluded (un-

publ.). More investigation is needed on how to identify

the estimator that is optimal for a particular study.

Some limitations of the method should be noted.

Firstly, at high levels of trap saturation the observed p̄

become almost asymptotic on g0 (Fig. 2b), and it is likely

that the method will fail because there is too little

information about individual capture probability in the

data. This may explain the difficulties with the Mana

Table 5. Population statistics and density estimates for house mice trapped on a 7�/7 trap 1.44-ha grid, Mana Island, Wellington,
New Zealand March 1981�/February 1982. Data provided by C. R. Pickard. Values marked with an asterisk (*) used a uniform
rather than half-normal model of capture probability.

Session /N̂J SE (/N̂J) p̄ /d̄ SE (/d̄) /D̂ SE (/D̂) /ĝ0 SE (/ĝ0) /ŝ SE (/ŝ)

1981
Mar 187.2 15.4 0.228 11.2 3.2 71.0 5.7 0.534 0.072 9.1 0.6
Apr 133.8 10.2 0.324 20.7 4.7 46.3 5.5 0.435 0.083 14.2 1.5
May 100.5 7.7 0.410 29.5 4.0 26.3 3.1 0.407 0.075 20.7 1.6
Jun 89.0 10.9 0.414 42.1 3.3 19.0 2.3 0.191 0.036 32.2 2.9
Jul 50.5 4.0 0.551 26.4 3.1 12.9 2.3 0.500 0.109 19.2 1.5
Aug 41.4 2.5 0.744 24.7 2.9 11.1 1.3 0.538* 0.112* 37.3* 2.9*
Sep 36.6 1.8 0.814 38.8 4.0 5.2 0.8 0.615* 0.144* 75.8* 9.3*
Oct 64.6 9.3 0.405 32.8 3.8 14.3 2.7 0.229 0.060 23.4 2.2
Nov 53.5 5.6 0.486 40.7 5.1 8.7 2.1 0.256 0.077 32.0 2.9
Dec 125.6 14.5 0.209 36.4 4.8 27.8 5.7 0.080 0.020 25.6 2.5

1982
Jan 180.6 18.1 0.202 17.6 3.3 61.3 7.6 0.269 0.041 12.1 0.9
Feb 201.5 19.1 0.221 15.3 2.9 70.4 6.9 0.465 0.059 11.1 0.7

Fig. 3. Estimation of density
by simulation and inverse
prediction for brushtail
possums Trichosurus vulpecula
on the Orongorongo Valley
ISA, Wellington, New Zealand,
1996�/2001. Four closed-
population estimators were
compared: Mt�1 X, N̂0 k, N̂J

', N̂h "; parameter estimates
based on these (b, c, d) used the
same symbols and subscripts.
(a) Population size N̂: (b)
Density D̂: All standard errors
(not shown) B/1.0 ha�1 except
D̂J (max (SE)�/1.5 ha�1).
Estimates based on model Mh

(/D̂J and D̂h; filled symbols)
agreed within 3% at all times, as
did those based on the null
model and the enumeration
‘‘estimator’’ Mt�1. However,
the two pairs of estimates
diverged in early 1996, early
1999, and 2000 by up to 4 ha�1

(9%). (c) Scale of movement ŝ:
All standard errors (not
shown)B/1.8 m. (d) Intrinsic
trappability ĝ0: All standard
errors (not shown)B/0.034
except ĝ0J (max (SE)�/0.058).
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Island mouse data, and is also a possible explanation for

the bias in ĝ0 at high g0. Surprisingly, bias in ĝ0 did not

cause noticeable bias in D̂ (Table 4). Secondly, the

inverse-prediction estimates D̂; ĝ0 and ŝ have correlated

prediction errors that should be taken into account when

constructing joint prediction intervals (Pledger and

Efford 1998). Thirdly, trap competition may affect d̄

and thereby D̂; and it is therefore desirable to include in

the simulations all processes that may affect local trap

competition, including traps sprung by non-target

species and escapes. Whether the extra complexity is

justified by improved accuracy of the estimates remains

to be seen. For the present it would seem wise at least to

include all classes of conspecifics in the analysis (i.e.

males and females, young and old).

Inverse prediction estimates of g0 and s have utility as

trap-free measures of individual behaviour. There are

numerous caveats in the literature regarding the inter-

pretation of trap-revealed home range data (Stickel

1954, Calhoun and Casby 1958, Gurnell and Gipps

1989). The present method provides estimates that are

comparable between different trap layouts, excepting the

apparent bias in g0 from trap saturation (above).

Ecologists are already shifting away from the study of

arbitrarily defined ‘‘populations’’, towards the study of

spatially dispersed ensembles of individuals (Huston et

al. 1988, Lomnicki 1988, Dieckmann et al. 2000).

Improved estimation of local density should facilitate

this trend. Better understanding of individual dispersion

and of how habitat variables relate to the local density of

a species may lead in turn to refinement of the estimator

described here.

The method described here relies heavily on computa-

tion. Software has been developed to implement the new

method that should make it accessible to field ecologists.

The method has been described in relation to trapping

grids, but any regular or irregular spatial arrangement of

traps may be used including lines, webs and random

placement. A benefit of simulation is the ability to

incorporate the geometry of habitat and trap layout

realistically, as described in the possum example. Trap

layouts may span more than one habitat: the present

method might be extended to estimate habitat-specific

densities, or to model density as a linear function of

other spatial variables.
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Appendix. Algorithm for spatial simulation of
animal trapping

Animals are assumed to occupy home ranges that are

fixed for the duration of trapping, and traps are set at

known locations. The probability Pij of an individual

animal i being caught in a particular trap j declines with

the distance d between its home range centre and the

trap. For simplicity the detection function (Buckland et

al. 1993), is assumed here to be half-normal:

Pij�g0 exp (�d2
ij=(2s2)) (1)

where g0 is the probability of capture when the trap is

located exactly at the centre of the home range, and s is

a measure of home range size. We simulate a sequence of

captures in continuous time. Where there are initially n

animals and t empty traps, any of n.t different capture

events may occur first and each possible combination is

treated as a competing Poisson process. Time to first

occurrence of a combination has an exponential dis-

tribution with rate parameter

l�� log (1�Pij) (2)

The algorithm is then:

1) Calculate l for each animal�/trap combination

from Eq. 1 and 2

2) Simulate the time to first capture for each combi-

nation by drawing a pseudorandom number from

an exponential distribution with parameter l
3) Find the next capture (i.e. remaining animal�/trap

with minimum time to first capture)

4) If time exceeds 1 then ignore this capture and

return

5) Record capture and remove all combinations

involving this animal or this trap

6) If at least one animal and one trap remain then go

to 3 else return.
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