
Flipping Bits: Memory Errors in the Machine

Taylor R Campbell
riastradh@NetBSD.org

EuroBSDCon 2024
Dublin, Ireland

September 21, 2024

Flipping Bits: Memory Errors in the Máchine

https://www.NetBSD.org/gallery/presentations/
riastradh/eurobsdcon2024/memerr.pdf

https://www.NetBSD.org/gallery/presentations/riastradh/eurobsdcon2024/memerr.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/eurobsdcon2024/memerr.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/eurobsdcon2024/memerr.pdf

Flipping Bits: Memory Errors in the Machine

$ git status
On branch trunk
Changes not staged for commit:

(use "git add/rm <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

deleted: "e\370ternal/gpl3/gdb/dist/gdb/testsuite/gdb.linespec/
cpls.cc"

Untracked files:
(use "git add <file>..." to include in what will be committed)

external/gpl3/gdb/dist/gdb/testsuite/gdb.linespec/cpls.cc

Flipping Bits: Memory Errors in the Machine

$ git status
On branch trunk
Changes not staged for commit:

(use "git add/rm <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

deleted: "e\370︸ ︷︷ ︸ternal/gpl3/gdb/dist/gdb/testsuite/gdb.linespec/cpls.cc"

Untracked files:
(use "git add <file>..." to include in what will be committed)

ex
↑↑↑
ternal/gpl3/gdb/dist/gdb/testsuite/gdb.linespec/cpls.cc

Memory error caught in the act

e\370ternal/gpl3/gdb/dist/gdb/testsuite/gdb.linespec/cpls.cc
external/gpl3/gdb/dist/gdb/testsuite/gdb.linespec/cpls.cc

Memory error caught in the act

e\370ternal/gpl3/gdb/dist/gdb/testsuite/gdb.linespec/cpls.cc
e\170ternal/gpl3/gdb/dist/gdb/testsuite/gdb.linespec/cpls.cc

Memory error not caught in the act

NetBSD problem reports at https://gnats.NetBSD.org that I
filed before I realized it was bad RAM:
kern/57009 zfs crash in sa_handle_destroy ← zfs_zinactive ←

zfs_netbsd_reclaim

kern/57020 kernel diagnostic assertion
!RB_SENTINEL_P(tree->rbt_root) failed: file
. . . /sys/arch/x86/x86/pmap.c, line 2261

kern/57024 panic: solaris assert: arc_decompress(buf) == 0
(0x5 == 0x0), file:
. . . /external/cddl/osnet/dist/uts/common/fs/zfs/arc.c,
line: 4962

kern/57061 null pointer dereference in zfs
dnode_buf_evict_async → dnode_destroy

https://gnats.NetBSD.org
https://gnats.NetBSD.org/57009
https://gnats.NetBSD.org/57009
https://gnats.NetBSD.org/57020
https://gnats.NetBSD.org/57020
https://gnats.NetBSD.org/57020
https://gnats.NetBSD.org/57024
https://gnats.NetBSD.org/57024
https://gnats.NetBSD.org/57024
https://gnats.NetBSD.org/57024
https://gnats.NetBSD.org/57061
https://gnats.NetBSD.org/57061

Memory errors not caught in the act

NetBSD problem reports at https://gnats.NetBSD.org that I
filed before I realized it was bad RAM:
kern/57009 zfs crash in sa_handle_destroy ← zfs_zinactive ←

zfs_netbsd_reclaim
kern/57020 kernel diagnostic assertion

!RB_SENTINEL_P(tree->rbt_root) failed: file
. . . /sys/arch/x86/x86/pmap.c, line 2261

kern/57024 panic: solaris assert: arc_decompress(buf) == 0
(0x5 == 0x0), file:
. . . /external/cddl/osnet/dist/uts/common/fs/zfs/arc.c,
line: 4962

kern/57061 null pointer dereference in zfs
dnode_buf_evict_async → dnode_destroy

https://gnats.NetBSD.org
https://gnats.NetBSD.org/57009
https://gnats.NetBSD.org/57009
https://gnats.NetBSD.org/57020
https://gnats.NetBSD.org/57020
https://gnats.NetBSD.org/57020
https://gnats.NetBSD.org/57024
https://gnats.NetBSD.org/57024
https://gnats.NetBSD.org/57024
https://gnats.NetBSD.org/57024
https://gnats.NetBSD.org/57061
https://gnats.NetBSD.org/57061

Memory errors not caught in the act

NetBSD problem reports at https://gnats.NetBSD.org that I
filed before I realized it was bad RAM:
kern/57009 zfs crash in sa_handle_destroy ← zfs_zinactive ←

zfs_netbsd_reclaim
kern/57020 kernel diagnostic assertion

!RB_SENTINEL_P(tree->rbt_root) failed: file
. . . /sys/arch/x86/x86/pmap.c, line 2261

kern/57024 panic: solaris assert: arc_decompress(buf) == 0
(0x5 == 0x0), file:
. . . /external/cddl/osnet/dist/uts/common/fs/zfs/arc.c,
line: 4962

kern/57061 null pointer dereference in zfs
dnode_buf_evict_async → dnode_destroy

https://gnats.NetBSD.org
https://gnats.NetBSD.org/57009
https://gnats.NetBSD.org/57009
https://gnats.NetBSD.org/57020
https://gnats.NetBSD.org/57020
https://gnats.NetBSD.org/57020
https://gnats.NetBSD.org/57024
https://gnats.NetBSD.org/57024
https://gnats.NetBSD.org/57024
https://gnats.NetBSD.org/57024
https://gnats.NetBSD.org/57061
https://gnats.NetBSD.org/57061

Memory errors not caught in the act

NetBSD problem reports at https://gnats.NetBSD.org that I
filed before I realized it was bad RAM:
kern/57009 zfs crash in sa_handle_destroy ← zfs_zinactive ←

zfs_netbsd_reclaim
kern/57020 kernel diagnostic assertion

!RB_SENTINEL_P(tree->rbt_root) failed: file
. . . /sys/arch/x86/x86/pmap.c, line 2261

kern/57024 panic: solaris assert: arc_decompress(buf) == 0
(0x5 == 0x0), file:
. . . /external/cddl/osnet/dist/uts/common/fs/zfs/arc.c,
line: 4962

kern/57061 null pointer dereference in zfs
dnode_buf_evict_async → dnode_destroy

https://gnats.NetBSD.org
https://gnats.NetBSD.org/57009
https://gnats.NetBSD.org/57009
https://gnats.NetBSD.org/57020
https://gnats.NetBSD.org/57020
https://gnats.NetBSD.org/57020
https://gnats.NetBSD.org/57024
https://gnats.NetBSD.org/57024
https://gnats.NetBSD.org/57024
https://gnats.NetBSD.org/57024
https://gnats.NetBSD.org/57061
https://gnats.NetBSD.org/57061

Coda

▶ Repeated ZFS scrub turned up no problems1

▶ Ran BIOS diagnostics for multiple days straight
▶ Narrowed it down to one of two 32 GB DIMMs
▶ Submitted RMA to RAM manufacturer citing BIOS tests
▶ Received replacements for both DIMMs in a week or two
▶ So far so good

▶ . . . as far as I know

1ZFS can handle storage corruption but not memory corruption—see
Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau, ‘End-to-end Data Integrity for File Systems: A ZFS
Case Study’, USENIX FAST 2010. https://www.usenix.org/conference/
fast-10/end-end-data-integrity-file-systems-zfs-case-study

https://www.usenix.org/conference/fast-10/end-end-data-integrity-file-systems-zfs-case-study
https://www.usenix.org/conference/fast-10/end-end-data-integrity-file-systems-zfs-case-study

Coda

▶ Repeated ZFS scrub turned up no problems1

▶ Ran BIOS diagnostics for multiple days straight
▶ Narrowed it down to one of two 32 GB DIMMs
▶ Submitted RMA to RAM manufacturer citing BIOS tests
▶ Received replacements for both DIMMs in a week or two
▶ So far so good
▶ . . . as far as I know

1ZFS can handle storage corruption but not memory corruption—see
Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau, ‘End-to-end Data Integrity for File Systems: A ZFS
Case Study’, USENIX FAST 2010. https://www.usenix.org/conference/
fast-10/end-end-data-integrity-file-systems-zfs-case-study

https://www.usenix.org/conference/fast-10/end-end-data-integrity-file-systems-zfs-case-study
https://www.usenix.org/conference/fast-10/end-end-data-integrity-file-systems-zfs-case-study

Acronym soup of memory errors

▶ ECC: Error-correcting codes
▶ SECDED: Single error correction, double error detection
▶ EDAC: Error detection and correction
▶ IID: Independent and identically distributed

Error detection example: parity bit

▶ Data bits d1d2 . . . dn have parity bit p := d1 ⊕ d2 ⊕ · · · ⊕ dn
appended

▶ Flipping bit dk to d ′
k = dk ⊕ 1 gives

p′ := d1 ⊕ d2 ⊕ · · · ⊕ (dk ⊕ 1)⊕ · · · ⊕ dn = p ⊕ 1

▶ Data word is corrupt if p′ ̸= p

Error correction exampìe: Hamming (7,4) SECDED code

▶ Four-bit data words d1d2d3d4 encoded as seven-bit code words
with three parity bits p1p2p3

▶ p1 := d1 ⊕ d2 ⊕ d4

▶ p2 := d1 ⊕ d3 ⊕ d4

▶ p3 := d2 ⊕ d3 ⊕ d4

▶ If p2 is right but p1 and p3 are wrong, bit d2 was probably
flipped—correctable

▶ If p2 and p3 are right but p1 is wrong, at least two bits must
have been flipped, but we don’t know which—detected but not
correctable

Many other examples in practice for 64-bit RAM words or larger
units: Hamming codes, BCH codes, Chipkill, . . . (No Galois theory
in this talk.)

EDAC threat model: IID bit flips

▶ EDAC is not security against intelligent adversary
▶ Assumption: EDAC adversary flips each bit independently with

equal probability of flipping any bit—IID
▶ Fancier assumptions: one of four chips may fail

altogether—chipkill

▶ Non-assumption: Cryptography adversary carefully chooses
which bits to flip, requires secret keys and message
authentication codes to detect forgery

▶ (. . . but there is modern cryptography based on secret
error-correcting codes, like McEliece)

EDAC threat model: IID bit flips

▶ EDAC is not security against intelligent adversary
▶ Assumption: EDAC adversary flips each bit independently with

equal probability of flipping any bit—IID
▶ Fancier assumptions: one of four chips may fail

altogether—chipkill

▶ Non-assumption: Cryptography adversary carefully chooses
which bits to flip, requires secret keys and message
authentication codes to detect forgery

▶ (. . . but there is modern cryptography based on secret
error-correcting codes, like McEliece)

What causes memory errors?

▶ Cosmic rays
▶ α-particles
▶ Electromagnetic pulses
▶ Overheating
▶ Faulty electrical connections

Where errors can happen

▶ Hard disks and other persistent storage
▶ DRAM module
▶ Memory interconnect
▶ PCI interconnect
▶ CPU caches
▶ CPU registers

Error severity

▶ Corrected—No data lost
▶ Uncorrectable recoverable—Data lost, but scope of loss is

known, e.g. limited to a known word or cache line or page
▶ If page is unused, no problem
▶ If page is used by userland process, can kill process without

other adverse consequences
▶ If page is used by VM guest, can terminate that VM guest but

not others
▶ Uncorrectable fatal—Data lost and corrupt data may have

spread arbitrarily far before detection
▶ Corrupt data got copied into cache lines or registers before

detection
▶ Reliable recovery impossible

Error persistence

▶ Soft error—at location in memory independent of other
errors, e.g. cosmic ray flipped a bit

▶ Hard error—at location of flaky memory, will probably
continue to flip bits in the same place

Error reporting

▶ Synchronous—delivered by nonmaskable interrupt when CPU
loads corrupted memory

▶ Asynchronous—delivered by low-priority interrupt or polling
when background memory scrubber runs

Practical visibility of EFAC

How do you know when you got a memory error?

Practical visibility of EDAC

Preferably not like this:

$ git status
On branch trunk
Changes not staged for commit:

(use "git add/rm <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

deleted: "e\370ternal/gpl3/gdb/dist/gdb/testsuite/gdb.linespec/
cpls.cc"

Untracked files:
(use "git add <file>..." to include in what will be committed)

external/gpl3/gdb/dist/gdb/testsuite/gdb.linespec/cpls.cc

Practical visibility of EDAC

Preferably more like this:

[4939.045145] apei0: error source 1 reported hardware error:
severity=corrected nentries=1 status=0x12<CE,GEDE_COUNT=0x1>
[4939.055146] apei0: error source 1 entry 0: SectionType={0xa5bc1114,
0x6f64,0x4ede,0xb8b8,{0x3e,0x83,0xed,0x7c,0x83,0xb1}} (memory error)
[4939.075146] apei0: error source 1 entry 0: ErrorSeverity=2 (corrected)
[4939.075146] apei0: error source 1 entry 0: Revision=0x201
[4939.085146] apei0: error source 1 entry 0: Flags=0x1<PRIMARY>
[4939.085146] apei0: error source 1 entry 0: FruText=CorrectedErr
[4939.095147] apei0: error source 1 entry 0: MemoryErrorType=8
(PARITY_ERROR)

Practical visibility of EDAC

▶ DDR memory controller is hardware device with registers
▶ Documented only under super-secret vendor NDA

Real-world prevalence of memory errors

Vendors insist uncorrectable error probability with scrubber is so
negligible, why even bother checking?

Real-world p2evalence of memory errors

[W]e observe DRAM error rates that are orders of magni-
tude higher than previously reported, with 25,000–70,000
errors per billion device hours per Mb and more than 8%
of DIMMs affected by errors per year. We provide strong
evidence that memory errors are dominated by hard errors,
rather than soft errors, which previous work suspects to be
the dominant error mode.2

2Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber, ‘DRAM
errors in the wild: a large-scale field study’, Communications of the ACM 54(2),
2011, pp. 100–107, https://dl.acm.org/doi/10.1145/1897816.1897844.

https://dl.acm.org/doi/10.1145/1897816.1897844

Support for EDAC

▶ Not all hardware with ‘ECC RAM’ does anything with it!
▶ Intel Xeon server-class CPUs support ECC RAM, but not

desktop/mobile-class CPUs
▶ ∼All AMD CPUs can support ECC RAM
▶ . . . but some motherboards that physically accept ECC RAM

just don’t do anything with it!
Must confirm RAM, motherboard, CPU, and firmware support
EDAC!

Testing EDAC

How do you know what will happen when you get a memory error?

Testing EDAC

▶ Send a cosmic ray at your RAM

▶ Problem: Suns are hard to steer and aim
▶ Hold an α-emitter up to your RAM

▶ Problem: Polonium-210 is difficult to procure after 2006

▶ Electromagnetic pulse (EMP) gun

▶ Problem: $4,125 and doesn’t ship before EuroBSDCon

▶ Rowhammer

▶ Problem: Requires doing science on your RAM to apply a
rowhammer attack

▶ Error injection

▶ Problem: Not all hardware supports it
▶ . . . but if your hardware does, this is the easiest option

Testing EDAC

▶ Send a cosmic ray at your RAM
▶ Problem: Suns are hard to steer and aim

▶ Hold an α-emitter up to your RAM

▶ Problem: Polonium-210 is difficult to procure after 2006

▶ Electromagnetic pulse (EMP) gun

▶ Problem: $4,125 and doesn’t ship before EuroBSDCon

▶ Rowhammer

▶ Problem: Requires doing science on your RAM to apply a
rowhammer attack

▶ Error injection

▶ Problem: Not all hardware supports it
▶ . . . but if your hardware does, this is the easiest option

Testing EDAC

▶ Send a cosmic ray at your RAM
▶ Problem: Suns are hard to steer and aim

▶ Hold an α-emitter up to your RAM

▶ Problem: Polonium-210 is difficult to procure after 2006
▶ Electromagnetic pulse (EMP) gun

▶ Problem: $4,125 and doesn’t ship before EuroBSDCon

▶ Rowhammer

▶ Problem: Requires doing science on your RAM to apply a
rowhammer attack

▶ Error injection

▶ Problem: Not all hardware supports it
▶ . . . but if your hardware does, this is the easiest option

Testing EDAC

▶ Send a cosmic ray at your RAM
▶ Problem: Suns are hard to steer and aim

▶ Hold an α-emitter up to your RAM
▶ Problem: Polonium-210 is difficult to procure after 2006

▶ Electromagnetic pulse (EMP) gun

▶ Problem: $4,125 and doesn’t ship before EuroBSDCon

▶ Rowhammer

▶ Problem: Requires doing science on your RAM to apply a
rowhammer attack

▶ Error injection

▶ Problem: Not all hardware supports it
▶ . . . but if your hardware does, this is the easiest option

Testing EDAC

▶ Send a cosmic ray at your RAM
▶ Problem: Suns are hard to steer and aim

▶ Hold an α-emitter up to your RAM
▶ Problem: Polonium-210 is difficult to procure after 2006

▶ Electromagnetic pulse (EMP) gun

▶ Problem: $4,125 and doesn’t ship before EuroBSDCon
▶ Rowhammer

▶ Problem: Requires doing science on your RAM to apply a
rowhammer attack

▶ Error injection

▶ Problem: Not all hardware supports it
▶ . . . but if your hardware does, this is the easiest option

Testing EDAC

▶ Send a cosmic ray at your RAM
▶ Problem: Suns are hard to steer and aim

▶ Hold an α-emitter up to your RAM
▶ Problem: Polonium-210 is difficult to procure after 2006

▶ Electromagnetic pulse (EMP) gun
▶ Problem: $4,125 and doesn’t ship before EuroBSDCon

▶ Rowhammer

▶ Problem: Requires doing science on your RAM to apply a
rowhammer attack

▶ Error injection

▶ Problem: Not all hardware supports it
▶ . . . but if your hardware does, this is the easiest option

Testing EDAC

▶ Send a cosmic ray at your RAM
▶ Problem: Suns are hard to steer and aim

▶ Hold an α-emitter up to your RAM
▶ Problem: Polonium-210 is difficult to procure after 2006

▶ Electromagnetic pulse (EMP) gun
▶ Problem: $4,125 and doesn’t ship before EuroBSDCon

▶ Rowhammer

▶ Problem: Requires doing science on your RAM to apply a
rowhammer attack

▶ Error injection

▶ Problem: Not all hardware supports it
▶ . . . but if your hardware does, this is the easiest option

Testing EDAC

▶ Send a cosmic ray at your RAM
▶ Problem: Suns are hard to steer and aim

▶ Hold an α-emitter up to your RAM
▶ Problem: Polonium-210 is difficult to procure after 2006

▶ Electromagnetic pulse (EMP) gun
▶ Problem: $4,125 and doesn’t ship before EuroBSDCon

▶ Rowhammer
▶ Problem: Requires doing science on your RAM to apply a

rowhammer attack

▶ Error injection

▶ Problem: Not all hardware supports it
▶ . . . but if your hardware does, this is the easiest option

Testing EDAC

▶ Send a cosmic ray at your RAM
▶ Problem: Suns are hard to steer and aim

▶ Hold an α-emitter up to your RAM
▶ Problem: Polonium-210 is difficult to procure after 2006

▶ Electromagnetic pulse (EMP) gun
▶ Problem: $4,125 and doesn’t ship before EuroBSDCon

▶ Rowhammer
▶ Problem: Requires doing science on your RAM to apply a

rowhammer attack
▶ Error injection

▶ Problem: Not all hardware supports it
▶ . . . but if your hardware does, this is the easiest option

Testing EDAC

▶ Send a cosmic ray at your RAM
▶ Problem: Suns are hard to steer and aim

▶ Hold an α-emitter up to your RAM
▶ Problem: Polonium-210 is difficult to procure after 2006

▶ Electromagnetic pulse (EMP) gun
▶ Problem: $4,125 and doesn’t ship before EuroBSDCon

▶ Rowhammer
▶ Problem: Requires doing science on your RAM to apply a

rowhammer attack
▶ Error injection

▶ Problem: Not all hardware supports it

▶ . . . but if your hardware does, this is the easiest option

Testing EDAC

▶ Send a cosmic ray at your RAM
▶ Problem: Suns are hard to steer and aim

▶ Hold an α-emitter up to your RAM
▶ Problem: Polonium-210 is difficult to procure after 2006

▶ Electromagnetic pulse (EMP) gun
▶ Problem: $4,125 and doesn’t ship before EuroBSDCon

▶ Rowhammer
▶ Problem: Requires doing science on your RAM to apply a

rowhammer attack
▶ Error injection

▶ Problem: Not all hardware supports it
▶ . . . but if your hardware does, this is the easiest option

Testing EDAC with error injection

Error injection in principle:
▶ Write to hardware register in memory controller
▶ Error report comes flying out as if real error
▶ Engineer confirms it works, moves on to other task

Testing EDAC with error inkection

Error injection in practice:
▶ Wait, how can I control which memory location gets

corrupted—make sure it’s in an unused test page?

▶ Vendor: You can’t. Wherever is the next memory transaction
in your highly parallel multicore system with DMA engines
doing I/O!

▶ Wait, injecting a correctable error actually corrupted memory?

▶ panic: diagnostic assertion: “critical data structure hopelessly
destroyed” failed at kernel.c line 4

▶ Workaround: Inject error in parity bits, not data bits, if you
can specify error pattern or syndrome

▶ Wait, why isn’t the machine responding at serial console?
. . . or ILO? . . . or remote reset? . . . or. . .

▶ Engineer treks across town to the data center to unplug it and
plug it back in again

Testing EDAC with error inkection

Error injection in practice:
▶ Wait, how can I control which memory location gets

corrupted—make sure it’s in an unused test page?
▶ Vendor: You can’t. Wherever is the next memory transaction

in your highly parallel multicore system with DMA engines
doing I/O!

▶ Wait, injecting a correctable error actually corrupted memory?

▶ panic: diagnostic assertion: “critical data structure hopelessly
destroyed” failed at kernel.c line 4

▶ Workaround: Inject error in parity bits, not data bits, if you
can specify error pattern or syndrome

▶ Wait, why isn’t the machine responding at serial console?
. . . or ILO? . . . or remote reset? . . . or. . .

▶ Engineer treks across town to the data center to unplug it and
plug it back in again

Testing EDAC with error inkection

Error injection in practice:
▶ Wait, how can I control which memory location gets

corrupted—make sure it’s in an unused test page?
▶ Vendor: You can’t. Wherever is the next memory transaction

in your highly parallel multicore system with DMA engines
doing I/O!

▶ Wait, injecting a correctable error actually corrupted memory?

▶ panic: diagnostic assertion: “critical data structure hopelessly
destroyed” failed at kernel.c line 4

▶ Workaround: Inject error in parity bits, not data bits, if you
can specify error pattern or syndrome

▶ Wait, why isn’t the machine responding at serial console?
. . . or ILO? . . . or remote reset? . . . or. . .

▶ Engineer treks across town to the data center to unplug it and
plug it back in again

Testing EDAC with error inkection

Error injection in practice:
▶ Wait, how can I control which memory location gets

corrupted—make sure it’s in an unused test page?
▶ Vendor: You can’t. Wherever is the next memory transaction

in your highly parallel multicore system with DMA engines
doing I/O!

▶ Wait, injecting a correctable error actually corrupted memory?
▶ panic: diagnostic assertion: “critical data structure hopelessly

destroyed” failed at kernel.c line 4

▶ Workaround: Inject error in parity bits, not data bits, if you
can specify error pattern or syndrome

▶ Wait, why isn’t the machine responding at serial console?
. . . or ILO? . . . or remote reset? . . . or. . .

▶ Engineer treks across town to the data center to unplug it and
plug it back in again

Testing EDAC with error inkection

Error injection in practice:
▶ Wait, how can I control which memory location gets

corrupted—make sure it’s in an unused test page?
▶ Vendor: You can’t. Wherever is the next memory transaction

in your highly parallel multicore system with DMA engines
doing I/O!

▶ Wait, injecting a correctable error actually corrupted memory?
▶ panic: diagnostic assertion: “critical data structure hopelessly

destroyed” failed at kernel.c line 4
▶ Workaround: Inject error in parity bits, not data bits, if you

can specify error pattern or syndrome

▶ Wait, why isn’t the machine responding at serial console?
. . . or ILO? . . . or remote reset? . . . or. . .

▶ Engineer treks across town to the data center to unplug it and
plug it back in again

Testing EDAC with error inkection

Error injection in practice:
▶ Wait, how can I control which memory location gets

corrupted—make sure it’s in an unused test page?
▶ Vendor: You can’t. Wherever is the next memory transaction

in your highly parallel multicore system with DMA engines
doing I/O!

▶ Wait, injecting a correctable error actually corrupted memory?
▶ panic: diagnostic assertion: “critical data structure hopelessly

destroyed” failed at kernel.c line 4
▶ Workaround: Inject error in parity bits, not data bits, if you

can specify error pattern or syndrome
▶ Wait, why isn’t the machine responding at serial console?

. . . or ILO? . . . or remote reset? . . . or. . .

▶ Engineer treks across town to the data center to unplug it and
plug it back in again

Testing EDAC with error inkection

Error injection in practice:
▶ Wait, how can I control which memory location gets

corrupted—make sure it’s in an unused test page?
▶ Vendor: You can’t. Wherever is the next memory transaction

in your highly parallel multicore system with DMA engines
doing I/O!

▶ Wait, injecting a correctable error actually corrupted memory?
▶ panic: diagnostic assertion: “critical data structure hopelessly

destroyed” failed at kernel.c line 4
▶ Workaround: Inject error in parity bits, not data bits, if you

can specify error pattern or syndrome
▶ Wait, why isn’t the machine responding at serial console?

. . . or ILO? . . . or remote reset? . . . or. . .
▶ Engineer treks across town to the data center to unplug it and

plug it back in again

APEI: ACPI Platform Error Interface

APEI:3 Standard interface in ACPI abstracting EDAC device
registers—WARNING: ETLA overload

BERT Boot Error Record Table
HEST Hardware Error Source Table
EINJ Error INJection
ERST Error Record Serialization Table

Available on some server-class machines—check with acpidump
-dt or similar

3https://uefi.org/specs/ACPI/6.5/18_Platform_Error_Interfaces.html

https://uefi.org/specs/ACPI/6.5/18_Platform_Error_Interfaces.html

APEI: ACPI Platform Error Interface

apei0 at acpi0: ACPI Platform Error Interface
apei0: BERT: OemId < AMI,AMI BERT,00000000> AslId < ,00000000>
apei0: BERT: 0x14 bytes at 0x7f340c98
apei0: BERT: no boot errors recorded
apei0: EINJ: OemId < AMI,AMI EINJ,00000000> AslId < ,00000000>
apei0: EINJ: can inject: 0x28<MEM_CORRECTABLE,MEM_FATAL>
apei0: ERST: OemId < AMIER,AMI ERST,00000000> AslId < ,00000000>
apei0: ERST: 0 records in error log 8192 bytes @ 0x7f248050 attr=0
apei0: HEST: OemId < AMI,AMI HEST,00000000> AslId < ,00000000>
apei0: HEST: 2 hardware error sources

APEI BERT: Boot Error Record Table

Provides error reports early at boot, before OS is listening for active
notifications

AREI HEST: Hardware Error Source Table

▶ Lists sources of hardware error reports
▶ Covers more than just memory errors—also PCI errors, CPU

errors, . . .
▶ Software can respond to non-memory hardware errors by, e.g.,

disabling a single faulty PCI device

APEI HEST: Hardware Error Source Table

Type={Generic Hardware Error Source}
SourceId=0
Enabled={YES}
Number of Records to pre-allocate=1
Max Sections per Record=1
Max Raw Data Length=157
Error Status Address=0x000000007f235018:0[64] (Memory)
HW Error Notification={

Type={NMI}
Length=28
Config Write Enable={}
Poll Interval=0 msec
Interrupt Vector=2
Switch To Polling Threshold Value=0
Switch To Polling Threshold Window=0 msec
Error Threshold Value=0
Error Threshold Window=0 msec

}
Error Block Length=157

APEI HEST: Hardware Error Source Table
Type={Generic Hardware Error Source}
SourceId=1
Enabled={YES}
Number of Records to pre-allocate=1
Max Sections per Record=1
Max Raw Data Length=157
Error Status Address=0x000000007f2350c0:0[64] (Memory)
HW Error Notification={

Type={POLLED}
Length=28
Config Write Enable={POLL_INTERVAL,POLL_THRESHOLD_VALUE,

POLL_THRESHOLD_WINDOW,ERR_THRESHOLD_VALUE,
ERR_THRESHOLD_WINDOW}

Poll Interval=60000 msec
Interrupt Vector=2
Switch To Polling Threshold Value=0
Switch To Polling Threshold Window=0 msec
Error Threshold Value=0
Error Threshold Window=0 msec

}
Error Block Length=157

APEI EINJ: Erros Injection table

▶ List of supported error injection actions

▶

▶ Programming language for interpreter for programming
language for supported error actions

APEI EINJ: Erros Injection table

▶ List of supported error injection actions
▶ Interpreter for programming language of supported error

injection actions

▶ Programming language for interpreter for programming
language for supported error actions

APEI EINJ: Erros Injection table

▶ List of supported error injection actions
▶ Interpreter for programming language of supported error

injection actions
▶ Programming language for interpreter for programming

language for supported error actions

APEI EINJ: Error Injection table

Actions:
▶ BEGIN_INJECTION_OPERATION
▶ SET_ERROR_TYPE
▶ SET_ERROR_TYPE_WITH_ADDRESS
▶ EXECUTE_OPERATION
▶ CHECK_BUSY_STATUS
▶ GET_COMMAND_STATUS
▶ GET_TRIGGER_ERROR_ACTION_TABLE
▶ . . .

APEI EINJ: Error Injection table

Actions:
▶ BEGIN_INJECTION_OPERATION
▶ SET_ERROR_TYPE
▶ SET_ERROR_TYPE_WITH_ADDRESS
▶ EXECUTE_OPERATION
▶ CHECK_BUSY_STATUS
▶ GET_COMMAND_STATUS
▶ GET_TRIGGER_ERROR_ACTION_TABLE . . . meta-action
▶ . . .

APEI EINJ: Error Injection table

Instructions:
▶ READ_REGISTER
▶ READ_REGISTER_VALUE (read and compare w/immediate)
▶ WRITE_REGISTER
▶ WRITE_REGISTER_VALUE (write immediate to register)
▶ NOOP

APEÉ EINJ: Error Injection table

Action Instruction Register Value

SET_ERROR_TYPE WRITE_REGISTER_VALUE 0x1234 0x42
SET_ERROR_TYPE WRITE_REGISTER 0x1238 —
SET_ERROR_TYPE READ_REGISTER 0x123c —
EXECUTE_OPERATION READ_REGISTER 0x1000 —
SET_ERROR_TYPE WRITE_REGISTER 0x1240 —
GET_ERROR_STATUS READ_REGISTER_VALUE 0x1200 0x8
...

...
...

...

APEI EINJ: Error Injection table

ACTION={Begin Operation}
INSTRUCTION={Write Register Value}
FLAGS={}
RegisterRegion=0x7f236f98:0[8] (Memory)
MASK=0x000000ff

ACTION={Get Trigger Table}
INSTRUCTION={Read Register}
FLAGS={}
RegisterRegion=0x000000007f236f9a:0[64] (Memory)
MASK=0xffffffffffffffff

ACTION={Set Error Type}
INSTRUCTION={Write Register}
FLAGS={}
RegisterRegion=0x7f236fa2:0[32] (Memory)
MASK=0xffffffff

APEI EINJ: Error Injec|ion table

To inject an error, software must execute a sequence of actions:
▶ BEGIN_INJECTION_OPERATION
▶ SET_ERROR_TYPE(0x8=<Memory Correctable>)
▶ EXECUTE_OPERATION
▶ busy-wait until CHECK_BUSY_STATUS returns completion
▶ check GET_COMMAND_STATUS
▶ execute the GET_TRIGGER_ERROR_ACTION_TABLE

instructions

APEI ERST: Error Recîrd Serialization Table

▶ Persistent storage for small files

▶

▶

▶ Programming language for interpreter for programming
language for reading and writing small files

APEI ERST: Error Recîrd Serialization Table

▶ Persistent storage for small files
▶ Programming language for reading and writing small files

▶

▶ Programming language for interpreter for programming
language for reading and writing small files

APEI ERST: Error Recîrd Serialization Table

▶ Persistent storage for small files
▶ Programming language for reading and writing small files
▶ Interpreter for programming language for reading and writing

small files

▶ Programming language for interpreter for programming
language for reading and writing small files

APEI ERST: Error Recîrd Serialization Table

▶ Persistent storage for small files
▶ Programming language for reading and writing small files
▶ Interpreter for programming language for reading and writing

small files
▶ Programming language for interpreter for programming

language for reading and writing small files

APEI ERST: Error Record Serialization Table

Actions:
▶ BEGIN_WRITE_OPERATION
▶ BEGIN_READ_OPERATION
▶ BEGIN_CLEAR_OPERATION
▶ END_OPERATION
▶ EXECUTE_OPERATION
▶ SET_RECORD_OFFSET
▶ CHECK_BUSY_STATUS
▶ GET_COMMAND_STATUS
▶ GET_RECORD_COUNT
▶ . . .

APEI ERST: Error Record Serialization Tab,e
Instructions:
▶ READ_REGISTER, READ_REGISTER_VALUE
▶ WRITE_REGISTER, WRITE_REGISTER_VALUE
▶ NOOP
▶ LOAD_VAR1, LOAD_VAR2
▶ STORE_VAR1
▶ ADD, SUBTRACT
▶ ADD_VALUE, SUBTRACT_VALUE
▶ STALL, STALL_WHILE_TRUE
▶ SKIP_NEXT_INSTRUCTION_IF_TRUE
▶ GOTO
▶ SET_SRC_ADDRESS_BASE
▶ SET_DST_ADDRESS_BASE
▶ MOVE_DATA

APEI ErST: Error Record Serialization Table

ACTION={Set Record Offset}
INSTRUCTION={Write Register}
FLAGS={}
RegisterRegion=0x7f24801c:0[32] (Memory)
MASK=0xffffffff

ACTION={Execute Operation}
INSTRUCTION={Write Register Value}
FLAGS={}
RegisterRegion=0xb2:0[8] (IO)
MASK=0x000000ff

ACTION={Check Busy Status}
INSTRUCTION={Read Register Value}
FLAGS={}
RegisterRegion=0x7f248020:0[8] (Memory)
MASK=0x000000ff

APEI ERST: Error Record Serialization Table

▶ Not completely bonkers: executing ERST actions is maybe less
risky than running full ACPI interpreter

▶ Could use it to save dmesg or core dump on crash in delicate
context (no memory allocation, no locks, . . .)

▶ Exposed in Linux as a file system ‘pstore’
▶ Not yet used by NetBSD—future work!

NetBSD support

NetBSD support for APEI:
▶ apei(4) driver
▶ Enabled in current on x86/GENERIC, soon on Arm, aimed at

11.0 or maybe even 10.1
▶ Supports detecting reports from common hardware error

source types
▶ Supports crude sysctl interface to EINJ
▶ Code is there to interpret ERST action interpreter, but nothing

uses it yet

Live demo

(This space left intentionally blank. Hard to show cosmic rays in a
slide.)

Questions?

?

