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Multiomic profiling identifies predictors of 
survival in African American patients with 
acute myeloid leukemia

Genomic profiles and prognostic biomarkers in patients with acute myeloid 
leukemia (AML) from ancestry-diverse populations are underexplored.  
We analyzed the exomes and transcriptomes of 100 patients with AML with 
genomically confirmed African ancestry (Black; Alliance) and compared 
their somatic mutation frequencies with those of 323 self-reported white 
patients with AML, 55% of whom had genomically confirmed European 
ancestry (white; BeatAML). Here we find that 73% of 162 gene mutations 
recurrent in Black patients, including a hitherto unreported PHIP alteration 
detected in 7% of patients, were found in one white patient or not detected. 
Black patients with myelodysplasia-related AML were younger than white 
patients suggesting intrinsic and/or extrinsic dysplasia-causing stressors. 
On multivariable analyses of Black patients, NPM1 and NRAS mutations  
were associated with inferior disease-free and IDH1 and IDH2 mutations  
with reduced overall survival. Inflammatory profiles, cell type distributions 
and transcriptional profiles differed between Black and white patients  
with NPM1 mutations. Incorporation of ancestry-specific risk markers 
into the 2022 European LeukemiaNet genetic risk stratification changed 
risk group assignment for one-third of Black patients and improved their 
outcome prediction.

Acute myeloid leukemia (AML) is characterized by clonal expan-
sion of myeloid progenitor cells due to genomic alterations that 
inhibit myeloid development1. The importance of genomic altera-
tions for the pathogenesis of AML and their prognostic significance 
was first appreciated through recurrent chromosomal alterations 
decades ago1.

Many landmark genomics studies have transformed our under-
standing of the molecular underpinnings of AML2–6. These efforts led to 
the incorporation of several somatic mutations into clinically applied 
molecular classification and risk stratification systems7,8. In most 
cancer genomic studies to date (including AML), self-reported white 
patients predominate. In fact, patients with AML who self-reported 
as Black include less than 2% of patients in these studies despite Black 
patients representing 9% of patients with AML2–6,9–13.

The disparity of AML genomic data between ancestry-diverse 
populations results in the inequitable application of molecular medi-
cine, which increases the potential for inadequate treatment. Previous 
studies showed that self-reported Black patients with AML have inferior 
outcomes compared with white patients14–18. Multiple interconnected 
factors, including structural racism and socioeconomic contributors, 
are associated with this survival disparity14–18. Additionally, the fre-
quency of established recurrent AML-associated genomic alterations 
and their prognostic significance is different for Black patients19,20, 
suggesting the presence of as yet unappreciated differences in the 
biology of AML in Black patients.

An unbiased depiction of the somatic genetic landscape of AML in 
Black patients is thus far unknown because previous reports analyzed 
only known AML-associated genes that were initially identified almost 
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Similarly, in 21 patients with core binding factor AML (CBF-AML), 
the most common were established mutations in NRAS (33%), KIT 
(24%) and FLT3 (19%). However, variants in PHIP, LRP6, PRH2, RHPN2 
and ZBTB7A were all found in 14% of patients, thereby establishing 
additional, relatively frequent genetic events in our patient cohort 
(Supplementary Fig. 1).

Among 11 Black patients with a complex karyotype, 45% had 
mutations in TP53. Notably, TP53 wild-type patients carried variants 
in targetable genes, including IDH2 in two and ALK in one patient (Sup-
plementary Fig. 2), suggesting the need to test for such alterations in 
Black patients with complex karyotype as they might be eligible for 
alternative treatment options.

Gene mutation frequencies in Black and white patients
To compare the gene mutation frequencies of Black and white patients, 
including assessment of potentially new variants, paired tumor-normal 
WES data for 323 white patients from the BeatAML 1.0 studies were 
reanalyzed using the same variant calling workflow, including identi-
cal variant allele fraction cutoff (see Extended Data Fig. 5 and Methods 
for details).

Of 162 recurrently mutated genes in Black patients, only 43 (27%) 
were recurrently mutated in 323 white patients (BeatAML), while  
119 genes (73%) were mutated in one white patient or not mutated. 
The frequencies of several known and hitherto unreported gene 

exclusively in white patients. Likewise, resulting differences in the 
transcriptomes that could provide insights into disease biology have 
also not been assessed.

Thus, we conducted a comprehensive genomic analysis includ-
ing whole-exome sequencing (WES) and RNA sequencing (RNA-seq) 
of paired germline and tumor samples from 100 Black patients with 
AML with genotype-confirmed African ancestry (hereafter referred to 
as Black), who were treated with intensive induction chemotherapy on 
Cancer and Leukemia Group B (CALGB)/Alliance for Clinical Trials in 
Oncology (Alliance) trials. This resulted in the depiction of the genomic 
landscape of AML in Black patients, including the identification of 
ancestry-associated mutations and biological features that differ from 
traditional European ancestry studies. The somatic mutation frequency 
in Black patients was compared with results of matched workflow WES 
of 323 white patients from the Beat AML cohort, 177 (55%) of whom had 
available genotyping data confirming European ancestry.

Total-transcriptome-based gene expression profiling of tumor 
RNA from Black and white patients allowed for principal component- 
based clustering with respect to established molecular drivers and 
determination of a gene-expression-based inflammation score 
(iScore)21. Moreover, multiomic RNA single-cell sequencing studies 
of Black and white patients with NPM1 mutations showed differences 
in cell type distribution and differentially activated pathways.

Lastly, we compared the clinical outcomes of Black and white 
patients treated on the same CALGB/Alliance protocols. We found sub-
stantial differences between Black and white patients in the prognostic 
significance of some genomic features used in the 2022 European 
LeukemiaNet (ELN) genetic risk stratification system7. This suggests 
the need to incorporate ancestry-associated features into this system, 
thus having direct clinical implications for Black patients.

Results
Variants in coding sequences of Black patients with AML
A WES was conducted on FACS-sorted leukemic blasts and paired B 
and T cells as a germline equivalent from 100 Black patients (Table 1). 
Two patients, including one harboring an MSH6 mutation and another 
with a POLE variant, were hypermutated having 269 and 760 coding 
variants, respectively, and were excluded from the frequency com-
parison analyses of nonrecurrently mutated genes. In the remaining 
98 patients, we identified 1,971 nonsynonymous coding variants, 
including single-nucleotide variants (SNVs), small insertions and 
deletions (indels) and internal tandem duplications (ITDs; Extended 
Data Fig. 1). The median somatic coding variants per patient was 16 
(range: 1–65). There were four predominant mutation signatures, three 
of which resembled established Catalogue Of Somatic Mutations In 
Cancer single-base substitution signatures for defective homologous 
recombination DNA damage repair and defective mismatch repair  
(Extended Data Fig. 2a–c).

One hundred and sixty-two genes were recurrently mutated (that 
is, mutated in two or more patients) and 33 genes were mutated in 4% 
or more patients (Supplementary Table 1). Established AML-associated 
mutations in FLT3 (32%), DNMT3A (25%), NRAS (23%) and NPM1 (20%) 
were the most common, followed by mutations in IDH2 (11%), RUNX1 
(10%), KRAS (9%), ASXL1 (8%) and WT1 (8%). Notably, IDH1, PHIP, TET2 
and TP53 were mutated in 7% of patients (Fig. 1a and Supplementary 
Table 1). Co-mutational patterns are shown in Extended Data Fig. 3. 
Additionally, single-cell DNA sequencing (scDNA-seq) was performed 
for three patients and the observed clonality patterns were consistent 
with published datasets22 (Fig. 1b).

In 39 patients with cytogenetically normal AML (CN-AML), FLT3 
(49%), NPM1 (44%) and DNMT3A (44%) alterations were the most com-
mon (Extended Data Fig. 4), thereby resembling established molecular 
distributions in this cytogenetic subset3,4,23. However, in 8% of patients 
with CN-AML, we detected several gene mutations not routinely associ-
ated with AML, including IFNL3, MYC and PRAMEF15 mutations.

Table 1 | Clinical and cytogenetic characteristics of  
100 Black patients with AML included in the integrated 
genomic profiling study

Characteristic

Age, years

  Median (range) 43 (18–92)

Sex, n (%)

  Female 48 (48)

Hemoglobin, g dl−1

  Median (range) 8.7 (2.3–13.2)

Platelet count, ×109 per liter

  Median (range) 48 (5–499)

White blood cell count, ×109 per liter

  Median (range) 28.3 (0.4–308.8)

Blood blasts, %

  Median (range) 52 (0–98)

Bone marrow blasts, %

  Median (range) 68 (17–96)

Extramedullary involvement, n (%) 22 (25)

2022 ELN genetic risk group, n (%)

  Favorable 41 (41)

  Intermediate 22 (22)

  Adverse 37 (37)

CN-AML, n (%) 38 (38)

CBF-AML, n (%) 21 (21)

t(8;21), n (%) 10 (10)

inv(16), n (%) 11 (11)

Complex karyotype, n (%) 11 (11)

KMT2A-rearranged, n (%) 6 (6)

Myelodysplasia-related AML, n (%)a 12 (15)
aMutations defining myelodysplasia-related AML include mutations in the SRSF2, SF3B1, 
RUNX1, U2AF1, ZRSR2, ASXL1, EZH2, BCOR and STAG2 genes as per the 2022 ELN7.
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Fig. 1 | Mutational landscape of Black patients with AML who were treated on 
CALGB/Alliance study protocols. a, Oncoprint showing mutations detected in 
4% or more of Black patients by WES. b, Clonality of driver mutations detected 
in three Black patients with AML, identified using scDNA-seq. c, Difference in 
mutation percentage between white (Beat AML) and Black patients in genes 

mutated in 4% or more of Black patients. The P value was calculated using a 
two-sided Fisher’s exact test. d, Mutation percentage for genes mutated in 4% of 
Black patients compared with other major AML sequencing studies. TMB, tumor 
mutational burden.
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mutations differed between ancestries (Fig. 1c and Supplementary 
Table 1). Ten genes were mutated in 4% of our cohort, but in only 
2% or less of white patients and other previous hallmark sequenc-
ing efforts (Supplementary Table 1 and Fig. 1d). Moreover, PHIP 
mutations present in 7% of Black patients were identified in only 
one white patient (7% versus 0.3%, P < 0.001; Fig. 2a and Supple-
mentary Table 2). As germline variants, PHIP mutations cause  
Chung–Jansen syndrome, a rare inherited form of intellectual dis-
ability24. Somatic PHIP mutations were reported in less than 2% of 
myelodysplastic syndromes, blast crisis chronic myeloid leukemia 

and clonal hematopoiesis (CH)6,25,26. Notably, targeted sequencing 
of PHIP in Black patients consisting of two African patient cohorts we 
additionally analyzed (Nigerian, 46 patients; South African, 23 patients; 
Methods) detected three PHIP mutations (7%) in Nigerian patients (two 
males, one female; aged 5, 31 and 42 years, respectively), but none in 
the South African patients.

Based on large sequencing studies, next-generation sequencing 
(NGS) panels used in the clinic to test newly diagnosed patients com-
monly included 56 genes recurrently mutated in AML (Supplementary 
Table 3). We found that only one of 323 white patients lacked a mutation 
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Fig. 2 | Hitherto unreported mutations in the PHIP gene and depiction of 
the fusion gene landscape. a, Schematic of the PHIP gene with location of 
posttranslational modifications and the location of mutations detected in Black 
patients by WES. Depicted are PHIP mutations found in the CALGB/Alliance 
cohort and mutations detected using targeted sequencing in three patients with 

AML who were diagnosed and treated in Nigeria. b, Circos plot displaying fusion 
genes detected using RNA-seq-based discovery in Black patients. The width of 
each arc represents the frequency with numbers indicated in the legend. dbPTM, 
database of Protein Post-Translational Modifications.
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in at least one of these genes. In contrast, 10% of Black patients lacked 
mutations in these genes, thus being ‘mutation negative’ in current 
standard clinical molecular testing.

Structural variants
RNA-seq-based fusion gene discovery27 found 12 CBFB::MYH11, seven 
RUNX1::RUNX1T1, four KMT2A rearrangements (three KMT2A::AFDN 
and one KMT2A::SEPT9) and two BCR::ABL fusions (Fig. 2b and Supple-
mentary Table 4). Four cryptic in-frame fusions affecting CBFA2T3 were 
detected, including three chromosome 16 rearrangements, in which 
CBFA2T3 was fused to either BANP, CYBA or ZFPM1, and a t(16;21) with 
CBFA2T3::RUNX1 fusion (Supplementary Table 4). These fusions did 
not cluster with CBF-AML according to gene expression, indicating a 
different biological impact (Supplementary Fig. 3). Four cryptic NUP98 
and two NUP214 fusions were identified, which are recurrent abnormali-
ties in AML. Interestingly, a recurrent GGNBP2::MYO19 fusion involving 
chromosome 17, which has been identified in giant congenital nevi, but 
not AML28, was found in two patients. The copy number alterations 
detected are listed in Supplementary Tables 5 and 6.

Clonal Hematopoiesis
CH was evaluated through comparison of variant calls identified in 
WES from both B and T cells, to those found in leukemic blasts, after 
exclusion of common SNVs. Variants in established CH-associated 
genes that were present in both B and T cells as well as the leukemic 
blasts (and absence of other non-CH-associated variants in B and 
T cells that would be indicative of residual disease, such as NPM1) 
were considered to represent CH. Such CH variants were identified 
in 11% of Black patients, including known CH-associated variants in 
DNMT3A, TET2, TP53, ASXL1, MPL, CBL, SRSF2 and SMC1A (Supplemen-
tary Table 7). CH occurred across the age spectrum, with a median 
of 56 years (range: 32–75 years), which is comparable to previously 
reported frequencies.

Molecular features and clonal dynamics of relapsed AML
To assess clonal dynamics at relapse, we performed integrated genomic 
profiling (WES + RNA-seq) on 18 Black patients with paired primary and 
relapse samples available. All patients relapsed with their dominant 
clone from diagnosis. However, only one patient relapsed with the 
identical molecular profile, while others gained at least one subclone 
(Extended Data Fig. 6a). Seven patients had new copy number altera-
tions affecting genes mutated at diagnosis. Five patients had mutational 
switches at relapse, suggestive of oncogene addiction. One patient 
gained a new PHIP variant and another gained a new HMCN2 variant, 
both of which were identified as recurrently mutated in Black patients 
at diagnosis. Gene expression analysis revealed transcriptional changes 
of some relapse samples (Extended Data Fig. 6b).

Transcriptional profiles based on oncogenic drivers
In transcriptome-based gene expression profiling and t-distributed 
stochastic neighbor embedding (t-SNE) data visualization, Black and 
white patients clustered together according to known driver muta-
tions (Fig. 3a).

A relatively large, central t-SNE cluster contained Black and 
white patients with myelodysplasia-related mutations as defined by 
the 2022 ELN7 (Fig. 3b). Gene expression analysis showed that these 
patients had expression profiles resembling myelodysplastic neo-
plasms29 (Fig. 3c). Notably, Black patients in the myelodysplasia-related 
cluster were younger than white patients (median, 50 versus 58 
years, P = 0.04; Fig. 3d,e), suggestive of intrinsic and/or extrinsic 
dysplasia-causing stressors. Additionally, while white patients within 
the myelodysplasia-related AML cluster were older than white patients 
outside this cluster (P < 0.001), there was no significant age difference 
between Black patients (P = 0.17), further highlighting the unusually 
early onset of myelodysplasia-related AML in Black patients.

Clinical features and treatment outcomes
Black patients with AML have poor survival even when considering 
socioeconomic data, both in population-based analyses and in clinical 
trials14–20. For a more accurate assessment of treatment response and 
survival, we compared our molecularly characterized cohort of 103 
Black patients younger than 60 years, for whom intensive induction 
is still standard of care, with an age-matched, sex-matched and study 
date-matched cohort of 206 white patients (size-matched 1:2) with 
similar performance status treated on the CALGB/Alliance protocols. 
There were no significant differences in pretreatment parameters 
between Black and white patients, including white blood cell count, 
percentage of bone marrow (BM) and blood blasts, performance status 
or 2022 ELN genetic risk group distribution (Supplementary Table 8). 
Both cohorts were similarly treated on the same frontline CALGB/
Alliance clinical trials, with all patients receiving standard induction 
chemotherapy followed by consolidation with cytarabine or autolo-
gous hematopoietic stem cell transplantation (HSCT), except for three 
patients who received consolidation with mitoxantrone/diaziquone 
and cyclophosphamide/etoposide (Supplementary Information and 
Supplementary Table 8).

Although the complete remission (CR) rates of Black and white 
patients did not differ significantly (73% versus 79%, P = 0.25; Fig. 4a), 
Black patients more frequently died within the 30 days after treatment 
initiation (11% versus 3%, P = 0.02), had higher relapse rates (63% versus 
48%, P = 0.05) and worse disease-free survival (DFS) (3-year rates, 30% 
versus 47%, P = 0.01; Supplementary Fig. 4), event-free survival (EFS) 
(3-year rates, 22% versus 37%, P = 0.003; Fig. 4a) and overall survival 
(OS) (3-year rates, 31% versus 47%, P = 0.007; Fig. 4b) compared with 
white patients.

Molecular features associated with response and survival
To identify the features associated with the treatment response and 
survival of Black patients, we performed multivariable analyses for DFS, 
which identified NPM1 (hazard ratio (HR) = 2.29, 95% confidence inter-
val (CI) = 1.23–4.25, P = 0.009) and NRAS (HR = 1.95, 95% CI = 1.03–3.69, 
P = 0.04) mutations as adverse prognostic factors (Supplementary 
Tables 9 and 10 and Fig. 4c). NPM1 mutations without FLT3-ITD are a 
favorable-risk marker in clinical guidelines7, contrasting their strong 
adverse prognostic impact in Black patients. In contrast to established 
risk association, in which the presence of FLT3-ITD negatively affects 
the positive survival association with NPM1 mutations, Black patients 
with NPM1 mutations who were FLT3-ITD− had worse DFS (3-year rates: 
13% versus 55%, P = 0.002), EFS (3-year rates: 10% versus 46%, P = 0.01) 
and OS (10% versus 61%, P < 0.001) than white patients, and their OS 
was not significantly different from the OS of patients in the 2022 ELN 
adverse-risk group (P = 0.88; Fig. 4d). Notably, although definitive 
conclusions are limited by a small sample size, NPM1 mutations were 
also associated with inferior OS in Black patients younger than 60 years 
treated with intensive chemotherapy in the analysis of real-world data 
from the Flatiron Health database (Extended Data Fig. 7). NRAS muta-
tions, which are not included in the 2022 ELN genetic risk stratification 
system7, also conferred adverse prognosis in Black patients (Fig. 4e 
and Supplementary Table 11). Furthermore, myelodysplasia-related 
mutations were predictive of inferior DFS, which is consistent with their 
established negative survival association in current clinical guidelines 
(Supplementary Table 9 and Extended Data Fig. 8)7.

Mutations in IDH1 and IDH2 were associated with decreased OS 
(P = 0.05; HR = 1.73, 95% CI = 1.01–2.97; Supplementary Table 12), which 
was again specific for Black patients with IDH1 and IDH2 mutations 
(Supplementary Table 13 and Fig. 4f). Given the approval of new tar-
geted agents for older and unfit patients harboring IDH1 and IDH2 
variants, the survival association in Black patients suggests the pos-
sibility of using these agents in the frontline setting at an earlier age. 
No recurrent gene mutation stayed in the final multivariable model for 
EFS (Supplementary Table 14).

http://www.nature.com/naturegenetics


Nature Genetics | Volume 56 | November 2024 | 2434–2446 2439

Article https://doi.org/10.1038/s41588-024-01929-x

ASXL1

SF3B1

STAG2

Black

BCOR

RUNX1
EZH2

SRSF2

U2AF1

TP53
ZRSR2

a b

c d

No MDS mutation

e

P = 0.04 P = NS

−40 −20 0 20

−30

−20

−10

0

10

20

30

40

−30

−20

−10

0

10

20

30

40CEBPA bZIP 

AMTL
MDS-like AML

MECOM-r

CBFB::MYH11

KMT2A-r

NPM1

NUP-r

RUNX1-r

NPM1

FLT3-ITD

African American
n = 92

t-S
N

E 
co

or
di

na
te

 2

−30

−20

−10

0

10

20

30

40

−30

−20

−10

0

10

20

30

40

t-S
N

E 
co

or
di

na
te

 2

t-S
N

E 
co

or
di

na
te

 2

ASXL1/2
CBFB::MYH11
CEBPA
ETS-r
FLT3-ITD
IDH1 and IDH2
KAT6A-r

KMT2A-r
MECOM-r
NPM1
NPM1/FLT3-ITD
NUP-r
Philadelphia
chromosome-like
PICALM::MLLT10

PRC2
RUNX1
RUNX1-r
TP53
Unknown
Black

t-SNE coordinate 1

−40 −20 0 20

t-SNE coordinate 1
−40 −20 0 20

t-SNE coordinate 1

−40 −20 0 20

t-SNE coordinate 1

Lowest
Low
Medium
High
Highest

CEBPA bZIP

AMTL

MDS-like AML

KMT2A-r

NPM1

NUP-r

FLT3-ITD

RUNX1-r

NPM1

MECOM-r

CBFB::MYH11

Ag
e 

at
 d

ia
gn

os
is

 (y
ea

rs
)

20

40

60

80

20

40

60

80

Black
n = 25

White
n = 177

MDS-related AML

Black
n = 66

White
n = 570

Other

Age distribution

17

Black

36
54
73
93

Fig. 3 | Clustering of patients with AML using transcriptome-based gene 
expression profiling and t-SNE visualization. a, Clustering of Black and white 
patients according to gene expression with the presence of major oncogenic 
driver mutations. The dot color corresponds to the presence of the indicated 
driver mutation. Black patients are circled. b, Presence of myelodysplasia-related 
mutations in Black and white patients clustered according to gene expression. 
The dot color corresponds to the presence of the indicated myelodysplasia-
related mutation. c, Similarity of Black and white patient gene expression profiles 
to a previously published myelodysplasia gene expression signature29. d, Age 

distribution of patients clustered according to gene expression. The dot colors 
correspond to patient age as indicated in the legend. Black patients are circled.  
e, Age comparison between Black and white patients with myelodysplasia-
related mutations. P values were calculated using a two-sided Wilcoxon rank-sum 
test (box plots: centerline, median; box limits, first and third quartiles; whiskers, 
minimum and maximum). ‘-r’ behind a gene symbol indicates fusion genes 
involving the gene indicated and other partner gene(s). CEBPA bZIP, in-frame 
mutations affecting the basic leucine zipper (bZIP) region of the CEBPA gene; 
MDS, myelodysplastic syndrome; NS, not significant.

http://www.nature.com/naturegenetics


Nature Genetics | Volume 56 | November 2024 | 2434–2446 2440

Article https://doi.org/10.1038/s41588-024-01929-x

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1.0

Years

O
S

Black IDH1+ and IDH2+ patients (n = 13)

White IDH1+ and IDH2+ patients (n = 155) 

Black IDH1+ and IDH2+ versus ELN Adv: P = 0.84
White IDH1+ and IDH2+ versus ELN Adv: P < 0.001

2022 ELN adverse-risk patients (n = 285)

Black patients
(n = 103)

White patients
(n = 206)

P

ED 11 (11%) 7 (3%) 0.02

CR 75 (73%) 163 (79%) 0.25

Relapse 47 (63%) 79 (48%) 0.05

a b

d

c

e

g

f

O
S

Black patients (n = 103)

White patients (n = 206)

Years

EF
S

Black patients (n = 103)

White patients (n = 206)

P = 0.003 P = 0.0071.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

O
S

1.0

0.8

0.6

0.4

0.2

0

O
S

1.0

0.8

0.6

0.4

0.2

0

1.0

40

30

20

10

0

RU
N

X1
TE

T2
AS

XL
1

N
RA

S
D

N
M

T3
A

SR
SF

2
FL

T3
PT

PN
11

ID
H

1
ID

H
2

N
PM

1
N

F1
W

T1
BC

O
R

SF
3B

1
EZ

H
2

ST
AG

2
KR

AS
C

EB
PA C
BL

M
EN

1
SE

TB
P1

ZR
SR

2
EP

30
0

AR
ID

2
EV

T6
FO

XP
1

G
AT

A2
N

C
O

R2
TC

F3
TP

53
U

2A
F1

AX
TN

1
ER

BB
3

ET
N

K1
FA

N
C

A
JA

K2
SU

Z1
2

TS
C

2
BC

O
RL

1
BR

C
A2

C
AL

R
C

C
N

D
1

C
SF

3R EE
D

EG
FR

IA
K3

LR
P1

B
M

ED
12

N
FE

2L
2

PH
F6

PL
C

G
1

PR
KA

R1
A

SH
2B

3
U

BR
5

AK
T1

AL
K

AR
H

G
EF

28
AR

ID
TA

AR
ID

4B
AT

M
AT

R
AT

RX
BR

C
A1

BR
IP

1
C

BF
B

C
D

KN
2A

p1
4A

RF
C

D
KN

2A
p1

6I
N

K4
A

C
D

KN
2B

C
RE

BB
P

D
AX

X
FA

T1
G

AT
A1

G
RI

N
2A

H
D

AC
4

IK
ZF

1
KI

T
KM

T2
C

M
AL

T1
M

AP
3K

1
M

AP
3K

13
M

PL
M

RE
11

M
RE

11
A

N
C

O
R1

N
O

TC
H

1
N

O
TC

H
2

N
O

TC
H

4
N

T5
C

2
N

TR
K1

PB
RM

1
PI

K3
C

G
PM

S2
RA

D
21

RA
D

54
L

RE
T

RI
C

TO
R

RN
F4

3
RO

S1
RP

S2
6

RT
EL

1
SE

TD
1B

SM
C

1A
SP

EN
ST

AT
3

TS
H

R

0.8

0.6

0.4

0.2

0

0 1 2 3 4 5 6 7 8 9 10

Years
0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Years
0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Years

Black NPM1+ patients (n = 18) 

White NPM1+ patients (n = 314) 

Black NPM1+ versus ELN Adv: P = 0.81
White NPM1+ versus ELN Adv: P < 0.001

2022 ELN adverse-risk patients (n = 313)

Black NPM1+/FLT3-ITD+ patients (n = 8) 

White NPM1+/FLT3-ITD patients (n = 191) 

NPM1+/FLT3-ITD Black versus White: P < 0.001
Black NPM1+/FLT3-ITD versus ELN Adv: P = 0.88

2022 ELN adverse-risk patients (n = 316)

White NPM1+/FLT3-ITD+ patients (n = 120)

Years

O
S

Black NRAS+ patients (n = 20) 

White NRAS+ patients (n = 191) 

Black NRAS+ versus ELN Adv: P = 0.79
White NRAS+ versus ELN Adv: P < 0.001

2022 ELN adverse-risk patients (n = 283)

Black NPM1+/FLT3-ITD   patients (n = 10) 

Fr
eq

ue
nc

y

Gene

Fig. 4 | Comparison of clinical outcomes of Black and white patients with 
AML. a,b, Comparison of treatment response and survival of age-matched, 
sex-matched and study date-matched cohorts of Black and white patients, a, EFS, 
rates of early death (ED), CR and relapse. b, OS. c, OS of Black and white patients 
with NPM1 mutations compared with the OS of 2022 ELN adverse-risk patients. 
d, OS of Black and white patients with NPM1 mutations and the presence or 
absence of a co-occurring FLT3-ITD in comparison with OS of 2022 ELN adverse-
risk patients. e, OS of Black and white patients with NRAS mutations compared 

with the OS of 2022 ELN adverse-risk patients. f, OS of Black and white patients 
with IDH1 and IDH2 mutations compared with the OS of 2022 ELN adverse-risk 
patients. g, Frequencies of gene mutations detected in 43 relapsed or refractory 
adult Black patients cared for at the Memorial Sloan Kettering Comprehensive 
Cancer Center, profiled using an MSK-IMPACT assay. In a, for ED, CR and relapse 
rates, P values were calculated using a two-sided Fisher’s exact test. a–f, for time-
to-event analyses, survival estimates were calculated using the Kaplan–Meier 
method and compared using a two-sided log-rank test. Adv, adverse.

http://www.nature.com/naturegenetics


Nature Genetics | Volume 56 | November 2024 | 2434–2446 2441

Article https://doi.org/10.1038/s41588-024-01929-x

We next analyzed the mutation frequencies in 43 self-reported 
Black patients with relapsed or refractory disease whose gene mutation 
profiles were obtained after unsuccessful first-line treatment (median 
age: 60 years; range: 18–86 years) via MSK-IMPACT with subsequent 
enrichment of more adverse-risk features, contrasting the genomic 
profiling of the newly diagnosed Alliance patient cohort. The most 
frequent mutations included several adverse-risk markers identified in 
our study, supporting their risk association in Black patients (Fig. 4g).

Ancestry-associated transcriptomic impact in NPM1-mutated 
AML
To understand the possible causes for the contrasting survival 
impact of NPM1 mutations in Black compared to white patients, we 
first assessed co-mutational patterns. In addition to established 

coexisting mutational features, 11 of 20 Black patients with NPM1 muta-
tions harbored at least one predicted pathogenic variant in genes not 
yet implicated in AML (Fig. 5a); however, no new recurrent variants  
were identified.

Next, to evaluate possible molecular underpinnings, we analyzed 
the transcriptomes of Black and white patients with NPM1 mutations 
with genotype-confirmed ancestry. Interestingly, using the principal 
component and reclassification analyses, we found distinguishing 
marker genes that were differentially expressed between Black and 
white patients (Fig. 5b). Only one Black patient’s AML resembled in its 
expression the phenotype of white patients, while nine white patients 
resembled the expression profile found in Black patients (Fig. 5c). 
Remarkably, the OS of these white patients who presented as transcrip-
tomically ‘adjacent’ to Black patients was also poor (Fig. 5d).
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Treatment outcomes according to iScore, LSC17 and 2022 ELN
Inflammation has a role in the development and progression of AML; 
high inflammation has emerged as a negative prognostic factor 
independent of established genetic features21,30. Using the recently 
published gene-expression-based iScore30 as a proxy for inflamma-
tion, we noted an enrichment of high inflammation in Black patients 
harboring NPM1 mutations compared to white patients (69% versus 
45%; P = 0.08; Supplementary Table 15). This is notable given the pre-
viously described association of high inflammation with poor-risk 
genetic features and treatment response, and the identified inferior 
survival of Black patients with NPM1 mutations 19,21. High inflammation 
was predictive of poor EFS and OS for both Black and white patients 
(P < 0.001; Fig. 6a,b).

The LSC17 score represents a validated survival-associated gene 
expression signature thought to be reflective of ‘stemness’ in AML with 
high score31,32. LSC17 scores were predictive of EFS and OS in both white 
and Black patients (Fig. 6c,d). Only 53% of Black 2022 ELN favorable-risk 
patients had a low LSC17 score, compared with 69% of white 2022 ELN 
favorable-risk patients. Notably, the incidence of NPM1 mutations was 
discrepant: only 13% of low LSC17 Black patients had NPM1 mutations 
compared with 38% of white patients, suggesting possible biological 
differences between Black and white patients that require further 
study. Similarly, only 16% of Black patients in the low LSC17 group car-
ried NRAS mutations versus 26% of white patients, which is consistent 
with the observed contrasting survival impact of NRAS mutations 
(Supplementary Table 16).
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Fig. 6 | Treatment outcomes of Black and white patients classified according 
to three genetic risk stratification systems. a, EFS of Black and white patients 
according to high and low iScore status. b, OS of Black and white patients 
according to high and low iScore status. c, EFS of Black and white patients with 
low or high LSC17 scores. d, OS of Black and white patients with low or high LSC17 
scores. e,f, EFS (e) and OS (f) of Black patients categorized into genetic risk 

groups according to our modification of the 2022 ELN genetic risk classification 
by the inclusion of NPM1, NRAS and IDH1 and IDH2 mutations as adverse-risk 
markers. Survival estimates were calculated using the Kaplan–Meier method  
and compared using a two-sided log-rank test. Adv, adverse; Fav, favorable;  
Int, intermediate.
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Refinement of the 2022 ELN genetic risk classification
The 2022 ELN genetic risk classification performed suboptimally for 
Black patients, especially with respect to identifying patients who 
benefit from cytotoxic chemotherapy alone. Compared with white 
patients, Black patients tended to have inferior EFS and OS in each risk 
group, with the difference reaching statistical significance for EFS in the 
2022 ELN favorable-risk group (Extended Data Fig. 9). The unfavorable 
impact of NRAS, IDH1, IDH2 and NPM1 mutations on OS and DFS in our 
Black patients suggest that these mutations should be included as 
adverse-risk markers for Black patients. Indeed, implementing this 
change improved genetic risk assignment, with 3-year EFS and OS pre-
dicted rates for the 2022 ELN favorable-risk group improving from 37% 
to 56% and from 50% to 78%, and for the intermediate-risk patients from 
28% to 38% and from 35% to 43%, respectively (Fig. 6e,f). This revised, 
ancestry-inclusive genetic risk assignment resulted in reclassification 
of 34% of Black patients to the adverse-risk group. This has important 
clinical ramifications because these patients would be considered for 
alternative frontline regimens or allogeneic HSCT in first CR.

Cell type distribution and pathway activation of 
NPM1-mutated AML
To elucidate the potential underlying biological mechanisms responsi-
ble for the observed phenotype differences, we performed single-cell 
RNA-seq (scRNA-seq) profiling with cellular indexing of transcriptomes 
and epitopes (CITE-seq) on BM samples from six Black and seven white 
patients with NPM1 mutations, obtaining a total of 112,017 cells (Fig. 7a). 
To understand possible lineage relationships, we aligned cells from 
these patients to our recent comprehensive multimodal BM progeni-
tor cell atlas33. Among 74 aligned cell populations, the most frequently 
aligned cell state was to the annotated MultiLin-GMP-1 cluster (34% of 
cells on average), which usually is the most infrequently found tran-
sitional intermediate state in nonleukemic BM. Interestingly, when 
comparing cell type proportions with respect to ancestry, lymphoid 
myeloid primed progenitor (LMPP-2) cells showed consistent differ-
ences between Black and white patients (P = 0.04; Fig. 7b). While the 
leukemic cell state is probably an important mediator of response to 
therapy, transcriptomic impacts differentiated according to ances-
try could reveal unique AML survival gene programs. To exclude bias 
in cell capture frequency, we compared gene expression among the 
reference-annotated pseudobulk cell populations using the software 
cellHarmony. cellHarmony revealed cell state-specific and lineage 
impacts when comparing the scRNA-seq profiles of Black and white 
patients that nominated broadly shared AML blast ancestry programs 
and cell state-specific impacts (Fig. 7c and Extended Data Fig. 10).

A rare intermediate mixed-lineage progenitor, megakaryocyte–
erythroid progenitor (MEP-2) cell population showed the greatest 
gene expression changes according to ancestry. Notably, we also 
observed consistent downregulation of NPM1 in the MEP-2 cells of 
Black compared to white patients (P = 0.008), but not in any other cell 
populations. As identified using gene set enrichment analysis, Black 
patients had lower expression of splicing factors, and transcription, 
translation and mitochondrial energy pathway, which was consistent 
among patients (Fig. 7d). These pathways and other were substantially 
enriched when considering shared progenitor lineage impacts from 
cellHarmony (MPP and MEP combined), including apoptosis, Wnt 
signaling, EGFR signaling and stress granule production (AGO4, GIGYF2, 
MBNL1, CIRBP, DDX3X, HNRNPK, PABPC1, YBX1, ZFP36) (Fig. 7e). These 
data point to contributing posttranscriptional regulatory mechanisms 
driving ancestry-associated survival of the leukemic clone.

Discussion
Current clinical NGS panels for AML-associated mutations and genetic 
risk stratification assume that these clinical standards perform equally 
for all patients. However, our results suggest that these panels are 
not delivering adequate results for Black patients. This conclusion 

is highlighted by the 10% of ‘mutation-negative’ Black patients in the 
routinely used testing panels, and the identification of recurrent gene 
mutations in Black patients, which were not recurrent in previous AML 
hallmark studies3,6. These findings are consistent with studies on other 
cancers, which found that genetic ancestry contributes to patterns of 
somatic mutations34–37 and suggest the need to expand current clinical 
NGS panels to include ancestry-associated mutations. However, their 
addition to routine clinical testing of AML is at present premature; 
further studies are necessary to gather information on the biological 
and clinical relevance of these variants.

The presence of an early-onset myelodysplastic phenotype in 
Black patients associated with poor survival suggests the presence 
of intrinsic and/or extrinsic stressors that cause these changes at an 
unusually young age. Racial discrimination and safety-related insecu-
rities have been linked to inflammation, which is known to influence 
mutagenesis and promote the development of myeloid neoplasms, 
highlighting the importance of considering ethnicity and ancestry in 
the assessment of disparities as they provide additive information38–40. 
Notably, this observation is consistent with epidemiological data on 
prostate and breast cancer showing earlier disease onset in Black 
patients than white patients41,42. The mechanisms driving the early 
myelodysplastic phenotype are unknown, but lung cancer tumors 
from patients with African ancestry have higher levels of genomic 
instability and ancestry-associated defects in homologous recom-
bination repair37.

Genetic risk stratification has a central role in therapeutic decision- 
making for patients with AML. Our findings indicate that the current risk 
stratification system does not capture important ancestry-associated 
biological differences with treatment implications. As all patients 
received cytarabine/daunorubicin-based therapy, we were able to 
perform rigorous outcome analyses. We identified contrasting survival 
predictors between Black and white patients, indicating an inferior 
genetic risk assignment for almost one-third of Black patients based 
on current classification systems.

Specifically, the presence of NPM1 mutations confers an adverse 
risk in Black patients, while current clinical guidelines consider NPM1 
mutations to bestow favorable or intermediate risk depending on 
FLT3-ITD status7, suggesting a potential undertreatment of Black 
patients with NPM1 mutations. Notably, our data provide evidence 
of underlying biological differences in patients with NPM1 mutations 
with respect to genetic ancestry, including differences in cell type 
distribution, with an increase of LMPP-2 cells in Black patients with 
confirmed African ancestry. Remarkably, this distinct phenotype 
identified in all but one Black patient was identified in 3.8% of white 
patients with genotype-confirmed European ancestry, who also had 
poor survival.

We believe our results indicate the need to modify the current 
AML risk stratification by inclusion of ancestry-specific molecular 
prognostic factors, and to prospectively test their validity in rand-
omized clinical trials. Furthermore, they indicate the urgent need to 
understand the functional significance of the hitherto unrecognized 
putative pathogenic variants and their relevance in leukemogenesis 
using murine models. Future genomic studies of patients with cancer 
from ancestry-diverse populations should include ancestry-weighted 
models and a more refined assessment of ancestry that may uncover 
additional differences within different African patient populations. 
Such efforts are necessary for the equitable distribution of molecu-
lar medicine and to address long-standing disparities in survival of 
patients with AML.

Importantly, our results call for large-scale follow-up efforts. While 
adults of all ages were included in the analyses of mutation frequencies 
in Black and white patients, the outcome analyses were limited to fit 
patients aged younger than 60 years, for whom intensive induction 
is still standard of care. None of these patients received an allogeneic 
HSCT in first CR, which represents a limitation of our study and thus 
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warrants performing similar analyses in the transplant setting. Finally, 
given the retrospective nature of this work, it is unclear if improvements 
in risk stratification for Black patients would translate into improved 
outcomes. For this, future prospective clinical trials are needed.

We hope that this large-scale study focused on patients with Afri-
can ancestry with AML sets a precedent for future genomic profiling 
efforts, as the current underrepresentation of minority patients not 
only constrains our ability to provide the best possible care, but also 
limits our understanding of AML biology. Future studies should occur 
in conjunction with increased efforts to address major contributors to 

the long-standing survival disparities reflective of structural racism, 
including clinical trial enrollment, access to care and social determi-
nants of health.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-024-01929-x.
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Fig. 7 | Identification of a durable clonal gene expression program in 
patients with NPM1-mutated AML based on ancestry. a, Uniform manifold 
approximation and projection (UMAP) of scRNA-seq profiles from 13 patients 
with NPM1-mutated AML (six with African ancestry, seven with European 
ancestry), and to a nonleukemic reference BM cell populations (inset). b, Cell 
population frequency for each patient with AML with respect to genetic ancestry 
(two-sided uncorrected Welch t-test). c, Differential expression heatmap of 
pseudobulk clusters (cellHarmony), comparing patients with European and 
African ancestry (fold change greater than 1.2, eBayes t-test P < 0.01). d, Heatmap 
showing differentially expressed genes (DEGs) in MEP-2 according to ancestry 
derived from cellHarmony. Red, splicing regulator. e, Gene set enrichment of 

European-enriched (left) and African-enriched (right) differentially expressed 
Gene Ontology terms in MPP/MEP combined pseudobulk RNA-seq data 
(raw P values from a two-sided Fisher’s exact test). BMCP, basophil/mast cell 
progenitor; cDC, conventional dendritic cell; DC, dendritic cell; EGFR, epidermal 
growth factor receptor; ER, endoplasmic reticulum; eryth, erythroid; GMP, 
granulocyte-monocyte progenitor; LMPP, lympho-myeloid primed progenitor; 
MAIT, mucosal associated invariant T; MAPK, mitogen-activated protein kinase; 
MDP, monocyte-dendritic progenitor; mono, monocyte; MKP, megakaryocyte 
progenitor; MPP, multipotent progenitor; Neu, neutrophil; NK, natural killer; 
pDC, plasmacytoid dendritic cell; TCM, central memory T; TEM, effector memory T.
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Methods
Our study was undertaken to analyze differences in genomic data 
between Black and white patients with AML and correlate the results 
with clinical outcome data to shed light on the origins of survival dispar-
ity between these diverse genetic ancestry patient groups. We used the 
population descriptors Black and white to refer to groups of individuals 
who have different constitutional genetic backgrounds, typically result-
ing in observable phenotypic differences. For most cases, the classifica-
tion of Black or white was determined by SNP array genotyping, but for a 
subset of patients we relied on self-reported race alone (fully described 
below). These descriptors were operationalized by using self-reported 
race to select white and Black patients from the described cohorts of 
either available samples or available omics data, then validating the 
genetic ancestry associated with the self-reported race for each patient 
in the subset of patients for whom existing genotyping data were avail-
able, as described below. We note that not having genetic ancestry data 
on a fraction of patients is a limitation of this study. We acknowledge that 
additional genetic ancestry groups exist other than white and Black but 
justify the focus of the current study on only these two groups because 
they were the largest available genetic ancestry groups in the assessed 
cohorts; further comparisons are outside the scope of this work. This 
work complies with all relevant ethical regulations and was approved 
by the Institutional Review Board (IRB) of the Ohio State University and 
the Cancer Therapy Evaluation Program of the National Cancer Institute 
(NCI). The University of Ibadan/University College Hospital (UI/UCH) 
Research Ethics Committee, which is the equivalent of an IRB, approved 
the study (no. UI/EC/23/0295). All patients provided written informed 
consent to participate in the treatment studies before enrollment and 
for the research use of their specimens in agreement with the 2013 ver-
sion of the Declaration of Helsinki. Patients provided written informed 
consent to participate in protocols CALGB 8461 (cytogenetic stud-
ies), CALGB 9665 (Leukemia Tissue Bank) and CALGB 20202 (molecu-
lar studies), which involved collection of pretreatment BM aspirates 
and blood samples. No patient was compensated for participation  
in this study. Study protocols were approved by the IRB at each center.

Patients and treatment (CALGB/Alliance)
In the CALGB/Alliance database, there were 1,660 adults diagnosed 
with de novo AML (other than acute promyelocytic leukemia) who 
had molecular genetic data available, including 1,519 self-reported 
white and 141 self-reported Black patients, of whom 1,149 and 100, 
respectively, had their genetic ancestry confirmed by genotyping 
(see below and Extended Data Fig. 5). All but three patients were simi-
larly treated with intensive chemotherapy consisting of cytarabine/
daunorubicin-based induction and cytarabine-based consolidation 
or received autologous HSCT after attaining a CR on the CALGB/Alli-
ance protocols, the details of which are provided in the Supplementary 
Information. The aforementioned three patients received consolida-
tion with mitoxantrone/diaziquone and cyclophosphamide/etoposide. 
Patients removed from protocol treatment to undergo allogeneic 
HSCT in first CR were excluded from the survival analysis. Two patients 
were treated at the Ohio State University and received cytarabine/
daunorubicin-based induction (in one patient together with gemtu-
zumab ozogamicin) followed by high-dose cytarabine.

Genetic ancestry analyses
Genetic ancestry was inferred for 1,149 of 1,519 self-reported white 
patients, who had genotyping data available based on 650K Omni arrays 
using the method in refs. 43,44. For all 1,149 patients, genetic ancestry 
was confirmed as white European. Additionally, a more refined African 
ancestry was confirmed using WES-based SNP analysis as detailed 
below. For more refined genetic ancestry for the self-reported Black 
patients of the WES cohort, we used the SNVstory workflow45 (https://
github.com/nch-igm/snvstory). SNVstory is a method built on three 
independent machine learning models for accurately inferring the 

continental and subcontinental ancestry of individuals. Germline 
variants from VCF were used as input to the workflow. Genetic ancestry 
assignment was determined as the output model label with the highest 
probability; ancestry assignments from each of the three continental 
models were supplied together. For study inclusion, patients needed 
to have 40% African ancestry (Genome Aggregation Database).

Gene mutation frequency comparisons versus Beat AML
Mutations and frequencies were generated from the publicly available 
calls for BeatAML (https://github.com/biodev/beataml2.0_data/blob/
main/beataml_wes_wv1to4_mutations_dbgap.txt) from ref. 46, which 
are a combination of Mutect and VarScan2: (1) the overall cohort con-
sists of 762 samples with 531 of these being from the initial diagnosis 
samples; (2) we defined the white cohort as having self-reported white 
race without self-reported Hispanic ethnicity (n = 323). In all cases, 
samples were first limited to those referenced in ref. 46, where each 
patient was represented by a single sample. All genes found to be recur-
rently mutated in Black patients were reanalyzed using the analytical 
workflow and variant curation as outlined for the Black patient cohort.

The genetic ancestry for each patient, inferred from genomic 
data using the method in ref. 43 was assessed for 177 (55%) of the 323 
patients, as previously described by the Beat AML investigators46, 
which included all patients of their initial sequencing effort; patients 
sequenced on the second sequencing effort did not have sufficient data 
available for the ancestry analyses. There were only two white patients 
with a discordance between their self-reported and inferred genetic 
ancestry, as previously reported46.

PHIP mutation profiling in the African patient cohorts
We collaborate with two investigative sites in Nigeria, the UI/UCH and 
University of Ilorin Teaching Hospital (UITH). The BM aspirate slides 
were from samples archived between June 1985 and December 2022. 
As they were archived samples, all patients were deceased at the time 
of the analysis. UI/UCH and UITH provided the archived BM aspirate 
slides and correlated clinical data where available. DNA was extracted 
centrally using the QIAGEN QIAamp DNA Micro extraction kit. Illumina 
TruSeq-derived, targeted sequencing data for 46 patients (29 males,  
17 females; aged 4–86 years) passed the quality control criteria and are 
included. Library preparations and subsequent sequencing were per-
formed centrally at the Bloomfield Center at the Ohio State University.

In addition, we partnered with investigators at the University of 
the Free State in Bloemfontein, South Africa. All research was approved 
under UFS-HSD2022/0299. Tumor DNA was analyzed centrally at the 
Bloomfield Center for 20 patients with AML (18 self-reported with 
African ancestry, two self-reported with mixed ancestry; eight males, 
12 females; aged 18–82 years), as detailed above.

Integrated molecular profiling
One hundred Black patients with AML, selected to represent major 
morphological and cytogenetic subtypes of AML (Table 1), under-
went integrated mutational and transcriptional profiling of their 
pretreatment samples, which was also performed in relapse sam-
ples from 18 of these patients. African ancestry for Black patients 
was confirmed via genotype analyses of germline variants. This 
included DNA-based tumor-normal comparison by Integrated DNA 
Technologies xGen Lockdown probe-based whole-exome hybrid cap-
ture with chromosomal tiling probes and NGS (250× target cover-
age of paired-end 151-bp reads) of genomic DNA from leukemic and 
flow-sorted B and T cells as germline tissue. Secondary analysis was 
performed using Churchill, which includes alignment to the GRCh38 
reference genome, deduplication, germline and somatic SNVs and 
small insertion and deletion calling, as well as copy number and loss 
of heterozygosity detection and clonal predictions47. Post-variant 
calling analysis identified AML-associated and hitherto unreported 
somatic and germline alterations, using a variant allele fraction 
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cutoff of 2% or more. A gene was considered recurrently mutated if 
nonsynonymous, protein sequence-altering variants were detected 
in two or more patients. Ribo-depleted, paired-end 151-bp RNA-seq 
(60–80 million reads per sample) was performed on RNA extracted 
from diagnosis and relapse materials, followed by identification of  
gene fusions and ITDs27, and gene expression profiling (see Supplemen-
tary Information for details of the referenced methods). CH was defined 
by simultaneous detection of variants in both B and T cell fraction DNA 
and DNA from leukemic blasts in the absence of other somatic muta-
tions in B and T cell fractions and after filtering known polymorphisms.

scRNA-seq and CITE-seq
scRNA-Seq and CITE-seq was conducted using the 10X genomics plat-
form on samples from randomly selected Black and white patients with 
NPM1 mutations, who were not significantly different from the entire 
Alliance cohorts of Black and white patients with respect to age, sex 
and OS (see the Supplementary Information for additional details).

Genomic landscape of relapsed or refractory AML among 
Black patients
Blood and BM samples from 43 relapsed or refractory patients were 
obtained and sequenced using MSK-IMPACT Heme, a capture-based, 
NGS assay. This platform targets 400 genes that are known to be involved 
in the pathobiology of hematological neoplasms. Tumor-specific vari-
ants were identified in comparison to a patient-specific or pooled set 
of normal variants, as described previously48.

Statistics and reproducibility
Statistical analyses were performed using SAS v.9.4, R v.4 and TIBCO 
Spotfire S+ 8.2. Alliance data were locked on 31 July 2022. No statisti-
cal method was used to predetermine sample size as sample size was 
limited by the availability of the material. For the two patients who were 
hypermutated, nonrecurrent mutations were excluded from the fre-
quency comparison analyses. The experiments were not randomized. 
The investigators were blinded to allocation during the experiments.

Outcome analysis of patients younger than 60 years
Among 141 Black patients in the CALGB/Alliance database, 103 patients 
were younger than 60 years; among 1,519 white patients, 952 were 
younger than 60 years. For select survival comparisons with 103 Black 
patients, a cohort of 206 white patients was matched with regard to age, 
sex and study date. Clinical and biological characteristics were com-
pared using Fisher’s exact and Wilcoxon rank-sum tests for categorical 
and continuous variables, respectively. For CR, we calculated P values 
using a Fisher’s exact test. For the time-to-event analyses, we calculated 
survival estimates using the Kaplan–Meier method and compared 
groups using a log-rank test. A limited backward selection technique 
was used to build the final multivariable models within the 103 Black 
patients younger than 60 years for the achievement of CR, DFS, OS and 
EFS. We used logistic regression to model CR and Cox proportional 
hazards regression to model DFS, OS and EFS for the univariable and 
multivariable outcome analyses. In our outcome analyses, we used  
P values adjusted to control for the family error rate (probability of a 
type I error) for all variables considered in the univariable analyses.  
The families were all variables considered in each outcome analysis and 
only variables whose likelihood ratio test-adjusted P < 0.20 from the 
univariable models were considered in the multivariable analyses. To 
identify variables associated with the achievement of CR, DFS, EFS and 
OS, the following parameters were included in the univariable outcome 
analyses: age, sex, hemoglobin, platelets, white blood cell count, per-
centage of blood and BM blasts, extramedullary involvement, CN-AML, 
CBF-AML, AML with complex karyotype, FLT3-ITD and FLT3-TKD status, 
and mutational status of the genes defining myelodysplasia-related 
AML (that is, SRSF2, SF3B1, RUNX1, U2AF1, ZRSR2, ASXL1, EZH2, BCOR 
and STAG2) and DNMT3A, IDH1, IDH2, NPM1 and NRAS.

Comparative survival analyses from the Flatiron dataset
The nationwide Flatiron Health electronic health record-derived data-
base is a longitudinal database comprising de-identified patient-level 
structured and unstructured data, curated using technology-enabled 
abstraction. During the study period, the de-identified data originated 
from approximately 280 US cancer clinics (~800 sites of care). Most 
patients in the database originate from community oncology settings; 
relative community and academic proportions may vary depending on 
the study cohort. The data cutoff date was 30 June 2022. The OS was 
calculated from the date of diagnosis to the last documented follow-up 
or data cutoff or death. The Flatiron Health dataset consists of 2,245 
patients with AML who had NPM1 molecular testing performed, of 
whom 140 patients were younger than 60 years and were treated with 
anthracycline-based induction chemotherapy (seven Black, 133 white).

Definition of the clinical endpoints
For the Alliance data, ED was defined as a patient’s death within 30 days 
of starting therapy, irrespective of the cause. CR required an absolute 
neutrophil count of 1.5 × 109 per liter or greater, a platelet count greater 
than 100 × 109 per liter, no leukemic blasts in the blood, cellularity 
greater than 20% with maturation of all cell lines, no Auer rods, less 
than 5% BM blast cells and no evidence of extramedullary leukemia, 
all of which had persisted for at least 1 month. Relapse was defined by 
5% or more BM blasts, circulating leukemic blasts or the development 
of extramedullary leukemia49. DFS was measured from the date of CR 
until the date of relapse or death; patients alive and relapse-free at the 
last follow-up were censored. EFS was measured from the date of study 
entry until the date of failure to achieve CR, relapse or death. Patients 
alive and in CR at the last follow-up were censored. OS was measured 
from the date on study until the date of death; patients alive at the last 
follow-up were censored.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The RNA-seq data from de novo patients with AML were in part derived 
from our previously published datasets that are publicly available 
via the Gene Expression Omnibus under accession nos. GSE137851, 
GSE63646and GSE216738. Newly generated data are available under 
accession nos. GSE266099and GSE266498. Genetic variants and raw 
files are available in the database of Genotypes and Phenotypes (https:// 
www.ncbi.nlm.nih.gov/gap/) under accession no. phs003728.v1.

Code availability
The AltAnalyze v.2.1.4 graphical user interface was used as described 
for the cellHarmony, principal component and differential expres-
sion analyses (https://www.altanalyze.org). Similarly, the graphical 
user interface of Prism v.10 (GraphPad Software) was used for cell 
frequency plotting. Accessory analysis scripts for cellHarmony, SoupX, 
count-scaling and UMAP supervised mapping (approximateUMAP) are 
provided at https://www.synapse.org/Synapse:syn53222724.
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Extended Data Fig. 1 | Variant calling, filtering and analyses workflow for 
determination of variants identified via paired tumor/normal whole-exome 
sequencing (WES) of 100 Black patients with AML. Comparisons with White 
patients were done based on paired tumor-normal WES data of self-identified 

White patients who were sequenced as part of the BeatAML study and database. 
To ensure comparability, BeatAML WES data were re-analyzed with identical 
variant calling workflow and variant allele fraction threshold of ≥2%. Genes 
recurrently mutated in AML were curated via consensus of major AML databases.
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Extended Data Fig. 2 | Mutational signatures identified in Black patients with 
AML. a, Identification of 4 signatures with optimal performance. b, Presence of 
4 signatures at the patient level. c, Similarity with COSMIC signatures. On the left 

are the identified mutational signatures, the color-coded bars on the left indicate 
similarity to known COSMIC mutational signatures. The etiologies of these 
signatures, if known, are shown for the 4 most similar signatures.
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Extended Data Fig. 3 | Driver mutations and mutational co-occurence patters 
found in Black patients with AML. a, Box plots depicting variant allele fractions 
of frequent driver mutations, comparing Black and White patients treated on 
Alliance protocols, P-values were calculated using a two-sided Wilcoxon rank sum 

test (boxplots: centerline, median; box limits, first and third quartiles; whisker, 
1.5x interquartile range). b, Triangle plot depicting mutational co-occurrence 
patterns found in Black patients with AML. Included are all genes mutated in at 
least 4 patients.
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Extended Data Fig. 4 | Oncoprint of cytogenetically normal Black patients with AML. Depicted are all genes with recurrent variants detected in ≥2 patients.
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Extended Data Fig. 5 | Consort diagram. Depicted are the different patient cohorts used for comparative analyses.
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Extended Data Fig. 6 | Clonality analysis of paired diagnosis and relapse samples of 18 patients. a, Transcriptomic changes between diagnosis and relapse.  
b, Changes in gene expression between diagnosis and relapse samples.
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Extended Data Fig. 7 | Overall survival of Black and White patients aged < 60 years with AML and NPM1 mutations treated with intensive chemotherapy from 
the Flatiron database. Survival estimates were calculated using the Kaplan-Meier method and compared using the two-sided log-rank test, confidence bands are the 
95% Hall-Wellner Bands.
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a b

c

PWhite patients 
(n=62)

Black patients
(n=31)

1.005 (8%)2 (6%)ED

0.2734 (55%)21 (67%)CR

0.0223 (68%)20 (95%)Relapse

Extended Data Fig. 8 | Outcome of Black and White patients with AML  
with myelodysplasia related mutations. a, Disease free survival. The table 
contains the rates of early death (ED), complete remission (CR), and relapse.  
b, Event-free survival. c, Overall survival. For ED, CR and relapse rates (a),  

P-values were calculated using two-sided Fisher’s exact test. For time-to-event 
analyses (a-c), survival estimates were calculated using the Kaplan-Meier method 
and compared using the two-sided log-rank test.
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Extended Data Fig. 9 | Outcome of Black and White patients according to 2022 ELN genetic-risk group. a, Event-free survival, b, overall survival. Survival estimates 
were calculated using the Kaplan-Meier method and compared using two-sided log-rank test.
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Extended Data Fig. 10 | ScRNA-seq analysis. Heatmap depicting cell-state and lineage analyses of scRNA-seq profiles of Black and White patients.
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