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Rare variant analyses in 51,256 type 2 
diabetes cases and 370,487 controls reveal 
the pathogenicity spectrum of monogenic 
diabetes genes

Type 2 diabetes (T2D) genome-wide association studies (GWASs) often 
overlook rare variants as a result of previous imputation panels’ limitations 
and scarce whole-genome sequencing (WGS) data. We used TOPMed 
imputation and WGS to conduct the largest T2D GWAS meta-analysis 
involving 51,256 cases of T2D and 370,487 controls, targeting variants with 
a minor allele frequency as low as 5 × 10−5. We identified 12 new variants, 
including a rare African/African American-enriched enhancer variant near 
the LEP gene (rs147287548), associated with fourfold increased T2D risk. We 
also identified a rare missense variant in HNF4A (p.Arg114Trp), associated 
with eightfold increased T2D risk, previously reported in maturity-onset 
diabetes of the young with reduced penetrance, but observed here in a T2D 
GWAS. We further leveraged these data to analyze 1,634 ClinVar variants 
in 22 genes related to monogenic diabetes, identifying two additional rare 
variants in HNF1A and GCK associated with fivefold and eightfold increased 
T2D risk, respectively, the effects of which were modified by the individual’s 
polygenic risk score. For 21% of the variants with conflicting interpretations 
or uncertain significance in ClinVar, we provided support of being benign 
based on their lack of association with T2D. Our work provides a framework 
for using rare variant GWASs to identify large-effect variants and assess 
variant pathogenicity in monogenic diabetes genes.

Large genome-wide association meta-analyses have allowed the 
discovery of hundreds of genetic variants, mostly common (minor 
allele frequency (MAF) > 0.05), associated with altered risk for T2D1–5. 
Genotype imputation, which predicts indirectly measured genotypes 
based on a reference panel, has been widely used for the largest GWAS 
meta-analyses, but has typically limited imputation to variants with 
MAF > 0.005. As a result, large-scale meta-analyses to date focused on 
variants with MAF > 0.005. Until recently, the only approach to analyze 
variants with MAF below this threshold has been either via WGS or 
whole-exome sequencing (WES). WGS and WES datasets are still limited 

in sample size and WES focuses only on the ~1% of the genome that 
codes for protein exons. The National Heart, Lung, and Blood Institute 
Trans-Omics for Precision Medicine (TOPMed) imputation reference 
panel has demonstrated the ability to accurately impute variants with a 
frequency as low as 5 × 10−5 (refs. 1,6,7), providing a unique opportunity 
to explore the contribution of rare and low-frequency variants at scale.

Approximately 0.4% of all cases of diabetes are caused by rare 
variants with very large-effect sizes (odds ratios (ORs) often >20)8–10 
and are classified as monogenic diabetes. Many monogenic diabetes 
subtypes are well suited for precision medicine interventions11, but the 
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the effective sample size of our meta-analysis being smaller (172,321 
in our study versus 765,591 in ref. 5), suggesting an improvement of 
power for low-frequency variants, because of either the more accurate 
imputation of the TOPMed reference panel or more stringent definition 
of cases and controls (Extended Data Fig. 4b–d).

TOPMed imputation combined with WGS increases power to 
detect rare variant associations
Through approximate conditional and joint association analysis 
(COJO)28, we identified 284 distinct signals in 214 loci. Of those, 239 
were common (MAF > 0.05), 37 were low frequency (MAF 0.05-0.001) 
and 8 were rare (MAF < 0.001). Of the 284 total signals, 34 were new, of 
which 8% (19 out of 239 variants), 19% (7 out of 37 variants) and 100%  
(8 variants) were common, low frequency and rare, respectively. Of the 34 
new variants, 24 were the lead signals and 10 were secondary because they 
remained significant (P < 5 × 10−8) after approximate conditional analy-
sis (Fig. 1b,c, Extended Data Fig. 5 and Supplementary Tables 2 and 3).

Of the 26 common and low-frequency new variants, 11 were rep-
licated in two previous T2D GWAS meta-analyses5,29 including inde-
pendent samples (P < 0.0015 from 0.05 of 34 tested new variants) 
(Supplementary Table 4). As rare variants are not considered in previ-
ous meta-analyses, we looked for replication of the eight new rare vari-
ants in independent TOPMed-imputed, WES and WGS data for a total of 
73,088 cases with T2D and 79,827 controls from the GEISINGER MyCode 
cohort and participants from GERA (GERA_REP) and AoU (AoU_REP) 
cohorts not overlapping and unrelated to discovery (Supplementary 
Table 1). In our replication dataset, all the rare variants showed a con-
sistent direction of effect with the discovery (binomial P = 0.007). We 
had sufficient statistical power and imputation quality to test seven of 
them, of which we replicated two variants (Supplementary Table 5): one 
noncoding near LEP and a missense variant in HNF4A.

Variant 7:128323039-G-A is prevalent in African/African American 
(AFA) populations (rs147287548, MAFAFA = 0.002; discovery: OR = 10.4, 
95% confidence interval (CI) = 4.5–24.2, P = 4.53 × 10−8; discovery + rep-
lication: OR = 4.7, 95% CI = 2.9–7.6, P = 8.8 × 10−10) and is located in an 
enhancer active in adipose tissue and adipose tissue-derived mesen-
chymal stem cells that interact with the LEP gene30 (Fig. 2a–c, Extended 
Data Fig. 6 and Supplementary Table 6). The AFA-specific allele of this 
variant disrupts a binding motif for NFATc transcription factor, which is 
implicated in adipogenesis31 (Fig. 2d). Using luciferase reporter assays, 
we demonstrated that the risk allele reduces the regulatory potential of 
the enhancer in adipocytes in vitro (Fig. 2e). Moreover, 7:128323039-G-A 
is associated with lower apolipoprotein A levels (beta (β) = −0.084 g l−1, 
P = 0.003) and lower high-density lipoprotein (HDL) cholesterol levels 
(β = −0.117 mmol l−1, P = 0.002) in participants without diabetes from the 
UKB (Supplementary Table 7 and Extended Data Fig. 7a,b).

The second is a nonsynonymous variant (20:44413714-C-T, 
p.Arg114Trp) in HNF4A, a known gene causing maturity-onset dia-
betes of the young (MODY). During the preparation of this work, it 
was classified as having ‘conflicting interpretations of pathogenic-
ity’ (CIP) in ClinVar (accessed July 2023)32 and was associated with 
~8-fold increased risk of T2D (rs137853336; MAF = 0.0001; discov-
ery: OR = 8.3, 95% CI = 4.7–14.14, P = 1.08 × 10−13; discovery + rep-
lication: OR = 7.9, 95% CI = 4.9–12.7, P = 3.1 × 10−18). This variant has 
previously been reported as a mutation causing a distinct clinical 
subtype of monogenic diabetes with reduced penetrance, reduced 
sensitivity to sulfonylurea treatment and no effect on birth weight33. 
In participants without diabetes from UKB, p.Arg114Trp is associated 
with lower apolipoprotein A (β = −0.150 g l−1, P = 4.9 × 10−11), aspar-
tate aminotransferase (β = −1.508 U l−1, P = 0.036), HDL-cholesterol 
(β = −0.167 mmol l−1, P = 6.9 × 10−9) and sex hormone-binding globulin 
(SHBG; β = −20.38 nmol l−1, P = 7.8 × 10−18), as well as with higher levels of 
glucose (β = 0.265 mmol l−1, P = 0.024), triglycerides (β = 0.266 mmol l−1, 
P = 0.0005), total cholesterol (β = 0.314 mmol l−1, P = 0.005), 
low-density lipoprotein (LDL)-cholesterol (β = 0.381 mmol l−1, 

vast majority of patients with monogenic diabetes are undiagnosed12, 
with populations of non-European genetic ancestry more vulnerable to 
misdiagnosis13. A large percentage of people have probably inherited 
rare variants with intermediate penetrance, which increase diabetes 
risk by approximately five- to tenfold14; however, without clear evidence 
for this, clinicians are unable to incorporate genetic considerations 
in patient care or clinical decision-making. The ability to estimate 
the pathogenicity of such variants, which are reported as variants of 
uncertain significance (VUSs)15, partly relied on population-based 
allele frequencies from databases, such as gnomAD16, or bioinformatics 
tools that are used to predict pathogenicity. Segregation in families or 
enrichment of carriers among those with the disease is used, but this 
information is often not available or not generated in a systematic way.

Estimating the risk of certain variants found in patients of 
non-European ancestry is particularly limited as a result of the deficit 
of genomic data available, such as population-specific allele frequen-
cies17. In addition, it is increasingly recognized that disease risk owing 
to variants of intermediate penetrance can be modified by an indi-
vidual’s polygenic background, meaning that risk estimation can be 
improved by combining rare variants with polygenic risk scores (PRSs) 
constructed based on common variants8,14.

Beyond monogenic diabetes, recent studies using large-scale 
WGS data have shown that rare variants account for a substantial pro-
portion of the heritability of common complex traits18. There is clear 
evidence for the contribution of rare variants to T2D and even the con-
vergence of signals from rare and common variants19–21. The discovery 
of large-effect, rare and population-specific variants associated with 
T2D3,4,16,17 suggests a continuum of diabetes subtypes and degrees of 
severity, rather than a categorical distinction between common forms 
of diabetes and monogenic diabetes18.

We hypothesized that analyzing low-frequency and rare variants at 
scale would allow for (1) the identification of rare variants of large-effect 
size across diverse ancestries, (2) the assessment of the pathogenicity 
of variants in known monogenic diabetes genes and (3) the investiga-
tion of the interplay between rare variants and PRS.

In the present study, we combined TOPMed-imputed data7 from the 
UK Biobank (UKB)22, the Mass General Brigham Biobank (MGBB)23 and 
the Genetic Epidemiology Research on Adult Health and Aging (GERA)24 
cohort with WGS data from the All of Us Research Program (AoU)25 to 
perform the largest and most diverse T2D GWAS meta-analysis incor-
porating variants with MAF as low as 5 × 10−5. We identified large-effect 
variants that are rare or enriched in non-European populations. Finally, 
we provided a framework for informing pathogenicity in monogenic 
diabetes genes based on effect size for diabetes susceptibility, with 
consideration of additional risk stratification using background com-
mon genetic variation.

Results
After quality control and imputation of each of the cohorts with the 
TOPMed reference panel (except AoU, as it is WGS data), we conducted 
a meta-analysis comprising a total of 51,256 cases and 370,487 controls 
with 12.2% cases of non-European ancestry (Fig. 1a, Extended Data 
Fig. 1 and Supplementary Table 1). Genotype imputation with TOPMed 
resulted in a much larger fraction of variants imputed with higher qual-
ity, especially at lower allele frequencies, with tenfold more imputed 
variants for MAF between 5 × 10−5 and 1 × 10−4 (Extended Data Fig. 2) 
compared with imputation with the Haplotype Reference Consortium 
(HRC)26 and 1000 Genomes Project (1000G)27. We also demonstrate that 
there is ~75% minor allele concordance of variants at a MAF between 
5 × 10−5 and 1 × 10−4 when comparing with data from WESs from UKB 
(Extended Data Fig. 3). A comparison of the effect sizes of established 
variants shows a strong positive correlation (r2 ≈ 0.88) between our 
meta-analysis and published studies (Extended Data Fig. 4a). Of note, 
for low-frequency variants (MAF < 0.05), we observed larger effect 
sizes in our meta-analysis and P values of similar significance despite 
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P = 2.9 × 10−6), apolipoprotein B (β = 0.141 g l−1, P = 2.2 × 10−11), lipopro-
tein A (β = 1.78 nmol l−1, P = 0.008) and urea (β = 3.03 mmol l−1, P = 0.031) 
(Supplementary Table 7 and Extended Data Fig. 7d–m).

Association results inform pathogenicity of rare variants in 
monogenic diabetes genes
Motivated by the identification of the HNF4A p.Arg114Trp variant, 
we analyzed the effect of rare variants in genes known to be involved 
in monogenic forms of diabetes, including MODY, neonatal diabetes 

and rare forms of syndromic diabetes. In a meta-analysis that included 
UKB, MGBB and GERA, we evaluated the effect of 1,634 well-imputed 
variants (MAF < 0.001) in 22 monogenic diabetes genes reported in 
ClinVar (Supplementary Table 8). Of those, 1,007 of the variants (61.6%) 
had MAF < 0.0001. Based on the recommendations by the American 
College of Medical Genetics’ guidelines15, we defined those with OR > 5 
and lower bound (LB) of the 95% CI > 2 as ‘variants of intermediate pen-
etrance’ (VIPs), variants with a 95% CI upper bound (UB) <2 as ‘benign’ 
and variants with 95% CI UB > 2 and LB < 2 as ‘inconclusive’ because 
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Fig. 1 | T2D GWAS discovery and overall analysis approach. a, Overview of the 
cohorts, sample size and pre-processing steps for each cohort included in the 
T2D GWAS meta-analysis. b, Manhattan plots for variants with an overall study 
MAF > 0.001 (bottom) and MAF < 0.001 (top). The y axis shows the −log10(P) 
from the meta-analysis of two-sided logistic regression models, weighting 
the cohorts by the inverse of the s.e. for each variant. The dashed horizontal 
line represents the genome-wide significance threshold (P < 5 × 10−8). The x 
axis represents the genomic position (GRCh38). c, ORs for all genome-wide, 
significant, conditionally independent variants plotted across MAF. New and 
known variants are represented, with primary signals denoted by stars and 

secondary signals by points. d, Overview of the downstream analyses that use the 
rare variant meta-analysis GWAS results to inform the classification of variants 
in monogenic diabetes genes within ClinVar groups. We selected all the variants 
reported in ClinVar in genes involved in monogenic diabetes. For those that are 
present in our meta-analysis, we categorized them as ‘VIP’, ‘supporting benign’ or 
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the aggregate effect of the variants on T2D risk. Finally, we stratified the carriers 
and the noncarriers of the variants within the VIP category based on their PRS and 
assessed their risk of T2D. QC, quality control.
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Fig. 2 | Functional characterization of a new low-frequency variant associated 
with T2D. a, LocusZoom plots for the rs147287548 region. Each point represents 
a variant, with its P value (on a −log10 scale, y axis) derived from the meta-analysis 
of two-sided logistic regression models, weighting the cohorts by the inverse of 
the s.e. for each variant. The x axis represents the genomic position (GRCh38).  
b, Representation of chromatin interactions (enhancer-capture HiC), 
accessibility (assay for transposable-accessible chromatin with sequencing), 
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chromatin fragment that contains rs147287548, which shows significant long-
range chromatin interactions with the promoter of the LEP gene in mesenchymal 
stem cells (MSCs) and throughout in vitro adipogenesis30. The wider chromatin 
landscape of this locus and chromatin interactions detected by enhancer-capture 
HiC are shown in Extended Data Fig. 6. Details of the datasets shown are provided 
in Supplementary Table 6. c, Forest plot showing the carrier counts and ORs of 

rs147287548 in the discovery, replication and overall datasets. The ORs from each 
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UB > 40. The center of the diamonds represents the OR of the meta-analysis, with 
the horizontal extremities indicating the 95% CI. Statistical significance is from 
the meta-analysis of two-sided logistic regression models, weighting the cohorts 
by the inverse of the s.e. for each variant. d, Transcription factor motif disruption 
results. The minor allele of rs147287548 is predicted to disrupt an NFATc-binding 
site. e, Luciferase reporter assay in mouse 3T3-L1-derived adipocytes showing 
allele-dependent activity of the enhancer harboring the rs147287548 variant. 
The data are represented as the fold change in relative luciferase signal over 
the average activity of the negative controls (empty pGL4.23) ± s.e.m. (n = 3 
independent experiments with four independent transfections). Statistical 
significance was determined using a two-tailed Student’s t-test. Alt., alternative; 
Ref., reference.
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they are still probably too rare to have sufficient power to identify an 
association if present (Figs. 1d and 3a).

Among the 381 variants within the ClinVar category of CIP (64.3% 
with MAF < 0.0001), we identified 5 VIPs with OR > 5 and 95% CI 
LB > 2 (Fig. 3b and Extended Data Fig. 8a–d). Including the HNF4A 
p.Arg114Trp described above, we replicated three of the five CIP VIPs 
in the full AoU and GEISINGER cohorts (Fig. 4a–c and Supplementary 
Table 9). They are in the known MODY genes HNF1A (12:120997588:C:T, 
p.Pro475Leu, enriched in Ashkenazi Jewish individuals, maxMA-
FAJ = 0.00086; discovery: OR = 6.9, 95% CI = 3.2–14.8, P = 8.8 × 10−7; 
discovery + replication: OR = 5.4, 95% CI = 2.9–10.2, P = 1.8 × 10−7) and 
GCK (7:44145170:A:T, p.Val455Glu, maxMAFEUR = 0.00002; discovery: 

OR = 8.7, 95% CI = 3.2–23.6, P = 2 × 10−5; discovery + replication: OR = 7.9, 
95% CI = 3.5–18.3, P = 9.4 × 10−7). The p.Val455Glu is also associated with 
glucose (β = 0.781 mmol l−1, P = 8.1 × 10−5) and glycated hemoglobin 
(Hb1Ac; β = 5.11 mmol l−1, P = 7.4 × 10−7) in the UKB cohort (Extended 
Data Fig. 7n,o). Although not reaching statistical significance after 
correcting for multiple comparisons (P < 3.1 × 10−5 from 0.05 of 
1,634 tested ClinVar variants), we also identified two VIPs in POLD1 
(19:50413456:G:A, p.Glu475Lys, maxMAFFIN = 0.00019, OR = 13.3, 95% 
CI = 2.2–81.7, P = 5 × 10−3; 19:50402602:A:G, c.841-10A>G, maxMA-
FEUR = 0.00008, OR = 7.1, 95% CI = 2.4–21.1, P = 4 × 10−4). Mutations in 
POLD1 have been observed in a multisystem disorder with lipodystro-
phy causing diabetes34. Of the 381 CIP variants, 109 (28.6%) showed ORs 
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with a 95% CI UB < 2, suggesting that these variants could be considered 
as benign despite being currently in the category CIP in ClinVar. Of 
these 109 variants, 88.1% had >80% power to detect T2D association 
with OR > 5 (Supplementary Table 8).

Within the 533 variants in the ClinVar category of uncertain signifi-
cance (75.6% with MAF < 0.0001), we identified 3 additional VIPs (Fig. 3b 
and Extended Data Fig. 8e–g) in WFS1 (4:6302287:G:A, p.Gly831Asp, 
maxMAFEUR = 0.00002, OR = 15.3, 95% CI = 2.7–85.8, P = 2 × 10−3), 
KCNJ11 (11:17388128:G:A, 3′-UTR, maxMAFAFA = 0.00002, OR = 17.7, 
95% CI = 2.7–113.5, P = 2 × 10−3), observed in only one carrier in gno-
mAD in the AFA subgroup, and POLD1 (19:50402228:G:A, Gly205Ser, 
maxMAFEUR = 0.00001, OR = 20.3, 95% CI = 4.0–102.4, P = 2 × 10−4). 
None of these VIPs reached statistical significance after multiple com-
parisons and we were unable to replicate them because they were 
absent or showed a lack of statistical power to detect an association 
(power < 67% for an OR = 5) in the replication cohorts (Supplementary 
Table 8). In addition, 79 (14.8%) of the 533 VUSs had association results 
supporting benign, based on the lack of association with T2D. Of these  
79 variants, 97.4% had >80% power to detect an association with OR > 5 
(Supplementary Table 8).

We identified one additional VIP (POLD1 19:50409504:C:T, c.2007-
15C>T, maxMAFEUR = 0.00002, OR = 9.9, 95% CI = 2.1–47.8, P = 4 × 10−3) in 
the 546 variants classified as likely benign according to ClinVar groups 
(Fig. 1d, Extended Data Fig. 9a and Supplementary Table 8). Based on 
the GWAS meta-analysis results, 216 out of the total 546 likely benign 
ClinVar variants (39.6%) supported a benign category and 96.8% had 
>80% power to detect an association with OR > 5 (Supplementary 
Table 8). As expected, within the ClinVar benign category, 73.9% of the 
variants are supported as benign and none supported pathogenicity 
according to our association data (Extended Data Fig. 9b). There were 
no variants with association results supporting pathogenicity in the 
likely pathogenic and pathogenic categories (Extended Data Fig. 9c,d), 
probably because such variants have much lower allele frequency and 
there is still not enough power to detect association in our dataset. 
However, our results supported evidence of being benign for two 
variants categorized as pathogenic in ClinVar, showing no association 
with T2D and having >80% power to detect an association with OR > 5 
(Supplementary Table 8).

To further validate the effects of the VIPs, we tested the associa-
tion of carriers of VIPs in aggregate with T2D in the AoU cohort using a 
burden test approach. We compared the association results using the 
whole set of ClinVar variants and stratified by the ClinVar categories 
(Figs. 1d and 3c). Except for the VUS POLD1 p.Gly205Ser, for which 
no carriers were present in the AoU cohort, carriers of the remaining 
eight VIPs exhibited a 3.4-fold increased risk for T2D (OR = 3.4, 95% 
CI = 1.82–6.40, P = 9.5 × 10−5), in contrast to variants identified as sup-
porting benign (OR = 1.0, 95% CI = 0.95–1.06, P = 0.911) and inconclusive 
variants (OR = 1.06, 95% CI = 1.01–1.11, P = 0.02), which, in aggregate, 
showed no significant effect on T2D risk (Fig. 3c).

When aggregating the variants according to the ClinVar criteria, 
only the VUS (OR = 1.1, 95% CI = 1.04–1.19, P = 0.002) and the likely 
pathogenic and pathogenic groups (OR = 2.15, 95% CI = 1.23–3.80, 
P = 0.007) showed an association with T2D. However, VIPs showed 
consistent direction when stratifying by ClinVar categories, with VIP 
in CIP ClinVar category showing significantly increased risk (OR = 3.59, 
95% CI = 1.78–7.23, P = 2.7 × 10−4) and likely benign VIP (OR = 2.01, 95% 
CI = 0.44–9.23, P = 0.369) and VUS-VIP (OR = 5.39, 95% CI = 0.43–68.10, 
P = 0.193) groups not reaching statistical significance (Fig. 3c).

Common variant PRSs modulate the effect of rare variants in 
the monogenic diabetes genes
To understand potential causes for the conflicting interpretation of 
pathogenicity of the identified and replicated VIPs in the three estab-
lished MODY genes (that is, HNF4A, HNF1A and GCK), we tested how a 
PRS for T2D influences diabetes risk pathogenicity and compared the 

effects with those of established confirmed MODY variants identified 
using WES data from the UKB35. For the HNF4A p.Arg114Trp variant, 
when compared with noncarriers in the middle tertile of the PRS, car-
riers in the highest tertile had a higher OR (=18.3, 95% CI = 7.2–46.9, 
P = 1.2 × 10−9), with an effect size that was comparable to the observed 
in carriers of confirmed pathogenic MODY variants (OR = 17.7, 95% 
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Fig. 4 | Effect of three identified VIPs on T2D risk. a–c, Forest plots showing 
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(c) in the discovery, replication and overall datasets. The ORs of each cohort 
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the three variants showed significance (P < 3.1 × 10−5 from 0.05 of 1,634 tested 
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CI = 6.5–48.1, P = 7.8 × 10−6). However, HNF4A p.Arg114Trp carriers 
within the lowest tertile of the PRS showed a much smaller OR (=2.62, 
95% CI = 0.97–7.09, P = 0.06) (Fig. 5a).

Similar to what we observed for the HNF4A variant, carriers of 
either p.Pro475Leu in HNF1A or p.Val455Glu in GCK who also were in the 
top tertile of the PRS had markedly increased risks of diabetes (OR > 10). 
However, carriers in the top tertile had ORs smaller than those observed 
with confirmed HNF1A or GCK MODY variants (Fig. 5b,c).

VIP carriers show phenotypic characteristics intermediate 
between T2D and MODY
We then tested whether carriers of VIPs in established MODY genes 
showed a different phenotypic pattern compared with T2D and MODY. 
For the three variants, the effect on HbA1c and random glucose was in 
between those of noncarriers and carriers of confirmed MODY variants, 
supporting that these may be variants with intermediate penetrance. 
Carriers of HNF4A p.Arg114Trp and HNF1A p.Pro475Leu with diabetes 
had significantly lower body mass index (BMI) than the noncarriers 
(Fig. 5d,e). Carriers of the HNF4A p.Arg114Trp variant had a significantly 
lower age at onset of diabetes compared with noncarriers (Extended 
Data Fig. 10a). These results support these variants being in a con-
tinuum spectrum of pathogenicity in monogenic diabetes.

Discussion
Genetic studies for T2D have been usually categorized as rare variant 
association studies (RVASs) or common variant association studies 
(CVASs)36, with RVASs typically performed via WES or WGS and CVASs 
typically done via GWAS meta-analyses because the genotyping array 
data and imputation panels used cover only relatively common fre-
quencies. In the present study, we performed the largest T2D GWAS 
meta-analysis, including variants with allele frequencies <0.001, by 
combining TOPMed imputation from three large and diverse cohorts 
and WGS data from the AoU cohort. We demonstrated that TOPMed 
imputation provides accurate genotypes for variants with MAF as low 
as 5 × 10−5 and is a reliable strategy to analyze low-frequency and rare 
genetic variation in cohorts for which WGS data are unavailable. Despite 
new WGS data at scale becoming available, there are still substantial 
extant data that can benefit from imputation with large reference panels 
such as the TOPMed panel, especially from non-European ancestries.

The present study has enabled several discoveries. First, we iden-
tified and replicated 12 new T2D-associated variants, of which 4 were 
low frequency (MAF < 0.05) and 1 was rare and population specific 
(rs147287548) near LEP, which codes for leptin, a hormone/adipokine 
primarily secreted by white adipose tissue and the deficiency of which 
causes insulin resistance37. The rs147287548 overlaps with an enhancer 
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Fig. 5 | Effect of the VIPs versus confirmed pathogenic MODY variants on 
diabetes risk and related clinical variables. a–c, Forest plots showing the effect 
of p.Arg114Trp, p.Pro475Leu and p.Val455Glu, stratified by PRS tertiles. The ORs 
are denoted by boxes and the 95% CIs by horizontal lines. The P values are from 
the meta-analysis of two-sided logistic regression models, weighting the cohorts 
by the inverse of the s.e. for each variant. The ORs are relative to the noncarriers 
in the middle tertile of the PRS. On the top of each Forest plot, the effects of being 
a carrier for a confirmed pathogenic variant for HNF4A (a), HNF1A (b) and GCK (c) 
MODY genes are also represented, using data identified via exome sequencing in 

UKB34. For each effect estimate, the diabetes case definition included individuals 
with T1D or T2D. d–f, Boxplots of HbA1c (%), random glucose (mg dl−1) and BMI 
(kg m−2) in cases with diabetes and noncases among noncarriers (NCs, left), 
carriers of variants with intermediate penetrance (middle) and carriers of 
confirmed pathogenic MODY variants (right) in HNF4A (d), HNF1A (e) and GCK 
(f). The covariate-adjusted P value is included for comparisons with significant 
differences (*P < 0.05, **P < 0.001, ***P < 0.0001) between groups using two-sided 
Wilcoxon’s rank-sum tests. Boxplots indicate the group median (central line), 
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active in adipocyte-derived mesenchymal stem cells and adipose tis-
sue that interacts with a region proximal to the LEP transcription start 
site by enhancer-capture HiC30 and is predicted to disrupt an NFATc 
motif. Accordingly, we demonstrate that the allele predicted to disrupt 
NFATc binding associates with reduced enhancer activity in adipocytes. 
NFATc transcription factors have been implicated in adipogenesis, are 
modulated in obesity and regulate glucose and insulin homeostasis31. 
Homozygous mutations in LEP are additionally known to cause extreme 
obesity in humans and mice38.

The present study also represented a proof of concept of how 
use of a large-scale biobank or population-based data can provide 
additional evidence for pathogenicity of variants within genes known 
to cause monogenic diabetes. Monogenic diabetes exemplifies preci-
sion medicine39, because identifying the gene causing diabetes guides 
the management of the disease. For example, individuals with MODY 
caused by HNF1A mutations can often be transitioned from insulin 
therapy to oral hypoglycemic agents such as sulfonylureas40 and those 
with MODY caused by GCK mutations develop stable mild hypergly-
cemia and do not need pharmacological therapy because they are 
often refractory to it41, so their risk of microvascular and macrovascu-
lar complications is considered low42. The current assessment of the 
pathogenicity of genetic variants relies on bioinformatic prediction, 
population allele frequency and expert panel curation. The presence 
of carriers among patients with diabetes or segregation analyses is 
also considered, but these data are usually unavailable. For this reason, 
many of the missense variants identified in these genes remain as VUSs 
or conflicting interpretations. By testing rare variant associations 
at scale using TOPMed imputation, we identified variants in known 
monogenic diabetes genes with intermediate pathogenicity, which 
we defined as having an OR > 5 and a 95% CI LB > 2. Additional evidence 
may be needed to confirm the pathogenicity and clinical utility of such 
variants, such as testing whether carriers of HNF1A or HNF4A variants of 
intermediate penetrance have heightened responses to sulfonylureas. 
Nevertheless, we propose that our approach could serve as a tool to 
prioritize variants for future functional validation or deep phenotypic 
characterization.

Some of the variants that we identified as having intermediate pen-
etrance have had evidence published of functional consequences. For 
example, GCK p.Val455Glu is in the same position as a GCK-activating 
mutation (p.Val455Met) causing familial hyperinsulinism43. It has been 
reported previously in individuals with impaired glucose tolerance or 
fasting hyperglycemia44 and two independent studies have demon-
strated that the variant is kinetically inactivating, consistent with loss 
of function45,46. Identifying carriers of GCK-inactivating mutations is 
important, not only because these carriers may not need treatment 
but also because of possible complications in pregnancy if the risk 
allele is not inherited by the fetus of the carrier mother, resulting in 
hyperglycemia and excessive growth in the fetus47.

We also showed that, in aggregate, variants of intermediate 
penetrance confer a 3.4-fold increased risk of T2D in an independent 
WGS-based cohort, demonstrating that our approach provides robust 
identification of rare variants with a large effect and that rare variants 
contribute to the overall burden of T2D.

Although we were able to identify only a handful of variants that 
support intermediate penetrance, we also found a much larger frac-
tion of variants that are sufficiently powered and which, based on their 
lack of association with diabetes, support being benign. These results 
can de-prioritize candidate variants and genes in patients suspected 
of having monogenic diabetes. An illustrative example is a variant in 
HNF1A, currently classified as VUS (12-120994274-A-C, p.Glu275Ala, 
MAF = 0.00002, OR = 0.65, 95% CI = 0.23–1.86, P = 0.42). This variant 
is rare and predicted to be deleterious by several bioinformatic tools 
and therefore remains as a VUS in ClinVar. However, knowing that car-
riers of this variant are not at increased risk for T2D can add additional 
evidence for this variant being benign.

Our study design also allowed us to assess the interplay between 
common and rare variants in monogenic diabetes genes. We observed 
that stratifying carriers of such variants by their PRS identifies carri-
ers that can have the same magnitude of increased risk of develop-
ing diabetes as the carriers of well-established MODY variants. For 
example, our results showed that a third of the carriers of the HNF4A 
p.Arg114Trp variant, particularly those in the highest tertile of the 
PRS, had the same risk as those carrying confirmed MODY variants. 
This is in line with previous studies that have shown how a polygenic 
background can influence the penetrance of pathogenic mutations 
related to obesity, cancer susceptibility, lipid disorders and coronary 
artery disease8,48–51. Future work should leverage these data to develop 
PRSs with the inclusion of rare variants. However, new methods that 
allow modeling linkage disequilibrium (LD) between rare variants and 
common variants are needed to take full advantage of both common 
and rare genetic variation.

Previous studies have proposed using endophenotype biomarker 
association data, such as HbA1c, to support pathogenicity52. However, 
association with common forms of diabetes (that is, T2D) has not been 
previously used to assess pathogenicity owing to the lack of power of 
WGS- or WES-based studies.

Our study has several limitations. First, we acknowledge that 
the standard genome-wide significant threshold (P < 5 × 10−8), devel-
oped initially as a genome-wide significant threshold for common 
variants, may not be sufficiently stringent because many more vari-
ants, including those that are rare and population specific, are being 
tested. However, we provide extensive replication analyses and 
only claim as new those that replicate. In addition, although we 
have used a broad definition of T2D as a surrogate phenotype to 
assess the potential pathogenicity of monogenic diabetes genes, we  
cannot discard the possibility that some of the variants have a phe-
notype that is closer to prediabetes or T1D rather than T2D. Although 
power is limited to testing the association of such rare variants with 
T1D, our definition of controls excluded those participants who 
met the criteria for diagnosing T1D or prediabetes. This could only 
bias the association results toward the null and not increase our 
false-positive rate.

The implementation of these data as an additional metric to assess 
variant pathogenicity will require additional investigation involving 
expertise from clinicians, genetic counselors and the ClinGen Mono-
genic Diabetes Expert Panel. Nevertheless, we make the full summary 
statistics available to the scientific community through the Type 2 
Diabetes Knowledge Portal as a resource that can be used for further 
investigations53.

In summary, our work underscores the value of combining WGS 
data with low-frequency and rare genotype imputation in cohorts 
for which WGS or WES data still do not exist, not only to discover new 
associations but also to guide the interpretation of variant pathogenic-
ity. Expanding this work to larger and more diverse populations will 
contribute to reducing health disparities in the application of precision 
medicine in diabetes. The framework provided in the present study will 
serve as an example for the study of genetic variation associated with 
common and monogenic forms of disease.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-024-01947-9.
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Methods
Description of discovery cohorts and case–control definitions
The discovery association analyses were conducted using genetic 
data from the UKB, the MGBB, the GERA and the AoU. Overall, the 
discovery sample included 51,256 cases of T2D and 370,487 controls 
(Supplementary Table 1).

The UKB is a multi-ancestry prospective cohort study with genetic 
and phenotypic data collected on approximately 500,000 individuals 
across the United Kingdom22. Participants agreed to provide detailed 
information about their lifestyle, environment and medical history and 
biological samples (for genotyping and biochemical assays), undergo 
measures and have their health followed (http://www.ukbiobank.
ac.uk). The UKB has obtained ethical approval covering the present 
study from the National Research Ethics Committee (REC ref. no. 11/NW/ 
0382) and the data were accessed through application no. 27892. For 
this analysis, we included a total of 27,323 cases of T2D and 259,916 
controls, and defined cases of T2D and controls using an algorithm 
designed specifically for the UKB54.

The MGBB (formerly Partners HealthCare Biobank)23 is a large 
repository of biospecimens and data linked to extensive electronic 
health records and survey data. Its objective is to support and enable 
translational research on genomic, environmental, biomarker and fam-
ily history associations with disease phenotypes. MGBB has enrolled 
more than 135,000 participants and has generated genomic data on 
>65,000 participants of multiple ancestries. MGBB consists of con-
sented patients seen at various US hospitals. Patients are recruited in the 
context of clinical care appointments at >40 sites. MGBB participants 
provide consent for the use of their samples and data in broad-based 
research. The approval for the analysis of MGBB data was obtained from 
the MGB Institutional Review Board (IRB; study no. 2016P001018). We 
included a total of 6,623 cases of T2D and 41,411 controls. T2D status was 
defined based on ‘curated phenotypes’ developed by the MGBB Portal 
team using structured and unstructured electronic medical record data 
and clinical, computational and statistical methods55.

The GERA cohort was created by an RC2 Grand Opportunity grant 
that was awarded to the Kaiser Permanente Research Program on 
Genes, Environment, and Health (RPGEH) and the Univerity of Califor-
nia, San Francisco (UCSF) Institute for Human Genetics (AG036607; 
Schaefer/Risch, PIs). The RC2 project enabled GWASs to be conducted 
on a cohort of >100,000 adults who were members of the Kaiser Per-
manente Medical Care Plan, Northern California Region and participat-
ing in its RPGEH. The GERA cohort data was obtained through dbGaP 
under accession no. phs000674.v1.p1. Further information about 
the specific phenotypes (International Classification of Diseases, 9th 
revision, Clinical Modification codes; https://www.cdc.gov/nchs/icd/) 
included in GERA is available on its website at dbGaP (https://www.
ncbi.nlm.nih.gov/projects/gap/cgi-bin/GetPdf.cgi?id=phd004308). 
We included a total of 7,498 cases of T2D and 53,212 controls of Euro-
pean ancestry.

The AoU is a large, US-funded biobank developed to leverage the 
diversity of the United States of America for facilitating and improv-
ing high-powered genetic and epidemiological studies25. We used the 
AoU short-read WGS data from 22 June 2022 for 98,590 participants 
(release v.6). Cases with T2D and controls were defined using a modified 
version of the Northwestern T2D algorithm56,57. In total, we identified 
9,812 cases with T2D and 15,948 controls with complete genetic data 
and covariate data, which we used in our discovery analysis.

The Supplementary Note provides a detailed description of the 
cases with T2D and controls used for each cohort.

Imputation and accuracy assessment
We accessed genotyping data from the UKB, MGBB and GERA cohorts. 
In each, we applied a quality control, phased and imputed to the 
TOPMed reference panel freeze 8, separately. A full description of the 
procedures by cohort is in the Supplementary Note.

To assess the accuracy of the TOPMed imputation, we compared 
the UKB data imputed with the TOPMed reference panel with that of 
a previous imputation of UKB, which was based on the HRC, 1000G 
and UK10K Project. Specifically, we compared the average INFO score 
provided by REGENIE and the total number of variants in the TOPMed 
imputation versus the HRC–1000G–UK10K imputation across the allele 
frequency spectrum, before and after filtering by an INFO score of 0.7 
(Extended Data Fig. 2). In addition, in a subset of 40,000 UKB samples 
with WES data, we evaluated the average percentage of carriers identi-
fied in the WES who are also identified with the TOPMed imputation 
across the allele frequency spectrum (Extended Data Fig. 3).

Association analysis
We performed whole-genome logistic regression analyses using REG-
ENIE v.2 for UKB, GERA and MGBB and v.3 for AoU. We used T2D as a 
binary outcome and included age, sex, BMI, ten principal components 
(PCs) and the imputation batch for each cohort. We used a block size of 
1,000 for step 1 and 400 for step 2. All variants with minor allele count 
<3 for UKB, GERA and MGBB and <5 for AoU among cases with T2D and 
controls were excluded from the analysis. To provide better-calibrated 
test statistics, REGENIE supports the option (--firth --approx --firth-se) 
to use the Firth correction for variants where the P value from the stand-
ard logistic regression test is below a threshold, as defined by pThresh. 
For UKB, GERA and MGBB, we set pThresh to 0.999, causing the Firth 
correction to be applied to all variants. For AoU, we used the default 
pThresh of 0.05. After generating summary statistics using REGENIE 
for each cohort, we used METAL v.2011-03-25 (ref. 58) to meta-analyze 
the results, weighting cohorts by the inverse of the s.e. for each variant. 
Our threshold for genome-wide significance was P < 5 × 10−8.

Post-association analysis
Identification of the independent set of T2D-associated markers. We 
used the conditional regression-GCTA (cojo-GCTA v.1.94.1)28 method 
on the GWAS meta-analysis summary data. This approach allowed us to 
assess each locus with a joint combination of several independent mark-
ers, corrected for LD between the markers. We constructed an external ref-
erence sample with individual genotypes from the UKB and MGBB cohorts 
to obtain an approximate LD structure. Our reference sample comprised 
45,918 samples, ensuring that the proportions of genetic ancestry diver-
sity matched those included in the meta-analysis. Before the analysis, we 
filtered the genotypes for imputation quality, retaining those with r2 ≥ 0.8, 
a minimum dosage certainty ≥0.8 and an MAF ≥ 0.0001%. After filtering, 
we kept a subset of 78,867,233 markers for performing the conditional 
analyses. We assumed that markers on different chromosomes or those 
located >500 kb distant from each other were uncorrelated.

Criteria for definition of new variants. To define a new variant, we 
followed a two-step procedure. We first looked for each independ-
ent signal in five different T2D GWAS meta-analyses: the MVP5, the 
DIAMANTE EUR59 and multi-ancestry3, the FinnGen r9 (ref. 29) and the 
T2DGGI2. Second, for those index variants that were absent or that did 
not have genome-wide significance (P < 5 × 10−8) in any of the above five 
T2D GWAS meta-analyses, we used our reference sample to extract all 
tag variants in LD r2 > 0.8 within 2 Mb of the index variant. We then per-
formed lookups of all the tag variants in the T2D GWAS meta-analyses 
listed above. We defined a new variant when (1) neither the index nor 
their tag variants were genome-wide significant (P < 5 × 10−8) in any of 
the T2D GWAS meta-analyses listed above or (2) the index variant was 
not genome-wide significant in any of the T2D GWAS meta-analyses 
listed above, and no tag variant was identified.

Biomarker analysis in the UKB. To provide additional supporting evi-
dence for the new variants identified in the T2D GWAS meta-analysis, we 
used REGENIE v.2 to test their association with 30 biomarkers in all indi-
viduals without a diagnosis of T2D in the UKB. Therefore, we included 
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the 175,039 individuals who were identified as T2D controls, along with 
the 259,916 individuals who were not identified as either a case with 
T2D or a control. The 30 biomarkers included albumin, alkaline phos-
phatase, alanine aminotransferase, apolipoprotein A, apolipoprotein 
B, aspartate aminotransferase, direct bilirubin, urea, calcium, choles-
terol, creatinine, C-reactive protein, cystatin C, γ-glutamyl transferase, 
glucose, HbA1c, HDL-cholesterol, insulin growth factor-1, LDL direct, 
lipoprotein A, estradiol, phosphate, rheumatoid factor, SHBG, total 
bilirubin, testosterone, total protein, triglycerides, urate and vitamin D.  
To ensure normality, we applied logarithmic normal transformation 
to each of the biomarkers and additional ranked inverse normal trans-
formation to direct bilirubin, lipoprotein A and estradiol traits. Models 
were adjusted for age, sex, BMI, ten PCs and the imputation batch.

Description of replication cohorts
We first tested the 34 new variants for replication in two previous T2D 
GWAS meta-analyses, including independent samples: the MVP5 and 
the FinnGen r9 (ref. 29) (Supplementary Table 4). As rare variants are 
not considered in previous meta-analyses, we tested the eight new rare 
or population-specific variants for replication in three independent 
datasets not included in our discovery meta-analysis: the Geisinger 
MyCode Community Health Initiative (GEISINGER), as well as the dis-
covery nonoverlapping individuals from the GERA and the AoU cohorts. 
Overall, the replication sample for the rare variants included 73,088 
cases with T2D and 79,827 controls (Supplementary Table 1).

The GEISINGER is a biorepository of blood, serum and DNA sam-
ples that are linked to electronic health records for the purpose of 
broad research use. Participants were recruited from Geisinger, an 
integrated healthcare system located in central and north-eastern 
Pennsylvania. The study sample consisted of 172,366 individuals with 
exome sequence and microarray genotype data. Available clinical data 
include clinical diagnoses, procedures, medications and laboratory 
results, which are updated daily35. Participation in MyCode is done 
through written consent under Geisinger IRB study no. 2016-0269. The 
results reported here were determined by the Geisinger IRB to meet the 
criteria for ‘nonhuman subject research’ as defined in 45CFR46.102(e). 
All research was performed in accordance with relevant guidelines and 
regulations. We included 52,658 cases with T2D and 41,639 controls 
(Supplementary Note).

The GERA replication cohort (GERA_REP) included individuals 
from African American, admixed American and east Asian ancestry24 
who were not previously included in the discovery GWAS. In total, 
GERA_REP included 2,737 cases with T2D and 9,270 controls.

The AoU replication cohort (AoU_REP) included nonoverlapping 
individuals and nonfamily members (pairwise kinship score > 0.1) 
to those included in the discovery meta-analysis because they were 
released in the posterior v.7 data freeze. In total, we included 17,693 
independent cases with T2D and 28,918 controls.

The genotypes for the three cohorts were quality controlled, 
imputed and analyzed to test the association with T2D. After generating 
the T2D summary statistics for each replication cohort, we used METAL 
to meta-analyze the results, weighting the cohorts by the inverse of 
the s.e. for each variant. We considered replication when the variant 
showed evidence of association with T2D at P < 0.0015 (0.05 of 34 total 
new variants) and consistent direction of effect with the T2D discovery 
GWAS meta-analysis.

Analysis of variants in monogenic diabetes genes
Although >40 genes are known to cause monogenic diabetes, distin-
guishing pathogenic variants from those that are benign in these genes 
remains a challenge. Databases such as ClinVar32 provide designations 
of variant pathogenicity as determined by submitting laboratories 
and researchers. However, misclassification of variant pathogenicity 
is not uncommon, for example, in entries that predated the current 
gold-standard curation approach, as well as for variants that are enriched 

in understudied populations. The ClinVar designations of variant patho-
genicity include benign, likely benign, pathogenic, likely pathogenic, 
uncertain significance and CIP. We evaluated the T2D association results 
in our meta-analysis for variants reported in ClinVar (accessed July 2023) 
that are in 22 known monogenic diabetes genes and have an MAF < 0.001, 
with a particular interest in VUSs and CIP. We focused on monogenic 
diabetes-related genes with a nonautoimmune autosomal dominant 
mechanism for causing diabetes (Supplementary Table 8).

We classified these variants based on the effect observed in the 
meta-analysis of UKB, GERA and MGBB, with AoU held out to serve as a 
validation cohort. We classified the variants based on the meta-analytic 
OR and 95% CI LB and UB (Fig. 3). Variants with an OR > 5 and 95% CI 
LB > 2 were classified as VIP, variants with a 95% CI UB < 2 were classi-
fied as supports benign and variants with a 95% CI UB > 2 and 95% CI LB  
< 2 were classified as inconclusive.

Testing a rare variant burden in an independent sample in AoU. We 
aggregated the variants from each of the three classes described above 
(VIP, supports benign and inconclusive) as either a whole or stratified 
by ClinVar groups into single burden variables, and then regressed the 
T2D phenotype in the burden variable to test for the cumulative effects 
of all possible combinations of ClinVar and GWAS-based classified 
variants, using the AoU cohort as a validation dataset. We ran burden 
tests using T2D as a binary outcome and included age, sex, BMI and ten 
PCs as covariates with REGENIE v.2. We used a block size of 1,000 for 
step 1 and 400 for step 2.

PRSs to stratify carriers of monogenic diabetes variants. We gen-
erated a T2D PRS using the PRS-CS software60 with the auto option 
to set the global shrinkage parameter. As input to the software, we 
meta-analyzed summary statistics from the European ancestry sub-
set GWAS meta-analysis of the T2D published by Vujkovic et al.5 and 
the T2D GWAS made publicly available by the FinnGen Consortium29 
(release 6), which did not overlap with any of the samples included in 
our meta-analysis. The summary statistics had a final sample size of 
277,802 cases with T2D and 1,434,249 controls. The meta-analysis was 
performed using METAL, with inverse-variance weighting. As an LD ref-
erence panel for PRS under continuous shrinkage (PRS-CS), we used the 
LD panel of European ancestry from the United Kingdom, available from 
the PRS-CS GitHub webpage (https://github.com/getian107/PRScs). 
After applying the PRS, we tested the PRS-stratified effect of three rare 
coding variants in well-established MODY genes—20:44413714:C:T 
(HNF4A), 12:120997588:C:T (HNF1A) and 7:44145170:A:T (GCK), (Fig. 4)—
which are considered CIP from the ClinVar designation, but were clas-
sified as VIP from the analysis of variants in monogenic diabetes genes 
described above. Individuals were stratified based on PRS tertiles, with 
individuals in the top tertile considered to have a high PRS and individu-
als in the bottom tertile to have a low PRS. For each effect estimate, the 
diabetes case definition included individuals with T1D or T2D and con-
trols were defined as described above. Individual noncases who do not 
carry any of the three variants and have a PRS in the middle tertile were 
treated as the reference group. This analysis was done separately in the 
UKB, MGBB and GERA cohorts and meta-analyzed with inverse-variance 
weighting. We also compared the PRS-stratified effects of the three 
variants with the effect of being a carrier for any confirmed pathogenic 
variant for HNF4A, HNF1A and GCK MODY35 using data from UKB exome 
sequencing. We also compared the levels of HbA1c, random glucose, 
BMI and age at diabetes onset in cases with diabetes and noncases (those 
with no diagnosis of any type of diabetes) who carry either the VIPs or 
confirmed MODY variants in HNF4A, HNF1A and GCK versus noncarriers.

Functional analysis of noncoding variants
In silico interpretation of new noncoding variants. Lead variants 
from the GWASs were investigated in combination with all other vari-
ants in high LD (r2 > 0.8 in all populations). This expanded set of variants 
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was intersected with ENCODE’s collection of candidate cis regulatory 
elements (cCREs) (GRCh38, SCREEN Registry v.3), which represented 
1,063,878 cCREs across 1,518 cell types. To ascertain tissue and/or cell 
type-specific cCREs hosting T2D variants, we used SCREEN (https:// 
screen.wenglab.org) and the Roadmap Epigenomics 127-reference 
chromatin states (12-mark, 25-state imputation-based, lift-over to 
GRCh38), which were visualized using the WashU Epigenome Browser61. 
We also interrogated human pancreatic islet epigenomic datasets 
from Miguel-Escalada et al.62, which were realigned to hg38 assembly 
for this analysis, and epigenomic datasets from human mesenchymal 
stem cells undergoing adipocyte differentiation from Madsen et al.30 
and Rauch et al.63, which had coordinates lifted from hg19 to hg38 for 
the main figure (Fig. 2b) and are shown for hg19 in Extended Data Fig. 6.  
A list of the representative epigenomic datasets from diabetes-relevant 
tissues used to generate Fig. 2b and Extended Data Fig. 6 using the UCSC 
Genome Browser64 is provided in Supplementary Table 6.

The R package motifbreakR (v.2.13.7)65 was used to carry out motif 
disruption analysis of variants residing in CREs of diabetes-relevant tis-
sues. The variant data were downloaded from the dbSNP155 database 
(v.GRCh38_0.99.23) in the human genome (v.hg38_1.4.5) using the 
snps.from.rsid() command. Transcription factor-binding motif data 
(ENCODE, HOMER, Hocomoco and FactorBook) were downloaded 
from the MotifDB database (v.1.42.0)66. The default, weighted-sum 
method was used for disruption analysis where the difference of the 
probabilities for the two bases of the variant was calculated. The results 
were queried for the disruptive effect of the variant with P value maxi-
mum 0.001 and plotted in R (v.4.3.1). Disrupted motifs with the flag for 
strong effect and corresponding to transcription factors expressed in 
the tissues of interest (gene expression queried using the TIGER Data 
Portal, https://tiger.bsc.es) were retained.

Cell culture and in vitro differentiation of adipocytes. The 3T3-L1 
mouse fibroblasts were obtained from the European Collection of 
Authenticated Cell Cultures. Cells were cultured in high-glucose Dul-
becco’s modified Eagle’s medium (Sigma-Aldrich, cat. no. D6326) sup-
plemented with 10% fetal bovine serum (Thermo Fisher Scientific, cat. 
no. 10500-064), 2 mM glutamine, 100 U ml−1 penicillin and 100 µg ml−1 
streptomycin (Sigma-Aldrich, cat. nos. G7513 and P4333). The cells 
were differentiated to adipocytes by first growing to confluence for 
48 h before commencing the differentiation protocol. On differentia-
tion day 0, cells were treated with basal medium supplemented with 
0.5 mM 3-isobutyl-1-methylxanthine (Sigma-Aldrich, cat. no. I5879), 
1 µM dexamethasone (Sigma-Aldrich, cat. no. D4902) and 1 µg ml−1 
of insulin (Sigma-Aldrich, cat. no. I9278). After 48 h, medium was 
replaced by medium supplemented with 1 µg ml−1 of insulin only for 
the next 4 d, refreshing the medium every 48 h. Mature adipocytes 
were assessed for accumulation of lipid droplets by visual inspec-
tion using a brightfield microscope on day 8 and experiments were 
performed on day 10.

Luciferase reporter assays. The LEP enhancer region containing 
the variant 7:128323039-G-A was amplified from human genomic 
DNA. The PCR amplicon was then cloned into the pGL4.23(luc2/
minP) vector (Promega, cat. no. E8411) at KpnI and HindIII, upstream 
of a minimal promoter and the Firefly luciferase coding sequence, 
using Gibson Assembly Master Mix67 (New England Biolabs, cat. no. 
E2611L). The cloned enhancer sequence contained the nonrisk allele 
(7:128323039-G); therefore, the enhancer sequence containing the risk 
allele (7:128323039-A) was produced via site-directed mutagenesis, 
which was performed using a Q5 Site-Directed Mutagenesis Kit (New 
England Biolabs, cat. no. E0554). Correct cloning was confirmed by 
Sanger sequencing (Genewiz). Plasmids were amplified in DH5α cells 
and purified using PureYield Plasmid Midiprep System (Promega, cat. 
no. A2496). All primers are listed in Supplementary Table 10. To test 
constructs, 40,000 3T3-L1-derived adipocytes were reverse transfected 

in 24-well plates with 1 µg of tested construct and 0.1 µg of the internal 
control, Renilla-expressing pGL7.74 vector (Promega, cat. no. E6921), 
using 1 µl of Lipofectamine 2000 (Thermo Fisher Scientific, cat. no. 
11668019) per 1 µg of construct. Luciferase activity was measured 
24 h post-transfection with Dual-Luciferase Reporter Assay System 
(Promega, cat. no. E1980) on a GloMax-Multi Microplate Multimode 
Reader (Promega, cat. no. GM3510). The vectors pGL4.23 and pGL4.13 
(Promega, cat. nos. E8411 and E6681) were used as internal negative 
and positive controls, respectively. Firefly luciferase measurements 
were normalized to Renilla luciferase. Three experiments with four 
independent transfections were performed per construct. A two-sided 
Student’s t-test was used to calculate significance.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Full summary statistics of the T2D case–control meta-analysis are 
available through the Common Metabolic Diseases Knowledge Portal 
(https://t2d.hugeamp.org/downloads.html) and through the GWAS 
catalog (https://www.ebi.ac.uk/gwas/studies/GCST90444202, acces-
sion no. GCST90444202).
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Extended Data Fig. 1 | QQ plots from the discovery T2D GWAS meta-analysis, 
including UKB, GERA, MGBB, and AoU v5 cohorts. a, QQ plot including 
variants with minor allele frequency ≥ 0.05. b, QQ plot including variants with 
minor allele frequency between 0.01 and 0.05. c, QQ plot including variants with 

minor allele frequency between 0.01 and 0.005. d, QQ plot including variants 
with minor allele frequency between 0.005 and 0.001. e, QQ plot including 
variants with minor allele frequency between 0.001 and 0.0005. f, QQ plot 
including variants with minor allele frequency between 0.0005 and 0.00005.
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Extended Data Fig. 2 | Comparison of UKB data imputed with TOPMed versus 
HRC-1000G-UK10K (original imputation release). a,b, The line graphs show 
the average INFO score, and the bar plots show the total number of variants in the 

TOPMed imputation versus the HRC-1000G-UK10K imputation across the minor 
allele frequency (MAF) spectrum before (a) and after (b) filtering for variants 
with an INFO score greater than 0.7. MAC, minor allele count.
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Extended Data Fig. 3 | Benchmark of TOPMed imputation accuracy across 
the allele frequency spectrum. The average percentage of carriers of variants 
identified in Monogenic Diabetes whole-exome sequencing in Goodrich et al.8 
identified with imputation in a subset of 40 K UKB samples. The y-axis represents 

the average proportion of carriers identified among variants with imputation 
INFO > 0.8 in the imputed data from TOPMed vs HRC-1000G-UK10K (original 
UKB imputation release). The x-axis represents the different allele frequency 
bins. MAF, minor allele frequency; MAC, minor allele count.
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Extended Data Fig. 4 | Comparison of UKB/GERA/MGBB/AoU results for 
lead variants from largest T2D GWAS meta-analysis. Comparison of effect 
estimates and -log10(P) values from Vujkovic et al.1 (x-axis, n T2D cases = 228,499, 
n controls = 1,178,783) and UKB/GERA/MGBB/AoU meta-analysis (y-axis,  
n T2D cases = 51,256, n controls = 370,487) for lead variants from Vujkovic et al.1. 
a,b, Comparison of the beta and standard error values for variants with minor 
allele frequency (MAF) > 0.05 (a) and MAF < 0.05 (b), respectively. Each point 

represents the beta value for each variant. The standard errors from the UKB/
GERA/MGBB/AoU results are represented by the blue vertical bars, while the 
standard errors from Vujkovic et al.1 are represented by the black horizontal  
bars. c,d, Comparison of the -log10(P) values for variants with MAF > 0.05 (c)  
and MAF < 0.05 (d), respectively. Each point represents the -log10(P) values for 
each variant.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Locuszoom plots of novel-identified variants at 
genome-wide significance (p < 5 ×10−8) and corresponding forest plots 
from the discovery T2D GWAS meta-analysis. a-h, Rare (MAF < 0.001) variants 
identified in autosomes: 2:27425274:C:T (a), 2:213085963:G:A (b), 4:23750157:G:A 
(c), 6:99432794:G:A (d), 7:128323039:G:A (e), 8:110165438:T:C (f), 14:73781721:C:T 
(g), 20:44385421:G:A (h). i-k, Variants identified in chrX, sex-combined analysis: 
X:9605153:C:T (i), X:19361522:G:C (j), X:45923705:A:C (k). l, Variant identified 

in chrX, female-only analysis. The meta-analysis included 51,256 T2D cases and 
370,487 controls. The forest plots show the carrier counts and odds ratios for 
each cohort in which the variant was present. The odds ratio (OR) from each 
cohort from the discovery dataset is denoted by boxes proportional to the size of 
the cohort, and the 95% confidence intervals (CI) are denoted by the horizontal 
lines. Sample sizes for each cohort are detailed in Supplementary Table 1. MAF, 
minor allele frequency.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Epigenomic landscape of the LEP locus. a, Colored 
tracks show Roadmap Epigenomics 12-mark, 25-state imputation-based 
chromatin state models (GRCh38 lift-over version) for 127 human tissues and cell 
types. The zoomed inset at the bottom highlights the only tissues (out of 127) in 
which the region where rs147287548 resides is annotated as an enhancer.  
b, Chromatin landscape of the LEP locus throughout in vitro adipogenesis29.  

The left panel shows all enhancer-capture HiC29 chromatin interactions 
stemming from the fragment containing the rs147287548 variant, which resides 
in an active enhancer in mesenchymal stem cells and throughout adipogenesis 
(see also Fig. 2b, and panel a of this figure). The right panel shows a zoomed-in 
region, revealing more clearly chromatin interactions between the rs147287548-
enhancer and the promoter of the LEP gene.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Plots of relevant metabolic traits in individuals free 
of diabetes who are carriers and non-carriers of the LEP rare variant or the 
variants with intermediate penetrance (VIPs) in Monogenic Diabetes genes. 
a-b, Effect of LEP, rs147287548, chr7:128323039 on the levels of apolipoprotein 
A (a) and HDL cholesterol (b). c-m, Effect of HNF4A, chr20:44413714, 
p.Arg114Trp on the levels of apolipoprotein a (c), apolipoprotein b (d), aspartate 
aminotransferase (e), glucose (f), HDL cholesterol (g), lipoprotein A (h), 
triglycerides (i), total cholesterol (j), LDL cholesterol (k), sex hormone binding 

globulin (l) and urea (m). n-o, Effect of GCK, chr7:44145170, p.Val455Glu on the 
levels of glucose (n) and hba1c (o). Data from heterozygous carriers and from 
homozygous non-carriers of the variants. Individuals from UKB were considered 
for this analysis. Each violin plot represents the distribution of the metabolic 
trait values by genotype, with the width of the violin indicating the density of the 
data. The inner box plots indicate the group median (central line), first and third 
quartiles (bounds of box), and 1.5x interquartile range (whiskers).
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Extended Data Fig. 8 | Forest plots showing the carrier counts and odds ratios 
of the variants with intermediate penetrance (VIPs) (odds ratio > 5, and 
95% confidence interval lower-bound 95% > 2) identified in the analysis of 
variants from ClinVar in Monogenic Diabetes genes. This analysis included 
the UKB (n = 27,323 cases and 259,916 controls), MGBB (n = 6,623 cases and 
41,411 controls), and GERA (n = 7,498 cases and 53,212 controls) cohorts. The 
odds ratio (OR) from each cohort from the discovery dataset is denoted by boxes 

proportional to the size of the cohort, and the 95% confidence intervals (CI) are 
denoted by the horizontal lines. a-d, Variants with conflicting interpretations 
of pathogenicity in ClinVar: 7:44145170:A:T (a), 12:120997588:C:T (b), 
19:50402602:A:G (c), 19:50413456:G:A (d). e-g, Variants of uncertain significance 
in ClinVar: 4:6302287:G:A (e), 11:17388128:G:A (f), 19:50402228:G:A (g). h, Variant 
classified as likely benign in ClinVar: 19:50409504:C:T.
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Extended Data Fig. 9 | Classification of variants in 22 Monogenic Diabetes 
genes. a, Variants classified as “likely benign” in Clinvar. b, Variants classified as 
“benign” in ClinVar. c, Variants classified as “likely pathogenic” in ClinVar.  
d, Variants classified as “pathogenic” in ClinVar. Variants classified as “conflicting 
interpretations of pathogenicity” or “uncertain significance” in ClinVar are 
shown in Fig. 3b. The x-axis represents the MAF. Along the y-axis, the odds 
ratio (OR) for each variant is denoted by the points, and the 95% confidence 

interval (CI) is denoted by the vertical lines. Only variants with MAF < 0.001 were 
considered for this analysis. Variants with a meta-analytic OR > 5 and an OR 95% 
LB > 2 are classified as “intermediate penetrance”. Variants with an OR 95% UB < 2 
are classified as “supports benign”. Variants with an OR 95% UB > 2 and LB < 2 
are classified as “inconclusive”. This analysis included the UKB (n = 27,323 cases 
and 259,916 controls), MGBB (n = 6,623 cases and 41,411 controls), and GERA 
(n = 7,498 cases and 53,212 controls) cohorts.
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Extended Data Fig. 10 | Boxplots of the age of diabetes diagnosis among 
non-carriers, carriers of variants with intermediate penetrance (VIPs), and 
carriers of confirmed pathogenic MODY variants. a, Data for VIP in HNF4A. 
b, Data for VIP in HNF1A. c, Data for VIP in GCK. The age of diabetes diagnosis is 

expressed in years. Box plots indicate the group median (central line), first and 
third quartiles (bounds of box), and 1.5x interquartile range (whiskers). The 
covariate-adjusted P is included for comparisons with significant differences 
(P < 0.05) between groups.
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