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Whole-genome sequencing (WGS), whole-exome sequencing (WES) and 
array genotyping with imputation (IMP) are common strategies for assessing 
genetic variation and its association with medically relevant phenotypes. To 
date, there has been no systematic empirical assessment of the yield of these 
approaches when applied to hundreds of thousands of samples to enable the 
discovery of complex trait genetic signals. Using data for 100 complex traits 
from 149,195 individuals in the UK Biobank, we systematically compare the 
relative yield of these strategies in genetic association studies. We find that 
WGS and WES combined with arrays and imputation (WES + IMP) have the 
largest association yield. Although WGS results in an approximately fivefold 
increase in the total number of assayed variants over WES + IMP, the number 
of detected signals differed by only 1% for both single-variant and gene-based 
association analyses. Given that WES + IMP typically results in savings of lab 
and computational time and resources expended per sample, we evaluate the 
potential benefits of applying WES + IMP to larger samples. When we extend 
our WES + IMP analyses to 468,169 UK Biobank individuals, we observe an 
approximately fourfold increase in association signals with the threefold 
increase in sample size. We conclude that prioritizing WES + IMP and large 
sample sizes rather than contemporary short-read WGS alternatives will 
maximize the number of discoveries in genetic association studies.

Large-scale genetic studies provide insight into the biological underpin-
nings of a wide range of human traits, guiding the development of new 
therapeutic interventions and disease prevention strategies through 
improved understanding of human health and disease. Examples of 
new therapies enabled by genetic studies include blocking PCSK9 for 
the prevention of recurrent heart disease1–3, blocking ANGPTL3 for the 
treatment of familial hypercholesterolemia4 and CRISPR editing of 
BCL11A for the treatment of sickle cell disease5,6. Genetic association 

studies can now include extensive health data across millions of par-
ticipants and have a choice of diverse approaches for capturing genetic 
variation, ranging from array genotyping with imputation (IMP) to 
WES to WGS. Each of these approaches differs in the number and type 
of variants captured, the fidelity of information provided and the cost 
and complexity of execution. However, the impact of choosing each 
approach on the detection of actionable genetic association signals 
remains unclear.
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Results
UKB dataset
Our primary analyses included 149,195 UKB participants with data from 
IMP27, WES28,29 and WGS21 as described in Supplementary Figs. 1 and 2 
and Supplementary Table 1. Most of the analytical sample was obtained 
from individuals of European ancestry (EUR; 95%), with the remaining 
individuals having African (AFR; 2%), South Asian (SAS; 2%) and other 
ancestries (<1%). The UKB used a custom-designed single-nucleotide 
polymorphism (SNP) array with 805,426 variants designed to capture 
common variations and selected high-value protein-altering variants. 
We extended these data to 111,333,957 variants through imputation 
using TOPMed Freeze 8 genomes as a reference panel, which is an 
ancestrally diverse WGS panel comprising genomes of EUR, AFR, His-
panic and Latino (HLA), Asian and other or multiple ancestries (see 
Supplementary Fig. 12 for an evaluation of imputation performance 
by ancestry)22,30,31. WES targeted the coding region of 18,893 genes 
(~1% of the genome) and sequenced 95% of these bases to a depth of 
>25× in each individual28,29. WES resulted in 17,131,8674 variants, of 
which 10,463,945 were in coding regions. Finally, WGS was carried 
out to a depth of >20× using short-read sequencing, ensuring the cap-
ture of >95% of the genome with >15× depth. Overall, WGS resulted in 
599,385,545 variants21. We applied uniform processing and filtering 
to the variant sets from each approach (see Methods for details; key 
filtering steps included removing variants known to have failed in prior 
large-scale WGS efforts). We evaluated four different strategies: IMP, 
WES, WGS and WES + IMP; full results for each strategy are included 
in tables, figures and supplementary information; however, for ease 
of presentation, we focus on the comparison of WES + IMP and WGS, 
which were the two approaches with the highest yield of genetic asso-
ciation signals.

Overall, the WGS strategy identified 599,385,545 single-nucleotide 
variants and indels, whereas the WES + IMP strategy identified 
125,694,205 single-nucleotide variants and indels (Fig. 1a,b). Variants 
jointly captured by each of the platforms were 99.9% concordant (Sup-
plementary Table 2). In contrast to the total number of variants, the 
count of variants observed in each individual was similar between the 
two approaches, with a mean of 3,595,704 variant alleles per individual 
in WGS and 3,585,289 in WES + IMP (Fig. 1c). The bulk of variants unique 
to WGS are very rare and present in only a few individuals each, explain-
ing how an approximately fivefold increase in overall variant count 
translates into only ~0.3% more variant alleles per individual (Fig. 1d). 
For example, 47% of WGS variants are singleton variants present in 
one individual, whereas only 7% of WES + IMP variants are singletons.

Variant identification in coding regions was very similar: the total 
number of coding variants was 6,732,108 variants for WGS versus 
6,761,880 variants for WES + IMP, and the mean count of coding variant 
alleles per individual was 20,000 for WGS versus 20,039 for WES + IMP 
(Fig. 1c). Within coding regions, 48% of variants were singletons for both 
WGS and WES + IMP. The differential contributions of WES and IMP to 
the coding and non-coding variant sets in WES + IMP are described in 
Fig. 1e. Coding variation is further described in the Supplementary 
Note, Supplementary Fig. 3 and Supplementary Tables 3 and 4.

Single-variant tests
We assessed differences in genetic association yield in two stages. First, 
we evaluated differences in yield for single-variant tests (which are 
responsible for the bulk of known genetic association signals). Second, 
we evaluated differences in yield in gene-based tests (discussed in the 
next section; Supplementary Fig. 4), which can provide more specific 
insight into the underlying biology. We performed association tests 
across 80 quantitative and 20 binary traits and first tested each vari-
ant present in at least five individuals for association using REGENIE32 
(see Methods for further details). We used a significance threshold of 
P = 5 × 10−12 for the main analysis; a threshold of P = 5 × 10−11 was used 
for classifying a signal as shared across platforms when at least one 

For the past 15 years, genotyping and imputation has been the 
workhorse of genetic association studies7,8. Studies that use array 
genotyping followed by continually improved imputation are rou-
tinely applied to complex traits ranging from macular degenera-
tion8 to inflammatory bowel disease9,10 to schizophrenia11 and have 
produced tens of thousands of genetic association signals12. IMP 
enables the study of relatively common variants (typically, those 
with frequencies of >0.1–1% that have been characterized in a ref-
erence panel of individuals)13. Recent examples include studies of  
COVID-19 susceptibility in hundreds of thousands of individuals, 
identifying genetic variants that lower ACE2 expression as protective 
factors and identifying variants in IFNAR2 and other immune-related 
genes as major determinants of susceptibility14,15. Nonetheless, 
translating genome-wide association study (GWAS) findings into 
actionable insights for biological understanding and therapeutic 
intervention remains a laborious and ongoing process16. Challenges 
in translation arise because most GWAS findings point to non-coding 
variants, variants whose function is uncertain and/or variants with 
small effect sizes.

In the past 10 years, exome sequencing has emerged as a practi-
cal and successful strategy for uncovering the genetic basis of human 
disease. WES captures protein-coding variants as rare as singletons 
that are beyond the reach of arrays and IMP. Exome sequencing 
was originally used to identify the causes of hundreds of rare Men-
delian disorders by studying collections of individual cases and 
their families17. Exome sequencing studies of complex traits in large 
population-based samples are increasingly common. They have 
yielded rare coding variant association signals that are easier to 
interpret and experimentally follow up than those found in GWAS. 
Translation for these signals is easier when variants have large effect 
sizes and connect the impaired function of a specific gene to a thera-
peutic outcome. Recent examples include studies of rare genetic 
variants that protect against obesity and liver disease18,19, pointing to 
GPR75 and CIDEB, respectively, as potential therapeutic targets. WES 
and IMP are often used together as an effective approach for captur-
ing both common variants genome-wide and rare protein-altering 
variants in coding regions.

Most recently, short-read WGS has been applied at scale to dis-
sect Mendelian diseases20 and common diseases21–23. WGS studies 
aim to capture coding and non-coding variation across the allele 
frequency spectrum and interrogate a much larger collection of 
genetic variants than either IMP or WES-based approaches. There 
is widespread excitement about the potential of WGS for enabling 
genetic discovery24,25. WGS has the most substantial resource and time 
costs, including data generation, processing, storage and analysis, but 
these are decreasing26. At present, it remains unknown whether the 
deployment of WGS at scale will enable a wave of genetic discoveries 
comparable to those that resulted from the deployment of arrays, 
IMP and WES.

Understanding the relative performance of these approaches is 
essential for the design of current and future genetic studies. Here, 
we systematically assess variants captured and the resulting discov-
ery yield for genetic association studies in large biobank samples 
using IMP, WES and WGS. For these comparisons, we use data from 
149,195 UK Biobank (UKB) participants who have been characterized 
with each of these assays and for whom extensive health information 
is available. We first perform a survey of the genetic variants that 
can be assessed with each approach and then compare the yield of 
single-variant and gene-based association signals across a set of 100 
traits in this large UKB sample. Finally, recognizing that the choice of 
analysis approach could entail changes in sample size, we evaluate 
association yield when varying the sample size using the same set 
of 100 traits. Our study provides an empirical assessment of these 
approaches to facilitate investigators in making informed decisions 
about large-scale genetic studies.
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platform reached P = 5 × 10−12. The association results for all tests are 
summarized in Fig. 2.

We identified 3,570 genome-wide significant signals across all 
trait–locus pair combinations (Supplementary Data 1). We found a 
similar number of signals from WES + IMP (3,506 or ~35.1 per trait) and 
from WGS (3,534 or ~35.3 per trait, a 1% increase). Nearly all signals were 
found using both approaches (3,470 of 3,570, or 97.2%), and most sig-
nals pointed to the exact same variant (96%). Among the 4% of signals 
that pointed to different variants, we found effect sizes to be similar 
(Pearson’s r = 0.86). Supplementary Fig. 5 compares frequencies, effect 
sizes and P values across signals; Supplementary Table 5 summarizes 
the annotated functional consequence of the peak variant for each 

signal. Across all platforms, the same highly significant associations 
with the largest −log10 P value typically corresponded to high allele 
frequency variants and small effect sizes. Shared signals were com-
parable beyond the peak variant (Supplementary Fig. 6 summarizes 
a typical shared signal across platforms). Such shared associations 
included signals in genes used to inform therapeutics; for instance, 
the peak signal in PCSK9 with low-density lipoprotein cholesterol and 
missense variant 1:55039974:G:T (alternate allele frequency, 0.018) 
was identified across WGS (P = 4.18 × 10−140), WES (P = 4.18 × 10−140) and 
IMP (P = 6.23 × 10−140).

In contrast to the shared signals, nearly all signals that were exclu-
sive to either WGS (64 signals) or WES + IMP (36 signals) were relatively 
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Fig. 1 | Genetic variation captured by genomes, exomes and array 
genotyping with imputation. a, The number of coding and non-coding 
variants for all variants in the WES, IMP, WES + IMP and WGS datasets.  
b, A comparison of variants observed by the WES + IMP and WGS datasets by 
functional consequence, with the relative gains in approach-exclusive variants. 
c, The number of variant alleles observed per individual (n = 149,195).  

The point provides the sample mean; error bars, ±standard error of the mean 
(s.e.m.) d, The number of non-coding and coding variants observed at the 
lowest alternative allele counts (AAC) for the WES + IMP and WGS data. e, The 
percentages of non-coding and coding variants observed only in WES, in both 
WES and IMP and only in IMP in the combined WES + IMP dataset.
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marginal in P value (60% within two orders of magnitude of the signifi-
cance threshold), pointed to rare variants with a frequency of <0.1% 
(67%) and typically had limited support from nearby variants. Supple-
mentary Figs. 7–9 show examples of signals specific to each platform. 
We sought to replicate our findings using WES + IMP data from the 
remaining UKB individuals (n = 318,974). At the genome-wide signifi-
cance level, we replicated 17 out of the 36 signals only in WES + IMP, 
13 out of the 64 signals only in WGS and 3,386 out of the 3,570 shared 
signals. We interpret the observation that platform-specific signals are 
often relatively weak, led by rare variants, lack support from nearby 
variants and failed to replicate as evidence of platform-specific artifacts 
for many of these signals.

We also performed the association analysis described above using 
a less conservative significance threshold of P = 5 × 10−10, which resulted 
in more genome-wide significant signals, as expected, but did not 

change the overall conclusions on association yield for the different 
approaches (Supplementary Table 7).

Gene-based tests
In contemporary genetic association studies, gene-based tests—which 
aggregate evidence across rare protein-altering variants in a gene—pro-
vide a powerful complement to single-variant tests and are especially 
important for identifying biological insights. These tests directly point 
to biological effector mechanisms and can often identify sets of vari-
ants with very large effects28,29. Therefore, we followed up our analysis 
of single variants with a series of gene-based tests. We examined cod-
ing variants in each gene grouped according to frequency (alternate 
allele frequencies of <1%, <0.1%, <0.01%, <0.001% and singletons) and 
functional consequence (missense, deleterious missense and predicted 
loss of function (pLoF)) and considered association tests for which 
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Fig. 2 | Single-variant and gene-based association signals from genomes, 
exomes and array genotyping with imputation. a, Single-variant association 
signals identified across each analysis sample, where platform-specific results 
are specified for the primary analytical sample (n = 149,195). Summarized results 
are also provided for the full UKB sample with WES + IMP data (n = 468,169) and a 

subset of the UKB sample (n = 47,545), downsampled to also have a 1:3 ratio with 
the primary analytical sample used for the majority of our analyses (n = 149,195). 
b, Gene-based association signals identified across each analysis sample, 
where platform-specific results are specified for the primary analytical sample 
(n = 149,195).
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all variants in a gene act in the same or different directions (Methods 
and Supplementary Table 6). We summarized all association tests for 
gene–trait pairs using GENE_P33, a single, unified gene-based P value 
in which a significance and replication threshold of P = 2.6 × 10−8 was 
used (Methods). We found the overall conclusions from the results 
to be similar when examining the individual gene-based tests using 
different allele frequency thresholds or applying a less conservative 
significance threshold (Supplementary Table 7).

We observed significant associations between 556 gene–trait 
pairs across the WES + IMP and WGS analysis (Supplementary Data 2).  
We again found a similar number of signals from WES + IMP (546) and 
from WGS (538, a 1% decrease). Consistent with the single-variant 
analysis, 95% of gene-based association signals (528 out of 556 unique 
signals) were identified by both WES + IMP and WGS. Again, asso-
ciations with the largest −log10(P value) were consistently observed 
in WGS and WES + IMP (Supplementary Figs. 10 and 11). The shared 
signals included several known true positives, including therapeuti-
cally relevant findings such as the PCSK9 association with low-density 
lipoprotein cholesterol (WGS, P = 1.27 × 10−80; WES, P = 3.91 × 10−82; IMP, 
P = 1.42 × 10−36; Supplementary Data 2).

When we examined the ten signals exclusive to WGS and the 18 sig-
nals exclusive to WES + IMP, we found that half were signals for which one 
approach exhibited sub-threshold association (2.6 × 10−7 < P < 1 × 10−5), 
and the addition of a small number of platform-specific variants 
increased signals to significance for the alternate approach. The  
remaining cases were driven by a single variant that was platform- 
exclusive (one variant in CALR for WGS, one variant in OMA1 in WES, six 
different variants in IMP). We again sought to replicate these signals in 
the remaining UKB samples and replicated 14 out of 18 signals exclusive 
to WES + IMP, 5 out of 10 signals exclusive to WGS and 514 out of the 556 
shared signals.

The importance of sample size
Advancing our understanding of human health and disease requires 
not only balancing the potential returns from each technology when 
applied to the same samples but also considering the consequences of 
examining different numbers of samples. To assess the impact of sample 
size on association study yield, we repeated all analyses on a subset of 
n = 47,545 individuals in UKB with WGS and WES + IMP and on the entire 
n = 468,169 UKB sample with WES + IMP data (Supplementary Figs. 1 
and 2 and Supplementary Table 1), which correspond to approximately 
threefold changes in sample size relative to our primary analysis with 
n = 149,195 individuals.

When we focused our analyses on the set of 47,545 individuals 
(a threefold decrease in sample size), the number of single-variant 
signals decreased more than fourfold, from 3,534 to 754 for WGS and 
from 3,506 to 738 for WES + IMP, and the number of gene-based signals 
decreased more than fourfold, from 538 to only 125 for WGS and from 
546 to 124 for WES + IMP. When we extended the WES + IMP analysis 
from 149,195 individuals to 468,169 individuals (a threefold increase 
in sample size), the number of single-variant signals increased more 
than fourfold, from 3,506 to 15,329. Similarly, the number of gene-based 
association signals also increased fourfold, from 546 to 2,441. Larger 
sample sizes permitted the identification of additional rare variant 
signals, often for variants present in the smaller dataset but with insuf-
ficient power. Comparing the analyses of 47,545 individuals to the 
analyses of 468,169 individuals, we find that the approximately tenfold 
increase in sample size resulted in an approximately 20-fold increase 
in association yield.

Choosing between WGS and WES + IMP had a limited impact on 
genetic association yield (changing the number of signals by about 
1–2%) in both the subset sample (n = 47,545) and the main analysis 
sample (n = 149,195). However, increasing the sample size had an out-
sized increase on overall yield; thus, changes in experimental design 
that enable larger samples through lab efficiencies, cost and analytical 

simplicity can have a much greater impact on discovery yield than 
choices between these approaches. For example, WES + IMP for all UKB 
samples has been publicly available since November 2021, whereas the 
complete WGS data only became available in November 2023.

Signals from each approach alone
Our analyses thus far have shown that the combination of WES + IMP is 
equivalent to WGS for practical purposes when focused on association 
yield. It can also be important to consider the relative yield from WES 
alone and IMP alone.

For single-variant association signals, we found IMP and WGS to be 
roughly equivalent. Nearly all the variants that could drive a significant 
association signal by themselves were common enough to be imputed. 
Even though 90% of peak variants were non-coding (Supplementary 
Table 5), WES alone was able to identify 62% of single-variant associa-
tion signals. WES was able to find these signals because common vari-
ant association signals are enriched near genes and because, through 
linkage disequilibrium, most single-variant association signals are sup-
ported by nearby variants. However, using WES to detect non-coding 
single-variant signals resulted in a substantial loss of fidelity, often 
identifying different peak variants than WGS and IMP (which agreed 
97% of the time).

Broadly speaking, WES and WGS found the same gene-based 
association results, whereas IMP alone missed 29% of the gene-based 
signals. In particular, signals driven by very rare variants could not be 
identified by IMP alone. For example, there were 81 gene–trait pairs 
for which WGS and/or WES found an association between a burden 
of singleton coding variants (whether pLoF or missense) and a trait at 
P < 2.6 × 10−8. None of those singleton signals could be found through 
IMP alone, although 38% could be identified by IMP through burden 
tests that grouped more common variants. In terms of mechanistic 
insight, these singleton signals are among the most compelling: they 
refer to loci for which a group of individuals, each with a unique defect 
in the same gene, associates with an altered phenotype. Signals driven 
by rare coding variation also corresponded to some of the largest 
effect association signals. While WGS and WES found quantitative 
trait signals associated with a change in trait values of >1 standard 
deviation for 71 and 68 gene–trait pairs, respectively, IMP found only 
15 such signals. For binary traits, there were eight gene-based signals 
associated with a twofold or more increase or decrease in disease risk 
for WES and WGS, but only two such signals for IMP. For example, 
in the GCK gene, rare pLoF and deleterious missense variants with a 
frequency of <0.0001 are strongly associated with type 2 diabetes in 
WES (odds ratio, 10.0; P < 10−20) and WGS (odds ratio, 10.1; P < 10−22) but 
not in IMP (all P > 0.01)34–36.

Discussion
Genetic association studies can elucidate human biology as well as sup-
port and guide the development of new, life-changing therapies that 
improve health37. Understanding the different strategies for maximiz-
ing the yield of these studies, particularly through disease-associated 
signals with clear mechanistic implications, is critical to enable the 
best use of limited resources. In this paper, we describe the results 
of a biobank-scale empirical assessment of genetic discovery yield 
from WGS, WES and IMP. Using data from 149,195 deeply characterized 
samples from the UKB, we conducted a head-to-head comparison of 
these approaches at scale. Although WGS increased the total number of 
assayed variants from 125,694,205 to 599,385,545, the total number of 
association signals from WGS differed by only 1% from WES + IMP (from 
3,506 to 3,534 for single variants and 546 to 538 for gene-based tests). 
Some have argued that IMP with a well-matched reference panel may be 
sufficient for genetic association discovery, particularly in population 
isolates38. In UKB, we found that sequencing-based approaches enable 
discoveries at frequencies below those accessible through IMP, increas-
ing gene-based findings by 30% so that a combination of WES + IMP was 
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most effective for UKB. We found no clear advantage of WGS over the 
strategy of combining WES and IMP (WES + IMP) for single-variant and 
gene-based association discovery when measured as association yield.

The limited additional association yield from WGS is probably 
because most variants specific to WGS are non-coding and very rare. 
Detecting signals with rare non-coding variants requires grouping 
them with variants of similar function, which presently cannot be done 
effectively and remains a major challenge. Although coding variants 
have been effectively grouped into aggregated sets to analyze the 
lowest-frequency variants, our ability to classify, group and interpret 
non-coding variants is not yet advanced enough to similarly analyze the 
rarest non-coding variants. In the future, if such aggregate approaches 
can successfully group rare non-coding variants, this could provide a 
potential benefit of WGS.

Each of the approaches we evaluated can be used to capture 
other types of variants in addition to SNPs and indels. For instance, 
we analyzed 637,039 structural variants (SVs) (median, 7,952 structural 
variants per individual) detected in the WGS data, but these structural 
variants resulted in only 16 additional association signals (3,586 with 
SVs and 3,570 without SVs; Supplementary Table 8) in addition to those 
captured from single-nucleotide variants and indels across the 100 
traits examined. As sequencing approaches evolve beyond the current 
short-read standards, it may be possible for variants other than SNPs 
and indels to make larger contributions to discovery.

The IMP component of the WES + IMP approach requires a suitable 
WGS reference panel for imputation. There are still many populations 
that are insufficiently represented in contemporary reference panels, 
and there remains a need for diverse WGS reference datasets to increase 
imputation accuracy and genetic discovery across all ancestries. In our 
IMP analysis with the TOPMed WGS panel, we found that imputation 
accuracy in UKB varied by ancestry, with the highest accuracy for EUR 
and AFR ancestry individuals; by contrast, East Asian (EAS) and SAS 
ancestries had the lowest imputation accuracy (Supplementary Fig. 12). 
Alternative panels with improved performance in these ancestries and 
across the UK have been proposed (Supplementary Fig. 13 and ref. 39). 
WGS studies that enable improved imputation reference panels13,21,22,40 
can thus enhance genetic association discovery for future studies.

The cost and complexity of biobank-scale WGS can be substan-
tial compared to WES + IMP, yet our analysis indicated that the two 
approaches have a comparable association yield (1% higher yield for 
single variants and 1% lower yield for gene-based tests with WGS). We 
note that approaches for WGS and WES + IMP continue to evolve. For 
instance, sequencing labs at the Regeneron Genetics Center use a 
combined exome and common variant capture assay, eliminating the 
need for a separate genotyping array. Others have used low-coverage 
WGS in combination with WES and still others continue to develop 
long-read alternatives to extend the potential of WGS. Optimal use of 
resources must also consider the value of generating genetic data on 
additional samples versus obtaining deeper phenotypic characteriza-
tion (perhaps proteomics and RNA sequencing) on the same samples 
as alternatives to broad WGS41–44. Selecting the best strategy for each 
study should also take into consideration study design and goals, con-
sidering, for instance, the cost of recruitment (which is often relatively 
modest for biobank studies but very high for studies of rare Mendelian 
disorders) relative to genome assay and analysis costs. Our results 
show that increasing sample size is an extremely effective strategy for 
improving discovery yield. For example, an approximately threefold 
increase in sample size resulted in an approximately fourfold increase 
in signals, and an approximately tenfold increase in sample size resulted 
in an approximately 20-fold increase in signals. Although we see greater 
discovery yield by increasing sample size, we importantly found that 
the limited difference in yield between WGS and WES + IMP was consist-
ent across sample sizes.

Based on our large-scale analyses of IMP, WES and WGS, we find 
that allocating resources towards characterizing the largest possible 

sample sizes with WES + IMP should maximize genetic association 
discovery yield. Until WGS costs decrease further, it is our view that 
the greatest opportunity for WGS to further genetic association dis-
covery is by increasing the diversity and availability of imputation 
resources, particularly for non-European ancestry populations. At the 
same time, we expect that as more targeted samples are sequenced 
with WGS, the performance of IMP-based approaches will continue to 
increase and thereby further decrease any potential relative advan-
tage of biobank-scale WGS. Resource-efficient genetic studies sup-
plemented with population-scale functional assays can empower 
discovery and facilitate the biological follow-up that is essential for 
translating genetic discoveries into benefits for human health.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-024-01930-4.
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Methods
Ethics statement
This study conducted analyses of phenotype and genetic data from 
the UKB cohort, under the approved UKB application license number 
26041. The UKB project has ethical approval reviewed and provided 
by the North West Research Ethics Committee. Informed consent was 
provided by all study participants.

UKB data preparation
The sample collection and preparation for the UKB has been previ-
ously described for each platform: arrays27,45, WES28,29 and WGS21. These 
approaches are summarized below.

Array genotyping. For array genotyping, DNA was extracted and 
provided in aliquots to Affymetric Research Services Laboratory for 
genotyping. Blood samples were genotyped using the UKB Axiom 
array with 805,426 variants. The samples were processed in 106 batches 
using a custom multi-batch genotype calling pipeline. Multiple quality 
checks including marker-based (evaluating new markers and effects 
based on factors such as batch, plate, sex and array) and sample-based 
(missing rates and heterozygosity) were performed.

Exome sequencing. For exome sequencing, DNA was prepared in frag-
ments of 200 bp on average with 10 bp unique bar codes. Samples were 
processed with IDT’s xGen probe library, PCR-amplified and quantified 
by quantitative PCR. Multiplexed samples were sequenced with 75 bp 
paired-end reads on the Illumina NovaSeq 6000 platform with S2 or 
S4 flow cells. The OQFE protocol was applied for reference alignment 
to GRCh38, variants were called using DeepVariant, aggregation was 
performed using GLnexus to generate a project-level pVCF file using 
an AQ1 cutoff of 20 and quality checks were performed. Using this 
approach, 96% of targeted bases were covered at a depth of >20×.

Genome sequencing. A pseudo-random subset of samples was 
selected for genome sequencing. DNA was prepared in fragments of 
450–500 bp on average with barcode tracking. Samples were processed 
with IDT for Illumina, purified and pooled. Libraries were prepared 
from paired-end reads on the Illumina NovaSeq 6000 platform with 
S4 flow cells. The deCODE pipeline was applied for reference align-
ment to GRCh38, processing and merging, variant calling using GATK 
HaplotypeCaller and Graphtyper (v.2.7.1), and quality checks were 
performed. In this approach, samples had an average depth of >23.5×.

Imputation of array datasets using the TOPMed Freeze 8 
reference panel
Arrays were imputed using the TOPMed Freeze 8 reference panel on 
the Michigan Imputation Server30. Array variants were selected previ-
ously29 based on UKB imputation use with HRC and ability to liftover 
to GRCh38 and uploaded in randomized batches for imputation on the 
server. The resulting VCF files were merged and concatenated, then 
subset to the individuals included in the present analysis. To retain 
high-quality imputed genotypes, variants with MAC > 5 and MACH 
r2 > 0.3 were retained.

Ancestry assignment
The continental ancestry of the sampled individuals was assigned 
as previously described29. In brief, principal components (PCs) were 
computed using the HapMap3 samples as reference, including all SNPs 
shared with the UKB array data, and then each of the UKB samples was 
projected onto the PCs. A kernel density estimator was trained and used 
to calculate the likelihood of a sample belonging to a continental ances-
try group: AFR, HLA, EAS, EUR and SAS. Samples with a likelihood of a 
single ancestry greater than 0.3 were assigned that ancestry; samples 
with a likelihood of two ancestries greater than 0.3 were assigned AFR 
over EUR, HLA over EUR, HLA over EAS, SAS over EUR and HLA over AFR. 

If ancestry likelihoods were all less than 0.3 or three ancestries were 
greater than 0.3, the sample was excluded from the analysis.

Analysis-ready dataset preparation
Sample selection. To permit comparison across platforms, we identi-
fied all individuals for whom array genotyping, exome sequencing and 
genome sequencing were available. This yielded a sample of n = 149,195 
and was our primary analytical set. To evaluate the influence of sam-
ple size, we also constructed a sample from all individuals with both 
array genotyping and exome sequencing. This yielded a sample of 
n = 468,169 individuals. We also generated a subset of individuals from 
our main analysis set by downsampling to retain the same multiplier 
(3.138) between sample sets. We randomly selected n = 47,545 indi-
viduals with genome sequencing data for the final sample. Lastly, we 
generated a replication sample by selecting all n = 318,974 individuals 
with WES + IMP that were not included in the primary analytical set of 
n = 149,195 individuals.

Genetic data. Data were prepared for analysis within each platform 
using consistent filtering. For the sequencing datasets, all variants 
with MAC ≥ 1 were considered. The WES data were called using an AQ1 
cutoff of 20. Across all genetic datasets, we excluded variants with 
Hardy–Weinberg equilibrium test P > 1 × 10−15 and >10% missingness. 
We further excluded all variants that failed quality control in TOPMed 
Freeze 8 (ref. 22) or failed quality control as given by the GraphTyper 
HQ definition in a previous publication21. Analysis-ready datasets were 
generated in Plink2 file sets (PGEN format).

Phenotype data. For the phenotype data, we used trait data from the 
UKB Data Showcase. A set of 100 traits (listed in Supplementary Data 3)  
was selected to permit generalizable conclusions on genetic asso-
ciation discovery yield for quantitative and binary traits. Traits were 
selected from 492 traits that were previously described and identified 
to have rare variant associations29. The trait set was reduced to retain 80 
quantitative and 20 binary traits by pruning for redundancy, sufficient 
case counts and prioritizing trait heritability. Each of the quantitative 
traits was rank-based inverse-normal transformed before analysis.

Gene and variant annotation
Variants were annotated using VEP46 based on the canonical tran-
script of protein-coding transcripts. Gene regions were defined using 
Ensembl release 100, and canonical transcripts were defined using 
MANE tags where available, followed by APPRIS or Ensembl tags 
as necessitated. Variants were defined as pLoF when annotated as 
frameshift, stop gained, splice donor or acceptor, start lost, or stop lost. 
Missense variants were further assigned a deleteriousness score rang-
ing from 0 to 5 based on five algorithms in dbNSPF47: SIFT48, PolyPhen2 
HDIV and HVAR49, LRT50 and MutationTaster51. Deleterious scores were 
grouped as ‘likely deleterious’ when predicted deleterious by five out 
of five algorithms, ‘possibly deleterious’ when predicted deleterious 
by at least one out of five algorithms and ‘likely benign’ when predicted 
deleterious by zero out of five algorithms.

Association analyses
All association analyses were performed using REGENIE (v.3.1.1)32. For 
each of the 100 traits, we ran Step 1 of REGENIE using the observed 
genotyping array data. Array variants were included with <10% miss-
ingness and Hardy–Weinberg equilibrium test P > 10−15. The resulting 
predictors were included as covariates in Step 2 of REGENIE, in addi-
tion to age, age squared, sex, age-by-sex and ten ancestry-informative 
PCs derived from the array data. Our association analyses considered 
autosomes and chromosome X.

Single-variant associations. For single-variant analysis, each variant 
with MAC ≥ 5 was tested using Step 2 of REGENIE separately for each 
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platform. We considered a significance threshold of P = 5 × 10−12 based 
on Bonferroni correction for testing 100 phenotypes genome-wide. 
To identify independent signals, we performed peak-finding jointly 
across each dataset. This approach merged all sets of results (WGS, 
WES, imputed array) and identified independent peaks by scanning 
across the genome and identifying significant associations, then select-
ing the most significant signal and pruning signals to only permit one 
significant signal per 1,000 kb. To account for shared signals obscured 
by the significance threshold, we considered signals to be shared when 
a variant has a P value within one order of magnitude of the significance 
threshold (P = 5 × 10−11) in the comparative platform; platform-specific 
unique signals did not have any signals within one order of magnitude 
of significance within 1,000 kb in the comparative platform. At each 
sample size, we excluded outlier significant associations from variants 
(112 associations) with high overall genotype mismatch (genotype dis-
cordance of >20%) identified in our main analysis sample from results 
when comparison was available across platforms. We evaluated outlier 
variants and excluded genotype mismatches again when considering a 
less conservative significance threshold as a result of the introduction 
of new signals. Replication was performed using the same approach 
for the replication sample (in WES, imputed array data), maintaining 
the significance threshold of P = 5 × 10−12.

Gene-based associations. We performed aggregation tests on rare 
variants using Step 2 of REGENIE separately for each platform to iden-
tify gene-based associations in coding regions. Annotations were used 
to generate gene sets by collapsing variants within gene regions based 
on allele frequency and functional consequence. We considered seven 
consequence-based masks (Supplementary Table 6): pLoF, pLoF + likely 
deleterious missense, pLoF + likely or possibly deleterious missense, 
pLoF + all missense, likely deleterious missense, likely or possibly 
deleterious missense, and all missense. We considered five allele fre-
quency bins for each of the consequence-based masks, based on the 
alternative allele frequency thresholds: alternative allele frequency 
(AAF) ≤ 1%, AAF ≤ 0.5%, AAF ≤ 0.1%, AAF ≤ 0.01% and singletons only. 
Collectively, up to 35 mask combinations were tested for each gene 
when sufficient data were available for testing. A unified test was per-
formed for each gene to yield a gene-level P value that aggregated each 
mask combination across all testing frameworks (burden, SKAT and 
ACAT tests). We considered a significance threshold of P = 2.6 × 10−8 
based on a Bonferroni correction for all gene-based tests within each 
platform; signals were defined as shared if the comparative platform 
had a P value within one order of magnitude of significance (2.6 × 10−7). 
Platform-specific unique gene-based signals did not have P < 2.6 × 10−7 
in the comparative platform. At each sample size, we excluded sig-
nificant associations from sets with outlier variants (17 associations) 
with high heterozygous genotype mismatch (genotype discordance 
of >40%, a relaxed threshold compared to single-variant testing, as 
multiple variants contribute to gene-based signals) identified in our 
main analysis sample from results when comparison was available 
across platforms. We evaluated outlier variants and excluded genotype 
mismatches again when considering a less conservative significance 
threshold as a result of the introduction of new signals. Replication of 
significant associations was performed using the same approach with 
the replication sample (in WES, IMP data), maintaining the significance 
threshold of P = 2.6 × 10−8.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Full details of trait associations with variants and genes are avail-
able in Supplementary Data 1 and 2, respectively. UKB phenotype 
data, genotyping array data, WES data and WGS data can be accessed 

through the UKB research analysis platform (https://ukbiobank.
dnanexus.com/landing). All data used in this research are publicly 
available to registered researchers through the UKB data-access pro-
tocol and who are listed as collaborators on UKB-approved access 
applications. The HapMap3 reference panel was downloaded from 
ftp://ftp.ncbi.nlm.nih.gov/hapmap. VCF files for TOPMED Freeze 8 
were obtained from dbGaP as described in https://med.nhlbi.nih.gov/
topmed-whole-genome-sequencing-methods-freeze-8. The human ref-
erence genome GRCh38 was obtained from http://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome.

Code availability
All genetic association analyses were performed using REGENIE 
(https://rgcgithub.github.io/regenie). Data were prepared using 
GraphTyper (https://github.com/DecodeGenetics/graphtyper) and 
Genome Analysis Toolkit (v.4.0.12; https://gatk.broadinstitute.org/hc/
en-us). Code to reproduce the analyses has been deposited at https://
doi.org/10.5281/zenodo.13357248 (ref. 52).
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