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Mapping extrachromosomal DNA  
amplifications during cancer progression
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Anuja Lipsa    6, Anna Golebiewska    6, Kevin C. Johnson    4, Sepil An    1, 
Junyong Ko7, Yoonjoo Nam1, Hwa Yeon Lee8, Seunghyun Kang    1, 
Heesuk Chung1, Simone P. Niclou6,9, Hyo-Eun Moon10, Sun Ha Paek    10,11, 
Vineet Bafna12,13, Jens Luebeck    12 & Roel G. W. Verhaak    4,14,16 

To understand the role of extrachromosomal DNA (ecDNA) amplifications 
in cancer progression, we detected and classified focal amplifications in 
8,060 newly diagnosed primary cancers, untreated metastases and heavily 
pretreated tumors. The ecDNAs were detected at significantly higher 
frequency in untreated metastatic and pretreated tumors compared to 
newly diagnosed cancers. Tumors from chemotherapy-pretreated patients 
showed significantly higher ecDNA frequency compared to untreated 
cancers. In particular, tubulin inhibition associated with ecDNA increases, 
suggesting a role for ecDNA in treatment response. In longitudinally 
matched tumor samples, ecDNAs were more likely to be retained compared 
to chromosomal amplifications. EcDNAs shared between time points, 
and ecDNAs in advanced cancers were more likely to harbor localized 
hypermutation events compared to private ecDNAs and ecDNAs in newly 
diagnosed tumors. Relatively high variant allele fractions of ecDNA localized 
hypermutations implicated early ecDNA mutagenesis. Our findings 
nominate ecDNAs to provide tumors with competitive advantages during 
cancer progression and metastasis.

Disease progression, including metastasis, is a leading cause of death 
from cancer as tumors acquire resistance and become increasingly 
less responsive to therapies1,2. Characterizing the genomic features 
of primary untreated and metastatic treated tumors is critical to 
improving our understanding of the processing driving cancer 
progression3,4. Cancer is driven by genomic alterations, including 
focal DNA amplifications, in which DNA segments containing onco-
genes or oncogenic regulatory elements are multiplied, resulting in 
oncogene transcription and activation5. Amplifications may occur 
through mechanisms tethered to chromosomes, forming homo-
geneously staining regions (HSRs), or by excising and circularizing 
DNA segments to form extrachromosomal DNA (ecDNA) elements6,7. 
HSRs and ecDNAs both create gene amplification, but their functional 
consequences may vary8,9. EcDNAs replicate with the linear genome 
but lack centromeres, resulting in uneven segregation and enabling 

rapid accumulation of ecDNAs in tumor cell nuclei9,10. If the ecDNA 
endows the tumor cell with a competitive advantage, cells contain-
ing ecDNAs undergo selection, creating a dominant tumor cell clone 
driven by an ecDNA-activated oncogene11. The ecDNAs are detected 
in most human cancer types at the time of diagnosis and are enriched 
in poor prognosis tumor types such as glioblastoma, sarcoma and 
esophageal carcinoma8. However, the role of ecDNAs in advanced 
cancers remains unclear.

The genes carried on or activated by ecDNAs include ERBB2, 
EGFR and CDK4, which are targets of commonly used inhibitors for 
the treatment of patients with cancer. In addition, oncogenes that 
are considered undruggable are detected on ecDNAs, such as MYC, 
TERT and MCL1. In fact, all genes known to be focally amplified in can-
cer are detected on ecDNAs in some tumors8,12,13. The discovery of 
ecDNA clusters that appear to function as hubs where transcriptional 
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Fig. 1 | Sample classification. a, Schematic dataset overview. b, Overview of 
sample classification for 1,490 patients in the primary cancer cohort and 2,440 
patients in the advanced cancer. Only tumor types with at least 20 patients in 
each cohort were included. c, Average number of ecDNA and ChrAmp amplicons 
detected per ecDNA patient and ChrAmp patient, respectively. Tumor lineages 
represented by at least 20 tumors in both cancer cohorts are included. Numbers 
in parentheses indicate the number of patients. Points represent mean values, 
and error bars show a 95% CI. P values were computed using a two-sided Mann–
Whitney U test. d, Percentage of ecDNA samples. e, The average number of  
distinct ecDNA amplicons per sample in primary and advanced cancer cohorts, 
showing tumor lineage represented by at least 20 tumors in both cohorts.  
P values were computed using a one-sided binomial test with the ecDNA-carrying 
tumor fraction in the primary cancer cohort as a null probability in d and using a 
one-sided Mann–Whitney U test in e where not significant unless noted otherwise. 

f, Number of kataegis events normalized by the number of intervals present on 
ecDNA or ChrAmp amplicons in the primary and advanced cohorts, respectively. 
Numbers indicate the number of amplicons. Bars represent mean values, and 
error bars show 95% CIs. P values were computed using a two-sided Mann–
Whitney U test. Asterisks indicate level of significance: *1.00 × 10−2 < P ≤ 5.00 × 10−2, 
**1.00 × 10−3 < P ≤ 1.00 × 10−2, ***1.00 × 10−4 < P ≤ 1.00 × 10−3 and ****P ≤ 1.00 × 10−4. 
NS, not significant; GBM, glioblastoma multiforme; SARC, sarcoma; KIRC, 
kidney renal clear cell carcinoma; PACA, pancreatic cancer; PAEN, pancreatic 
cancer endocrine neoplasms; BLCA, bladder urothelial carcinoma; LUAD, lung 
adenocarcinoma; LICA, liver cancer; COADREAD, colorectal cancer; PRAD, 
prostate adenocarcinoma; HNSC, head and neck squamous cell carcinoma; 
ESCA, esophageal carcinoma; BRCA, breast invasive carcinoma; STAD, stomach 
adenocarcinoma; OV, ovarian serous cystadenocarcinoma; UCEC, uterine corpus 
endometrial carcinoma.
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machinery is assembled and shared9,14, the absence of centromeres that 
results in uneven segregation11,15, the detection of ecDNA sequences in 
micronuclei16,17 and the enrichment of enhancer elements on ecDNA 
molecules18,19 contribute to the hypothesis that proteins regulating 
ecDNA-related processes may represent potent drug targets. Effective 
targeting of ecDNA elements requires understanding the role of ecDNA 
during cancer progression.

Here we have compared ecDNA frequencies and properties in 
cancers at the time of diagnosis and at later stages of disease to evaluate 
whether ecDNAs act as drivers of tumor evolution11. We determined the 
presence of ecDNAs through a computationally intensive and stand-
ardized analysis pipeline to uniformly process 8,060 whole-genome 
sequencing (WGS) datasets generated from biopsy specimens obtained 
from patients at cancer diagnosis and in patients with advanced pre-
treated and/or metastatic cancer, including 231 cases with multiple 
time-separated specimens.

ecDNAs are frequently detected in advanced tumors
We determined the incidence of ecDNA in progressed tumors through 
analysis of WGS datasets from 4,170 advanced cancer samples, derived 
from 4,170 patients, available through the Hartwig Medical Founda-
tion (HMF)20. The HMF cohort included tumors from 2,333 pretreated 
patients, 1,191 untreated patients and 646 patients with unknown 
treatment status. We compared HMF results with those derived from 
analyzing the whole genomes of 3,464 newly diagnosed tumors and 
226 pretreated tumors from The Cancer Genome Atlas–the Interna-
tional Cancer Genomics Consortium (TCGA–ICGC)8 and 100 matching 
primary-recurrent pairs from the Glioma Longitudinal Analysis (GLASS) 
consortium21. The datasets were analyzed using AmpliconSuite-pipeline 
(v.0.1344.2) to detect focally amplified genomic loci and reconstruct 
the structures of the resulting amplicons from the whole-genome 
sequences from all 8,060 samples. The AmpliconSuite-pipeline 
includes the AmpliconArchitect22 method to derive amplicon struc-
tures and the AmpliconClassifier to assign amplicons to an amplicon 
class (Supplementary Table 1)23. Amplicons carrying a circular amplicon 
structure signature were classified as ecDNA, and noncircular ampli-
cons were grouped into the chromosomal amplification (ChrAmp) 
class23. In total, across 8,060 tumors, we detected 2,602 ecDNA ampli-
cons and 8,594 ChrAmp amplicons. We further assigned sample-level 
classes, labeling tumors containing at least one ecDNA amplicon as 
ecDNA and samples with at least one noncircular amplicon as ChrAmp. 
Tumors lacking amplicons were labeled ‘no focal somatic copy-number 
amplification’ (NoAmp).

To be able to evaluate ecDNA frequencies between cohorts, we 
determined whether tumor purity and sequencing depth impacted 
the sensitivity of amplicon detection. We observed that a reduced 
number of ecDNAs were detected in samples with an average coverage 
of less than ten times (Extended Data Fig. 1a). Additionally, we found 
a significant difference in ecDNA frequency between ICGC and HMF 
samples in tumor purity bins 0.3–0.4 and 0.4–0.5 (Extended Data 
Fig. 1b). Comparisons in the TCGA cohort were limited by low sample 
numbers, following filtering of the <10× samples. Based on this observa-
tion, we additionally removed samples with tumor purity less than 0.4 
from comparisons between cohorts. As a result, 2,196 TCGA–ICGC and 
3,045 HMF tumors passed all filtering criteria. These samples were then 
used to construct a tissue-matched primary cancer cohort (n = 1,490) 
consisting of newly diagnosed and untreated TCGA–ICGC tumors 
and an advanced cancer cohort (n = 2,440) comprising metastatic 
and/or pretreated tumors from TCGA–ICGC and HMF, by including 
only tumor types represented by at least 20 samples in both primary 
and advanced cohorts (Fig. 1a and Extended Data Fig. 1c). After apply-
ing the same filters on 508 paired primary and recurrent/metastatic 
specimens, a longitudinal cohort consisting of 306 multitime point 
samples from 153 patients was created across TCGA, HMF and GLASS 
cohorts (Extended Data Fig. 1d).

At least one ecDNA was detected in 346 (23.2%) tumors from the 
primary cancer cohort and 777 tumors (31.8%) of the advanced cancer 
cohort (Fig. 1b and Extended Data Fig. 2a). A significantly larger fraction 
of the advanced cancer cohort harbored ecDNA and ChrAmp ampli-
fications, and the average number of ecDNAs and ChrAmp amplicons 
per tumor in both amplicon classes was comparable between cohorts 
(Fig. 1c). We performed a resampling analysis in which tumor-type 
distribution was equal between cohorts, which confirmed that the 
increase in ecDNA and ChrAmp frequencies in advanced cohort tumors 
was independent of tumor lineage (Extended Data Fig. 2b). We con-
firmed high frequencies of samples containing ecDNA amplicons in 
glioblastomas (76%), esophageal carcinoma (52%) and bladder car-
cinoma (50%) cancers from the primary cancer cohort (Fig. 1d)8. The 
fraction of ecDNA samples and the average number of ecDNAs per 
sample significantly increased in the advanced cancer cohort clear cell 
renal and esophageal carcinoma, colorectal, prostate and breast can-
cer (Fig. 1e). In contrast, we observed a significant decrease in ecDNA 
sample fraction and ecDNA count in glioblastoma, sarcoma, head and 
neck and ovarian carcinoma. ChrAmp sample fraction and ChrAmp 
amplicon counts were observed to follow similar patterns (Extended 
Data Fig. 2c–e). These observations suggested that the driving roles 
of ecDNA and chromosomal amplicons may vary by tumor lineage.

We evaluated the genomic characteristics of amplicons and found 
that the presence of an oncogene on the amplicon is the major determi-
nant of amplicon complexity, which is a composite value based on the 
distribution of copy numbers assigned to reconstructions of the focal 
amplification’s genome structure and the total number of genomic 
segments comprising an amplicon23. This was true for both ecDNA and 
ChrAmp (Extended Data Fig. 3a–c). Amplicon complexity, copy number 
and size did not significantly differ between primary and advanced 
cancer cohorts. Increased genome ploidy, whole-genome duplication 
and microsatellite instability but not homologous recombination 
associated with higher rates of ecDNA and contributed to the increased 
rates of ecDNA in the advanced cohort (Extended Data Fig. 3d–g and 
Extended Data Fig. 4a–d). The observed increased frequency of ecDNA 
in tumors of the advanced cohort is thus, in part, explained by the 
higher levels of ploidy and whole-genome duplication.

Localized hypermutation (kataegis) has been reported to occur 
frequently on ecDNAs in primary tumors24,25. We confirmed the fre-
quent co-occurrence of kataegis on ecDNA and ChrAmp amplicons 
in primary cancer tumors (Fig. 1f). As localized hypermutations often 
happen in the context of single- and double-strand DNA break repair26, 
we normalized the frequency of clustered mutation events by the 
number of amplicon intervals. Kataegic clustered mutation events 
were detected at significantly higher rates in oncogene-containing 
but not nononcogenic ecDNAs, from the advanced cancer cohort 
and relative to the primary cancer cohort (Extended Data Fig. 4e). 
The significant difference in kataegis frequency was also observed 
among breast cancers, the largest cohort of a single tumor type within 
our datasets (Extended Data Fig. 4f). Our results suggest that ecDNAs 
containing oncogenes and kataegis are most likely to be detected as 
tumors progress.

Clinical associations of ecDNA across cancers
We previously showed that the presence of an ecDNA amplicon is associ-
ated with poor prognosis in newly diagnosed tumors8. We confirmed 
this association in the primary and advanced cancer cohorts (Fig. 2a). 
A multivariate analysis that additionally considered primary tumor 
location, primary versus advanced cohort, sex, age across multiple 
bins, whole-genome doubling status, microsatellite instability sta-
tus, homologous recombination status and tumor stage showed that 
the presence of ecDNA was associated with an increase hazard ratio 
(P < 0.001 ecDNA versus NoAmp, P = 0.002 ChrAmp versus NoAmp; 
P values by multivariate cox proportional-hazard model; Extended 
Data Fig. 5a).

http://www.nature.com/naturegenetics


Nature Genetics | Volume 56 | November 2024 | 2447–2454 2450

Article https://doi.org/10.1038/s41588-024-01949-7

Many but not all patients included in HMF have previously under-
gone cancer therapy, which can alter the genomic properties of the 
tumor27. Untreated HMF patients (n = 542) were in majority newly 
diagnosed with metastatic cancer4. We observed that the ecDNA count 
per tumor was significantly higher in untreated HMF tumors compared 
to the primary cancer cohort (0.34, 95% confidence interval (CI): 0.30, 
0.39 versus 0.4, 95% CI: 0.33, 0.47, P = 0.045, Mann–Whitney U test; 
Fig. 2b and Extended Data Fig. 5b). Next, we compared untreated HMF 
cancers to HMF tumors that had been exposed to anticancer treatment 
before the tumor biopsy collection. Pretreated HMF tumors showed 
a further significant increase (0.57, 95% CI: 0.50, 0.63, P = 3.8 × 10−3; 
Fig. 2b). A resampling analysis in which the number of samples per 

tumor type was equal between primary cancer cohort, untreated 
advanced cancer and treated advanced cancer cohort sets demon-
strated that the ecDNA frequency increase following therapy exposure 
is independent of tumor type (Extended Data Fig. 5c). Grouping of 
HMF patients by the number of pretreatments demonstrated that the 
ecDNA frequency increase correlated with the number of therapies 
received (Fig. 2c and Extended Data Fig. 6a). We repeated this analysis 
in two tumor types with at least 20 samples per pretreatment group 
and observed the same trend in colorectal cancer, but not in breast 
cancer (Extended Data Fig. 6b). Further grouping of previously treated 
HMF patients by treatment class showed that chemotherapy demon-
strates the strongest association with ecDNA frequency (Fig. 2d and 

P < 1 × 10−6 P = 0.05

Primary Advanced

2,0000 500 1,000 1,500 0 500 1,000 1,500 2,000

0

0.25

0.50

0.75

1.00

Days

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Sample classification
ecDNA

ChrAmp

NoAmp

Primary Advanced
290

262

553

650

504

820

Advanced
treated

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

C
hr

Am
p 

co
un

t

P = 5.624 × 10−10

P = 9.407 × 10−1

P = 2.793 × 10−18

(n = 1,490) (n = 542) (n = 1,550)

ChrAmp count per patient

Primary Advanced
untreated

Primary Advanced
untreated

Advanced
treated

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

ec
D

N
A 

co
un

t

P = 3.842 × 10−3

P = 4.487 × 10−2

P = 1.689 × 10−11

(n = 1,490) (n = 542) (n = 1,550)

ecDNA count per patient

Number of pretreatment

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

C
hr

Am
p 

co
un

t

286

P = 0.0354

Advanced cancer
ChrAmp count per patient

0 1 2 3 4 5 6 ≥70 1 2 3 4 5 6 ≥7

Number of pretreatment

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

ec
D

N
A 

co
un

t

849 243 377 233 223 145 102849 243 377 233 223 145 102 286

P = 0.0187

Chemotherap
y

Advanced cancer
ecDNA count per patient

Chemotherap
y

Multip
le th

erap
y

Horm
onal 

therap
y

Untre
ate

d

Ta
rg

eted th
erap

y

0

0.5

1.0

1.5

2.0

C
hr

Am
p 

co
un

t

P = 2.624 × 10−10

Consolidated pretreatment type

Advanced cancer
ChrAmp count per patient

Multip
le th

erap
y

Horm
onal 

therap
y

Untre
ate

d

Ta
rg

eted th
erap

y
0

0.5

1.0

1.5

2.0

ec
D

N
A 

co
un

t

P = 6.755 × 10−8

495 880 70 849 76495 880 70 849 76

Advanced cancer
ecDNA count per patient

P = 1.522 × 10−1

P = 3.711 × 10−2

P = 2.127 × 10−16

P = 6.967 × 10−2

P = 9.849 × 10−8

P = 3.869 × 10−1

a b

c d

ecDNA in primary
ecDNA in advanced
ChrAmp in primary
ChrAmp in advanced
NoAmp in primary
NoAmp in advanced

Fig. 2 | Clinical associations. a, Five-year Kaplan–Meier survival curves by 
amplification category using patients. The P value derived from comparing 
the survival curves was based on a log-rank test in the primary and advanced 
cohorts, separately. b, Distribution of the number of distinct ecDNA and ChrAmp 
amplicons by pretreatment status across primary, untreated advanced cancers 
and pretreated advanced cancer tumors. Pretreated advanced cancer tumors 
show a significantly higher number of distinct ecDNAs and ChrAmps per tumor 
compared to primary cancer or untreated advanced cancer tumors (two-sided 
Mann–Whitney U test). Y axis represents the number of distinct ecDNA and 
ChrAmp amplicons detected per tumor. Numbers indicate patient counts. All 
tumors with available pretreatment information were included in the analysis. 
Points represent mean values, and error bars show 95% CIs. c, Distribution 

of the number of distinct ecDNA and ChrAmp amplicons by the number of 
pretreatments received across pretreated HMF advanced cancers. P value 
was calculated using a two-sided Mann–Kendall trend test. Points represent 
mean values, and error bars show a 95% CI. Only patients with available clinical 
information were included. Numbers indicate the number of patients. d, Distri-
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Extended Data Fig. 6c). Tumors from patients treated with targeted 
therapy contained fewer ecDNAs compared to untreated tumors in the 
advanced cohort. Targeted therapies may specifically inhibit onco-
genes carried on ecDNAs, which has been related to ecDNA genome 
reintegration as a mechanism of therapy resistance28. We evaluated 
whether pretreatment with a targeted inhibitor altered the ratio of 
oncogene target-carrying ecDNAs to chromosomal amplifications 
by comparing the observed ratio to a randomly sampled background 
distribution from comparable untreated cohorts. We found that the 
actual ratio was significantly higher compared to the background 
distribution, suggesting that treatment using inhibitors of oncogenes 
amplified on ecDNAs did not result in the formation of ChrAmps 
(Extended Data Fig. 6d).

To investigate whether different types of chemotherapy showed 
different associations with the number of ecDNAs, we categorized 
chemotherapy mechanisms into the following three types: antimetabo-
lite, DNA damage agent and tubulin inhibitor. HMF patients pretreated 
with tubulin inhibitor had a higher ecDNA frequency (Extended Data 
Fig. 6e). The trend observed in the ecDNA counts mirrored that of the 
ChrAmp counts, which may indicate that antitubulin therapy results 
in genomic instability that leads to the formation of new amplicons 
(Extended Data Fig. 6e,f)29,30. These observations implicate newly 
acquired focal amplifications as a marker for therapy response and 
suggest that specific anticancer therapies may act as drivers of ampli-
con formation.

ecDNAs are preferentially preserved over time
Among patients whose tumors have been sequenced as part of TCGA 
and HMF, a subset (n = 131) was enrolled multiple times, resulting in 
WGS profiles from multiple time points31. The availability of longitu-
dinal datasets provides an opportunity for evaluation of the stability 
and evolution of ecDNA structure. Time-separated whole-genome 
tumor sequences were also available through the GLASS consortium 
(n = 100)21,32,33. We constructed a cohort of 153 patients with multiple 
whole genomes passing quality filters (Extended Data Fig. 1d). The 
dataset includes 70 glioblastomas and gliomas, 18 prostate cancers, 
16 breast cancers and 49 matched samples from other tumor types.

In total, 343 amplicons were detected at the first time point (T1), 
of which 55 amplicons were extrachromosomal. At time point 2 (T2), 
258 amplicons were detected, including 61 ecDNAs. To determine how 

often amplicons were maintained over time, we determined amplicon 
similarity in a pair-wise fashion23. An amplicon similarity metric ranging 
from 0 to 1 was computed between two amplicons with overlapping 
territory based on shared breakpoints and genomic content. Specifi-
cally, 30 of 55 (54.5%) ecDNA and 46 of 288 (16%) ChrAmp T1 amplicons 
were found to match a T2 amplicon with a statistically significant simi-
larity score. In the majority, amplicons classified as either ecDNA or 
ChrAmp maintained the amplicon class at T2, with 30 of 36 T1-ecDNA/
T2-ecDNA amplicons and 46 of 51 T1-ChrAmp/T2-ChrAmp amplicons 
(Fig. 3a). Similarly, 82% of T1 samples classified as ecDNA/ChrAmp/
NoAmp were assigned to the same class at T2 (Extended Data Fig. 7a). 
We evaluated the amplicon location and structure of five HMF-derived 
T1-ecDNA amplicons that were initially classified as ChrAmp at T2. 
Those ChrAmp amplicons were detected in tumors with tumor purity 
>0.7 and mean tumor genome sequence coverage >93×, substantiating 
that the amplicon classification was accurate. Genomic reintegration 
of ecDNA elements has been observed in response to treatment28. 
However, we did not detect sequence reads linking the T2-ChrAmp 
amplicons outside their original location of the genome (Extended 
Data Fig. 7b–f). We, therefore, suggest that the classification change 
from ecDNA to ChrAmp is not the result of reintegration but of clonal 
selection; that is, the ecDNA clone is dominant in the T1 tumor but has 
been outcompeted by a clone driven by a ChrAmp amplicon in T2.

At both time points, the fraction of ecDNA amplicons with a match-
ing ecDNA amplicon in the reciprocal tumor was significantly higher 
compared to the fraction of matching ChrAmp amplicons, showing 
that ecDNA amplifications are more likely to be retained over time 
(Fig. 3b). Amplicon pairs did not show significant differences in ampli-
con complexity, amplicon copy number or amplicon size (Extended 
Data Fig. 8a–c).

Next, we evaluated clustered mutation event frequency, as we 
found higher rates of kataegis in ecDNAs from the advanced cancer 
cohort compared to the primary cancer cohort. Confirming our obser-
vations from the singleton cohorts, we found that the number of clus-
tered mutation events was significantly higher in ecDNA compared to 
ChrAmp amplicons (Extended Data Fig. 8d). The fraction of amplicons 
containing one or more clustered mutation events was significantly 
higher in ecDNA as well as ChrAmp amplicons that were shared, com-
pared to amplicons that were private to one of the two time points. 
This finding was true when counting clustered mutations at T1 as well 
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as at T2 (Fig. 4a,b). Vice versa, T1 ecDNAs and T1 ChrAmps were more 
likely to be preserved at T2 when marked by a clustered mutation event 
(Extended Data Fig. 9a,b). Further separating amplicons by oncogene 
status suggested that these results are independent of whether an 
oncogene is present on the amplicon, while the analysis was limited 
by smaller numbers (Extended Data Fig. 9c,d).

We evaluated the variant allele fractions of clustered and nonclus-
tered mutations on ecDNA and ChrAmp amplicons. Clustered muta-
tions showed significantly higher variant allele fractions compared 
to nonclustered mutations at both T1 and T2 (Fig. 5a). There was no 
statistically significant difference in variant allele fraction between 
clustered mutations detected in private compared to shared ecDNAs. 
To complement this analysis and adjust for possible differences in 
tumor purity and ploidy, we inferred mutation cancer cell fractions. 
Mutations on shared ecDNAs showed significantly higher cancer cell 
fractions compared to mutations on private ecDNAs (Fig. 5b). Both 
shared and private T2 clustered mutation events were carried out at 
significantly higher cancer cell fractions compared to nonclustered 
mutations. Comparable patterns were observed among ChrAmp ampli-
cons (Extended Data Fig. 10). Combined, the differences observed 
between variant allele and cancer cell fraction levels of shared and pri-
vate ecDNAs and ChrAmps reflect that shared ecDNAs have undergone 
selection over a longer period of time. In addition, the higher variant 
allele and cancer cell fraction of clustered relative to nonclustered 
mutations suggest that clustered mutations generally occurred earlier 
in the amplicon lifetime.

Discussion
Activation of oncogenes through genomic amplification is a common 
event in cancer. TCGA and other -omic profiling efforts have provided 
a catalog of somatic alterations at diagnosis. Other initiatives, includ-
ing the HMF, GLASS and tracking cancer evolution through therapy  
(T RACERx), are contributing to our understanding of how the molecu-
lar foundation of cancer diversifies over space and time20,21,34. By com-
paring data across different cohorts using conservative quality filters, 

we found that focal amplifications on ecDNA elements can be com-
monly detected in cancer. As described in the first half of this paper, the 
fraction of cancers significantly increased in metastatic and/or previ-
ously treated tumors. The penetrance of chromosomal focal amplifica-
tions also increased with tumor progression. The genomic landscape of 
cancer is under strong selection, and the increased amplicon frequency 
in advanced cancers suggests that the new formation of focal amplifi-
cations provides specific benefits to tumors postdiagnosis. In accord-
ance with this observation, we observed an increase in the number 
of ecDNAs and ChrAmps per tumor following anticancer treatment, 
with the greatest gain associated with chemotherapy. Among different 
types of chemotherapy, tubulin inhibition via drugs such as paclitaxel 
and docetaxel provided the largest contribution to the increase in 
ecDNA and ChrAmps. This finding may warrant further investigation 
to understand whether tubulin inhibition drives amplicon formation 
and whether amplicon formation has a role in rendering tumor cells 
resistant to tubulin inhibition.

Surveillance of genomic integrity surveillance becomes increas-
ingly error-prone as cancer progresses35,36, and the resulting genomic 
instability may create opportunities for the genesis of ecDNA. In envi-
ronments where cancer cells compete for resources such as oxygen and 
nutrients, or in response to the stress imposed by anticancer treatments 
and during metastasis, focal amplifications and ecDNAs in particular 
may provide opportunities for adaptation that afford cancer cells with 
higher proliferation rates. As we observed that ecDNAs were retained 
over time at higher rates compared to chromosomal amplicons, the 
uneven segregation of ecDNAs7,9 likely contributes to their competi-
tive advantage during the Darwinian process. Future studies of treat-
ment resistance under controlled circumstances in model systems are 
needed to elucidate the mechanisms through which focal amplifications 
enhance untargeted therapy responses. In the second half of our paper, 
we presented evidence that a small subset of ecDNAs in our analysis 
were replaced by similar chromosomal amplicons at a later time point. 
Reintegration of ecDNAs near chromosome ends has been shown to 
occur following DNA damage13,37. However, for ecDNA reintegration to 
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be detectable with sequencing, a single integration locus would have 
to be carried in a sufficient number of cells to overcome the sensitivity 
thresholds of sequencing, which would likely only occur if specific 
reintegration events underwent positive selection. Thus, the switching 
of ecDNA to ChrAmps that we observed is more likely to reflect the posi-
tive selection of pre-existing ChrAmps, rather than the reintegration 
of the ecDNA molecule. This is substantiated by the finding that these 
ChrAmps were detected at their original location in the genome, rather 
than near genome ends37. However, the precise delineation of chromo-
somal and extrachromosomal amplification structures in tumors where 
multiple subclones in parallel amplify the same genomic locus remains 
a challenge. Such amplicon heterogeneity may provide an orthogonal 
explanation for observations of amplicon class switching.

The short-read sequencing technology used to characterize cancer 
genomes in the cohorts analyzed here may pose limitations on the ability 
to detect amplicons with high sensitivity and characterize their structure, 
as well as the sensitivity to detect ecDNAs that have reintegrated into the 
genome. We aimed to address these limitations by imposing quality 
filters that accounted for tumor purity and genome coverage. However, 
studies of substantial tumor cohorts analyzed through long-read or 
optical mapping methods are needed to overcome these barriers. Such 
approaches may also be able to detect ecDNA reintegration.

Jointly, our results provide further support for the potential of 
developing therapeutic anticancer strategies targeting ecDNAs, imply-
ing that one effective strategy would be to combine blocking ecDNA 
formation with limiting ecDNA maintenance.
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Methods
Ethical approval
This study reanalyzes data generated from previously published studies 
(TCGA, ICGC, HMF and GLASS) that complied with ethical regulations.

Patient cohort
The HMF cohort consists of metastatic tumor samples obtained after 
local or systemic treatment and as part of the CPCT-02 (NCT01855477) 
and DRUP (NCT02925234) clinical trials. Patients treated for a wide 
range of tumor-type diagnoses at various hospitals across the Neth-
erlands were enrolled in the trials. Biopsy specimens were sequenced 
at the core facilities of the HMF. WGS was performed for each sam-
ple according to standardized protocols. Detailed information on 
sequence platforms, capture kits and read length has been outlined 
in the HMF marker paper20. Data access approval was granted to H.K. 
as well as R.G.W.V. WGS CRAM files and PURity & Ploidy Estimator 
(PURPLE20)-inferred copy-number segment files were accessible 
through a Google Cloud Platform. Mutation VCF files and associated 
metadata were downloaded from the HMF Database (https://database.
hartwigmedicalfoundation.nl). In total, the HMF database included 
WGS data from 4,513 tumor biopsies (after excluding patients with 
insufficient informed consent).

WGS datasets from the GLASS consortium were collected and pre-
processed as previously reported21,32. Mutation VCF files and associated 
metadata were downloaded from www.synapse.org/glass.

WGS datasets from TCGA were accessed through the Institute for 
Systems Biology Cancer Genomics Cloud (ISB-CGC; https://isb-cgc.
appspot.com/), which provides a cloud-based platform for TCGA 
data analysis. The processed (hg19) and clinical data were available at 
the Genomic Data Commons (https://portal.gdc.cancer.gov) and the 
PancanAtlas publications page (https://gdc.cancer.gov/about-data/
publications/pancanatlas).

WGS datasets from ICGC were processed on the Amazon Web 
Services Cloud. The associated metadata were obtained from the ICGC 
data portal at https://dcc.icgc.org/.

Longitudinal sample pairs of glioma and glioblastoma tumors were 
also collected from the Centre Hospitalier de Luxembourg (CHL, Neu-
rosurgical Department) from patients who had given their informed 
consent. The study received official approval from the National Com-
mittee for Ethics in Research (CNER) Luxembourg, under protocol 
201201/06. Additional longitudinal sample pairs of glioma and glio-
blastoma tumors were collected from the Department of Neurosurgery, 
Seoul National University Hospital. It was approved by the Institu-
tional Review Board of Seoul National University Hospital (approval 
H-2004-049-1116), and all patients provided signed informed consent 
accordingly.

Collecting tumor stage information
We collected tumor stage information for TCGA (Genomic Data Com-
mons PanCancer portal: https://gdc.cancer.gov/about-data/publica-
tions/pancanatlas), Pan-Cancer Analysis of Whole Genomes (PCAWG; 
ICGC portal: http://dcc.icgc.org/releases/PCAWG/) and HMF4. For 
our analysis, we simplified the original complex tumor stages into 
stages 1, 2, 3 and 4 by assigning stage 1 to those originally annotated 
as 1 (A/B), I (A/B) and T1N0M0; stage 2 to 2 (A/B), II (A/B), T0N1M0, 
T1N1M0, T2N0M0, T2N1M0 and T3N0M0; stage 3 to 3 (A/B/C),  
III (A/B/C), T0N2M0, T1N2M0, T2N2M0, T3N1M0, T3N2M0, T4(Any N)
M0 and (Any T)N3M0; stage 4 to 4, IV, (Any T)(Any N)M1, (Any T)(Any 
N)M2 and (Any T)(Any N)M3. Nonstage four samples with incomplete 
TNM stage (including ‘X’) annotation were excluded, and all patients 
from the HMF cohort were considered as stage IV cancer.

AmpliconArchitect
AmpliconArchitect (part of AmpliconSuite-pipeline, v.0.1344.2) was 
run using default settings. This includes BAM file downsampling to 

10x coverage before detection of seed regions, to normalize sequenc-
ing depth between samples. In a mixed cancer-type WGS cohort of 
133 samples, running AmpliconArchitect with or without downsam-
pling did not significantly alter the number of ecDNAs detected. 
AmpliconArchitect was run using the maximum wall time set to 72 h 
per sample in Google Cloud and 2 weeks in Amazon Cloud (https://
github.com/AmpliconSuite/AmpliconSuite-pipeline). Candidate 
seed regions for inputs to AmpliconArchitect were identified with 
AmpliconSuite-pipeline.py, which uses CNVkit38 for detecting DNA 
copy-number alterations and were defined as at least 50 kb in length 
and a minimum of 4.5 copy numbers. Reconstruction of amplicon 
structures is based on the full and not a downsampled BAM and not 
affected by downsampling. We evaluated seed region count and did 
not observe significant associations between seed region count and 
tumor coverage or tumor purity bins. A higher number of seed regions 
positively correlated with the number of ecDNAs detected and showed 
similar trends in both primary and advanced cancer cohorts. We further 
examined the association between the number of ecDNA amplicons 
detected and the number of candidate seed regions, as well as the size of 
seed regions. We observed comparable degrees of positive correlation 
between primary and advanced cohorts; that is, the number of seeding 
regions is related to the number of ecDNA detected, but they do not dis-
proportionately affect ecDNA frequency in the primary and advanced 
cohorts. For analysis of longitudinally paired samples, the candidate 
seed regions identified from different tumors in the same patient 
were merged into an identical set of candidate seed regions for those 
tumors in the patient. AmpliconClassifier (v0.4.11) was invoked from 
AmpliconSuite-pipeline to predict the class of focal amplification and 
refine gene coordinates involved in the specific focal amplifications.

Amplicon complexity
Amplicon complexity was calculated using AmpliconClassifier Ampli-
con complexity scores, as previously reported in ref. 23. Scores were 
computed for each focal amplification using the AmpliconArchitect 
cycles file, which encodes paths identified by AmpliconArchitect in the 
copy-number-aware AmpliconArchitect breakpoint graph explaining 
the observed changes in copy number. The complexity score takes the 
distribution of copy-number flow values assigned to each genome path 
of a specific focal amplification type and computes a vector, which 
represents the fraction of the total copy number captured by each 
path, weighted by the length of the path. The score also incorporates a 
residual, which measures the weighted copy-number fraction after the 
first 80% explained, if any is still remaining (for example, no residual 
would remain if one genome path could explain all the copy numbers). 
The amplicon complexity score function then combines the entropies 
of the residual, nonresidual and the total number of genome segments 
in the focal amplification, with a high score indicating an amplicon with 
a more complex structure than an amplicon with a low score.

Amplicon similarity
Amplicon similarity score was computed to quantify the similarity 
between genomically overlapping amplicons from T1 and T2 tumors 
from identical patients, implemented with amplicon_similarity.py 
script, available in AmpliconClassifier (v.0.4.11, part of the Amplicon-
Suite, v.0.1344.2)8. Following the identification of T1–T2 amplicon pairs 
with overlapping genomic regions, an amplicon similarity score was 
calculated using shared breakpoints and shared genomic content. The 
similarity score was compared against similarity scores from unrelated 
overlapping amplicon distributions to compute a P value for the simi-
larity score. Amplicon pairs with P values < 0.05 were included in our 
analysis as shared events.

Detection of clustered mutations
SigProfilerSimulator (v.1.1.4)39 was first applied to quality-filtered, 
single-nucleotide variant-only VCF files to determine the intramutational 
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distance cutoff for each sample to only detect mutation clusters that 
were not likely to occur by chance. Each sample was simulated 100 times 
in the pentanucleotide context (the ±2 bp sequence context) while main-
taining the same mutational burden per chromosome and preserving 
the transcriptional strand bias. SigProfilerClusters (v.1.0.11)40 was then 
used to subclassify clustered mutations while performing a genome-wide 
mutational density correction. A window size of 1 Mb was used for cor-
recting intramutational distances based on mutational density, and 
mutation variant allele frequencies were considered when subclas-
sifying clustered mutations. From SigProfilerClusters output, kataegis 
mutations having an identical group number were considered as a single 
clustered event. Each clustered event was defined as ecDNA-overlapping 
kataegis if overlapped with ecDNA regions and ChrAmp-overlapping 
kataegis if overlapped with ChrAmp regions. Only the samples having 
the available mutation files for which the clustered mutation calling 
was successful were included in this analysis (single time point anal-
ysis—2,454 (58 failed, 97 no mutation file) of 2,609 PCAWG samples  
and 4,136 (34 failed) of 4,170 HMF samples; multitime point analysis 
—248 (2 failed) of 250 HMF samples and 181 (1 failed, 18 no mutation file) 
of 200 GLASS samples). HMF mutation files in the form of VCF were 
provided by the HMF, TCGA–ICGC mutation files were obtained from 
https://dcc.icgc.org/ in the form of MAF and GLASS mutation files were 
from www.synapse.org/glass.

Determining the number of pretreatments
Each entry of prebiopsy drugs annotation provided by the HMF consists 
of a patient identifier, treatment start date, end date, name of the drug, 
type of the drug and the drug mechanism. After filtering out drug treat-
ment entries that occurred before the sample biopsy date, the number 
of unique entries for a patient was defined as the number of pretreat-
ments the patient had received. The treatment annotation provided by 
the HMF included a drug classification into broad categories including 
chemotherapy, hormonal therapy and targeted therapy. We further 
subdivided chemotherapy drug treatments into the following four 
categories: (1) antmetabolite, (2) DNA damage, (3) tubulin inhibitor 
and (4) other, based on the literature review. A detailed classification 
of drugs by mechanism of action and associated references is provided 
in Supplementary Table 2.

Estimating cancer cell fractions of mutations
The cancer cell fractions of single-nucleotide variant mutations for 
HMF and GLASS multitime point samples whose mutation, copy 
number and tumor purity are available were computed by PyClone-VI 
(v.0.1.2) with default parameters. Mutations on sex chromosomes were 
excluded. Mutation, copy number and purity files for HMF samples 
were provided by the HMF, and the files for GLASS samples were from 
www.synapse.org/glass.

Statistical analysis
All data analyses were conducted in R (v.4.1.2) and Python (v.3.9.13). 
Statistical tests were not adjusted for multiple comparisons.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
WGS from TCGA were accessed through the database of Genotypes and 
Phenotypes (https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login) 
under accession ID phs000178.v11.p8 (TCGA). WGS data from PCAWG/
ICGC were downloaded from the ICGC at https://dcc.icgc.org/ (Data 
Access Compliance Office application DACO-753). The WGS and asso-
ciated clinical data used in this study were made available by the HMF 
and were accessed under a license agreement (HMF DR-057 v.3.0). 
Data access can be obtained by completing a data request form.  

The form and detailed application procedures can be found at https://
www.hartwigmedicalfoundation.nl/applying-for-data/. Processed 
sequencing data from the GLASS project used in this study are available 
on Synapse at https://www.synapse.org/glass. AmpliconSuite output 
files for TCGA are available at https://ampliconrepository.org/project/ 
655bda68bba7c92509522479. AmpliconSuite output files for PCAWG 
are available at https://ampliconrepository.org/project/655c060abb
a7c925095555da. AmpliconSuite output files for GLASS are available 
at https://ampliconrepository.org.

Code availability
The code used for analysis has been deposited at https://github.com/
hoonbiolab/panecmanuscript2024.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Overview of sample selection criteria. a, Comparison 
of extrachromosomal DNA (ecDNA) count by cohort and average sequence 
coverage. P-values are derived from a two-sided Mann–Whitney U test. Tissues 
are matched across the Cancer Genome Atlas (TCGA), the Pan-Cancer Analysis 
of Whole Genomes (PCAWG) and the Hartwig Medical Foundation (HMF; at least 
20 samples in each cohort). Numbers on the bar indicate the number of samples. 
Boxplots represent minimum (0th percentile), maximum (100th percentile),  
1st and 3rd quartiles and median with outliers not shown. b, Comparison of ecDNA 
count by cohort and tumor purity bin for samples whose coverage is higher or 
equal to 10×. P-values are derived from a two-sided Mann–Whitney U test. TCGA 
includes all samples above the coverage cutoff. Tissues were only matched 

between PCAWG and HMF (at least 20 samples in both) because the TCGA  
sample size after coverage filtering was too small. Numbers on the bar indicate 
the sample number. Boxplots represent minimum (0th percentile), maximum 
(100th percentile), 1st and 3rd quartiles and median with outliers not shown.  
c, Cohort and sample selection overview for single time point analysis. d, Cohort 
and sample selection overview for multitime point analysis. Abbreviations are 
defined as follows: AA, AmpliconArchitect tool; ICGC, International Cancer 
Genome Consortium; AML, acute myeloid leukemia; SKCM, skin cutaneous 
melanoma; T1, first time point tumor; T2, second time point tumor; GLASS,  
the Glioma Longitudinal Analysis Consortium.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Additional data to sample and amplicon classification. 
a, Overview of sample classification for the 2,071 primary and 3,170 advanced 
patients whose tumor sequencings are above purity and coverage cutoff, 
including all tumor types. Numbers in parentheses indicate number of tumor 
samples. b, Resampling analysis with replacement was repeated 1,000 times 
while maintaining sample count per tumor-type identical between primary 
cancer and advanced cancer cohorts in each resampled dataset to compare 
classification distributions shows a significant increase in the number of samples 
classified as ecDNA and ChrAmp, respectively, in the advanced cancer cohort, 
independent of tumor-type distribution. Empirical cumulative distributions 
(ECDF) of sample classification percentage using 1,000 re-sampled datasets.  
D represents Kolmogorov–Smirnov statistic. c,d, Percentage of ChrAmp samples 

(c) and the average number of distinct ChrAmp amplicons per sample (d) in 
primary and advanced cancer cohorts, showing tumor lineage represented by 
at least 20 tumors in both cohorts. P-values were computed using a one-sided 
binomial test with the ChrAmp-carrying tumor fraction in the primary cancer 
cohort as a null probability in c and using a one-sided Mann–Whitney U test in d. 
Not significant unless noted otherwise. Asterisks indicate level of significance: 
*1.00e−02 < p ≤ 5.00e−02; **1.00e−03 < p ≤ 1.00e−02; ***1.00e−04 < p ≤ 1.00e-03; 
****p ≤ 1.00e−04. e, Distribution of primary and advanced sample classification 
stratified by tumor lineages each of which includes at least 20 tumors. Numbers 
in parentheses indicate the number of ecDNA samples and the total number of 
samples of that lineage.
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Extended Data Fig. 3 | Amplicon properties by amplicon class and oncogene 
presence. a, Box plot showing amplicon complexity. b, Box plot showing 
amplicon DNA copy number. c, Box plot showing amplicon size. Numbers 
indicate number of amplicons. P-values were computed using a two-sided Mann–
Whitney U test. Boxplots represent minimum (0th percentile), maximum (100th 
percentile), 1st and 3rd quartiles and median. For Extended Data Fig. 3b, outliers 
are not plotted. d–g, Comparison of ecDNA amplicon count per patient between 

primary and advanced cohorts when further grouping patients according to 
measures of genomic instability, (d) including binned ploidy; (e) whole-genome 
duplication status; (f) microsatellite instability status; and (g) homologous 
recombination (HR) status. Numbers indicate number of patients. P-values were 
computed using a two-sided Mann–Whitney U test. Boxplots represent minimum 
(0th percentile), maximum (100th percentile), 1st and 3rd quartiles and median 
with outliers not shown. MSS, microsatellite stable; MSI, microsatellite Instable.
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Extended Data Fig. 4 | Comparison of ecDNA patient fractions when further 
grouping patients according to measures of genomic instability. a–d, Binned 
ploidy (a), whole-genome duplication status (b), microsatellite instability 
status (c) and homologous recombination status (d). Numbers in parentheses 
represent number of patients carrying ecDNA over all patients in the category. 
P values were calculated using a two-sided binomial with the ecDNA-carrying 
tumor category in the primary cohort as a null probability. e, Number of kataegis 

events normalized by the number of intervals present on ecDNA or ChrAmp 
amplicons between primary cancer and advanced cancer cohorts. Plots show log 
plus one transformed value on the y-axis. P values were calculated using a two-
sided Mann–Whitney U test. f, Same but breast cancer samples only. Boxplots 
represent minimum (0th percentile), maximum (100th percentile), 1st and  
3rd quartiles and median.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Additional data to clinical associations. a, Multivariate 
Cox proportional hazards model, incorporating primary tumor locations, sex, 
age, whole-genome doubling status, microsatellite instability (MSI) status, 
homologous recombination (HR) status and tumor stage in primary and 
advanced cancer cohorts, showing that extrachromosomal DNA amplification 
resulted in the highest hazard ratio. The error bars represent the 95% confidence 
intervals of the hazard ratios. Asterisks indicate level of significance: *1.00 × 
10−2 < p ≤ 5.00 × 10−2; **1.00 × 10−3 < p ≤ 1.00 × 10−2; ***1.00 × 10−4 < p ≤ 1.00 × 10−3. 
b, Distribution of primary, advanced untreated and advanced treated cohorts 
into ecDNA/ChrAmp/NoAmp categories. All tumors with available pretreatment 
information were included in the analysis. Y-axis represents category fractions. 

Numbers indicate patient counts. P-values were computed using a two-sided 
binomial test with the ecDNA-carrying tumor fraction in the primary cancer 
cohort as a null probability when comparing primary vs advanced untreated/
treated and that in the advanced untreated cohort as a null probability when 
comparing advanced untreated vs advanced treated. c, Resampling analysis 
with replacement was repeated 1,000 times while maintaining sample count 
per tumor-type identical between primary cancer and advanced cancer 
untreated and advanced cancer treated cohorts, in each resampled dataset, 
to compare classification distributions. Empirical cumulative distributions of 
sample classification percentage using 1,000 re-sampled datasets. D represents 
Kolmogorov–Smirnov statistic (two-sided).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Effects of pretreatments on distributions of sample 
and amplicon classifications. a, Distribution of ecDNA/ChrAmp/NoAmp 
tumors across the number of pretreatment a patient received. Numbers in 
parentheses indicate tumors with ecDNA/all tumors. P value was calculated using 
a two-sided Mann–Kendall trend test. b, Distribution of the number of distinct 
ecDNA amplicons pretreatment count (advanced cancers only). P value was 
calculated using a two-sided Mann–Kendall trend test. Points represent mean 
values and error bars show a 95% confidence interval. Only patients with available 
clinical information were included. Numbers indicate the number of patients. 
c, Distribution of ecDNA/ChrAmp/NoAmp tumors by consolidated pretreatment 
categories. Numbers in parentheses indicate tumors with ecDNA/all tumors. 
Only treatment types >50 patients are shown. P values were calculated using a 
two-sided binomial with the ecDNA-carrying tumor category in the untreated 
group as a null probability. d, Odds of tumors treated with targeted inhibitors to 
contain target oncogene on an ecDNA compared to tumors treated with targeted 
inhibitors lacking the amplified target, when compared to the background 

distribution calculated with the untreated primary tumors. e, EcDNA or ChrAmp 
amplicons by pretreatment mechanisms. Only treatments used in ≥10 patients 
were included. Samples were categorized solely based on whether they received 
chemotherapy of a specific mechanism, without considering other treatments 
including radiation. The points on the graph represent the mean, and the 
error bars indicate the standard error of the mean. The numbers shown at the 
bottom of the figure are sample sizes. P-values were calculated with two-sided 
Mann–Whitney U test. f, Sample classification (ecDNA, ChrAmp, NoAmp) in the 
advanced cohort by different pretreatment chemotherapy mechanisms. Only 
treatments used in ≥10 patients were included. Samples were categorized solely 
based on whether they received chemotherapy of a specific mechanism, without 
considering other treatments including radiation. As a result, the samples might 
have received multiple types of treatments. The p-value was calculated using a 
two-sided binomial test, with untreated samples serving as the reference for each 
chemotherapy mechanism. n.s., not significant.
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Extended Data Fig. 7 | Longitudinal analysis of sample classification.  
a, Sankey plot showing sample classification based on amplicon status, over 
time. Color reflects amplicon-based sample classification and numbers indicate 
the number of samples. b–f, Amplicon structure of five amplicons classified as 

ecDNA at tumor 1 (T1), and ChrAmp at tumor 2 (T2). All amplicon pairs showed a 
significant similarity score between T1 and T2, with T1 classified as ecDNA and T2 
classified as ChrAmp. BFB, breakage fusion bridge.
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Extended Data Fig. 8 | Genomic characteristics of longitudinally retained 
amplicons. a–c, Complexity (a), DNA copy number (b) and amplicon size 
(c). P-values were computed using a two-sided Wilcoxon paired test. T1 and 
T2 represent a patient’s first time point tumor and second-time point tumor, 
respectively. Boxplots represent minimum (0th percentile), maximum (100th 
percentile), 1st and 3rd quartiles and median. n.s., not significant. d, The number 

of kataegis events is significantly higher in ecDNA amplicons compared to 
ChrAmp amplicons, at both time points. Numbers in parentheses indicate 
numbers of ecDNA or ChrAmp amplicons. Error bars represent the standard 
error (95% confidence interval) of the mean. P values were calculated using a  
two-sided Mann–Whitney U test.
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Extended Data Fig. 9 | Additional data to longitudinal amplicon analysis. 
a, The fraction of ecDNA and ChrAmp amplicons with overlapping clustered 
mutations in the 1st tumor. Clustered mutations were further classified into 
‘shared clustered mutations’ when two or more mutations in the clustered 
mutation event were retained in the 2nd tumor, ‘private clustered mutations’ 
when the clustered mutation event was detected in the 2nd tumor, and ‘no 
clustered mutations’ when no T1 clustered mutations were recovered in the T2 
amplicon. b, The fraction of ecDNA and ChrAmp amplicons with overlapping 
clustered mutations in the 2nd tumor. Clustered mutations were further 
classified into ‘shared clustered mutations’ when two or more mutations in 
the clustered mutation event were retained in the 1st tumor, ‘private clustered 

mutations’ when the clustered mutation event was detected in the 1st tumor and 
‘no clustered mutations’ when no T2 clustered mutations were recovered in the 
T1 amplicon. For a and b, statistical significance was assessed with chi-squared 
test for retained vs all others. c, The fraction of ecDNA and ChrAmp amplicons 
with overlapping clustered mutations in the 1st tumor. Numbers in parentheses 
indicate numbers of 1st tumor amplicon overlapping clustered mutations. d, The 
fraction of ecDNA and ChrAmp amplicons with overlapping clustered mutations 
in the 2nd tumor. Numbers in parentheses indicate numbers of 2nd tumor 
amplicon overlapping clustered mutations. P-values were computed using a  
chi-square test. n.s., not significant.
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Extended Data Fig. 10 | Additional data to variant allele fraction by 
mutational category. a,b, Comparison of (a) variant allele fractions and 
(b) cancer cell fractions (of different mutational categories detected on 
longitudinally retained (shared) or disappeared/acquired (private) ChrAmp 

amplicons). Boxplots represent minimum (0th percentile), maximum (100th 
percentile), 1st and 3rd quartiles and median with outliers excluded. P values 
were calculated using a two-sided Mann–Whitney U test. n.s., not significant.

http://www.nature.com/naturegenetics
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