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Obesity-dependent selection of driver  
mutations in cancer
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Obesity is a risk factor for cancer, but whether obesity is linked to 
specific genomic subtypes of cancer is unknown. We examined the 
relationship between obesity and tumor genotype in two clinicogenomic 
corpora. Obesity was associated with specific driver mutations in lung 
adenocarcinoma, endometrial carcinoma and cancers of unknown 
primaries, independent of clinical covariates, demographic factors and 
genetic ancestry. Obesity is therefore a driver of etiological heterogeneity  
in some cancers.

The physiological and environmental forces leading to cancers with 
specific genotypes are largely unknown. Even as oncogenic mutations 
emerge in healthy tissue, a confluence of physiological, immunological 
and epigenetic changes ultimately elicits tumorigenesis1. Obesity is a 
risk factor for the development of numerous cancers2,3 and growing 
evidence suggests that medical interventions to reduce obesity can 
reduce cancer risk4. Obesity itself is associated with changes in systemic 
immune surveillance, metabolism and inflammation5–7. In compos-
ite, these changes have the potential to shape the selective pressure 
for specific driver mutations in cancer, connecting the evolution of 
tumor-intrinsic genotypes to aspects of systemic health.

Testing the hypothesis that body mass index (BMI, a quantitative 
surrogate of obesity status) associates with specific tumor genotypes 
at population scale requires jointly collected clinical and genomic 
data, which is largely absent in large-scale cancer genomics datasets 
to date. We systematically extracted information on BMI and other 
demographic factors in 34,274 patients profiled as part of their routine 
clinical care by the Memorial Sloan Kettering-Integrated Mutation Pro-
filing of Actionable Cancer Targets (MSK-IMPACT) clinical sequencing 
platform8 (Extended Data Fig. 1). We assessed the statistical association 
between BMI and tumor genotype by modeling the incidence of muta-
tions in 341 cancer-associated genes as a function of BMI, focusing on 
gene–cancer type pairs with sufficient numbers of mutant patients for 
adequate statistical power (Methods). Considering only oncogenic 

mutations as annotated by a Food and Drug Administration-recognized 
database9, we identified six genes across three separate cancer types 
demonstrating statistically significant enrichment with BMI in specific 
cancer types (q < 0.05) (Fig. 1a and Supplementary Table 1). In lung 
adenocarcinoma, three genes, KRAS (q = 2.6 × 10−5, estimate = 0.03), 
SETD2 (a tumor-suppressive histone methyltransferase, q = 1.31 × 10−2, 
estimate = 0.06) and PPP2R1A (a protein phosphatase known to regu-
late a variety of pathways, including phosphoinositide 3-kinase signal-
ing, q = 1.31 × 10−2, estimate = 0.16), were mutated at a higher frequency 
in patients with obesity and one (EGFR q = 3.0 × 10−10, estimate = −0.05) 
was mutated at a lower frequency in the same patient group, although 
the number of patients with SETD2 and PPP2R1A mutations was small 
(Table 1). In addition, we found BAP1 in cancers of unknown primaries 
to be positively associated with BMI (q = 3.5 × 10−2, estimate = 0.15) and 
POLE in uterine endometrioid carcinoma to be negatively associated 
with BMI (q = 1.6 × 10−2, estimate = −0.08). POLE was similarly associated 
with a low BMI in a cohort restricted to only patients with endometrioid 
carcinoma (P = 6 × 10−3, estimate = −0.09). In contrast, we found no sta-
tistically significant associations between the presence of silent muta-
tions (under putatively neutral selection) and BMI at the gene–cancer 
type level (q < 0.05) (Extended Data Fig. 2). We observed no statistically 
significant associations between copy number alterations and BMI.

Driver mutations are known to accumulate at different rates in 
patients of distinct genetic ancestries, raising the possibility that an 
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Fig. 1 | Oncogenic mutations are associated with BMI. a, Statistical association 
between continuous BMI and genotype across gene–cancer type pairs.  
The −log10(P values) and estimated sizes from univariate logistic regression 
are on the y and x axes, respectively. Statistically significant pairs are 
in black. b, Multivariate regression demonstrating that BMI categories 
(underweight, BMI < 18.5 kg m−2; healthy, 18.5 ≤ BMI < 25 kg m−2; overweight, 
25 ≤ BMI < 30 kg m−2; obese, BMI ≥ 30 kg m−2) are associated with KRAS mutations 
independent of other clinical factors. Results for multivariate regression with 
BMI as a continuous variable are shown in Supplementary Table 3. Error bars 

represent the 95% confidence interval (CI). c, KRAS mutation frequency in 
patients with lung adenocarcinoma categorized by BMI and genetic ancestry. 
ASJ, Ashkenazi Jewish; EAS, East Asian; EUR, European. Error bars represent the 
s.e. d, EGFR (top) and KRAS (bottom) mutation frequency in BMI categories in 
the MSKCC cohort. Error bars represent the s.e. e, EGFR (top) and KRAS (bottom) 
mutation frequency in BMI categories in the DFCI cohort. Error bars represent 
the s.e. f, EGFR (top) and KRAS (bottom) are not associated with weight loss 
before cancer diagnosis in lung adenocarcinoma using the χ2 test.
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association between tumor genotypes and obesity status could emerge 
indirectly10. To control for the contributions of genetic ancestry, we 
obtained ancestry information for each patient from a previously 
reported computational analysis of ancestry from germline sequencing 
data11. After correcting for age, sex, genetic ancestry and mutational 
burden, all six significant univariate associations between BMI and 
genotype remained statistically significant in the same direction, 
although the effect in some individual ancestries (for example, patients 
of Ashkenazic ancestry harboring KRAS mutations) was attenuated 
(Fig. 1c and Supplementary Table 1). Thus, elevated BMI is associated 
with specific cancer genotypes independent of genetic ancestry, sex, 
age and tumor mutational burden (TMB).

We further considered the possibility that other demographic 
factors, etiologies or exposures might confound an association 
between BMI and tumor genotypes. To directly examine this possibil-
ity, we focused on lung adenocarcinoma, where there is an established 
association between smoking status and elevated frequency of KRAS 
mutations/reduced frequency of EGFR mutations12. We modeled the 
presence of driver mutations in KRAS and EGFR as a function of BMI, 
clinical smoking history, TMB, ancestry, age and sex, for 4,150 patients 
with lung adenocarcinoma with adequate genomic and clinical data. 
The association between BMI and EGFR (P = 7.4 × 10−5, estimate = −0.04) 
and BMI and KRAS (P = 1 × 10−3, estimate = 0.03) remained statistically 
significant after controlling for all covariates (Fig. 1b–d and Supple-
mentary Table 3). We also controlled for smoking quantitatively using 
pack-years and genomically using a previously published, computa-
tionally inferred, smoking signature13 and associations between BMI 
and EGFR and KRAS remained statistically significant (pack-years: 
EGFR = 0.008, KRAS = 0.02; smoking signature: EGFR = 7.4 × 10−5, 
KRAS = 0.001). As smoking is associated with C/G > A/T substitutions 
common among KRAS drivers, we repeated the above analysis in KRAS 
separately for C/G > A/T mutations and non-C/G > A/T mutations. We 
found a consistent positive association in KRAS across both subsetted 
groups (C > A estimate = 0.02, P = 0.02, non-C > A estimate = 0.03, 
P = 4 × 10−3). We also considered the possibility that socioeconomic 
status or exposure to PM2.5 air pollutants could potentially explain the 
association between genotype and obesity. All six statistically signifi-
cant genotype–obesity associations remained statistically significant 
after controlling for socioeconomic status (via the Yost index), air 
pollution (https://www.breezometer.com/air-quality-map/) or both 
(Supplementary Table 4).

To corroborate these findings in an independent cohort, we 
obtained somatic mutation calls and BMI information from 2,727 
patients with lung adenocarcinoma at a separate institution. Analysis 
of this dataset confirmed that EGFR mutations were negatively associ-
ated with BMI (P = 5 × 10−2, estimate = −0.02) and KRAS and SETD2 muta-
tions were positively associated with BMI (P = 9 × 10−4, estimate = 0.03; 
P = 0.01, estimate = 0.04, respectively) (Fig. 1e and Supplementary 
Table 5), after controlling for age, sex and ancestry. PPR21A mutation 

was not significantly associated with obesity although the number 
of patients with this mutation was small (P = 0.84, estimate = 0.01, 
n = 22). Furthermore, after controlling for pack-years and clinical smok-
ing status in this validation cohort, our results remained statistically 
significant (Supplementary Table 5). Thus, in lung adenocarcinoma, 
obesity predisposes patients to a higher frequency of KRAS and SETD2 
mutations and a lower frequency of EGFR mutations.

Finally, we considered the possibility that associations between 
BMI measurements and genomic alterations were indirectly induced 
by cancer-associated weight changes at cancer diagnosis (for example, 
cachexia). To evaluate this possibility in lung cancer, we reviewed initial 
diagnosis medical notes from a subset of patients with treatment-naive 
lung adenocarcinoma treated at Memorial Sloan Kettering (MSK) and 
classified them according to whether they exhibited signs of cachexia, 
anorexia or other unexplained weight loss in the 6 months before diag-
nosis (Methods). There was no association between clinically notable 
weight loss before diagnosis and the presence of EGFR (P = 0.70, odds 
ratio (OR) = 1.16) or KRAS (P = 0.69, OR = 1.15) mutations (Fig. 1f), indi-
cating that the association between BMI and these mutations is not 
confounded by pre-diagnosis weight loss.

Previous work has demonstrated the modulatory effects of obesity 
on the emergence of cancer, which is complex and results in higher risk 
of certain cancers, such as liver and colorectal, and lower risk of others, 
such as lung. Our results suggest that, after controlling for numerous 
host and environmental factors, obesity also predisposes patients to 
cancers with particular somatic genotypes.

Our data suggest that EGFR-mutant lung adenocarcinoma has a 
lower frequency in patients with elevated BMI and, conversely, that 
KRAS-mutant lung adenocarcinoma is more frequent in patients 
with obesity. These findings have treatment implications: both 
genes have molecularly targeted therapies14 and higher proportions 
of immune-sensitive KRAS drivers may explain why obese patients 
respond better to immunotherapy15. More fundamentally, few modi-
fiable risk factors of EGFR/KRAS-mutant lung adenocarcinoma have 
been characterized. A recent study6 suggests that air pollution may 
trigger microenvironmental changes, allowing for proliferation of 
cells with activated EGFR. This is one of the first studies to suggest that 
obesity is a similar modifier of EGFR-mutant lung adenocarcinoma 
risk. There are many plausible mechanisms by which obesity might 
affect selection for certain molecular drivers, including modulation 
of lipid metabolism in cancer cells via PIK3CA/mammalian target of 
rapamycin pathways7. Obesity itself may also inhibit the function of 
CD8+ T cells5, which can affect the selective pressure for immunogenic 
driver alterations. As KRAS-mutant lung adenocarcinoma is generally 
more sensitive to immune checkpoint blockade than EGFR-mutant 
lung adenocarcinoma16, it seems plausible that changes to the immune 
microenvironment downstream of obesity may disproportionately 
allow for proliferation of KRAS-mutant lung adenocarcinoma in 
patients with obesity. Although real-world histopathological imaging 

Table 1 | Patient distribution by BMI and genotype with relative risk

EGFR LUAD KRAS LUAD SETD2 LUAD PPP2R1A 
LUAD

All 
LUAD

BAP1 CUP All CUP POLE ENDO All ENDO All patients

Underweight 39 (1.08) 26 (0.73) 3 (1.02) 0 (NA) 113 0 (NA) 14 2 (2.84) 8 1,259

Healthy 513 456 41 1 1,568 2 168 17 162 11,957

Overweight 378 (0.69) 519 (1.29) 34 (0.86) 5 (5.24) 1,499 4 (2.46) 139 23 (1.08) 205 11,564

Obese 193 (0.51) 372 (1.52) 54 (2.20) 5 (8.12) 970 6 (5.19) 102 20 (0.41) 433 9,494

Distribution of patients by BMI and genotype, with relative risk in brackets. All CUP, number of patients with cancer of unknown primary tumors; All ENDO, number of patients with uterine 
endometrial carcinoma tumors; All LUAD, number of patients with lung adenocarcinoma tumors; All patients, total number of patients in each BMI category; BAP1 CUP, number of patients 
with cancers that are unknown primaries and BAP1-mutant tumors; EGFR LUAD, number of patients with lung adenocarcinoma and EGFR-mutant tumors; KRAS LUAD, number of patients with 
lung adenocarcinoma and KRAS-mutant tumors; POLE ENDO, number of patients with uterine endometrial carcinoma and POLE-mutant tumors; PPP2RA LUAD, number of patients with lung 
adenocarcinoma and PPP2R1A-mutant tumors; SETD2 LUAD, number of patients with lung adenocarcinoma and SEDT2-mutant tumors. Underweight (with BMI in kg m−2), BMI < 18.5; healthy, 
18.5 ≤ BMI< 25; overweight, 25 ≤ BMI < 30; obese, BMI ≥ 30. NA, not applicable.
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data increasingly excel at identifying tumor-infiltrating lymphocytes 
and other markers of immune system activity17, accompanying BMI 
data are not routinely published. Such data are necessary to confirm 
any causal link between obesity and immunological mechanisms of 
selection for particular drivers.

Our study has several limitations. We were underpowered to detect 
associations between BMI and genomic alterations in rare cancer types 
and infrequently mutated genes. There may be other genomic changes, 
including structural rearrangements, associated with BMI, which we 
did not consider in this analysis. BMI itself is only one of many metrics 
for studying obesity and we did not have access to other metrics, such 
as skinfold thickness, in the clinical record3. Genomic studies do not 
fully capture the molecular landscape of a tumor, and broader studies 
that combine genomic, transcriptomic and metabolomic analyses 
would provide a more well-rounded view of the effect of obesity on 
cancer tumor phenotypes18. Finally, and most importantly, prospec-
tive studies will have to be done to determine whether modifications 
to BMI, through diet, exercise or medical interventions, can causally 
modify the incidence of particular cancer genotypes.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-024-01969-3.
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Methods
Patient cohort
The present study utilized data from MSK-IMPACT (no. NCT01775072), 
a prospective observational cohort study of tumor evolution. The 
present study received full ethical approval by the institutional review 
board at MSK Cancer Center (MSKCC). For the present study, patients 
provided written informed consent for the use of their genomic data 
for research. Participants in the present study were not compensated 
for their participation. Tumors were sequenced using the MSK-IMPACT 
assay through to 23 March 2023. In patients with multiple samples, only 
one sample (the earliest sampled primary tumor) was included in the 
final cohort. Clinical characteristics were annotated per the standard 
MSK-IMPACT workflow. The total cohort constitutes 34,274 samples 
spanning 102 cancer types. Only cancer–gene pairs with >50 samples 
in the cancer type and >10 mutations of the given gene in the cancer 
type were tested for genotype–BMI associations. For each patient, we 
identified the BMI measurement collected at the date nearest to the 
date of sample acquisition leading to genomic sequencing, that is, the 
earliest possible date for which a given genomic alteration could be con-
firmed in a patient’s tumor. BMI distribution of cancer types is shown 
in Extended Data Fig. 1. Patients without a BMI measurement within 
30 d of tumor acquisition were excluded. Patients at the Dana-Farber 
Cancer Institute (DFCI) had tumor genomic profiling with OncoPanel19, 
a targeted sequencing platform analogous to MSK-IMPACT.

Targeted DNA sequencing with MSK-IMPACT
DNA sequencing was performed using the MSK-IMPACT sequenc-
ing panel, which is a hybridization capture-based, next-generation 
sequencing assay, in a Clinical Laboratory Improvement 
Amendments-certified molecular laboratory. Genomic DNA from 
formalin-fixed, paraffin-embedded primary or metastatic tumors 
and matched normal samples was extracted and sheared. Customized 
probes were then synthesized for targeted sequencing of all exons and 
select introns of 341, 410, 468 or 505 genes. Illumina HiSeq 2500 was 
used to capture pooled libraries containing captured DNA fragments to 
high, uniform coverage (>500 median coverage). All classes of genomic 
alterations including substitutions, insertions/deletions (indels), copy 
number alterations and rearrangements were determined and called 
against the patient’s matched normal sample. The computational 
pipelines used for variant calling are based on standard best practices 
and used a combination of open-source and custom-written scripts 
and programs.

The OncoKB precision oncology knowledge base was used to 
annotate genomic alterations. OncoKB identifies functionally relevant 
cancer variants and their potential clinical actionability. Only altera-
tions classified as oncogenic by OncoKB were used in this analysis. 
Reported alteration frequencies were adjusted to account for the 
specific set of genes included in each version of the MSK-IMPACT panel 
used by dividing the number of gene-specific alterations by the number 
of samples for which a given gene was sequenced.

Logistic regression model
Logistic regression was performed where BMI (as a continuous vari-
able) was used to predict somatic mutation status (‘Gene’) in a particu-
lar cancer type. Only detailed cancer types with >50 patients and the 
341 genes in the initial MSK-IMPACT panel were included in the present 
study. Covariates for the logistic regression included age, sex, ancestry 
and TMB. Smoking status was included in models with lung adenocarci-
noma. The glm function from the stats R package was used to conduct 
the modeling. P values were Benjamini–Hochberg corrected.

The following equations were used:

	(1)	 Gene ~ BMI
	(2)	 Gene ~ BMI + age + sex + ancestry + TMB
	(3)	 Gene ~ BMI + age + sex + ancestry + smoking status + TMB.

Pre-diagnosis weight loss identification and analysis
To identify pre-diagnosis weight loss in patients, 800 initial consulta-
tion notes were randomly selected from patients with treatment-naive 
lung adenocarcinoma and manually categorized. Records with men-
tions of the patient reporting weight loss, anorexia or decreased appe-
tite were labeled as having pre-diagnosis weight loss. Records with no 
mention of weight loss, anorexia or decreased appetite were labeled 
as having no pre-diagnosis weight loss.

Statistics and reproducibility
No statistical method was used to predetermine sample size. The 
experiments were not randomized and investigators were not blinded 
to allocation during experiments and outcome assessment because no 
subjective judgements were used.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All clinical and genomic sequencing data described in this paper 
have been deposited in the cBioPortal for Cancer Genomics (https://
www.cbioportal.org) and are available for online browsing and 
download there. Data are also available at https://doi.org/10.5281/
zenodo.11075026 (ref. 20). Although raw sequencing data are restricted 
to protect patient privacy in accordance with federal and state law, 
de-identified data are available. De-identified data can be requested 
for research use from the corresponding authors. Data will be shared 
for a span of 2 years within 2 weeks of execution of a data transfer 
agreement with MSKCC, which retains all title and rights to the data 
and results from their use.

Code availability
Code for reproducing the results in Fig. 1 and associated Supplemen-
tary Tables is available at https://github.com/reznik-lab/bmi_genomics. 
Please note that patients with ages ≥90 years have their age listed as 
90 to protect protected health information. However, their actual ages 
were used in the analyses.
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Extended Data Fig. 1 | BMI Distribution Across Cancer Types. BMI values across cancer types with over 200 samples. Each dot corresponds to a patient, with the 
y-axis representing the patient’s BMI. Cancer types are ordered by median BMI, with the lowest median BMI on the left and highest BMI on the right.
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Extended Data Fig. 2 | Silent mutations are not associated with body mass index. Scatterplot comparing -log10 expected p-values vs. -log10 observed p-values in 
univariate logistic regression models for silent mutations.
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