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Integration of variant annotations using 
deep set networks boosts rare variant 
association testing

Brian Clarke    1,2,13 , Eva Holtkamp    3,4,5,13, Hakime Öztürk    1,  
Marcel Mück    2, Magnus Wahlberg    2, Kayla Meyer    2, Felix Munzlinger2, 
Felix Brechtmann    3,6, Florian R. Hölzlwimmer3, Jonas Lindner3, Zhifen Chen7,8, 
Julien Gagneur    3,5,6,9  & Oliver Stegle    1,10,11,12 

Rare genetic variants can have strong effects on phenotypes, yet accounting 
for rare variants in genetic analyses is statistically challenging due to the 
limited number of allele carriers and the burden of multiple testing. While 
rich variant annotations promise to enable well-powered rare variant 
association tests, methods integrating variant annotations in a data-driven 
manner are lacking. Here we propose deep rare variant association 
testing (DeepRVAT), a model based on set neural networks that learns 
a trait-agnostic gene impairment score from rare variant annotations 
and phenotypes, enabling both gene discovery and trait prediction. On 
34 quantitative and 63 binary traits, using whole-exome-sequencing 
data from UK Biobank, we find that DeepRVAT yields substantial gains in 
gene discoveries and improved detection of individuals at high genetic 
risk. Finally, we demonstrate how DeepRVAT enables calibrated and 
computationally efficient rare variant tests at biobank scale, aiding the 
discovery of genetic risk factors for human disease traits.

The recent arrival of population-scale whole-exome and whole-genome 
sequencing studies1 vastly expands the potential to understand the 
genetic underpinnings of human traits. While genome-wide association 
studies (GWAS) on common variants have identified a compendium 
of trait-associated loci2, mapping these largely noncoding variants to 
affected genes and addressing the typically subtle effect sizes remain 
challenging3,4. In contrast, rare variants can exhibit large effects5, 
aiding the discovery of effector genes6,7, the unraveling of molecular 

mechanisms underlying traits and, in turn, the identification of potent 
drug targets8–10. Of further medical relevance, modeling rare variant 
effects has recently shown promise for identifying individuals at high 
disease risk and in deriving polygenic risk scores (PRS) that generalize 
better across populations than those based only on common variants11.

However, extending the GWAS strategy to rare variants must 
contend with a large number of low-frequency variants, leading 
to low statistical power due to sparsity and an increased multiple 
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Results
A deep set network-based RVAT framework
DeepRVAT is an end-to-end genotype-to-phenotype model (Fig. 1a) 
that first accounts for nonlinear effects from rare variants on gene 
function (gene impairment module) to then model variation in one or 
multiple traits as linear functions of the estimated gene impairment 
scores (phenotype module). The gene impairment module (Fig. 1b) 
estimates a gene and trait-agnostic gene impairment scoring func-
tion that accounts for the combined effect of rare variants, thereby 
allowing the model to generalize to new traits and genes. Technically, a 
deep set neural network34 architecture is used to aggregate the effects 
from multiple discrete and continuous annotations for an arbitrary 
number of rare variants. This architecture captures both linear additive 
and nonlinear effects and does not rely on a priori assumptions about 
the relevance of individual annotations, such as common assump-
tions about the relationship between allele frequency and effect  
size20,22 (Methods).

To train DeepRVAT, an initial set of traits and corresponding associ-
ated genes (seed genes, specific to each trait) is required. The Deep-
RVAT software offers an integrated workflow that uses conventional 
rare variant association tests to identify seed genes.

DeepRVAT is trained end-to-end, optimizing the parameters of 
both the gene impairment module and trait-specific phenotype mod-
ules to predict trait variation from rare variants contained in the seed 
genes. To obtain robust gene impairment estimates while avoiding data 
leakage, we use cross-validation (CV) with multiple random initializa-
tions per fold (Extended Data Fig. 1; Methods).

Once estimated, the gene impairment scores can be used to test 
for genetic associations using established principles of conventional 
burden tests (Fig. 1c). The scores can also be used to predict phenotype 
from genotype, thereby providing a flexible way to derive a PRS11,35 that 
accounts for rare variant effects (Fig. 1d). The training time of Deep-
RVAT scales linearly with the number of individuals, and association 
testing is highly efficient (Supplementary Fig. 1), thereby enabling 
applications to phenome-wide association studies (PheWASs) on large 
datasets such as UKBB.

To validate the model and assess the ability of DeepRVAT to learn 
properties of variant annotations from data, we initially considered a 
semi-synthetic dataset derived from the UKBB (Supplementary Fig. 2 
and Supplementary Table 2). After confirming statistical calibration 
(Supplementary Fig. 3), we assessed the sensitivity of DeepRVAT and 
alternative RVAT methods to assumptions about the relevance of vari-
ant annotations. We find that DeepRVAT is robust to model misspeci-
fication, whereas alternative methods are sensitive to any mismatch 
between assumptions on the relevance of variant annotations and their 
simulated relevance (Supplementary Figs. 4 and 5).

DeepRVAT improves RVAT yield and replication in UKBB
Next, we applied DeepRVAT to rare variants with minor allele frequency 
(MAF) <0.1% from whole-exome-sequencing (WES) data from the 
UKBB, considering 161,822 unrelated individuals of European ances-
try (November 2020, 200k WES release36; Methods). We annotated 
12,704,497 WES variants using MAF, variant effect predictor (VEP)37 con-
sequences, missense variant impact scores (SIFT14, PolyPhen2 (ref. 16)  
and AlphaMissense38), omnibus statistical deleteriousness scores 
(CADD15 and ConDel39), as well as predicted annotations for effects 
on protein structure (PrimateAI18), and aberrant splicing (SpliceAI40 
and AbSplice17). We further considered variant effect predictions for 
epigenetic markers in the encyclopedia of DNA elements (ENCODE)41 
and the Roadmap Epigenomics42 projects (using low-dimensional 
projections of DeepSEA19 predictions; Supplementary Fig. 6;  
Methods), as well as binding propensities for six RNA-binding  
proteins (selected predictions from DeepRiPe43; Methods). In total, 
this gave rise to 34 variant annotations (Supplementary Table 3 and  
Supplementary Fig. 7).

testing burden. To compensate, rare variant association testing (RVAT)  
methods aggregate rare variants at the level of genomic regions,  
typically genes12,13. Such aggregation methods rely on information 
about which rare variants impact gene function, which typically can-
not be inferred directly. Therefore, RVAT methods rely on functional 
annotations of variant effect12,14–16, such as conservation scores or 
variant effect predictions for splicing, gene expression or protein 
structure17–19, to prioritize putatively impactful variants.

Burden testing, a common RVAT strategy, relies on variant anno-
tations to filter presumably uninformative variants and to weight 
informative ones. These weights are then aggregated into one or mul-
tiple alternative gene-level burden scores and tested for association 
with discrete or quantitative traits20–25. Complementary to burden tests, 
variance component tests, which can account for both protective and 
deleterious variants, also use annotations for filtering and weighting 
variants as part of a kernel function13,26,27. Recently proposed RVAT 
methods based on variance component tests convincingly demon-
strated the added value of incorporating a broad spectrum of annota-
tions either by conducting an omnibus test over different test types and 
annotations28,29 or using specialized kernels tailored to different anno-
tation types30 (Supplementary Methods and Supplementary Table 1). 
However, like earlier methods, ad hoc variant filtering and weighting 
schemes remain integral components of existing workflows. The few 
RVAT methods that infer annotation weights from data and integrate 
multiple annotations are computationally prohibitively demand-
ing and, in practice, limited in the number of annotations and in the  
flexibility of the scoring function that can be considered31,32. Finally, 
because of these limitations, none of these methods lends itself to phe-
notype prediction, thus limiting their utility for applications in personal-
ized medicine (Supplementary Methods and Supplementary Table 1).

To address these issues, we present deep rare variant associa-
tion testing (DeepRVAT). Our framework uses a deep set network for 
modeling traits through the integration of rare variant annotations. 
The model handles variable numbers of rare variants per individual, 
leverages dozens of continuous or discrete variant annotations and 
accounts for both additive and interaction effects. All model param-
eters are learned directly from the training data, minimizing the need 
for the ad hoc modeling choices that characterize existing methods. 
The trained DeepRVAT model gives rise to a single, trait-agnostic 
gene impairment scoring function. This offers several key advantages 
over variance component tests. First, it can be used for different 
genetic analyses, including rare variant association tests and the 
refinement of polygenic risk prediction to account for rare variant 
effects. Second, it can be easily integrated into single-marker genetic 
association testing tools, providing advantages such as maintaining 
calibration when testing for association with imbalanced binary traits. 
This is problematic for alternative methods using rich annotations. 
Finally, DeepRVAT provides large gains in computational efficiency 
over alternative methods. We provide pretrained DeepRVAT models 
for direct application on new datasets. If desired, the model can also 
be retrained efficiently from scratch, for example, to incorporate 
additional annotations.

We validate the model using simulations before applying it to 34 
quantitative traits using whole-exome-sequencing data from 161,822 
UK Biobank (UKBB) individuals, enhancing the number of discover-
ies compared to existing methods. Following this, we demonstrate 
superior replication of DeepRVAT associations in held-out individuals 
from UKBB. Moreover, we combine DeepRVAT gene impairment scores 
with polygenic risk models, which yields enhanced prediction accuracy 
for extreme-value phenotypes in UKBB traits. Finally, by integrating 
DeepRVAT with REGENIE33, we demonstrate the utility of DeepRVAT in 
practical scenarios with related individuals, population structure and 
highly imbalanced binary traits. We apply DeepRVAT to 63 binary traits 
on a larger cohort of 469,382 UKBB individuals, yielding previously 
unknown associations with multiple diseases.
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Initially, we considered 21 quantitative traits of various categories 
(Supplementary Tables 4 and 5; Methods) to train DeepRVAT, followed 
by genome-wide association testing of the same traits. Across all traits, 
DeepRVAT identified 272 gene–trait associations (family-wise error 
rate (FWER) < 5%; Supplementary Table 6), which corresponds to a 75% 
increase compared to the widely used baseline approach combining 
burden and the sequence kernel association test (SKAT), a 19% and 
6% increase compared to two existing methods integrating multiple 
annotations, that of Monti et al.30 and STAAR28, respectively (Fig. 2a). 
We confirmed the statistical calibration of DeepRVAT (Fig. 2b), its 
robustness to the inclusion of nonassociated seed genes (Extended 
Data Fig. 2a,b) and verified the expected behavior of the model on 
synonymous variants (Extended Data Fig. 2c,d).

Next, we evaluated the validity of the discoveries by assessing 
their replication in at least one of two studies on the full UKBB WES 

cohort20,22, which used analysis strategies based on SKAT and burden 
testing. Notably, across a wide range of nominal significance ranks, the 
replication rate of DeepRVAT exceeded that of alternative RVAT tests 
(Fig. 2c). This suggests that not only does DeepRVAT have an improved 
capacity to detect rare variant associations, but it is also less susceptible 
to spurious ones.

In assessing the robustness of DeepRVAT to choices in the training 
procedure, we found that results are stable when downsampling seed 
genes and training traits (Extended Data Fig. 3a,b) and in the presence 
of correlated annotations (Extended Data Fig. 3c,d). With the aim 
of understanding which components of DeepRVAT contribute to its 
performance, we trained reduced models, considering minimal annota-
tions (MAF, predicted loss of function (pLOF) and missense status), as 
well as restricting the gene impairment module to linear effects. Both of 
these simplifications impacted the number of discoveries and the rate 
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Fig. 1 | DeepRVAT model overview and downstream use cases. a,b, DeepRVAT  
is trained as an end-to-end genotype-to-phenotype model (a), using a trait and 
gene-agnostic gene impairment module (b) to infer a scoring function that 
estimates gene impairment from rare variants and their annotations. The 
estimated gene impairment scores (orange boxes) are in turn used to explain 
variation in the set of training traits (y1,… , yp), using trait-specific linear 
phenotype modules. b, The gene impairment module is a set neural network. 
Annotated variants are fed through an embedding network, φ, to compute a 
variant embedding, followed by permutation-invariant aggregation to yield a 

gene embedding. A second network, ρ, estimates the gene impairment score.  
c,d, The trained DeepRVAT gene impairment module is used to estimate 
impairment scores across genes and individuals, enabling different downstream 
analyses. c, Gene discovery. The impairment scores can be used as input for 
association tests to conduct gene discovery, assessed by the number of 
discoveries and replication in held-out data. d, Polygenic risk prediction 
incorporating rare variants. The impairment scores can be used as input for 
genotype-to-phenotype prediction to, for example, improve risk stratification 
based on common-variant PRS. The image in d is created with BioRender.com.
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Fig. 2 | Benchmarking DeepRVAT for gene discovery. We applied DeepRVAT 
to gene discovery using WES and 34 traits from 161,822 unrelated UKBB 
individuals of European ancestry. As alternative methods, we also considered 
the combination of burden and SKAT tests, each using missense and pLOF 
variants (burden/SKAT combined), STAAR and the approach from Monti et al.30. 
a–c, RVAT analysis on 21 quantitative traits used for training DeepRVAT. a, Left: 
Cumulative number of gene–trait associations (FWER < 5%). Right: Number of 
gene–trait associations by trait category. b, Quantile–quantile (Q–Q) plot of 
observed versus expected (under the null hypothesis) unadjusted P values across 
traits. c, Replication of cumulative discoveries across traits in larger cohorts 
(cohort supersets; UKBB full WES release20,22; Supplementary Table 7). Shown 
are, for each method, the number of gene–trait associations that were also 
discovered in the larger cohort (according to the methodology of the respective 
studies) versus the rank of their nominal significance. Points indicate the rank 

position that corresponds to FWER < 5% (as in a). The gray line corresponds to 
a replication rate of 1. d, DeepRVAT gene impairment scores for the LDLR gene 
versus low-density lipoprotein (LDL) cholesterol measurements (z-score). Each 
point represents one individual, with red denoting individuals with at least one 
pLOF variant in LDLR. The blue line denotes the generalized additive model 
fit, with shaded areas corresponding to 95% confidence intervals. e, Empirical 
computation time when testing for association of 20,000 genes across 34 
phenotypes in the UKBB cohort as used in a–d, f and g. Multiples are relative to 
the pretrained DeepRVAT model. Shown are empirical runtimes on a workstation 
with a 32-core AMD Ryzen Threadripper PRO 5975WX CPU and NVIDIA RTX 4090 
24GB GPU. The time for ‘DeepRVAT (with training)’ includes seed gene discovery. 
f,g, Application to 13 quantitative traits not considered during DeepRVAT 
training. f and g are analogous to a and c, respectively.
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of replication (Extended Data Fig. 3e,f), indicating that the data-driven 
scoring function, the ability to consider a larger number of annotations 
and the capacity to capture nonlinear effects jointly contribute to the 
overall performance. We also conducted a feature importance analysis 
for individual annotations (Supplementary Fig. 8), supporting the 
relevance of a broad spectrum of annotations.

Finally, in addition to enabling well-powered association studies, 
DeepRVAT gene impairment scores enable fine-grained investiga-
tion of the relationship between gene impairment and traits (Fig. 2d 
and Supplementary Fig. 9). Moreover, DeepRVAT enables computa-
tional highly efficient RVAT analyses, in particular when applying the 
pretrained model (Fig. 2e). To test the universality of the DeepRVAT 
impairment score, that is, its generalization to new genes and traits, 
we extended our investigation to 13 additional quantitative traits not 
considered during training. We found similar benefits in the number 
of discoveries (Fig. 2f) and their replication (Fig. 2g) as observed for 
traits used during model training. We also considered conditioning on 
common-variant effects in the DeepRVAT association test20,30, confirm-
ing that our additional discoveries were not attributable to signals from 
common variants (Extended Data Fig. 4).

Improving phenotype prediction by integrating rare variants
The DeepRVAT gene impairment score can be readily leveraged for 
building phenotype predictors. To demonstrate this, we trained lin-
ear regression models that predict phenotypes from DeepRVAT gene 
impairment scores and public PRSs derived from common variants35. 
For this experiment, we considered the 379,783 unrelated European 
ancestry individuals from the full UKBB WES release ( July 2022, 470k 
WES release20; Methods). Regression models were fitted on the subset 
of individuals that had been considered for training DeepRVAT and 
were evaluated on the remaining held-out individuals. We considered 
the same traits as in the previous section (excluding waist-to-hip ratio 
(WHR) as it lacked a PRS), using PRS and DeepRVAT impairment scores 
for genes associated with each trait as features. For comparison, we 
trained analogous models but with gene-level features derived from 
single-annotation burdens for trait-associated genes from the burden/
SKAT combined method.

DeepRVAT showed the greatest relative improvement in vari-
ance explained over common-variant PRS (Fig. 3a and Supplementary 
Table 8; maximum improvement of 8.26% for alkaline phosphatase). 
The improvements in variance explained were modest (median 
improvement of 0.92% for DeepRVAT), which is consistent with com-
mon variants explaining most heritability10. Nevertheless, it correlated 
well with burden heritability10 (Supplementary Fig. 10), indicating that 
DeepRVAT can capture the overall contribution of rare variants to herit-
ability across different traits. We hypothesized that the importance of 
rare variants in phenotype prediction would be more apparent when 
predicting individuals with extreme phenotypes. To assess this, we 
analogously trained logistic regression models to predict individuals 
at the extreme phenotypic percentiles. Indeed, the relative improve-
ment was considerably larger for this task (Fig. 3b and Supplementary 
Table 8; maximum average precision improvement using DeepRVAT 
of 258.73% for predicting individuals in the lowest percentile of alka-
line phosphatase levels). Again, the DeepRVAT impairment score per-
formed significantly better than single-annotation models (Fig. 3b). 
Ablation analyses showed that the added value of DeepRVAT arises from 
the combination of a refined gene impairment score and the ability 
to identify more informative trait-associated genes used as features 
(Supplementary Fig. 11).

Next, we focused on those individuals with the strongest devia-
tions between the rare variant model and the PRS. Particularly with 
the DeepRVAT-based model, individuals showing the greatest devia-
tion in predicted phenotypic values were more likely to lie in extreme 
percentiles (bottom or top 1%; Fig. 3c). Similarly, individuals with 
extreme phenotype predictions from the DeepRVAT model were 

more prominently enriched for extreme phenotype measurements 
compared to alternative rare variant predictors (Fig. 3d). At the most 
extreme phenotype threshold (z-score ≥ 2.30), DeepRVAT showed a 
3.61% greater enrichment of phenotypic outliers in its 99th percentile 
predictions compared to the common-variant-based PRS model, out-
performing the most competitive single-annotation rare variant model, 
which used AlphaMissense and gave only a 1.9% improvement. These 
findings demonstrate the advantage of DeepRVAT gene impairment 
scores in phenotype prediction, particularly for identifying individu-
als with extreme phenotypes, compared to conventional PRS based on 
common variants and alternative rare variant models.

Robustness to imbalanced binary traits and relatedness
Having demonstrated the advantages of DeepRVAT for gene discov-
ery and phenotype prediction, we set out to test the robustness and 
benefits of the model in practical settings involving related individu-
als, population structure or low-prevalence case–control designs. 
To address this, we combined DeepRVAT impairment scores with 
REGENIE33, a regression-based association testing framework that is 
designed to address the three aforementioned challenges. Technically, 
we conducted single-marker association testing using REGENIE, provid-
ing one pseudovariant per gene with the DeepRVAT gene impairment 
score as a pseudodosage (Methods).

We first assessed the robustness of this DeepRVAT + REGENIE 
combination to related individuals and population structure for the 
same quantitative traits as in Fig. 2, however, additionally considering 
related and multi-ancestry individuals contained in the 200k UKBB 
WES release. REGENIE conferred robustness when including related 
individuals, and leveraging multiple ancestries (that is, the full 200k 
release) led to a net increase in the number of discoveries (Fig. 4a and 
Extended Data Fig. 5a). Expanding our analyses in a different direc-
tion, we returned to unrelated individuals of European ancestry but 
performed RVAT for 63 binary traits, covering a broad range of disease 
traits, including heart failure, cataract and pneumonia (Supplemen-
tary Table 4). We compared DeepRVAT + REGENIE to the native RVAT 
implementation of REGENIE (burden and SKAT tests with pLOF and 
missense masks, variant weights given by Beta(1, 25)-transformed 
MAF values; Methods), to DeepRVAT without REGENIE, as well as to 
STAAR and the method of Monti et al.30. Strikingly, the latter three were 
poorly calibrated for these binary traits (Fig. 4b and Extended Data 
Fig. 5b) and showed an excessive number of gene discoveries for less 
prevalent conditions (Fig. 4c and Extended Data Fig. 5c), consistent 
with previous reports44. This left only the REGENIE default test and the 
DeepRVAT + REGENIE combination with calibrated P values (Fig. 4b). 
These observations demonstrate that DeepRVAT benefits from the Firth 
penalized logistic regression used within REGENIE, which is robust in 
rare event settings. Furthermore, we found more than twice as many 
gene discoveries using REGENIE based on DeepRVAT scores compared 
to its default burden/SKAT test (Fig. 4d), consistent with the relative 
power increase observed for quantitative traits.

Finally, we extended our analyses (both conditioned and not con-
ditioned on common variants) to all 469,382 UKBB individuals with 
available WES, yielding a total of 1,153 significant associations across 
97 traits (FWER < 5%; Supplementary Table 9). Remarkably, our analysis 
yielded 88 associations among the 63 binary traits, 43 of which had 
not previously been identified in rare variant analyses in the UKBB 
(Table 1; Methods).

An example of particular interest is a previously unreported asso-
ciation between additional sex combs like 1 (ASXL1) and heart failure. 
ASXL1 is one of the top genes affected by clonal hematopoiesis, namely 
clonal expansion of peripheral blood cells carrying somatic mutations 
but without overt hematological malignancy45. Clonal hematopoiesis 
mutations were reported to increase cardiovascular risk, including 
heart failure46. In particular, somatic mutations of ASXL1 have been 
shown to be associated with heart failure and reduced left ventricular 
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ejection fraction both in humans and mice47,48. Our results suggest that 
germline variants in ASXL1, including unreported ones (Extended Data 
Fig. 6), also predispose to heart failure. Alternatively, but not exclu-
sively, somatic mutations present in the UKBB genotypes may lead to 
this and possibly further associations. Other notable findings include 
the association between HSF4 and the occurrence of cataracts as well as 
between coronary artery disease and HHIPL1. HSF4 has been implicated 
in cataract formation in specific canine breeds49 and through a targeted 
sequencing study of isolated autosomal-dominant lamellar cataracts 
in a five-generation British family50, but not previously from GWAS 
or RVAT evidence. A GWAS using the FinnGen dataset has reported a 
low-frequency variant (MAF = 0.7%) in HHIPL1 associated with coronary 

revascularization51. Our study strengthens these findings by revealing 
rare variants in HHIPL1 associated with coronary artery disease. HHIPL1 
encodes a secreted proatherogenic protein, hedgehog interacting 
protein-like 1, which regulates smooth muscle cell proliferation and 
migration52.

Discussion
We have introduced DeepRVAT, a data-driven model for association 
testing and phenotype prediction based on rare variants. Unlike exist-
ing methods, DeepRVAT infers the relevance of different annotations 
and their combinations directly from data. In so doing, DeepRVAT 
eliminates the need for post hoc aggregation of test results derived 
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Fig. 3 | Application of DeepRVAT to phenotype prediction. We used DeepRVAT 
gene impairment scores and alternative rare variant gene burdens as features 
for phenotype prediction. Compared were common variant PRS versus the 
combination of PRS with either DeepRVAT or one of eight burdens derived from 
a single annotation. Models were trained on 33 UKBB traits (n = 154,966) and 
evaluated on a held-out fraction of the cohort (n = 224,817). a, Distribution of 
relative improvement of prediction performance (coefficient of determination, 
R2) when including rare variant gene burdens in a linear regression model versus 
a common variant PRS-only model. The centerline indicates the median; box 
limits indicate the first and third quartiles; whiskers span all data within 1.5× 
interquartile ranges of the lower and upper quartiles; values beyond the whiskers 
are depicted as points. b, Analogous comparison as a considering logistic 
regression to stratify individuals in the bottom 1% (left) or top 1% (right) of the 
phenotypic distribution. Shown are relative differences in the AUPRC between a 

model including rare variants versus a common variant PRS-only model. Unless 
indicated not significant (NS), the relative gains of including the DeepRVAT 
burden compared to alternative methods as in a and b are significant (P < 0.05, 
paired one-sided Wilcoxon test). c, Rank-based enrichment of individuals with 
extreme-value phenotypes (top 1% (right) or bottom 1% (left)) among individuals 
with strongly deviating predictions when using a model that combines PRS and 
a rare variant burden. Shown is the number of individuals with extreme-value 
phenotypes when ranked by the magnitude of deviation using a model that 
includes rare variants versus a common-variant PRS model, averaged across 
traits. The dotted line corresponds to a perfect ranking. d, Enrichment of top 1% 
phenotype predictions among individuals with extreme phenotypes (exceeding 
a certain z-score cutoff) using a model that includes rare variants versus a 
common variant PRS model, averaged across traits.
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from individual annotations using multiple-testing schemes. DeepRVAT 
leverages the flexibility of deep neural networks to integrate rare vari-
ant annotations while offering a calibrated statistical framework for 
gene–trait association testing. DeepRVAT significantly outperforms 
state-of-the-art methods in gene discovery for 97 traits from the UKBB, 
leading to a substantial increase in retrieving gene–trait associations 
with higher replication rates in held-out data.

DeepRVAT represents a conceptual advance by separating 
trait-agnostic gene impairment scoring on the one hand from gene–
trait association testing on the other hand. We have demonstrated 
the utility of this impairment score for rapid gene–trait association 
testing by considering traits that were not seen by the model during 
training. This modular architecture also allows performing gene–trait 
association testing with dedicated, robust algorithms. Specifically, we 

have combined DeepRVAT with REGENIE, enabling robust testing for 
imbalanced binary traits. We found that even on the well-studied UKBB 
470k WES dataset, previously unknown gene–trait associations could 
be discovered by DeepRVAT.

A second opportunity provided by the impairment score is to 
estimate the genetic predisposition of individuals by accounting for 
variants from the full frequency spectrum. We have demonstrated this 
by combining DeepRVAT with PRS based on common variants, finding 
considerable benefits over both PRS and conventional burden scores 
based on single annotations, particularly for extreme phenotypes. 
DeepRVAT is provided as a user-friendly software package that sup-
ports both de novo training of gene impairment modules and the 
application of pretrained ones, each with substantial improvements 
in computational efficiency over existing methods.
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Fig. 4 | Application of DeepRVAT to related/multi-ancestry individuals 
and imbalanced binary traits. To improve robustness to relatedness, 
population structure and imbalanced binary traits, we combined DeepRVAT 
with REGENIE (DeepRVAT + REGENIE), using DeepRVAT gene impairment 
scores as pseudodosages. a, Discoveries and replication across 34 quantitative 
traits, analogous to Fig. 2c,g, considering either the standard DeepRVAT or 
DeepRVAT + REGENIE. Shown are results obtained on different subcohorts of the 
UKBB 200k WES release—unrelated individuals of European ancestry (European 
unrelated), all individuals of European ancestry (European incl. related) and all 
200,583 individuals (all ancestries incl. related). b–d, Application of alternative 

methods to 63 binary traits, considering unrelated individuals of European 
ancestry from the UKBB 200k WES release. b, Q–Q plots of expected versus 
observed unadjusted P values across all traits. Shown are results from REGENIE 
with default settings, DeepRVAT + REGENIE, the method of Monti et al.30 and 
STAAR. c, Scatter plot of the number of gene–trait associations discovered by 
alternative methods (FWER < 5%) versus trait prevalence. d, Cumulative number 
of gene–trait associations discovered by REGENIE and DeepRVAT + REGENIE 
(FWER < 5%). Results from the method of Monti et al.30 and STAAR are not shown 
given their poorly calibrated test statistics (b) and inflated number of discoveries 
(c) on these binary traits.
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Table 1 | Significant gene–trait associations (FWER < 0.05) not found in previous rare variant association studies on  
UKBB WES20–22

Trait Gene Unconditional analysis Conditional analysis

β Nominal P value β Nominal P value

AV or bundle branch block LMNA −0.99 5.03 × 10−7 −0.99 5.00 × 10−7

Asthma LZTS2 0.542 2.41 × 10−6 0.557 1.47 × 10−6

Atrial fibrillation

OR4C11 −2.07 1.75 × 10−6 −2.04 2.63 × 10−6

PKP2 −0.678 1.68 × 10−7 −0.7 9.21 × 10−8

LMNA −0.723 1.40 × 10−6 −0.763 4.64 × 10−7

Bradyarrhythmia LMNA −1.11 8.32 × 10−11 −1.11 8.34 × 10−11

Breast cancer NTSR1 −0.801 1.43 × 10−6 −0.806 1.50 × 10−6

Cataract

HSF4 −0.612 7.04 × 10−7 −0.615 6.53 × 10−7

CPAMD8 −0.332 5.96 × 10−9 −0.338 3.67 × 10−9

FOXE3 −0.837 4.89 × 10−7 −0.84 4.75 × 10−7

BFSP1 −1.02 1.53 × 10−14 −1.03 1.01 × 10−14

Cholelithiasis
SLC10A2 −0.591 1.22 × 10−13 −0.608 3.24 × 10−14

SEL1L −0.658 6.09 × 10−7 −0.67 4.31 × 10−7

Coronary artery disease HHIPL1 −0.532 1.42 × 10−6 −0.52 2.58 × 10−6

Diverticular disease
ADAMTS8 0.427 5.98 × 10−7 0.437 3.53 × 10−7

COLQ −0.408 4.14 × 10−7 −0.413 3.67 × 10−7

Glaucoma FKBP9 −0.776 2.97 × 10−7 −0.774 3.50 × 10−7

Heart failure ASXL1 −0.54 3.54 × 10−7 −0.533 4.77 × 10−7

Hypercholesterolemia

HBB 0.804 8.71 × 10−8 0.832 3.45 × 10−8

APOA5 −0.519 1.02 × 10−7 −0.503 3.14 × 10−7

ABCA6 −0.305 2.05 × 10−7 −0.309 1.68 × 10−7

NPC1L1 0.421 5.85 × 10−10 0.434 2.47 × 10−10

ABCA1 0.3 2.64 × 10−8 0.305 1.92 × 10−8

Hypertension

PDE3B 0.257 9.40 × 10−7 0.269 4.05 × 10−7

INPPL1 0.407 4.95 × 10−9 0.415 3.72 × 10−9

BLM −0.269 8.53 × 10−7 −0.281 3.84 × 10−7

RMC1 −0.536 1.64 × 10−6 −0.543 1.54 × 10−6

NPR1 −0.436 8.47 × 10−11 −0.453 2.55 × 10−11

REN 0.699 2.20 × 10−8 0.722 1.06 × 10−8

ENPEP −0.247 4.93 × 10−9 −0.242 1.55 × 10−8

GUCY1A1 −0.526 8.85 × 10−10 −0.524 1.59 × 10−9

Hypertrophic cardiomyopathy MYH7 −2.78 3.19 × 10−16 −2.78 3.19 × 10−16

Irritable bowel syndrome PRMT8 −1.71 4.98 × 10−7 – –

Osteoarthritis CSPG4 0.295 1.85 × 10−6 0.298 1.50 × 10−6

Parkinson’s disease CFDP1 −1.77 2.37 × 10−6 −1.77 2.19 × 10−6

Pneumonia TET2 −0.554 4.82 × 10−7 −0.553 5.05 × 10−7

Prostate cancer SAMHD1 −1.09 8.68 × 10−8 −1.11 1.01 × 10−7

Skin cancer

TYR −0.534 9.78 × 10−8 −0.62 1.02 × 10−9

SLC45A2 −0.464 4.76 × 10−7 −0.486 1.64 × 10−7

CDKN2A −2.11 1.41 × 10−13 −2.13 1.32 × 10−13

Venous thromboembolism

STAB2 −0.446 8.97 × 10−9 −0.445 1.07 × 10−8

PROC −2.38 7.81 × 10−30 −2.39 4.54 × 10−30

F11 0.801 7.36 × 10−7 0.799 8.34 × 10−7

Unadjusted P values as returned by REGENIE are listed. Conditional analyses were performed for all traits with at least one GWAS signal at P < 10−7, which applied to all traits but irritable bowel 
syndrome, myocardial infarction and colorectal cancer.
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Although we found that DeepRVAT advances the state-of-the-art 
in two use cases central to genetics, the model is not free of limitations. 
First, while we have shown that DeepRVAT can cope with a potentially 
very large number of annotations, including correlated ones, the 
choice of informative annotations remains empirical. Furthermore, 
generating the annotations for all variants, which is a prerequisite to 
training DeepRVAT, can be computationally expensive, in particular if 
these are based on massive deep neural networks. Second, we bench-
marked DeepRVAT using exome-sequencing data, but whole-genome 
sequencing promises valuable insights into noncoding regions with 
numerous rare variants of uncertain impact. We hypothesize that the 
added value of DeepRVAT, which incorporates rich variant annota-
tions, might be even larger in this context. Finally, while we showed 
that DeepRVAT is robust to various rare variant frequency cutoffs, it is 
still based on a dichotomy between rare and common variants. Recent 
reports have shown substantial overlap between GWAS loci and rare 
variant associations10,11,20. These insights suggest the potential for 
future developments to jointly model and estimate rare and common 
variant effects in a unified framework.

The analysis of rare variants will remain a major topic in quantita-
tive genetics modeling. DeepRVAT belongs to the class of approaches 
that model gene impairment, a strategy that underpins high-impact 
variant filters in burden tests20,22,23 or protein function impairment25. 
Our contribution is to better optimize the impairment score by learning 
a more flexible model directly from annotated variants on cohort data. 
Notably, we found this gene impairment score to generalize well across 
traits. This transferability, combined with DeepRVAT’s sensitivity and 
computational efficiency, is an important feature that will facilitate 
its application to study allelic series53, to conduct rapid rare variant 
PheWAS and to discover rare variant associations in smaller cohorts 
from case–control studies.

Online content
Any methods, additional references, Nature Portfolio reporting  
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of author  
contributions and competing interests; and statements of data 
and code availability are available at https://doi.org/10.1038/
s41588-024-01919-z.
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Methods
A more detailed exposition of the methods may be found in the Sup-
plementary Methods.

Ethics statement
UKBB protocols are overseen by the UKBB Ethics Advisory Committee. 
Informed consent was obtained for all participants. Participants who 
revoked consent were removed from the analysis. The original approval 
for the UKBB was granted in 2011 by the National Research Ethics Ser-
vice Committee North West—Haydock. The approval was renewed in 
2016 and 2021 by the Health Research Authority, North West—Haydock 
Research Ethics Committee. This research has been conducted using 
the UKBB resource under applications 25214, 44108 and 81358.

DeepRVAT model
Model and applications. The DeepRVAT gene impairment module is 
trained as part of an end-to-end multiphenotype prediction model. 
The pretrained gene impairment module can be leveraged in various 
downstream tasks, including RVAT and augmenting PRS with rare 
variant effects.

Input data. The input data for DeepRVAT consists of unordered sets of 
variants. The variant set for individual i and gene j is defined as follows:

Vij = {(akl)l=1,…,d ∣ variant k present in individual i,gene j} ,

where akl is the lth annotation of variant k.

Model architecture. We used a deep set architecture34. The variant set 
is first passed through a submodule φ, which computes a variant 
embedding φ (xk) for each xk = (ak1,… ,akd) ∈ Vij . Next, a gene embed-
ding is computed using a fixed and permutation-invariant aggregation 
function f (we used the element-wise maximum), and then a second 
submodule ρ computes a scalar gene impairment score. Finally, we 
pass the result through a sigmoid function. In full,

ψ (Vij) = σ (ρ (f ({φ (xk)}xk∈Vij
))) ,

where both φ and ρ are multilayer perceptrons (MLPs), and σ is the 
sigmoid (logistic) function.

Seed genes. Training of the gene impairment module begins by select-
ing, for each training phenotype, a set of trait-specific ‘seed genes’ from 
the set of all protein-coding genes. In this study, we base these on the 
results of alternative RVAT methods, specifically the ‘burden/SKAT 
combined’ method described below.

Training objective. DeepRVAT is trained in a multitask framework 
across multiple phenotypes. We estimate the pth phenotype y(p)

i
 for 

individual i as a linear combination of the gene impairment scores and 
covariates:

ŷ(p)
i

= xT
i
α(p) + ∑

j∈S(p)
w(p)

j
ψ (Vij) ,

where xi is the vector of covariates for individual i and S(p) is the set of 
seed genes for phenotype p. The parameters of ψ are shared across all 
variants, genes and phenotypes, while α(p) and w(p)

j
 are phenotype 

specific. The loss is given by the mean across phenotypes,

L (yi, ŷi) =
1
P

P

∑
p=1

L (y(p)
i
, ŷ(p)

i
) .

Training-validation split. A data point for the DeepRVAT multipheno-
type model was given by an individual–phenotype pair. Before training, 

data points were shuffled, and a validation set consisting of 20% of 
individuals was selected at random for each phenotype.

Hyperparameters and software. For the variant embedding φ, we used 
a two-layer MLP with a width of 20. We used an MLP with two hidden 
layers of width 10 for ρ. In both networks, leaky rectified linear units 
with a negative slope of 0.01 were used as the activation functions. We 
used the mean-squared error (MSE) loss and the AdamW optimizer 
with a learning rate of 0.001. The batch size was 1,024. Early stopping 
was used to select the checkpoint with the lowest validation MSE loss. 
Training proceeded for a minimum of 50 and a maximum of 1,000 
epochs. All DeepRVAT models were implemented in PyTorch (v1.13.1) 
and PyTorch-Lightning (v1.5.10).

Ensembling and CV scheme. The dataset is first used for seed gene 
discovery using the ‘burden/SKAT combined’ method described below. 
Next, we partition the dataset across samples into K equally sized sub-
sets (in this study, we used K = 5). We hold out one subset and train on all 
others, followed by computing gene impairment scores on the held-out 
samples using the trained model. This process is repeated for all subsets, 
resulting in a set of K models that can be used to estimate gene impair-
ment scores for association testing, thereby avoiding information leak-
age without compromising sample size. Training within each CV fold is 
repeated for six random restarts, resulting in an ensemble of models. 
When estimating burden scores, all folds and random restarts that did 
not include the individual during training are averaged.

Integration into single-marker association testing frameworks. 
Because DeepRVAT provides a single score per gene and sample, it can 
be seamlessly integrated into any tool that carries out single-marker 
association testing with genotype dosages. Practically, we implement 
this by providing a script that uses the bgen package (v1.6.1) to convert 
the (samples × genes) matrix of DeepRVAT scores to a BGEN file of 
pseudovariants. The DeepRVAT gene impairment score, ψ(Vij) is stored 
as the probability pij = (ψ (Vij) ,0, 1 − ψ (Vij)) of homozygous alternate, 
heterozygous and homozygous reference alleles so that the pseudo-
dosage dij = 2ψ(Vij) lies in the usual range of [0,2].

Alternative RVAT methods
Burden tests and SKAT. We implemented burden and SKAT tests fol-
lowing ref. 22, using the score test from the SEAK package30 (v0.4.3). 
All combinations of burden and SKAT tests restricted to either pLOF 
or missense variants were carried out. We also created a combination 
test (burden/SKAT combined) using the full set of P values from all four 
individual tests. Variants were weighted with the betadensity function, 
that is, Beta(MAF; 1, 25). Ensembl VEP37 was used to annotate missense 
and pLOF variants, with the latter composed of stop gained, start lost, 
splice donor, splice acceptor, stop lost or frameshift variants. In SKAT 
tests, variants with minor allele count (MAC) ≤10 were collapsed as 
described in ref. 44. Due to computational constraints, we skipped 
genes with over 5,000 markers, impacting only one gene (Titin) for 
missense variant tests.

STAAR. STAAR tests were implemented using the STAAR package 
(v0.9.6) provided by the authors and following its vignette as well 
as the original publication28. To ensure optimal comparability with 
DeepRVAT, the same annotations as for DeepRVAT (described below) 
were used. As required for the STAAR procedure, each annotation was 
PHRED-scaled. Following ref. 28, STAAR P values were computed for 
five variant groups, namely (1) putative loss-of-function (stop gain, 
stop loss and splice), (2) missense, (3) disruptive missense, (4) puta-
tive loss-of-function and disruptive missense and (5) synonymous 
variants. We defined disruptive missense variants to be those that were 
predicted to be both ‘deleterious’ by SIFT14 and ‘probably damaging’ 
by PolyPhen216.
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Method by Monti et al.. We used the same annotations, variant weight 
thresholds and variant kernel architectures as outlined in ref. 30.  
Annotation scores were obtained according to the details provided in 
Supplementary Table 3. We used the score test from SEAK to compute  
P values. In the case of missense and splicing tests, if either the collapsing 
or kernel-based association test yielded nominal significance (P < 0.01), 
we performed joint testing with pLOF variants. The P values from these 
tests were aggregated using the Cauchy combination method.

REGENIE. Burden and SKAT tests were run using both missense and 
pLOF masks, yielding four combinations. For burden tests, we used the 
default REGENIE strategy of collapsing variants to gene level using the 
maximum number of alternate alleles across sites. We used the approxi-
mate Firth likelihood ratio test for P values less than 0.01. Identically 
to the tests implemented in SEAK mentioned above, weights for SKAT 
tests were computed as Beta(MAF;1,25).

Combination of multiple P values per gene and 
multiple-testing correction
The burden/SKAT combined method, the method Monti et al.30 and 
STAAR each yielded multiple P values per gene. These were aggregated 
at the gene level using the Bonferroni procedure, and the smallest  
P value per gene was retained. For all methods, we again used Bonfer-
roni correction across all 19,388 tested genes.

Expected allele frequency (EAF) filtering
Following ref. 22, we restricted testing to genes that passed an EAF filter 
of at least 50. The EAF is defined as CAF × n, where CAF is the cumula-
tive allele frequency (the sum of allele frequencies of all qualifying 
variants j in the gene) and n is the cohort size for quantitative traits or 
the number of cases for binary traits.

UKBB WES data
Exome-sequencing data. WES (+100 bp overhang) was performed 
on 469,779 participants from the UKBB20, for which the methods have 
been described in the earlier release of data from approximately 50,000 
individuals54. We refer to this as the UKBB 470k WES dataset and use the 
UKBB 200k WES dataset to refer to the interim release from 200,633 
participants.

Variant data and quality control (QC). For both cohorts mentioned 
above, variant calling data were downloaded from the UKBB as 
project-level VCF (pVCF) files. We applied additional QC following 
ref. 54 and using bcftools55 (v1.10.2)—minimum read depth of 7 for 
SNPs and 10 for InDels; at least one homozygous variant genotype or 
at least one sample per site with an allelic balance ratio greater than 15% 
for SNPs and 10% for InDels; fraction of missing genotypes <10%; and 
Hardy–Weinberg equilibrium P value > 10−15. Additionally, we filtered 
out individuals with >10% missing genotype rate and those who had 
withdrawn from the study. Finally, following the analysis best practices 
recommended by UKBB, we applied a coverage filter, requiring that at 
least 90% of all genotypes for a given variant have a read depth of at least 
10. This resulted in datasets with 200,583 individuals and 12,704,497 
variants (UKBB 200k WES), and 469,382 individuals and 26,141,967 
variants (UKBB 470k WES).

Custom sparse genotype data format. To enable fast, multiple itera-
tions over the WES datasets, we created a custom sparse dataset in 
Hierarchical Data Format 5 (HDF5 v1.10.6). Details are provided in the 
Supplementary Methods. For UKBB 200k WES, the HDF5 dataset had a 
storage size of approximately 100 GB, compared to multiple terabytes 
for the original pVCF files.

Covariates. We retrieved genetic sex, sample age and the first 
20 genetic principal components (PCs) directly from UKBB 

(Supplementary Table 5). We computed age2 and age × sex to use as 
additional covariates. Covariates were included in association testing 
with all methods and when training DeepRVAT.

Variant-to-gene assignments. Variants were assigned to genes using 
those protein-coding genes and associated exons marked as golden in 
the merged Ensembl/HAVANA genome annotations (GENCODE release 
38). We assigned a variant to a gene if it was located at most 300 bp 
from an associated exon.

Variant annotations
The full collection of variant annotations used and their sources are 
provided in Supplementary Table 3. Here we give details on processing 
for those annotations that were not used directly in the form output 
by the source.

MAF. MAF values for variants were first replaced with the maximum 
of the MAF in the UKBB cohort and in gnomAD release 3.0 (non-Finnish 
European population). Following ref. 23, the MAF pj of each variant  

j was then transformed according to the formula [pj (1 − pj)]
− 1

2 for use 
in modeling.

DeepSEA. To improve model fitting and avoid overfitting, we  
performed PC analysis and restricted to the first six PCs of DeepSEAs 
919 predicted variant effects.

SpliceAI. SpliceAI provides four ‘delta scores’ indicating a variant’s 
predicted effect on cryptic splicing40. We computed the maximum of 
these four scores and used it as a single annotation.

AbSplice. We computed the maximum predicted effect across tissues 
and used this as a single annotation.

DeepRiPe. As in ref. 30, we predicted the effects of genetic variants on 
the binding of six RBPs over three cell lines.

MAF thresholds. For DeepRVAT training, we used variants with 
MAF < 1%. For association testing with all methods, we designated 
rare variants as having MAF < 0.1%. Additionally, for both training 
and association testing, we restricted to variants with PHRED-scaled 
CADD value >5.

Phenotype data
All phenotype data (Supplementary Table 4) were obtained directly 
from UKBB, except for WHR, which was computed as the ratio of UKBB 
data field 48 to data field 49 and corrected for body mass index by 
regressing out the corresponding data field 21001. Phenotype values 
were quantile transformed to match their empirical distributions to 
a standard normal distribution. For individuals with reported sta-
tin usage, we adjusted cholesterol (30690) by dividing by 0.8 and 
LDL-direct (30780) by dividing by 0.7, following refs. 56,57. Statins 
considered were obtained from ref. 58 and matched to UKBB treat-
ment codes (20003). Binary traits were extracted using the definitions 
from ref. 21.

DeepRVAT training and association testing on UKBB data
Subselected cohorts. Because the various methods used for bench-
marking control for sample relatedness and population structure 
differently, or not at all, we retained only unrelated individuals of Euro-
pean genetic ancestry from the UKBB 200k WES dataset for DeepRVAT 
model training and benchmarking against alternative RVAT methods. 
Individuals related to third degree or closer were identified according 
to UKBB Resource 668. Individuals of European ancestry were identi-
fied using UKBB data field 22006 (termed ‘Caucasian’). This filtering 
resulted in a dataset (denoted UKBB 200k unrelated European ancestry 
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below) of 161,822 individuals. For testing the integration of DeepRVAT 
with REGENIE (Fig. 4a, we additionally used all 167,214 individuals of 
European genetic ancestry.

Training and gene impairment scoring. Seed gene discovery and 
DeepRVAT training were carried out on the UKBB 200k unrelated 
European ancestry dataset. Training and gene impairment scoring 
were done according to the CV scheme described above. An ensemble 
consisting of all 30 models from the CV step (six ensemble models from 
five training folds) was used to compute gene impairment scores for 
the remaining 307,560 individuals from the UKBB 470k WES cohort.

Association testing. For the method denoted DeepRVAT, association 
testing was carried out using the score test from SEAK (v0.4.3). Associa-
tion testing for the method DeepRVAT + REGENIE was carried out with 
REGENIE (v3.4.1). Following the REGENIE documentation, for step 1, 
we selected approximately 500k (precisely, 483,446) imputed SNPs 
from UKBB data field 22828 using the following filtering: MAF < 0.06, 
MAC > 100, genotyping rate >0.99, Hardy–Weinberg P value ≥ 10−15 and 
sample missingness <0.1. Additionally, we pruned SNPs with a pairwise 
linkage disequilibrium r2 threshold of 0.9, using a window size of 1,000 
and a step size of 100. Step 2 of REGENIE was run on DeepRVAT gene 
impairment scores for each gene, derived as described above. For 
quantitative traits, the default options of REGENIE were used. For binary 
traits, we used the approximate Firth likelihood ratio test with a P value 
threshold of 0.01. To account for multiple testing across genes, we 
applied Bonferroni correction for DeepRVAT and alternative methods.

Comparison with other UKBB RVAT studies
We compared our results to gene–trait associations from two studies20,22 
on larger WES cohorts from UKBB (454,787 and 394,841 individuals, 
respectively). We counted as a discovery any association that was con-
sidered significant according to the methodology of the study. To 
compute replication for quantitative traits, we ranked all gene–trait 
associations by P value and, at each rank, counted the number of associa-
tions that overlapped with discoveries from the larger cohorts.

Conditional association tests
For associations that were significant after multiple testing correction, 
we conducted conditional association tests using GWAS summary 
statistics from the Pan-UKBB study59. Independently associated vari-
ants were identified from GWAS summary statistics through LD-based 
clumping using PLINK60 (v1.9) with default parameters, restricting to 
associations with a P value < 10−7 and MAF > 1%. If a binary trait definition 
used in this study did not exactly match a single GWAS from Pan-UKBB, 
we combined P values from all relevant GWASs that covered parts of the 
trait definition before performing clumping. For association testing 
with SEAK in the method denoted DeepRVAT, independently associated 
variants within 500 kb around the gene boundaries were incorporated 
as covariates in the conditional analysis. For association testing with 
REGENIE (that is, DeepRVAT + REGENIE), all variants independently 
associated with a specific trait were considered for all genes.

Phenotype prediction using DeepRVAT and alternative rare 
variant scores
Dataset. Training and evaluation of the regression models were done 
on two disjoint datasets, both restricted to unrelated individuals of 
European ancestry. A total of 154,966 (from UKBB 200k WES) and 
224,817 individuals (from UKBB 470k WES, not found in UKBB 200k 
WES) were used for training and evaluation, respectively.

PRS computation. Common PRS variants and effect sizes were all 
obtained from the Polygenic Score Catalog61 using the study from 
ref. 35. The catalog numbers of each common variant PRS are listed in 
Supplementary Table 4.

Gene discovery. Only the training individuals were used for gene 
discovery. For alternative burdens, we used the method ‘burden/SKAT 
combined’. Retaining associations at FWER < 0.05 resulted in a set of 
genes G(p)

b
 for phenotype p to use in the baseline prediction models. 

For DeepRVAT, gene discovery was conducted across all 33 traits of 
interest exclusively on training samples, following the method outlined 
above, using gene impairment scores obtained using the CV scheme. 
This yielded a set of trait-associated genes G(p)

d
 at FWER < 0.05.

Burden and gene impairment scores. On the test set, alternative 
burdens were computed as the maximum across all variants in a given 
individual and gene (excluding SIFT, where the minimum was used). 
DeepRVAT gene impairment scores for the test set were computed 
analogously to those used in association testing, using all models 
trained as part of the CV scheme on the evaluation set.

Phenotype predictor training and evaluation. For simplicity, we 
describe models for predicting raw phenotype values. Prediction of 
extreme values is analogous, with logistic regression on the binary 
target replacing linear regression.

Baseline. As a baseline phenotype predictor, we consider a regres-
sion model where the explanatory variables comprise covariates (as 
described above) and the common variant PRS score:

ŷ(p)
i

= αTxi + β(p)c c(p)
i
,

where c(p)
i

 is the common variant PRS score of sample i for phenotype 
p and, as given above, xi is the vector of covariates for sample i.

Extension with rare variants. To incorporate the effects of rare vari-
ants into the phenotype predictors, we extended the common variant 
PRS models by the rare burden scores of significant genes, with models 
incorporating DeepRVAT or alternative burdens given, respectively, by

ŷ(p)
i

= αTxi + β(p)c c(p)
i

+ ∑
j∈G(p)

d

β(p)
j

ψ∗
r (Vij) ,

ŷ(p)
i

= αTxi + β(p)c c(p)
i

+ ∑
j∈G(p)

b

β(p)
j

sij.

The difference lies in whether DeepRVAT or alternative burdens 
sij are used, and additionally the burdens and learned gene weights β(p)

j
 

range over either the ‘burden/SKAT combined’ gene set G(p)
b

 or the 
DeepRVAT gene set G(p)

d
.

Model fitting. The linear and logistic regression models were fit in R 
(v4.2.0) using the functions lm and glm (respectively) from the stats 
package using the family binomial() for logistic regression models 
and otherwise retaining the default parameters.

Phenotype predictor assessment. We calculated the relative improve-
ment of the model that leverages rare variant burdens compared to the 
common variant PRS-only model as

RelativeΔM =
Mrare −MPRSonly

MPRSonly
,

where M denotes the area under the precision–recall curve (AUPRC) or 
R2. Next, for each phenotype and individual, we calculated the absolute 
difference between the predicted phenotype values obtained from a 
linear model using either the common variant PRS alone or the com-
mon variant PRS together with the rare variant burdens and ranked 
individuals based on the magnitude of this difference. At each rank, 
we determined the count of individuals exhibiting outlier phenotypes, 
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specifically those falling within the top or bottom 1% of the phenotypic 
distribution. Finally, we tested the enrichment of phenotype predic-
tor outliers in individuals with extreme phenotypes. For each z-score 
phenotype outlier cutoff, we identified individuals above the pheno-
typic cutoff and determined the proportion of these individuals with 
a predicted phenotype value exceeding the 99% quantile. Enrichment 
scores were scaled relative to the baseline population (z-score = 0) and 
compared to the common PRS-only model.

Statistics and reproducibility
No statistical method was used to predetermine the sample size. We 
did not use any study design that required randomization or blinding. 
For benchmarking experiments we restricted to unrelated individuals 
of European ancestry. All individuals (related and multi-ancestry) were 
included for biological discovery.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The genetic, phenotype and covariate data are protected and only avail-
able to researchers who have valid and approved research applications 
for these data within the UKBB (www.ukbiobank.ac.uk).

GENCODE release 38 can be downloaded from https://www.gen-
codegenes.org/human/release_38.html.
PRSs used for the phenotype prediction can be downloaded from 
https://www.pgscatalog.org/.

GWAS summary statistics used for conditional analysis can be 
downloaded from https://pan.ukbb.broadinstitute.org.

Significant gene–trait associations used for replication analyses 
are provided in Supplementary Table 7. These can also be accessed at 
gs://ukbb-exome-public/500k/results/results.mt for the study in ref. 
22 and in the supplementary data from ref. 20.

The association testing results from DeepRVAT + REGENIE on the 
470k UKBB WES dataset, covering all genes and traits for all ancestries 
and European ancestry only, are available on Zenodo (https://doi.org/ 
10.5281/zenodo.12736824) (ref. 62).

Code availability
UKBB data preprocessing was done using our custom preprocessing 
pipeline available at https://deeprvat.readthedocs.io/en/latest/pre-
processing.html (ref. 63).

The code to run DeepRVAT can be found at https://github.com/
PMBio/deeprvat/ (ref. 63).

Pretrained DeepRVAT models can be found at https://github.com/
PMBio/deeprvat/tree/main/pretrained_models (ref. 64).

The code to run all analyses done in this paper and regenerate the 
figures can be found at https://github.com/PMBio/deeprvat-analysis/ 
(ref. 65).
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Extended Data Fig. 1 | Cross-validation training scheme. The dataset D is 
first utilized for seed gene discovery using the burden/SKAT combined method 
(not shown). Next, D is divided across samples into K equally sized subsets. For 
each fold k, six gene impairment modules are fitted using different random 
initializations on the training fraction (blue) and discovered seed genes. Finally, 
a gene impairment score is computed for each sample in the test set (orange) and 

each gene, averaging over the ensemble of all six models. This yields a dataset of 
the same sample size, which can be used for association testing, while avoiding 
overfitting by computing gene impairment scores on samples not used during 
training of the given model. When a pre-trained DeepRVAT model is applied 
to independent data, the ensemble average score across all gene impairment 
modules that were not trained using that individual is used.

http://www.nature.com/naturegenetics
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Extended Data Fig. 2 | Robustness to inclusion of non-associated genes 
as seed genes and negative control. a,b, Robustness of the DeepRVAT 
association test to the inclusion of non-associated genes as seed genes during 
training. DeepRVAT was trained 10 times using a seed gene set extended with 
20% randomly sampled genes without evidence for association with the trait 
(P-value burden/SKAT combined > 10−4). Shown are P-values from a conventional 
DeepRVAT model versus P-values from DeepRVAT trained using the extended 
seed gene set, evaluated on the additionally included seed genes (pooled across 
restarts, 10 × 34 additionally included seed genes). a, Scatter plot of DeepRVAT 
P-values for non-associated seed genes, either considering the DeepRVAT 
model trained with (x-axis) or without (y-axis) the extended seed gene set. Red 

numbers denote the number of tests above and below the diagonal. b, Q–Q plot 
of observed vs. expected (under the null hypothesis) DeepRVAT P-values for 
non-associated genes, either considering the DeepRVAT model trained with or 
without the extended seed gene set. c,d, Empirical assessment of DeepRVAT 
calibration using synonymous variants as negative controls. Results for 
DeepRVAT-synonymous were obtained from the application of the pre-trained 
DeepRVAT gene impairment module trained on all variant types applied to the 
same 21 training traits, however restricting to synonymous variants during 
test time. c, Q–Q plot of observed vs. expected (under the null hypothesis) 
unadjusted P-values across all 21 traits. d, Cumulative number of gene–trait 
associations (FWER < 5%) across all 21 traits.

http://www.nature.com/naturegenetics
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Extended Data Fig. 3 | See next page for caption.

http://www.nature.com/naturegenetics


Nature Genetics

Technical Report https://doi.org/10.1038/s41588-024-01919-z

Extended Data Fig. 3 | Sensitivity of DeepRVAT to changes in training data 
and model architecture. a,b, To assess sensitivity to differences in the training 
data, we modified the training dataset, including downsampling of seed genes 
(DeepRVAT-seed gene downs.; 10% randomly removed for each trait) and 
downsampling of traits (DeepRVAT-trait downs.; 20%, that is, 4 traits randomly 
removed per run). As a reference point, we considered the intrinsic variability of 
DeepRVAT by training the model 5 times (DeepRVAT-replicates). All models were 
applied to the 21 traits as considered in DeepRVAT training; results from the full 
model as shown in Fig. 2a were considered as a reference result set. Error bars 
denote 95% confidence intervals of the mean across 5 replicates. a, Precision, 
defined as the proportion of discoveries shared with the reference DeepRVAT 

results. b, Cumulative number of gene–trait associations (FWER < 5%) across 
all 21 traits. c,d, Analogous analyses as in a and b, but excluding certain features 
highly correlated with some others (AlphaMissense, Condel, and PrimateAI and 
Polyphen2; see Supplementary Fig. 7). Shown are results from a single DeepRVAT 
run. e,f, Comparison of the full DeepRVAT model to alternative configurations, 
considering a minimalistic set of annotations (MAF, pLOF and missense status: 
DeepRVAT-missense/pLOF), or a reduced model architecture (linear gene 
impairment module: DeepRVAT-linear). e, Cumulative number of gene–trait 
associations discovered by alternative DeepRVAT configurations across 21 traits 
(FWER < 5%). f, Replication of the cumulative discoveries as in a, in larger cohorts 
(cohorts and plot defined as in Fig. 3b) across 21 traits.

http://www.nature.com/naturegenetics
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Extended Data Fig. 4 | DeepRVAT association analysis conditioned on 
common variant effects. Assessment of the effect of conditioning on 
common variant effects in the DeepRVAT association test. Common variants 
independently associated with a trait were identified from Pan-UK Biobank59 
GWAS summary statistics, derived using LD-based clumping using PLINK 
v1.9 with default parameters, considering associations with a P-value < 10−7 
and MAF > 1%. Independently associated variants within ±500 kb of the gene 

boundaries were included as covariates during association testing. a, Scatter 
plot of unadjusted p-values, comparing DeepRVAT association tests with and 
without conditioning on common variants, considering significant gene–trait 
associations as in Fig. 2a,f (FWER < 5%). b, Cumulative number of gene–trait 
associations discovered by alternative methods (FWER < 5%), either considering 
the set of 21 traits used during DeepRVAT training (left) or 13 additional traits not 
used during training (right; Fig. 2a,f).

http://www.nature.com/naturegenetics
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Extended Data Fig. 5 | Application of DeepRVAT with REGENIE to the full UK 
Biobank dataset and imbalanced case–control settings. a, Q–Q plots  
of expected vs. observed unadjusted association testing p-values across  
34 quantitative traits, considering either the standard DeepRVAT test 
(DeepRVAT) or the combination DeepRVAT and REGENIE (DeepRVAT + REGINIE), 
using DeepRVAT scores as dosages. Shown are results obtained on different 
sub-cohorts of the UKBB 200k WES release: unrelated individuals of European 
ancestry (European unrelated), all individuals of European ancestry (European 
incl. related) and all 200k individuals (all ancestries incl. related). b,c, Application 

of alternative methods to 63 binary traits, considering unrelated individuals of 
European ancestry from the 200k WES release. Results analogous to Fig. 4b,c, 
however additionally considering the standard DeepRVAT test without REGINIE 
(DeepRVAT) and burden/SKAT combined. b, Q–Q plot of observed versus 
expected unadjusted association testing p-values across all 63 binary traits.  
c, Scatter plot of the number of gene–trait associations versus the trait 
prevalence for each of 63 binary traits. b, Q–Q plots of raw association testing  
p-values across all binary traits. c, Number of gene–trait associations for each 
trait, plotted as a function of trait prevalence.

http://www.nature.com/naturegenetics
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Extended Data Fig. 6 | Largest DeepRVAT scores for ASXL1 in UK Biobank 
participants diagnosed with heart failure. Shown is, for 19,773 UK Biobank 
participants from the full 470k WES diagnosed with heart failure, the DeepRVAT 
gene impairment score for the ASXL1 gene as a function of their rank. Each point 
corresponds to a participant; the figure is restricted to participants with the 

top 1,000 scores. Participants that carry a known mutation in ASXL1 linked to 
clonal hematopoiesis (CH)66,67, or lymphoid and myeloid cancer68–70 are indicated 
in light blue. While the disease status of the top-scoring individuals can be 
explained by these known variants, many moderate-to-high scores cannot be 
explained by known variants.

http://www.nature.com/naturegenetics
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Data collection No data collection was performed. No software was used for data collection. 

Data analysis DeepRVAT(v1.0) was used in both simulation and real data analysis and is implemented as an open-source python package available at  
https://github.com/PMBio/deeprvat/.  
Pre-trained DeepRVAT models are available on Zenodo: https://doi.org/10.5281/zenodo.12772611. 
The code for downstream analyses is available at  https://github.com/PMBio/deeprvat-analysis/.  
For association testing, the SEAK package (0.4.3) was used https://seak.readthedocs.io/en/latest/.  
Data analysis was performed using python (3.8) and R (4.2). All modules used for DeepRVAT training and data postprocessing are listed in 
https://github.com/PMBio/deeprvat/blob/main/deeprvat_env.yaml. Modules required for analyses in R are provided here https://
github.com/PMBio/deeprvat-analysis/blob/main/r-env.yaml.  
UK Biobank data preprocessing was done using our custom preprocessing pipeline available at https://github.com/PMBio/deeprvat/blob/
main/deeprvat/preprocessing/README.md using bcftools (1.10.2) and samtools (1.9). 
The bgen package  (v1.6.1) was used to convert the (samples  genes) matrix of DeepRVAT scores to a BGEN file of pseudovariants.  
Association testing using REGENIE was done using the REGENIE package (v3.4) https://github.com/rgcgithub/regenie/ 
Independently associated variants were identified from GWAS summary statistics through LD-based clumping using PLINK  (v1.9). 
DeepSEA predictions were obtained using Kipoi-veff2 (https://github.com/kipoi/kipoi-veff2).  
DeepRIPE predictions were obtained using the code provided here https://github.com/ohlerlab/DeepRiPe. 
All remaining variant annotations (excluding AbSplice, SpliceAI and AlphaMissense) were obtained using VEP v109.
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AlphaMissense scores were obtained from https://www.google.com/url?q=https://storage.googleapis.com/dm_alphamissense/
AlphaMissense_hg38.tsv.gz&sa=D&source=editors&ust=1714037736792761&usg=AOvVaw34CM435oT9SM5ziM6SQn2-.  
AbSplice and SpliceAI scores were obtained from Zenodo (https://zenodo.org/record/6631476).  
PRS Scores were obtained from https://www.pgscatalog.org/ using PRS ids provided in Supplementary Table 3.   
GWAS summary statistics were obtained from the Pan-UK Biobank resource (https://pan.ukbb.broadinstitute.org , Karczewski et al., medRxiv 2024).  
The UK Biobank analyses were conducted using the UK Biobank resource (Project IDs 25214, 44108, and 81358).  
Replication data was retrieved from genebass gs://ukbb-exome-public/500k/results/results.mt and and the study by Backman et al., 2021 (https://doi.org/10.1038/
s41586-021-04103-z) (https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-04103-z/MediaObjects/41586_2021_4103_MOESM5_ESM.xlsx 
SD2) and is also provided in Supplementary Table 7. 
GENCODE release 38 can be downloaded from https://www.gencodegenes.org/human/release_38.html 
The association testing results from DeepRVAT+REGENIE on the 500k UK Biobank dataset, covering all genes and traits for all ancestries and Caucasians only, are 
available on Zenodo https://doi.org/10.5281/zenodo.12736824.
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Reporting on sex and gender The genetic sex of participants was accessed through UK-Biobank Data-Field 22001, and included as a covariate in the 
statistical analyses. The genetic sex was determined by a genotyping analysis as described here: https://
biobank.ndph.ox.ac.uk/showcase/field.cgi?id=22001 
 
Of the 469,835  individuals considered in this study, 254,489 were estimated to be female and 214,893 estimated to be male 
by the genotyping analysis. We note that the estimated genetic sex can differ from the self-reported sex from UK Biobank 
Data Field 31.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

To minimize confounding due to population structure, we restricted to 161,822 unrelated individuals of Caucasian genetic 
ethnicity as determined by an analysis of genetic principal components for our benchmarking analyses. For biological 
discovery, we used individuals of all ancestry from the UK Biobank. 

Population characteristics The mean age at recruitment of the 469,835 participants included in the statistical analyses in this study was 56.54, standard 
deviation 8.10, and ranged from 37 to 73 years. The average BMI in this sample was 27.47 (standard deviation 4.77). 

Recruitment The UK Biobank recruited approximately 500,000 individuals from 2006 to 2010 with a target age of 40-69 by mailers to 
people in the UK medical system. Informed consent was obtained by the UK Biobank for all participants.

Ethics oversight The scientific protocol of the UK Biobank is approved by appropriate external ethics committees in accordance with guidance 
from relevant bodies. Instead of requiring each applicant to obtain separate ethics approval, UK Biobank has sought generic 
Research Tissue Bank (TB) approval, which covers the large majority of research using the resource. 
The original approval for the UK Biobank was granted in 2011 by the National Research Ethics Service (NRES) Committee 
North West - Haydock. The approval was renewed in 2016 and 2021 by the Health Research Authority, North West - Haydock 
Research Ethics Committee. 
For additional information, see https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics. 
This research has been conducted using the UK Biobank Resource under Application Numbers 25214, 44108, and 81358. 
UKBB participants received no compensation. 
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Sample size phenotype in this study was determined by the number of individuals which had both complete (i.e., non-missing) phenotype and covariate 
data. Because of varying levels of missingness for the different phenotypes, the sample size ranged from 406478 to 468386 samples for 
quantitative traits. Binary traits were extracted using the definitions by Jurgens et al. 2022, Supp. Table 1 (https://doi.org/10.1038/
s41588-021-01011-w) and considered as cases if they had a matching code according to the trait definitions. All remaining samples were 
considered as controls (if not matching an ‘exclude’ code). 

Data exclusions We removed individuals who had withdrawn consent. To minimize confounding due to population structure and population structure, we 
restricted to 161,822 unrelated individuals of Caucasian genetic ethnicity as determined by an analysis of genetic principal components for 
our benchmarking analyses. For biological discovery, we used individuals of all ancestry from the UK Biobank.  
For binary traits, samples matching an ‘exclude’ code as defined by the trait definitions were excluded for the respective trait. 

Replication Significant associations for quantitative traits were compared to two studies on a larger cohort from the UK Biobank that employed 
conventional RVAT strategies (Backman et al., 2021 and Karczewski et al., 2022/Genebass, see ‘Data’). For binary traits, we also compared to 
Jurgens et al., 2022.  The replication rate of identified gene-trait associations is shown in Fig. 2c,g for quantitative traits. For binary traits, 
replication assessment was complicated by variable phenotype definitions across studies and is provided in Supp. Table 9. 

Randomization We did not allocate samples into experimental groups. No randomization was performed.  

Blinding No groups were allocated.
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the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
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plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
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