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MHC Hammer reveals genetic and 
non-genetic HLA disruption in  
cancer evolution
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Disruption of the class I human leukocyte antigen (HLA) molecules has 
important implications for immune evasion and tumor evolution. We 
developed major histocompatibility complex loss of heterozygosity (LOH), 
allele-specific mutation and measurement of expression and repression (MHC 
Hammer). We identified extensive variability in HLA allelic expression and 
pervasive HLA alternative splicing in normal lung and breast tissue. In lung 
TRACERx and lung and breast TCGA cohorts, 61% of lung adenocarcinoma 
(LUAD), 76% of lung squamous cell carcinoma (LUSC) and 35% of estrogen 
receptor-positive (ER+) cancers harbored class I HLA transcriptional 
repression, while HLA tumor-enriched alternative splicing occurred in 31%, 
11% and 15% of LUAD, LUSC and ER+ cancers. Consistent with the importance 
of HLA dysfunction in tumor evolution, in LUADs, HLA LOH was associated 
with metastasis and LUAD primary tumor regions seeding a metastasis had 
a lower effective neoantigen burden than non-seeding regions. These data 
highlight the extent and importance of HLA transcriptomic disruption, 
including repression and alternative splicing in cancer evolution.

Emerging data have highlighted the importance of considering cancer 
evolution in the context of a predatory immune microenvironment1–3. 
Key mediators of the cytotoxic T cell response in cancer are neoanti-
gens, cancer-cell-specific alterations resulting in mutant peptides 
capable of eliciting a T cell-mediated, human leukocyte antigen 
(HLA)-restricted immune response. A mutation can only result in a 
neoantigen if the associated mutant peptide is presented on HLA mol-
ecules to the T cell receptor. Therefore, disruption of HLA molecules 
has important implications for immune evasion.

Disruption to antigen-presenting machinery occurs across many 
cancer types4–7. Our previous work has revealed that HLA loss of het-
erozygosity (LOH), whereby one allele is somatically lost, occurs in 40% 
of non-small cell lung cancer (NSCLC) primary tumors7. A pan-cancer 
study has suggested that transcriptomic downregulation of HLA genes 
occurs frequently4. However, subtle transcriptomic alterations, such 
as alternative splicing events and allele-specific repression, have been 
poorly studied in cancer. Alternative splicing, which has been reported 
in non-cancer tissue and cancer cell lines, can result in a non-functional 
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This observed expression imbalance may be due in part to the 
combination of HLA alleles that an individual harbors. Consistently, 
we observed evidence of a relationship between allelic expression 
and the allele type, consistent with previous reports21,22 (P < 2 × 10−16, 
one-way analysis of variance; Fig. 2d). From the alleles for which we had 
>30 GTEx individuals with lung and/or breast samples, we found that 
in lung, HLA-A*03:01, HLA-B*15:01 and HLA-C*08:02 had the lowest 
expression across the three genes, while HLA-A*24:02, HLA-B*40:01 
and HLA-C*04:01 had the highest. In breast, HLA-A*03:01, HLA-B*15:01 
and HLA-C*07:02 had the lowest expression across the three genes, 
whereas HLA-A*24:02, HLA-B*08:01 and HLA-C*04:01 had the highest.

HLA alternative splicing in normal tissue samples
Given the role that HLA alternative splicing could have in HLA presenta-
tion, we first used MHC Hammer to investigate the prevalence of HLA 
alternative splicing in the GTEx normal tissue cohort. In our cohort, 
MHC Hammer identified complete exon skipping, partial exon skipping 
and partial intron retention in the HLA alleles, but we did not observe 
evidence for complete intron retention in any HLA allele (Extended 
Data Fig. 4 and Supplementary Note).

Alternative splicing in the HLA alleles was frequent in the GTEx 
normal tissue cohort; 466/483 (97%) of normal lung and 339/392 (87%) 
of normal breast samples harbored at least one alternative splicing 
event. Exon 5 skipping was the most frequent event in both lung and 
breast tissue, occurring in 368/483 (76%) of lung and 270/392 (69%) 
of breast samples, followed by partial retention of intron 5, occurring 
in 271/483 (56%) of lung and 180/392 (46%) of breast tissue samples 
(Fig. 2e,f). Skipping of exon 5 has been shown to result in a soluble 
HLA molecule due to the absence of the transmembrane domain10–12. 
We also observed HLA alternative splicing events in exons or introns 
2, 3 or 4, which could result in an unstable HLA molecule potentially 
unable to present antigens to the immune system8,9,13 in 267/483 (55%) 
of normal lung tissue samples and 147/392 (38%) of normal breast  
tissue samples (Fig. 2e,f).

To estimate the relative abundance of the novel (alternatively 
spliced) transcripts, we estimated a ‘novel transcript proportion’ (Sup-
plementary Note). Most splicing events occurred with a low novel 
transcript proportion, with 1,667/1,863 (90%) events in the lung and 
956/1,118 (86%) events in the breast occurring with a novel transcript 
proportion of less than 0.1 (Fig. 2g).

We next compared the splicing events in breast and lung tissues 
from the same patient. In total, 43% of all alternative splicing events 
occurred in both breast and lung tissue, while 46% occurred only in 
the lung sample and just 11% occurred only in the breast sample. When 
restricting to events that occurred in both tissues from the same indi-
vidual, we observed a high concordance between the novel transcript 
proportions (Fig. 2h). However, for the majority of the alternative 
splicing events that introduced a premature termination codon (PTC), 
the novel transcript proportion was higher in lung than in breast tissue 
(Extended Data Fig. 5). This observation could possibly be driven by 

HLA molecule or, in the case of exon 5 skipping, soluble isoforms of 
the HLA molecule8–13. Furthermore, understanding HLA expression in 
tumor-adjacent normal tissue is of critical importance when attribu-
ting any change in HLA expression as a tumor-specific phenomenon.

Here we present major histocompatibility complex loss of heterozy-
gosity, allele-specific mutation and measurement of expression and 
repression (MHC Hammer), a computational toolkit to accurately deter-
mine allele-specific mutations, LOH, allelic expression, allelic repression 
and alternative splicing of the class I HLA genes. We use MHC Hammer to 
investigate HLA expression in normal tissue and to evaluate genomic and 
transcriptomic disruption in tumor evolution in multiple cohorts, includ-
ing 421 patients with NSCLC in the multiregional TRACERx421 dataset14–16 
(Extended Data Fig. 1), 945 patients with NSCLC and 972 patients with 
breast cancer in the Cancer Genome Atlas (TCGA) dataset17–19 (Extended 
Data Fig. 2) and 489 normal lung and 397 normal breast samples from 
the Genotype-Tissue Expression (GTEx) dataset20 (Extended Data Fig. 3).

Results
A pipeline to evaluate HLA disruption
To evaluate the extent of genomic and transcriptomic HLA disrup-
tion, we developed MHC Hammer, advancing our LOHHLA algorithm7 
(Fig. 1). The tool has the following four major components: (1) iden-
tifying allele-specific HLA somatic mutations, (2) calculating HLA 
LOH, (3) evaluating HLA allele-specific repression and (4) identifying 
allele-specific HLA alternative splicing. MHC Hammer is provided as a 
Nextflow pipeline (https://github.com/McGranahanLab/mhc-hammer) 
(Methods; Supplementary Note and Supplementary Fig. 1).

HLA allele-specific expression in normal tissue
We first evaluated HLA allelic expression and alternative splicing in 
normal lung and breast tissue using data from the GTEx project20. 
This dataset includes 489 lung and 397 breast tissue samples from 
645 healthy individuals, of which 241 have both lung and breast tissue 
samples available (Methods; Extended Data Fig. 3).

We found that in both normal lung and breast tissue, HLA-B had 
the highest median expression (lung, 440.3 and breast, 227.4 reads per 
kilobase million(RPKM)), followed by HLA-C (lung, 371.9 and breast, 
177.1 RPKM), then HLA-A (lung, 289.4 and breast, 162.0 RPKM; Fig. 2a). 
A wide range of HLA expression was observed across the three class 
I genes (Fig. 2a). In individuals with both lung and breast tissue sam-
ples, HLA gene expression was higher in lung tissue in 175/198 (88%), 
186/204 (91%) and 190/203 (94%) of cases for HLA-A, HLA-B and HLA-C, 
respectively (Fig. 2b).

Significant HLA allelic imbalance (AIB) was pervasive: 273/388 
(70%), 183/418 (44%) and 305/407 (75%) of normal lung tissue samples 
exhibited statistically significant AIB in expression in HLA-A, HLA-B and 
HLA-C, respectively, while 266/329 (81%), 178/343 (52%) and 255/328 
(78%) of normal breast tissue samples exhibited statistically significant 
AIB expression in HLA-A, HLA-B and HLA-C, respectively (Fig. 2c and 
Supplementary Note).
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differences in the rate of nonsense mediated decay (NMD) in different 
tissues23,24.

Finally, we investigated whether certain alleles were enriched for 
specific alternative splicing events. We focused on alternative splicing 
events in the 23 HLA alleles that were present in >30 GTEx individuals 
with breast and/or lung tissue. In lung, 10/105 alternative splicing events 
in these 23 alleles occurred in more than 50% of samples with the allele. 
In breast, 8/81 of alternative splicing events occurred in more than 50% 
of samples with the allele. For example, inframe complete exon 5 skip-
ping in HLA-C*04:01:01:01 occurred in 100% of breast and lung samples 
(lung: 94/94, breast: 64/64) with this allele, which supports the results 
described in a previous study12. We also observed inframe partial intron 
5 retention in HLA-C*03:04:01:01 in 100% of breast and lung samples 
with this allele (lung, 70/70 and breast, 57/57; Supplementary Table 1).

These data suggest that the HLA alleles are subject to widespread 
expression imbalance and alternative splicing in normal tissue and 
that total HLA gene expression is strongly influenced by the combina-
tion of HLA alleles that a person harbors. These data emphasize the 
importance of controlling for HLA allelic expression in normal tissue 
when assessing transcriptional alterations in tumors.

HLA genomic disruption in lung and breast cancer
In the TRACERx421 cohort, LOH of the class I HLA genes was frequent, 
occurring in 75/235 (32%) of lung adenocarcinoma (LUAD), 76/132 
(58%) of lung squamous cell carcinoma (LUSC) and 13/44 (30%) of 
other NSCLC histological subtype primary tumors, consistent with 
our previous findings7 (Extended Data Fig. 6). In keeping with this, the 
rate of HLA LOH in the TCGA lung cohort was 65/245 (27%) for LUAD 
tumors and 104/267 (39%) for LUSC tumors (Extended Data Fig. 6). In 
TCGA, triple-negative breast cancer (TNBC) had the highest rate of HLA 
LOH (17/61 (28%)), followed by estrogen receptor negative (ER−; 7/32 
(22%)) and estrogen receptor positive (ER+; 60/402 (15%); Extended 
Data Fig. 6). By contrast, high-impact damaging mutations in the HLA 
genes were relatively rare, occurring in only 5/411 (1.2%) tumors in the 
TRACERx421 cohort, 2/514 (0.4%) tumors in the TCGA breast cohort 
and were not observed in the TCGA lung cohort.

Transcriptional repression of class I HLA alleles in tumors
We next investigated whether there was evidence of additional disrup-
tion of HLA alleles through transcriptional repression in tumor regions. 
Given the heterogeneity observed in normal HLA allelic expression, we 
measured tumor HLA repression with reference to the patient-matched 
tumor-adjacent normal sample (Supplementary Note). We were able 
to evaluate transcriptional repression in 49 LUAD and 29 LUSC tumors 
in the TRACERx421 cohort and in 13 LUAD, 27 LUSC and 34 ER+ breast 
cancers from the TCGA cohort. We did not detect any high-impact 
damaging HLA mutations in any tumor with a tumor-adjacent normal 
sample.

We identified extensive transcriptional repression of the HLA 
alleles that could not be explained by LOH or damaging mutations in 
both the lung and breast tumors (Fig. 3a,b and Supplementary Fig. 2). In 
the TRACERx421 cohort, 30/49 (61%) of LUAD and 22/29 (76%) of LUSC 
tumors harbored transcriptional repression of at least one HLA allele 
not caused by LOH. Taken together, just 13/49 (27%) of LUAD and 2/29 
(7%) of LUSC tumors exhibited no LOH or repression in any class I HLA 
gene (Fig. 3b). These results were consistent in the TCGA LUAD and 
LUSC cohorts (Supplementary Fig. 2). In contrast, 19/34 (56%) of ER+ 
breast cancers exhibited no damaging mutations, LOH or repression 
in any class I HLA gene (Fig. 3b).

HLA genomic biallelic loss (that is, homozygous deletion) was an 
uncommon event, occurring in only 11/411 (3%) of TRACERx421 NSCLCs, 
7/512 (1%) of TCGA NSCLCs and 17/514 (3%) of TCGA breast cancers. 
To investigate biallelic transcriptional repression, we restricted our 
analysis to HLA genes with no evidence for genomic alterations. Biallelic 
transcriptional repression of a given HLA gene was relatively frequent, 

occurring in 24/43 (56%), 11/16 (69%) and 9/32 (28%) of LUAD, LUSC and 
ER+ breast tumors (Fig. 3c). However, while homozygous deletion will 
necessarily impact both alleles equally, we found evidence of unequal 
biallelic repression of alleles, with 14/24 (58%), 8/11 (73%) and 4/9 (44%) 
of LUAD, LUSC and ER+ tumors harboring at least one HLA gene with 
AIB in the tumor but not the normal (or vice versa).

The impact of HLA disruption on neoantigen presentation
To investigate the impact of HLA LOH and transcriptional repression 
on the predicted number of neoantigens presented to the immune 
system, we quantified, for each tumor region, the number of different 
alleles when considering (1) neither LOH nor repression, (2) LOH or  
(3) LOH and repression. When accounting for LOH and repression, 
39/132 (30%) of LUAD tumor regions, 3/90 (3%) of LUSC tumor regions 
and 18/36 (50%) of ER+ breast tumors had all six intact HLA alleles, while 
9/132 (7%) of LUAD tumor regions, 18/90 (20%) of LUSC tumor regions 
and 3/36 (8%) of ER+ breast tumors had all six alleles disrupted at the 
genomic and transcriptomic levels (Fig. 3d). On average, 28.2% and 
52.3% of putative neoantigens were predicted to bind exclusively to 
alleles subject to LOH or repression in LUAD and LUSC, respectively 
(Extended Data Fig. 7).

Mechanisms of HLA repression
The predominant modulators of HLA class I transcription are the 
NOD-like receptor (NLR) proteins NLRC5 and CIITA. The HLA promoter 
region also contains the tumor necrosis factor (TNF)-stimulated pro-
moter site, EnhA and the IFNG-stimulated response element, ISRE25. In 
tumors without any genomic HLA disruption, we observed a significant 
positive correlation (Pearson’s r ≥ 0.3 and P ≤ 0.01), between total HLA 
expression and the expression of NLRC5 and CIITA in LUAD, LUSC and 
ER+ tumors from both the TRACERx421 and TCGA cohorts, as well as 
between total HLA expression and IFNG expression in the TRACERx 
LUAD and TCGA LUAD and LUSC cohorts. We only observed a signifi-
cant positive correlation between total HLA expression and TNF in the 
TCGA LUSC cohort (Extended Data Fig. 8).

We next investigated whether there was a relationship between 
tumor–normal changes in the expression of these genes and the 
likelihood of the tumor region having allelic repression unexplained 
by genomic disruption. In LUAD, LUSC and ER+ breast cancer, sam-
ples with allelic transcriptional repression had a significantly lower 
tumor-to-normal ratio of NLRC5 than those without transcriptional 
repression. The same was true for CIITA and IFNG in LUAD and LUSC 
tumors, but not ER+ breast tumors (Fig. 3e). We only observed a signifi-
cant relationship with TNF in LUADs (Supplementary Fig. 3).

Previous work has identified methylation as a mechanism that can 
influence HLA allelic expression21,26. To investigate the role of hyper-
methylation in HLA transcriptional repression, we used methylation 
array data from the TCGA cohorts. We observed distinct patterns of 
methylation across the HLA genes in the LUAD, LUSC and breast tumors, 
with the gene body having the highest methylation in HLA-A and HLA-B 
in both tumor and normal tissues. In HLA-C, the region 1,500–200 bp 
upstream of the transcriptional start site (termed TSS1500) had the 
highest level of methylation, followed by the gene body, in both the 
tumor and normal tissues (Supplementary Fig. 4). We observed a sig-
nificant negative correlation (Pearson’s r ≤ −0.3 and P ≤ 0.01) between 
HLA-B gene expression and the degree of methylation in both the 
TSS1500 and the gene body region in the TCGA LUAD, LUSC and ER+ 
tumor samples (Supplementary Fig. 5–7).

Taken together, these data suggest that in the LUAD, LUSC and 
breast tumors, changes in the expression of NLRC5, CIITA, IFNG as well 
as hypermethylation may play a role in the repression of HLA.

HLA alternative splicing in breast and lung cancer
Given the pervasive nature of alternative splicing in normal tissue, we 
evaluated whether splicing events occurred at significantly higher 
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only HLA LOH, only repression (unexplained by genomic alterations), both HLA 
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frequency in the tumor (‘tumor-enriched’) or, conversely, at signifi-
cantly lower frequency in the tumor (‘tumor depleted’; Supplemen-
tary Note). Both tumor-enriched and tumor-depleted HLA alternative 
splicing events were common, with 30.6%, 10.7% and 14.7% of LUAD, 
LUSC and ER+ breast tumors harboring at least one tumor-enriched 
alternative splicing event and 22.6%, 21.4% and 14.7% of LUAD, LUSC 
and ER+ tumors harboring at least one tumor-depleted alternative 
splicing event (Fig. 4a).

The most frequent tumor-enriched alternative splicing events 
included inframe partial intron 5 retention and inframe complete 
exon 3 skipping (Fig. 4b). Changes to the sequence that encodes exon 3 

could result in altered peptide binding or an unstable HLA molecule8,13.  
In contrast, inframe complete exon 5 skipping was observed more fre-
quently as a tumor-depleted event in LUAD and ER+ tumors (Fig. 4b). 
Skipping of exon 5 has been demonstrated in previous studies to result 
in a soluble HLA molecule10–12. For each alternative splicing event, the 
tumor-to-normal change in the novel transcript proportion is shown 
(Supplementary Note and Fig. 4b).

The introduction or deletion of nucleotide sequences due to alter-
native splicing could result in a frameshift and/or the introduction of 
a PTC in the resulting transcript. In LUAD, LUSC and ER+ tumors, all 
complete exon skipping events were inframe (Fig. 4c). In contrast,  
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Fig. 4 | HLA alternative splicing in lung and breast tumors. a, The fraction of 
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we observed partial exon skipping events and partial intron retention 
events that were inframe, or that resulted in a frameshift, with and 
without the introduction of a PTC (Fig. 4c).

Given that tumor samples reflect an admixture of cancer cells 
and non-cancer cells, to estimate the fraction of alternatively spliced 
transcripts in the cancer cells, we scaled the novel transcript pro-
portion of the tumor-enriched events by the estimated purity of the 
tumor region (Supplementary Note). Although there were outliers, 
the purity-scaled novel transcript proportion was less than 0.25 in most 
cases (mean = 0.24 and range = 0.006–1; Fig. 4d). These data suggest 
either one or both of the following are occurring: within each cancer 
cell, both the canonical and novel transcripts are being transcribed, or 
only a subset of cancer cells harbor the novel transcript.

To further evaluate the rate of tumor-enriched alternative splic-
ing observed in HLA alleles and whether this is higher or lower than 
expected, we considered the rate of somatic alternative splicing  
across all protein-coding genes (Methods). We found that lung  
cancer genes had a higher rate of alternative splicing than other protein- 
coding genes (P = 9.1 × 10−3; Fig. 4e). In addition, from the set of 49 
lung cancer genes, we found that HLA-C had the fourth, HLA-B had 

the seventh and HLA-A had the eighth highest frequency of alternative 
splicing (Fig. 4e).

Consistent with the selection of alternative splicing events, we 
observed that LUAD tumor regions without HLA LOH or repression 
were enriched for tumor-enriched alternative splicing events (LUAD, 
P = 1.9 × 10−3) compared to regions that harbored either HLA LOH or 
repression (Fig. 4f). We did not see this enrichment with LUSC or ER+ 
tumors. This suggests that in LUAD, tumor-enriched alternative splic-
ing may offer an alternative means to disrupt HLA presentation during 
tumor evolution.

To further investigate the importance of HLA alternative splicing 
in tumor evolution, we compared the total number of neoantigens pre-
dicted to bind to alleles with or without tumor-enriched HLA alternative 
splicing. We first quantified the number of neoantigens predicted to 
bind to the intact HLA alleles for each tumor region. We then compared 
the neoantigen count in alleles that exhibited tumor-enriched alterna-
tive splicing versus those that did not, excluding alleles with HLA LOH. 
HLA alleles exhibiting tumor-enriched HLA alternative splicing in LUAD 
tumors were associated with a higher neoantigen count compared 
to alleles without evidence of tumor-enriched splicing (P = 3 × 10−5; 
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Fig. 4g), suggesting that in LUAD tumors, tumor-enriched alternative 
splicing of HLA alleles may be selected to reduce antigen presentation. 
We did not observe this enrichment in LUSC tumors.

HLA disruption and tumor evolution
To understand when HLA LOH, transcriptional repression and somatic 
alternative splicing occur during NSCLC evolution, we considered the 
heterogeneity of these events using the multiregion TRACERx cohort. 
We defined an HLA disruption event as ubiquitous if it occurred in all 
of the primary tumor regions, and heterogeneous otherwise. In both 
LUAD and LUSC tumors, tumor-enriched alternative splicing events 
were the most heterogeneous (LUAD = 82.6% and LUSC = 71.4%), fol-
lowed by repression (LUAD = 56.2% and LUSC = 52.2%) and then LOH 
events (LUAD = 51.6% and LUSC = 47.1%; Fig. 5a).

In 20/65 (30.8%) of TRACERx LUAD and LUSC tumors with HLA dis-
ruption, we observed convergence upon disruption of the same allele 
through alternative mechanisms, with genomic loss, transcriptional 
repression and/or alternative splicing of the same allele occurring in 
different regions of the same tumor. We observed ten tumors with con-
vergence upon genomic loss and transcriptional repression of the same 
allele in separate regions, nine tumors with transcriptional repression 
and alternative splicing of the same allele in separate regions and one 
tumor with genomic loss, transcriptional repression and alternative 
splicing of the same allele in different regions (Fig. 5b,c). Conceivably, 
this could either reflect positive selection within individual tumors or 
be a consequence of the high rate of HLA disruption through diverse 
mechanisms.

The tumor microenvironment can shape tumor evolution1. We 
therefore investigated the relationship between the immune infil-
trate and the presence of HLA disruption, using the Danaher in silico 
immune deconvolution method to estimate the amount of CD8 T cell 
infiltrate27. We observed a significant relationship between total HLA 
expression and CD8 T cell infiltrate (LUAD, P = 1.6 × 10−27 and r = 0.48; 
LUSC, P = 3.7 × 10−15 and r = 0.44; ER+, P = 1.3 × 10−24 and r = 0.42;  
Supplementary Fig. 8). We observed that LUAD and LUSC tumor regions 
with allelic HLA transcriptional repression had lower levels of infiltrat-
ing CD8 T cells compared to those without (LUAD, P = 1.3 × 10−6; LUSC, 
P = 0.015 and ER+, P = 0.25; Fig. 5d). Conversely, HLA alternative splicing 
was associated with elevated CD8 T cell levels in LUAD tumors (LUAD, 
P = 3 × 10−6; LUSC, P = 0.32 and ER+, P = 0.54; Extended Data Fig. 9). No 
clear relationship between HLA LOH and total HLA expression in either 
LUAD, LUSC or ER+ tumors was observed, indicating dosage compensa-
tion may occur following allelic HLA copy number loss (Fig. 5e).

Finally, we endeavored to understand whether disruption of the 
HLA alleles through LOH, repression or alternative splicing might have 
a role in the evolution of lung cancer metastasis. We found that LUAD 
tumors harboring HLA LOH were more likely to metastasize than those 
without HLA LOH (LUAD, P = 0.02 and LUSC, P = 0.81; Fig. 5f). To inves-
tigate this further, we considered the neoantigen burden of primary 
tumor regions that seeded metastasis compared to those that did not, 
with the metastasis-seeding regions being defined in our previously 
published work15. We found that the standard neoantigen burden did 
not distinguish seeding from non-seeding regions (Extended Data 
Fig. 10a). However, when we restricted our neoantigen count to only 
include neoantigens predicted to bind to intact HLA alleles, not sub-
ject to loss or repression, we observed that LUAD tumor regions that 
seeded metastasis had a lower effective neoantigen burden than those 
that did not (LUAD, P = 0.01 and LUSC, P = 0.81; Fig. 5g), which was not 
the case when we only considered HLA loss (Extended Data Fig. 10b). 
Taken together, these data suggest that disruption of the HLA alleles 
could have an important role in tumor metastasis.

Discussion
Neoantigen presentation via HLA molecules is crucial to achieving an 
antitumor immune response. Previous studies have illustrated that 

different mechanisms of HLA disruption are common across cancers4–7. 
Here we developed MHC Hammer, a tool to investigate the prevalence 
of four mechanisms of genomic and transcriptomic disruption of the 
HLA alleles in lung and breast cancer—mutations, LOH, repression and 
alternative splicing.

While damaging HLA mutations were rare in our cohorts, LOH, 
repression and tumor-enriched alternative splicing of the HLA alleles 
were pervasive. From the patients with tumor-adjacent normal sam-
ples, just 27% of LUAD, 7% of LUSC and 56% of ER+ tumors had no HLA 
disruption, while 30.6%, 10.7% and 14.7% of LUAD, LUSC and ER+ tumors 
exhibited tumor-enriched alternative splicing events. The lower rate 
of HLA LOH and repression observed in ER+ breast tumors may reflect 
the lower tumor mutational burden (TMB) in ER+ breast tumors com-
pared to NSCLC28.

We observed differences in the patterns of HLA disruption in 
the NSCLC tumors—LUSC tumors were characterized by almost uni-
versal HLA disruption, while LUAD tumors exhibited less frequent 
HLA disruption. In LUADs, we observed an enrichment for alternative 
splicing in alleles without LOH or repression, a higher likelihood of 
tumor-enriched alternative splicing in alleles with a higher neoantigen 
burden and finally an association between HLA LOH and metastasis. 
This may reflect different selective pressures in these cancer types 
and the propensity for HLA disruption through diverse mechanisms.

One limitation of our method is that it requires a patient-matched 
tumor-adjacent normal tissue sample to determine HLA repression and 
tumor-enriched alternative splicing. This is due to the high variability 
observed in HLA allelic expression and the high prevalence of HLA 
alternative splicing in the normal tissue samples.

Alternative splicing of the class I HLA alleles has been observed 
in non-cancer tissue cohorts and in cancer cell lines8–13. However, HLA 
alternative splicing in large cohorts of normal and tumor tissue has 
not been described before, due in part to the lack of a high-throughput 
bioinformatics tool capable of measuring HLA alternative splicing.

HLA alternative splicing affecting exons or introns 2–4 could result 
in an unstable HLA molecule. For example, partial exon 3 skipping in 
an HLA-A allele in non-cancer tissue has been shown to result in the 
absence of cell-surface expression13. An HLA-A allele with complete 
exon 3 skipping continued to be expressed on the cell surface but as 
an immature glycoprotein unable to present peptides8. This immature 
molecule could potentially act as a decoy allele by inhibiting NK cells 
via its receptor ligands without presenting neoantigens to CD8 T cells. 
Alternative splicing resulting in exon 5 skipping has been shown to 
result in a soluble HLA allele10–12. Persistent presentation of neoantigens 
via soluble HLA molecules to the T cell receptor, without costimulatory 
or accessory signals, could lead to immune tolerance or T cell exhaus-
tion. It has been shown that soluble class I HLA molecules can induce 
apoptosis in CD8 T cells and NK cells29.

The majority of the detected tumor-enriched alternative splicing 
events were present with a purity-adjusted novel transcript proportion 
<0.25. This could reflect NMD; PTC-induced NMD has been shown to 
reduce mRNA levels by up to 90% in a study of an HLA-A allele23. Alterna-
tively, HLA alternative splicing may be a transient event, or the alterna-
tive splicing observed in the lung and breast tumors in this study may 
simply reflect transcriptional noise. Therefore, further work is required 
to establish the role of alternative splicing in lung and breast cancer, as 
well as investigate its prevalence in other cancer types.

It is possible that the underlying mechanisms of HLA repression 
and alternative splicing events are epigenetic. Supporting this, we 
found a strong link between methylation and expression of the HLA 
genes. This could have important clinical implications, as previous 
studies have illustrated the reversible nature of HLA epigenetic modi-
fications26 and the importance of this reversibility in immunotherapy 
response30.

Further work is warranted to explore the extent to which HLA alter-
native splicing and repression represent a pan-cancer immune evasion 
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mechanism. As more pre-therapy and post-therapy data emerge, it will 
be possible to investigate the extent to which HLA alternative splicing 
and repression develop during treatment and at immune-therapy 
resistance and the extent to which these processes might inform thera-
peutic strategies.

Our results may also have implications for vaccine- and T cell-based 
therapeutic approaches, which seek to exploit neoantigens. Our results 
suggest that it may be important to consider not just whether puta-
tive neopeptides bind the repertoire of HLA alleles but also the copy 
number, expression and splicing characteristics of each allele. Indeed, 
MHC Hammer may be used to help determine which set of predicted 
neoantigens are most likely to elicit an effective T cell response.

In conclusion, MHC Hammer enables accurate estimation of 
allele-specific HLA disruption, revealing that it is a common feature 
of NSCLC and ER+ breast cancer that facilitates immune escape and 
cancer evolution.
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Methods
The TRACERx421 data
The TRACERx421 samples used in the study have been described in 
previously published manuscripts14,16. The design of the TRACERx 
study has been approved by an independent research ethics commit-
tee (13/LO/1546) and the ClinicalTrials.gov number is NCT01888601. 
Informed consent for entry into the TRACERx study was mandatory 
and obtained from every patient. The purity and ploidy estimates, 
histological subtypes, lung cancer genes and phylogenetic trees used 
in this study were taken from a previous TRACERx study16. Transcripts 
per million (TPMs) estimates were taken from a previously published 
TRACERx study14. The classification of primary tumors that did and 
did not metastasize, as well as the classification of seeding regions, 
was taken from a previously published TRACERx study15. Only primary 
tumor and non-lymph node regions with purity and ploidy estimates 
were used in this study. The consort diagram of the TRACERx samples 
used in the study is shown in Extended Data Fig. 1.

The TCGA cohort
MHC Hammer was run on lung and breast samples from the TCGA 
dataset17–19. We implemented the following thresholds for a sample to 
be included in our study:

•	 Whole-exome sequencing (WES) samples with less than 
5,000,000 paired aligned reads or an alignment rate of less than 
0.8 were excluded.

•	 RNA sequencing (RNA-seq) samples with an alignment rate of 
less than 0.6 were excluded.

•	 Formalin-fixed paraffin-embedded (FFPE) samples and meta-
static samples were excluded.

•	 Tumor samples without a purity and ploidy solution were excluded.
•	 Samples without a matched WES germline sample that passed 

our filters were excluded.

In the cases where a TCGA sample was sequenced multiple times, 
we selected a single sequencing run to use in our study. For the WES 
tumor samples, we prioritized choosing a non-whole-genome ampli-
fication (non-WGA) sample over a WGA sample31, and then prioritized 
the samples by the number of paired and aligned reads. For the WES 
germline samples, we also prioritized non-WGA over WGA, then blood 
samples over solid tissue samples and finally prioritized the samples by 
the number of paired and aligned reads. For the RNA-seq samples, we 
chose the sample with the highest number of paired and aligned reads.

The purity and ploidy solutions for the TCGA cohort were esti-
mated using ASCAT32 and taken from https://github.com/VanLoo-lab/
ascat/tree/master/ReleasedData/TCGA_SNP6_hg38. The methylation 
array data and TPM data used in this study were downloaded from 
Genomic Data Commons (GDC). The lung histological subtypes (LUAD 
and LUSC) were taken from GDC, and the breast subtypes (ER+, ER- and 
TNBC) were taken from cBioPortal.

The consort diagram for the TCGA cohort is shown in Extended 
Data Fig. 2.

The GTEx cohort
We ran MHC Hammer on the normal lung and breast RNA-seq samples 
from the GTEx dataset20. We implemented the following thresholds for 
a sample to be included in our study:

•	 WES germline samples with less than 5,000,000 paired aligned 
reads or an alignment rate of less than 0.8 were excluded.

•	 RNA-seq samples with an alignment rate of less than 0.6 were 
excluded.

•	 Samples without a matched WES germline sample that passed 
our filters were excluded.

The consort diagram for the GTEx cohort is shown in Extended 
Data Fig. 3.

Validation of allele-specific HLA alternative splicing
To validate our HLA alternative splicing pipeline, we used allele-specific 
PCR amplification. We performed this for four tumor regions and one 
normal sample from two patients (CRUK0061_SU_N01, CRUK0061_
SU_T1-R1, CRUK0061_SU_T1-R2, CRUK0733_SU_T1-R2 and CRUK0733_
SU_T1-R6). RNA-seq data were available for four of these samples 
(CRUK0061_SU_N01, CRUK0061_SU_T1-R1, CRUK0733_SU_T1-R2 and 
CRUK0733_SU_T1-R6), and MHC Hammer identified exon 5 skipping 
in an HLA-C allele in all four samples.

To amplify each allele, we used allele-specific primers that have 
been described previously12, and the fragment sizes were confirmed 
via agarose gel electrophoresis (Supplementary Fig. 1a). These PCR 
products were then cloned using a TA cloning kit (Invitrogen), where 
the wild-type and novel alternatively spliced transcripts were subse-
quently validated through Sanger sequencing (Supplementary Fig. 1b).

Neoantigen calls
Patient-specific HLA haplotype predictions were obtained using 
HLA-HD33 (version 1.2.1). NetMCHpan4.1 (ref. 34) was run on 9–11 neo-
peptides derived from nonsynonymous mutations across the TRAC-
ERx421 cohort, taking into account patient-specific HLA types. A cutoff 
of 0.5 in the eluted ligand rank was applied to define whether a peptide 
is bound to a specific HLA type. An observed nonsynonymous mutation 
is deemed a neoantigen binding to a specific HLA if at least one of its 
neopeptides is considered a binder.

Danaher estimates of CD8+ T cell infiltration
The amount of CD8 T cell infiltration was estimated using the Danaher 
method27. To do this, TPM values of the CD8A and CD8B genes were first 
converted to log2, and the mean log2 value across the two genes was 
taken for each sample.

Calling alternative splicing in all protein-coding genes
To call alternative splicing in all protein-coding genes, we used the 
STAR aligner with a two-pass alignment35,36 and the GRCh38 reference 
sequence to generate a set of splice junctions in the TRACERx samples. 
Novel splice junctions were defined as those not present in the GRCh38 
RefSeq GTF file (https://hgdownload.soe.ucsc.edu/goldenPath/hg38/
bigZips/genes/). To be considered as present in a tumor region, a novel 
splice junction required at least 20 uniquely mapping reads in any 
region from the tumor and at least two uniquely mapping reads in the 
given region. To be considered somatic, the novel splice junction could 
not be present in the patient-matched normal sample.

The MHC Hammer pipeline
See Supplementary Note for a detailed overview of the MHC  
Hammer pipeline. The following MHC Hammer parameters were used to  
generate the data in this study:

•	 The HLA reference files were created using the ImMunoGeneTics 
(IMGT) database version 3.38 (ref. 37).

•	 The library size was estimated as the number of 
paired and aligned reads in the input BAM files 
(include_unmapped_reads_in_library_size = FALSE).

•	 The HLA FASTQ files were created by filtering the input BAM files 
to include all unmapped reads, reads that mapped to chromo-
some 6 or any alternate contig or reads that contained a 30-mer 
sequence from the IMGT database (unmapped_reads = TRUE, 
contig_reads = TRUE, fish_reads = TRUE).

•	 When filtering the HLA allele BAM files, reads with more than 
one mismatch to the patient-specific reference were removed 
(max_mismatch = 1).

•	 In the estimation of allelic copy number and DNA AIB, filtered 
SNPs required a read depth of at least 30 in TRACERx (min_
depth = 30) or 5 in TCGA (min_depth = 5).

http://www.nature.com/naturegenetics
https://github.com/VanLoo-lab/ascat/tree/master/ReleasedData/TCGA_SNP6_hg38
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•	 After the first STAR alignment, splice junctions required  
at least two supporting reads to be included in the 
cohort of splice junctions in the second STAR alignment 
(uniq_num_across_junc = 2).

Filters implemented for HLA WES analysis. To be included in the HLA 
DNA analysis, including HLA copy number, AIB and LOH calls, a gene 
must pass the following filters:

•	 Have at least ten SNPs that pass the minimum read depth of 30 in 
the TRACERx samples or 5 in the TCGA samples.

•	 Both alleles of the gene must have an expected depth of at least 
10. The expected depth estimates the depth of the reads that are 
coming solely from the cancer cells (see Supplementary Note 
for more details).

•	 The 95% confidence interval in the allelic copy number, calcu-
lated using the R function t.test, must be less than 2.5.

Filters implemented for somatic HLA mutations. HLA allelic muta-
tions were classified as high-impact and damaging if the Ensembl 
Variant Effect Predictor (VEP)38 consequence included at least one of 
‘stop_gained’, ‘frameshift_variant’, ‘start_lost’ or ‘stop_lost’. To be con-
sidered in our analysis, mutations had to be classified as ‘PASS’ using 
the Genome Analysis ToolKit (GATK)39 FilterMutectCalls function, have 
ten reads supporting the alternate allele, and fall in a sample and gene 
that passed the MHC Hammer WES filters.

Filters implemented for HLA RNA analysis. To be included in the HLA 
RNA analysis, including RNA AIB, allelic expression, allelic repression 
and alternative splicing, a gene must pass the DNA analysis filters and

•	 Have at least ten SNPs in the exon sequence.
•	 Have no more than 50% of reads mapping to both alleles of the 

same gene.
•	 Have no more than 5% of reads mapping to multiple  

HLA genes.

Filters implemented for HLA alternative splicing. We excluded 
from our analysis any novel splice junction detected in the first 
or last exons of an HLA gene. To be included in our analysis, novel 
splice junctions had to be classified as one of the following: com-
plete exon skipping, partial exon skipping, partial intron retention 
or complete intron retention. In addition, we applied the following  
depth filters:

•	 In the GTEx cohort—to be included in our analysis, a novel splice 
junction required at least two uniquely mapping reads in that 
sample. In addition, the novel splice junction needed to be 
identified in another sample from the same patient with at least 
20 uniquely mapping reads.

•	 In the TRACERx and TCGA cohorts—to be included in our 
analysis, a novel splice junction needed to be classified as either 
‘tumor-enriched’ or ‘tumor-depleted’ and also be identified in at 
least one tumor region or matched normal from the patient with 
at least 20 uniquely mapping reads.

Statistical information
All statistical tests were performed in R (v.4.3.3). No statistical methods  
were used to predetermine the sample size. Tests involving com-
parisons of distributions were done using a two-tailed Wilcoxon test  
(wilcox.test). Tests involving the comparison of groups were done using 
a two-tailed Fisher’s exact test (fisher.test). The correlation was tested 
using Pearson’s correlation coefficient (cor.test).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The WES and RNA-seq data used during this study have been depos-
ited at the European Genome–Phenome Archive, which is hosted by 
the European Bioinformatics Institute and the Centre for Genomic 
Regulation under the accession code EGAS00001006494. Access is 
controlled by the TRACERx data access committee. Details on how to 
apply for access are available on the linked page. The TRACERx data 
are available under controlled access so that patient privacy and data 
confidentiality are maintained while promoting and encouraging 
impactful scientific discovery. The data access committee aims to reply 
to requests within 1 week.

Code availability
Code to run the MHC Hammer pipeline can be found at https://github.
com/McGranahanLab/mhc-hammer.
Code to recreate the manuscript figure can be found at https://zenodo.
org/records/13388455 (ref. 40).
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Gene passes MHC Hammer WES analysis filters

HLA-A
202 patients with 609 LUAD regions
111 patients with 361 LUSC regions
39 patients with 152 other histology regions 

HLA-B
207 patients with 613 LUAD regions
114 patients with 368 LUSC regions
39 patients with 154 other histology regions 

HLA-C
203 patients with 617 LUAD regions
114 patients with 383 LUSC regions
34 patients with 135 other histology regions 

237 patients with 749 LUAD regions
138 patients with 473 LUSC regions
46 patients with 187 other histology regions 

HLA-A
144 patients with 338 LUAD regions
88 patients with 210 LUSC regions
36 patients with 97 other histology regions 

HLA-B
149 patients with 347 LUAD regions
97 patients with 226 LUSC regions
37 patients with 99 other histology regions 

HLA-C
143 patients with 343 LUAD regions
96 patients with 235 LUSC regions
32 patients with 86 other histology regions 

HLA-A
38 patients with 100 LUAD regions
24 patients with 76 LUSC regions
11 patients with 31 other histology regions 

HLA-B
42 patients with 113 LUAD regions
23 patients with 67 LUSC regions
13 patients with 33 other histology regions 

HLA-C
38 patients with 104 LUAD regions
24 patients with 74  LUSC regions
10 patients with 24 other histology regions 

TRACERx421 cohort
Primary tumor region has:
 - WES 
 - a matched WES germline sample
 - a purity and ploidy estimate
 - a non FFPE sample

 - Tumor region has RNA-seq 
 - Gene passes MHC Hammer RNA 
   analysis filters

 - Tumor region has a matched 
    normal sample that has RNA-seq 
  - Gene passes MHC Hammer RNA analysis 
    filters in normal sample

 

Extended Data Fig. 1 | The TRACERx421 cohort. Consort diagram outlining the TRACERx421 samples used in this study. The MHC Hammer WES and RNA-seq analysis 
filters are outlined in the Methods. FFPE, formalin-fixed paraffin-embedded; WES, whole-exome sequencing; RNA-seq, RNA sequencing; LUAD, lung adenocarcinoma; 
LUSC, lung squamous cell carcinoma.
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HLA-A
177 patients with LUAD
195 patients with LUSC
333 patients with BRCA 

HLA-B
132 patients with LUAD
151 patients with LUSC
288 patients with BRCA 

HLA-C
171 patients with LUAD
174 patients with LUSC
336 patients with BRCA 

481 patients with LUAD 
464 patients with LUSC 
972 patients with BRCA

HLA-A
163 patients with LUAD
171 patients with LUSC
304 patients with BRCA 

HLA-B
115 patients with LUAD
141 patients with LUSC
252 patients with BRCA

HLA-C
111 patients with LUAD
129 patients with LUSC
280 patients with BRCA 

 - Tumor region has RNA-seq with 
   alignment rate > 0.6 
 - Gene passes MHC Hammer RNA 
   analysis filters

 - Tumor region has a matched 
    normal sample that has RNA-seq with 
    alignment rate > 0.6 
  - Gene passes MHC Hammer RNA analysis 
    filters in normal sample

 
HLA-A
10 patients with LUAD
21 patients with LUSC
25 patients with BRCA

HLA-B
10 patients with LUAD
19 patients with LUSC
21 patients with BRCA 

HLA-C
10 patients with LUAD
9 patients with LUSC
16 patients with BRCA 

Primary tumor region has:
 - WES with at least 5,000,000 paired aligned reads and alignment rate > 0.8 
 - a matched WES germline sample with at least 5,000,000 paired 
    aligned reads and alignment rate > 0.8
  - a purity and ploidy estimate
  - a non FFPE sample

TCGA lung and breast
cancer cohort

Gene passes MHC Hammer WES analysis filters

Extended Data Fig. 2 | The TCGA lung and breast cancer cohort. Consort 
diagram outlining the TCGA lung and breast samples used in this study. The MHC 
Hammer WES and RNA-seq analysis filters are outlined in the Methods.  

FFPE: formalin-fixed paraffin-embedded; WES: whole-exome sequencing;  
RNA-seq: RNA sequencing; LUAD: lung adenocarcinoma; LUSC: lung squamous 
cell carcinoma; BRCA, breast cancer.
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Gene passes MHC Hammer RNA analysis filters

HLA-A
190 patients with lung samples
131 patients with breast samples
198 patients with lung and breast samples

HLA-B
214 patients with lung samples
139 patients with breast samples
204 patients with lung and breast samples

HLA-C
204 patients with lung samples
125 patients with breast samples
203 patients with lung and breast samples

248 patients with only lung samples
156 patients with only breast samples
241 patients with lung and breast samples

RNA-seq normal sample has:
 - a matched WES germline sample with at least 5,000,000 paired aligned 
    reads and alignment rate > 0.8
 - an alignment rate > 0.6 

GTEx lung and breast
cohort

Extended Data Fig. 3 | The GTEx cohort. Consort diagram outlining the GTEx lung and breast samples used in this study. The MHC Hammer RNA-seq analysis filters 
are outlined in the Methods. WES: whole-exome sequencing; RNA-seq: RNA sequencing.
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Extended Data Fig. 4 | Types of alternative splicing detected by MHC Hammer. MHC Hammer will detect 4 different types of alternative splicing: complete exon 
skipping, complete intron retention, partial exon skipping and partial intron retention.
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Extended Data Fig. 5 | The difference between the lung and breast novel transcript proportion. For alternative splicing events that were found in both the lung and 
breast tissue of the same patient, the difference in the novel transcript proportion between the two tissues is shown.
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Extended Data Fig. 6 | HLA LOH rates in lung and breast cancer. The rate of HLA LOH in the TRACERx421 lung cohort and the TCGA lung and breast cancer cohorts. 
LOH: loss of heterozygosity; LUAD: lung adenocarcinoma; LCNEC: large cell neuroendocrine carcinoma; ER+: estrogen receptor positive; ER-: estrogen receptor 
negative; TNBC: triple-negative breast cancer.
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Extended Data Fig. 7 | Neoantigen silencing due to HLA LOH and repression. 
For each tumor region, the fraction of putative neoantigens predicted to bind 
exclusively to HLA alleles subject to LOH and/or repression. Boxplot shows 

median and first and third quartiles, and whiskers extend up to 1.5× IQR above 
and below the IQR. LOH: loss of heterozygosity; LUAD: lung adenocarcinoma; 
LUSC: lung squamous cell carcinoma.
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Extended Data Fig. 8 | The HLA gene regulators and HLA expression. The 
relationship between total HLA expression, measured by MHC Hammer, 
and the expression of CIITA, IFNG, NLRC5 and TNFα (TNF) in tumor samples 
without HLA genomic disruption. The P value and correlation coefficient (r) are 

calculated using Pearson’s method. TPM, transcripts per million; LUAD, lung 
adenocarcinoma; LUSC, lung squamous cell carcinoma; ER+, estrogen receptor 
positive.
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Extended Data Fig. 9 | CD8 T cells and HLA alternative splicing. The 
relationship between the presence of tumor-enriched alternative splicing (AS) 
and the amount of CD8 T cell infiltration. P values were derived from a two-sided 
Wilcoxon test. Boxplot shows median and first and third quartiles, and whiskers 

extend up to 1.5× IQR above and below the IQR. LUAD: lung adenocarcinoma; 
LUSC: lung squamous cell carcinoma; ER+: estrogen receptor positive; AS: 
alternative splicing.
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Extended Data Fig. 10 | Tumor neoantigen burden and metastasis seeding. 
a, The neoantigen count of primary tumor regions, split by whether they did or 
did not seed a metastasis. b, The neoantigen count of primary tumor regions, 
restricted to reflect peptides binding only to HLA alleles without HLA LOH, split 
by whether the primary tumor regions did or did not seed a metastasis. P values 

were derived from a two-sided Wilcoxon test. Boxplot shows median and first and 
third quartiles, and whiskers extend up to 1.5× IQR above and below the IQR. LOH: 
loss of heterozygosity; LUAD: lung adenocarcinoma; LUSC: lung squamous cell 
carcinoma.
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