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Genome-wide association studies of colorectal cancer (CRC) have identified

170 autosomal risk loci. However, for most of these, the functional

variants and their target genes are unknown. Here, we perform statistical
fine-mappingincorporating tissue-specific epigenetic annotations and
massively parallel reporter assays to systematically prioritize functional
variants for each CRCrisk locus. We identify plausible causal variants for the
170risk loci, with asingle variant for 40. We link these variants to 208 target
genes by analyzing colon-specific quantitative trait loci and implementing
the activity-by-contact model, which integrates epigenomic features and
Micro-C data, to predict enhancer-gene connections. By deciphering CRC
risk loci, we identify direct links between risk variants and target genes,
providing further insight into the molecular basis of CRC susceptibility

and highlighting potential pharmaceutical targets for prevention and

treatment.

CRC, which affects around 1.9 million people worldwide annually, has
astrong heritable basis'. Our recent genome-wide association study?
(GWAS) 0f100,204 CRC cases and 154,587 controls hasidentified over
200 statistically significant independent risk loci. Deciphering the
functional basis of these risk associations has the potential to provide
biological insightsinto the etiology of CRC. However, deconvolution of
GWASrisklocihas proven challenging owing to linkage disequilibrium
between variants, and because most risk variantslocalize to noncoding
regions of the genome, particularly within enhancer elements. Com-
putational fine-mapping approaches can only predict putative causal
variants based on linkage disequilibrium correlations®. To definitively
identify variants with gene regulatory effects requires experimental
validation.

Most noncoding GWAS risk variants are likely to function through
cis-regulatory mechanisms thatinfluence target gene expression. By
investigating the transcriptional changes associated with different

variants, it is possible to link specific alleles to changes in gene expres-
sion. Classical reporter assays can only assess the allelic transcrip-
tional activity of individual variants. By contrast, massively parallel
reporter assays (MPRAs) provide ascalable approach to characterize
the regulatory effects of thousands of variants*, and this strategy has
recently been successfully exploited in studies to implicate variants
associated with multiple disease states, including myeloma® and
melanoma”®,

Although advances in fine-mapping and functional annotation
of risk loci have improved the nomination of causal variants, identify-
ing target genes for GWAS signals remains a central challenge. Tradi-
tionally, variants have been assigned to the closest gene. However,
solely relying on physical proximity for prediction can be unreliable,
as causal variants are often regulatory and can affect gene expression
through long-range interactions®'°. Furthermore, it is now recognized
that enhancers can have more than one target gene'. The analysis
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Fig.1| Overview of the study. Using data from GWASs for CRC, we identified 170
regions of interest. Data from MPRAs, epigenetic marks (ChIP-seq), chromatin
accessibility (ATAC-seq), gene expression (RNA-seq) and long-range chromatin
interactions (Micro-C) were combined to derive anintegrative score to prioritize
the functional variants at each CRC risk locus. These variants were linked to
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target genes by analyzing colon-specific eQTLs and using SMR. In the GWAS plot,
the coloured dots indicate the variants that are above the Pvalue threshold. In
the SMR plot, they represent the two different datasets (GWAS and eQTL). The
coloured portions of DNA represent the genomic regions of interest that were
studied.

of expression quantitative trait locus (eQTL) data generated across
multiple cell types has undoubtedly greatly aided target gene iden-
tification. However, because published eQTLs capture only 9-13% of
the GWAS heritability of cancers’, genomic data beyond gene tran-
scription are required to comprehensively decipher the functional
basis of associations'. Chromatin interactions and their proximityin
genomic space are important for the regulation of gene expression.
The integration of data from chromatin accessibility', epigenom-
ics histone ChIP-seq (chromatin immunoprecipitation followed by
sequencing)” and three-dimensional (3D) chromatininteractions'®™®
has been shown to improve the ability to identify causal variants and
their likely target gene. The recognition of the limitations of reliance on
asingleanalysis toidentify causal variants and gene targets underlying
GWAS signals has led to the adoption of dataintegration approaches™.
For example, the INQUISIT pipeline, which scores gene expression,
chromatin interactions and ChIP-seq annotations, has frequently
beenadopted by breast cancer researchers to identify candidate gene
targets'>”°. More recently, the computational approach implemented
in the activity-by-contact (ABC) model has sought to systematically
link regulatory elements to target genes through the combination of
enhancer activity with 3D chromatin contact frequencies?*.

To provide insight into the functional basis of the CRC risk loci,
weintegrated data from multiple data modalities. First, we nominated
causal variants at each of therisk loci through statistical fine-mapping
incorporating tissue-specific epigenetic annotations, and by perform-
ing MPRAs in multiple colonic cell lines. Second, by generating and
analyzing tissue-specific gene expression data and high-resolution
chromatininteraction profiles, we linked nominated variants to target

genes (Fig.1and Extended Data Fig.1). Our analyses provide a detailed
interpretation of CRC risk signals and their underlying basis.

Results

Cell specificity and chromatin landscape at risk loci

Toidentify the cellular contexts of the CRC loci, we analyzed single-cell
RNA sequencing (scRNA-seq) profiles across 24 different tissues using
the Tabula Sapiens dataset®, as well as 11 intestinal regions in the Gut
Cell Atlas®*. We derived single-cell disease relevance scores (scDRSs),
whichlink the scRNA-seq datawith polygenic disease risk at single-cell
resolution. This score assesses cell-type-specific expression for genes
implicated by the GWAS association statistics. Genes whose expression
was correlated with scDRSs were strongly enriched in large intestine
and epithelial tissue (P <107). A specific analysis of intestinal cells
showed a strong association of risk variants with BEST4" enterocytes
and colonic epithelial cells (P <107, Supplementary Fig.1). GWAS vari-
ants are generally thought to influence risk through cis-regulatory
mechanisms affecting tissue-specific gene expression. We confirmed
significantenrichment of enhancer- and promoter-associated histone
marks, including histone H3 lysine 4 trimethylation (H3K4me3), H3
lysine 4 monomethylation (H3K4mel) and H3 lysine 27 acetylation
(H3K27ac) in colonic and rectal mucosa cells using ChIP-seq data from
the National Institutes of Health (NIH) Roadmap Epigenomics Project®
(P<1075, Supplementary Fig. 2).

Statistical fine-mapping of risk loci
We fine-mapped each of the risk loci, including independent signals,
incorporating functional annotation using PolyFun®® and susieR” in
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conjunction with ChIP-seq data on H3K4mel, H3K4me3, H3K27ac,
H3K27me3, H3K36me3 and CCCTC-binding factor (CTCF) marks, as
well as assay for transposase-accessible chromatin with sequencing
(ATAC-seq) data generated from six CRC cell lines (C32, CL11, HT29,
SW403, SW480 and SW948) (Supplementary Table 1). For each inde-
pendent risk locus, we extracted variants within a 1-Mb window and
calculated the causal probabilities nonparametrically using the estab-
lished PolyFun protocol, which estimates the per-single nucleotide
polymorphism (SNP) heritability weighted by their functional annota-
tions. Credible sets of causal variants were identified by susieR using the
probabilities calculated by PolyFun. Posterior inclusion probabilities
(PIPs) were ranked, and variants were added to the set until the cumu-
lative PIP reached a value of >0.95, with a minimum individual variant
PIP of 0.001. We identified 1-14 credible sets per locus (median, 1),
consisting of 1-226 variants (median, 1) (Supplementary Table 2).

Functional significance of risk variants

We next assessed the regulatory activity of variants at each of the risk
loci using a complementary experimental approach. At each GWAS
locus (defined by a 500-kb window spanning the lead variant), we ini-
tially identified all variants with a Pvalue within three orders of magni-
tude of the Pvalue of the lead variant. As this may exclude potentially
functional variants at loci where the lead variant has an especially
strong association, we also included variants with —-10g;,(Pyariant) > 0.7 X
(—10810(Picad variant))» Stipulating an r* of >0.2 for the lead variant and a
P, ian: Of <107°. We performed MPRAs to simultaneously identify func-
tional cis-regulatory variants, testing 8,880 variants (median of 39
variants per locus).

We evaluated the enhancer activity of reference and alternative
alleles of the variants by cloning the surrounding 200 bp of genomic
sequences. Totest variant functionin cellular constructs representing
tumor and normal states, we transfected primary CRC cell lines (HT29
and SW403) and animmortalized primary colonic cell line (HCEC-1CT).
Enhancer activity was quantified by sequencing barcodes in input
DNA and mRNA (cDNA). Sequencing statistics and details of the qual-
ity control process are shown in Supplementary Table 3 and Supple-
mentary Fig. 3. A total of 275 unique variants displayed significant
allelic transcriptional activity (false discovery rate (FDR) <107, n =133
in HT29, n=102 in SW403 and n =143 in HCEC-1CT; Supplementary
Table 4). These ‘MPRA-significant’ variants were more likely to be
fine-mapped as the causal variant (chi-square test, P=4.39 x107) as
well as fine-mapped to enhancer and promoter regions of the colonic
epigenome (P=3.66 x107%).

We focused on the underlying biological mechanisms through
which genetic variants at CRC risk loci shape the regulatory environ-
ment around putative target genes. First, because risk variants can
mediate their effects through altered transcription factor binding,
we assessed transcription factor binding in chromatin-accessible
regions using the JASPAR 2022 transcription factor motif database”
in concert with the ATAC-seq data. The most common transcription
factors predicted to bind at the loci included ZNF460 (found at ten
loci), CTCF (n=7), PRDM9 (n=7), SP1 (n=7) and KLF5 (n=3), and
these transcription factor binding sites were enriched at the GWAS loci
(P<107*,Supplementary Fig.4). Of note is KLF5, which was associated
with the 13q22.1risk locus, and PRDM?9, a histone methyltransferase,
which catalyzes H3K4 methylation. Second, we predicted enhancer-
gene connections across risk loci from ultra-high-resolution Micro-C
chromatininteraction profiles generatedin CL11, HT29, SW403, SW403
and SW498 cell lines. The MPRA-significant variants preferentially
localized to open chromatin (P=7.32 x107%) and mapped to regions
thatinteracted with the transcription start site (TSS) of genes through
aMicro-C chromatin interaction (P=7.28 x10™*). In addition to con-
firming the interaction between rs6983267 at the 8q24.21locus and
the MYC TSS™®%%°, chromatin looping interactions implicate several
other genes with established roles in CRC biology, including LAMCI,

TGFBI and KLF5. Using Akita®, a convolutional neural network based
model for predicting 3D chromatin structure, 20% (1,798 out of 8,880)
ofthe tested variants were predicted to affect 3D genome folding; 244
variants mapped to a CTCF motif, and approximately half of these
(n=121) were predicted to severely affect the 3D chromatin structure.

Nominating causal variants using an integrative scoring
system

To prioritize plausible causal variants at each locus, we integrated the
multiplelevels of functional annotations and fine-mapping datafor all
8,880 variants. We adopted ascoring approach similar to that of ref. 8,
assigning avalue between 0 and 2 for each variant and each annotation:
Orepresented no hit, 1represented a hitand 2 represented a strong hit
(see Methods for the designation of each annotation-specific score).
For eachlocus, the annotation scores were summed, and the variants
ranked. The variants with scores in the top 20% were designated as
Tier 1 variants, those with scores in the bottom 50% as Tier 3, and the
remainder as Tier 2 (Fig. 2). We identified 2,406 Tier 1 variants, 42 of
whichwerealso the top hitinthe GWAS meta-analysis. Forty-nine of the
GWAS locidid not have any Tier 1variants, and 16 of these also did not
have any Tier 2 SNPs, with the 16 corresponding to regions with little to
no functional data (Supplementary Fig.5and Supplementary Table 2).

Linking nominated variants to target genes

To link variants at each locus to respective target susceptibility
genes, we analyzed eQTL data from normal colon (SOCCS (Study of
Colorectal Cancer in Scotland) colon or rectum epithelium, n =213;
Genotype-Tissue Expression (GTEx) transverse colonic mucosa,
n=367) and CRC tissues (The Cancer Genome Atlas Colon Adeno-
carcinoma (TCGA COAD), n = 286; Rectum Adenocarcinoma (READ),
n=94).0fthe275MPRA-significant variants, 113 had a significant eQTL
(P.qr < 7.51x107; Bonferroni-corrected P value for the 665 unique
genestestedinthe eQTLanalysis),and 79 of these displayed a consistent
direction of effect between MPRAs and eQTLs (that s, a direction of
gene expression that is concordant with MPRA-allelic transcriptional
levels) (Supplementary Table 2). By performing asummary-data-based
Mendelian randomization (SMR) analysis®, we identified 94 candidate
target genes for 54 risk 10Ci (Psyp.agjusted < 0-05; a median of one gene per
locus) in the normal data, and 14 candidate target genes for 12 of the
risk lociin the tumor data (Supplementary Table 5).

Following on, we evaluated the quantitative effect of enhancer-
gene regulation by analyzing Micro-C data in conjunction with
ATAC-seq, H3K27ac ChIP-seq and RNA-seq data using the ABC tool*.
ABCinteractionstypically regulated two to three genes within 15-54 kb,
and 62 of the risk loci fell within predicted enhancer regions that regu-
late genes.

Focusing on the Tier 1 variants at each locus (1-5 variants per
locus; median, 1), 94 of the GWAS loci were linked to genes predicted
by at least two sources of evidence (SMR normal, SMR tumor, ABC and
Micro-C), and 10 had one source of evidence (Supplementary Table 6).
Forty-two loci could not be associated with agene, with the majority of
thesefalling in expression-inactive regions (B-compartments). For 82
of the nominated loci, the closest gene was predicted to be the target
gene, with 61 of these falling within introns. Approximately 70% of
the nominated variants fell within the same topologically associating
domain (TAD) as their target gene.

In addition to validating rs6983267, which mediates its effect
through a long-range interaction with MYC'®**°, as the basis of the
8q24.21association (Fig. 3a and Extended DataFig. 2), our analysis pro-
vides evidence for the functional basis of the 170 risk loci and implicates
208 target genes. Although many of the risk loci have not previously
been the subject of detailed scrutiny, several of the target genes have
either well-documented rolesin CRC or are strong a priori candidates
for havingaroleintumor biology. For example, weidentify rs1248418
as the basis of the 10p12.1 association (top GWAS variant rs1773860;
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Fig.3|Plot of the annotation sources for each of the variants analyzed in
each GWAS locus. a, At the 8q24.21locus, the GWAS identified rs6983267,
rs7013278 and rs4733767, highlighted inred, as risk loci. rs6983267 and rs7013278
arewithin1.5 kb of each other, but rs6983267 is better annotated, with strong

hits for MPRAs, transcription factor binding, open chromatin (ATAC-seq) and
Micro-C. rs4733767 is over 150 kb away from rs6983267 and rs7013278 and has
separate annotations, soitis probably a trueindependent locus. b, At the 10p12.1
locus, rs1773860 was the lead GWAS variant at this locus, but rs1248418 (= 0.91,
D’ =0.98) was better annotated. This variant is located in open chromatin

andis predicted to be in an enhancer region. In addition, this variant showed

along-range interaction with the TSS of BAMBI. ¢, Functional annotation of
rs61776719 at the 1p34.3 locus identified rs67631072 (r*=1.0, D’ =1.0) as the top
annotated variant, which shows enhancer activity in open chromatin regions
and is predicted by the ABC model to affect gene expression. Detailed figures of
the annotations of the regions are shown in Extended Data Figs. 2-4. In all figure
panels, gray blocks correspond to an annotation, and black blocks correspond
to astrong annotation. ATAC denotes the presence of an ATAC-seq peak, CTCF
denotes the presence of a CTCF peak from the ChIP-seq analysis and Akita
denotes evidence of disruption of 3D chromatin structure. TF denotes that a
transcription factor was predicted to bind.

r’=0.91, D’ =0.98). The enhancer region to which rs1248418 localizes
shows a long-range interaction with the TSS of the gene encoding
BAMBI, a negative regulator of transforming growth factor-3 (TGFf3)
signaling (Fig. 3b and Extended Data Fig. 3). Similarly, through func-
tional annotation, we identify rs67631072 as the basis of the 1p34.3
locus (top GWAS variant rs61776719; =1.0, D’ =1.0), with evidence
from SMR and Micro-C implicating FHL3 (Fig. 3c and Extended Data

Fig.4). The C-risk allele (P,yion = 1.59 X 107) is associated with increased
expression of FHL3 (P.qr = 7.69 x 107), which has been shown to have
oncogenic functions through interactions with SMAD2, SMAD3 and
SMAD4, key mediators of TGFp signaling® . Our analysis also impli-
cates rs9547700 (top GWAS variant rs12427846; r*=0.96, D’ = 0.98)
as the functional basis of the 13q13.3 locus, and the risk allele is asso-
ciated with reduced transcriptional activity and decreased SMAD9
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Fig.4 | Treemap of the candidate target genes, which are grouped by functional category. Genes that were identified in the integrated analysis were classified
according to their biological or cellular function. The size of the box is proportional to the number of genes in the category.

expression, further emphasizing the central role of genetic variation
in TGF signaling pathways as a determinant of genetic susceptibility
(Supplementary Fig. 6).

Gene list analysis
By performing this integrated analysis, we identified aset of 208 genes
from the GWAS loci (Fig. 4 and Supplementary Table 6) and showed
here a direct link between the risk variant and an implicated gene. To
determine which of the target genes that we identified are already
knownto havearolein CRC,and more broadly cancer, we used the text
mining tool OncoScore*, which examines text from all available studies
inthe biomedical literature. To complement this analysis, we queried
semantic predications within the Semantic MEDLINE Database™ using
MELODI Presto’®. An integration of the results from these searches
revealed that 142 of the 208 candidate target genes that we identified
appear to have no documented role in CRC, and 47 of these presently
have no established roleinany cancer (Supplementary Tables7 and 8).
One of the aspirations of GWASs is to inform therapeutics. To
investigate the potential clinical utility of the CRC target genes iden-
tified at risk loci, we used oncoEnrichR* to explore multiple sources
of functional and drug curation, including Open Targets*>* and Dep-
Map*. For ten of the genes, there are already approved drugs that
provide an opportunity for repurposing (Supplementary Table 9).
Theseinclude crofelemer and misoprostol. Crofelemer inhibits ANO1,
a calcium-activated chloride channel, which has a role in epithelial
fluid secretion, and the gene is overexpressed in CRC. Misoprostol

is a PTGER3 (prostaglandin receptor) agonist, potentially capable of
addressing the downregulation of this receptor intumors. Inaddition
to these, several of the target genes identified are attractive drug tar-
gets, with 44 having clinical or discovery precedence, and afurther 31
are likely to be tractable (Supplementary Table 10). Based on CRISPR
knockout data, genomic biomarkers and patient data*’, TBCD, KLF5 and
SOX9arealso predicted to be promising therapeutic targetsin CRC, as
are CCND1,CDH1, MYCand POUSFIBin many different types of cancer
(Supplementary Table11).

Afterinvestigating regulatory networks in the gene list, weidenti-
fied transcription factor regulatory interactions in cancer and normal
cells. It was possible to observe sets of ‘hub’ genes, including MYC,
MYNN, EGR1,ZNF263, CTCF and SP1 (Supplementary Fig. 7). Formally
testing for molecular pathways enriched in the target genes revealed
thatthe genes were enriched in TGFP-related pathways (TGF signal-
ing pathway, Kyoto Encyclopedia of Genes and Genomes (KEGG),
Pagjusted (Pagj) = 4.31x107%; TGFp signaling activation by blocking of
tumor suppressors, Elsevier Pathway Collection, P,q; = 4.4 x 107, Hippo
signaling pathway, KEGG, P,; = 6.50 x 10~°; Wnt signaling pathway,
KEGG, P,;=9.38 x107%), as well as in cancer-related pathways (path-
waysin cancer, KEGG, P,4;= 1.43 x 107°). Given the central role of these
pathwaysin CRC development, these findings expand opportunities
for indirect targeting; for example, the use of porcupine inhibitors
to indirectly target Wnt pathway activity**. Hence, adapted forms or
modified dosing regimens of these drugs may offer alternative treat-
ment options.
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Discussion

To prioritize functional variants for the identification of CRC suscepti-
bility genes atrisk loci, we systematically scored multiple genetic and
functional features as well as assayed allelic transcriptional activity.
Integration of these data nominated 208 variants at 170 risk loci, few
of which have previously been formally investigated.

Our data support tissue-specific transcriptional regulation as a
major mechanism through which GWAS variants influence CRC risk.
Although 24% (40 out 0of 170) of the loci had asingle Tier 1 variant, 58%
(98 out 0f 170) featured more than one equally plausible functional
variant. The potential of multiple functional variants at some loci to
underscore CRC risk and plausibly target more than one gene is con-
sistent with astudy reporting that multiple causal regulatory variants
in high linkage disequilibrium are responsible for a subset of lympho-
blastoid cell eQTLs’. In48% of the GWAS risk loci, the candidate target
genewasthe closest to the gene or intronic, often localizing within the
same TAD. Thisisinline with the Open Targets gold standard dataset*’,
and this proximity effect has previously been noted and proposed to
reflect evolutionary conservation®. For an appreciable proportion of
risk loci, we found no obvious candidate genes, largely due to a paucity
of functional datainthese regions. This may be indicative of alternative
mechanisms of actionthat were not explored here. Forexample, it has
recently been proposed that the mechanistic basis of the 8q23.3 risk
locus is a consequence of variable number tandem repeats®.

We acknowledge that this study has some limitations. First,
MPRA-significant variants were not identified for 36% of the GWAS loci.
The functional basis of these risk loci might operate through mecha-
nisms that cannot be tested by MPRAs. However, we cannot exclude
technical issues or simply lack of statistical power to demonstrate a
difference in allelic transcriptional activity. Second, for 96 loci, we
could notassign atarget gene using eQTLs. We have sought to address
the cellular context of eQTLs, analyzing both normal and tumor data,
although failure to demonstrate a relationship may reflect a lack of
statistical power, especially for lower-frequency variants. Therefore,
rather than rely solely on eQTLs, we performed an ABC-model-based
analysis utilizing epigenomic features and Micro-C data to predict the
enhancer-gene connections.

Accepting these caveats, we performed a multilayered analysis that
enabled ustonominate the probable causal variants for the CRCrisk loci
and implicate 208 gene targets as the biological basis of associations.
Onlyssix of the genes weidentified (BCL9L, CDH1,SMAD3,S0X9, TBX3and
TCF712) areestablished CRC driver genes*® (that is, genes with recurrent
nonsynonymous somatic mutations in CRC under positive selection).
This suggests amodel by which genetic predispositionindirectly affects
oncogenesis. Inaddition to emphasizing the role of genetic variationin
established CRC genes and pathways, we identify candidate target genes
with hithertono previously well-established role. Notably, theseinclude
components of the calmodulin superfamily, CALML4and CAMK2A.The
calmodulin pathway is the principal calcium sensor regulating amyriad
of vital biological processes, including cell proliferation, programmed
cell death and autophagy, and is increasingly viewed as an attractive
therapeutic target*. SLCO2A1, which has arole in the synthesis and clear-
ance of prostaglandins, along with FADS1, also highlights theimportance
of inflammation and the immune response in CRC development. The
identification of ATXN10 and ATXN2as candidate target genes provides
supportfortheinvolvement ofthe Ras-MAP kinase pathway and EGFR
trafficking in CRC development. BCKDHA catalyzes the breakdown of
branched-chain amino acids, the dysregulation of whichis recognized
tohave arolein the progression of arange of cancers*®.

In summary, we provide further insight into the functional basis
ofriskloci, implicating novel genesin the development of CRC, which
expands the potential for therapeutic targeting. Our analysis provides
an outline for a generalized strategy to profile disease-associated
GWAS loci using high-throughput variant screening in concert with
multilayered functional annotation.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41588-024-01900-w.

References

1. Lichtenstein, P. et al. Environmental and heritable factors in the
causation of cancer-analyses of cohorts of twins from Sweden,
Denmark, and Finland. N. Engl. J. Med. 343, 78-85 (2000).

2. Fernandez-Rozadilla, C. et al. Deciphering colorectal cancer
genetics through multi-omic analysis of 100,204 cases and
154,587 controls of European and east Asian ancestries. Nat.
Genet. 55, 89-99 (2023).

3. Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide
associations to candidate causal variants by statistical
fine-mapping. Nat. Rev. Genet. 19, 491-504 (2018).

4. Tewhey, R. et al. Direct identification of hundreds of
expression-modulating variants using a multiplexed reporter
assay. Cell 165, 1519-1529 (2016).

5. Abell, N. S. et al. Multiple causal variants underlie genetic
associations in humans. Science 375, 1247-1254 (2022).

6. Ajore, R. et al. Functional dissection of inherited non-coding
variation influencing multiple myeloma risk. Nat. Commun. 13, 151
(2022).

7. Choi, J. et al. Massively parallel reporter assays of melanoma
risk variants identify MX2 as a gene promoting melanoma. Nat.
Commun. 1, 2718 (2020).

8. Long, E. etal. Massively parallel reporter assays and variant
scoring identified functional variants and target genes for
melanoma loci and highlighted cell-type specificity. Am. J. Hum.
Genet. 109, 2210-2229 (2022).

9. Karnuta, J. M. & Scacheri, P. C. Enhancers: bridging the gap
between gene control and human disease. Hum. Mol. Genet 27,
R219-R227 (2018).

10. Ying, P. et al. Genome-wide enhancer-gene regulatory maps link
causal variants to target genes underlying human cancer risk.
Nat. Commun. 14, 5958 (2023).

1. Gschwind, A. R. et al. An encyclopedia of enhancer-gene
regulatory interactions in the human genome. Preprint at bioRxiv
https://doi.org/10.1101/2023.11.09.563812 (2023).

12. Yao, D. W., O’Connor, L. J., Price, A. L. & Guseyv, A. Quantifying
genetic effects on disease mediated by assayed gene expression
levels. Nat. Genet. 52, 626-633 (2020).

13. Mostafavi, H., Spence, J. P., Naqvi, S. & Pritchard, J. K. Systematic
differences in discovery of genetic effects on gene expression
and complex traits. Nat. Genet. 55, 1866-1875 (2023).

14. Soskic, B. et al. Chromatin activity at GWAS loci identifies
T cell states driving complex immune diseases. Nat. Genet. 51,
1486-1493 (2019).

15. Trynka, G. et al. Chromatin marks identify critical cell types for
fine mapping complex trait variants. Nat. Genet. 45, 124-130
(2013).

16. Downes, D. J. et al. Identification of LZTFL1 as a candidate effector
gene at a COVID-19 risk locus. Nat. Genet. 53, 1606-1615 (2021).

17. Orozco, G., Schoenfelder, S., Walker, N., Eyre, S. & Fraser, P.
3D genome organization links non-coding disease-associated
variants to genes. Front. Cell Dev. Biol. 10, 995388 (2022).

18. Jager, R. et al. Capture Hi-C identifies the chromatin interactome
of colorectal cancer risk loci. Nat. Commun. 6, 6178 (2015).

19. Fachal, L. et al. Fine-mapping of 150 breast cancer risk regions
identifies 191 likely target genes. Nat. Genet. 52, 56-73 (2020).

20. Michailidou, K. et al. Association analysis identifies 65 new breast
cancer risk loci. Nature 551, 92-94 (2017).

Nature Genetics | Volume 56 | October 2024 | 2104-2111

2110


http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-024-01900-w
https://doi.org/10.1101/2023.11.09.563812

Article

https://doi.org/10.1038/s41588-024-01900-w

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Fulco, C. P. et al. Activity-by-contact model of enhancer-promoter
regulation from thousands of CRISPR perturbations. Nat. Genet.
51, 1664-1669 (2019).

Nasser, J. et al. Genome-wide enhancer maps link risk variants to
disease genes. Nature 593, 238-243 (2021).

Tabula Sapiens, C. et al. The Tabula Sapiens: a multiple-organ,
single-cell transcriptomic atlas of humans. Science 376,
eabl4896 (2022).

Elmentaite, R. et al. Cells of the human intestinal tract mapped
across space and time. Nature 597, 250-255 (2021).

Kundaje, A. et al. Integrative analysis of 111 reference human
epigenomes. Nature 518, 317-330 (2015).

Weissbrod, O. et al. Functionally informed fine-mapping and
polygenic localization of complex trait heritability. Nat. Genet. 52,
1355-1363 (2020).

Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new
approach to variable selection in regression, with application to
genetic fine mapping. J. R. Stat. Soc. Series B Stat. Methodol. 82,
1273-1300 (2020).

Castro-Mondragon, J. A. et al. JASPAR 2022: the 9th release of the
open-access database of transcription factor binding profiles.
Nucleic Acids Res. 50, D165-D173 (2022).

Pomerantz, M. M. et al. The 8924 cancer risk variant rs6983267
shows long-range interaction with MYC in colorectal cancer. Nat.
Genet. 41, 882-884 (2009).

Tuupanen, S. et al. The common colorectal cancer predisposition
SNP rs6983267 at chromosome 8924 confers potential to
enhanced Wnt signaling. Nat. Genet. 41, 885-890 (2009).
Fudenberg, G., Kelley, D. R. & Pollard, K. S. Predicting 3D genome
folding from DNA sequence with Akita. Nat. Methods 17, 1111-1117
(2020).

Zhu, Z. et al. Integration of summary data from GWAS and eQTL
studies predicts complex trait gene targets. Nat. Genet. 48,
481-487 (2016).

Cao, G. et al. FHL3 contributes to EMT and chemotherapy
resistance through up-regulation of Slug and activation of TGF3/
Smad-independent pathways in gastric cancer. Front. Oncol. 11,
649029 (2021).

Hou, Y. et al. The circular RNA circ_GRHPR promotes NSCLC cell
proliferation and invasion via interactions with the RNA-binding
protein PCBP2. Clin. Exp. Pharmacol. Physiol. 48, 1171-1181

(2021).

Huang, Z., Yu, C., Yu, L., Shu, H. & Zhu, X. The roles of FHL3 in
cancer. Front. Oncol. 12, 887828 (2022).

Piazza, R. et al. OncoScore: a novel, Internet-based tool to assess
the oncogenic potential of genes. Sci. Rep. 7, 46290 (2017).
Kilicoglu, H., Shin, D., Fiszman, M., Rosemblat, G. & Rindflesch,

T. C. SemMedDB: a PubMed-scale repository of biomedical
semantic predications. Bioinformatics 28, 3158-3160 (2012).

38. Elsworth, B. & Gaunt, T. R. MELODI Presto: a fast and agile tool
to explore semantic triples derived from biomedical literature.
Bioinformatics 37, 583-585 (2021).

39. Nakken, S. et al. Comprehensive interrogation of gene lists from
genome-scale cancer screens with oncoEnrichR. Int. J. Cancer
153, 1819-1828 (2023).

40. Mountjoy, E. et al. An open approach to systematically prioritize
causal variants and genes at all published human GWAS
trait-associated loci. Nat. Genet. 53, 1527-1533 (2021).

41. Ochoa, D. et al. The next-generation Open Targets Platform:
reimagined, redesigned, rebuilt. Nucleic Acids Res. 51, D1353-
D1359 (2023).

42. Pacini, C. et al. Integrated cross-study datasets of genetic
dependencies in cancer. Nat. Commun. 12,1661 (2021).

43. Behan, F. M. et al. Prioritization of cancer therapeutic targets
using CRISPR-Cas9 screens. Nature 568, 511-516 (2019).

44. Ho, S.Y. &Keller, T. H. The use of porcupine inhibitors to target
Wnt-driven cancers. Bioorg. Med. Chem. Lett. 25, 5472-5476
(2015).

45. Mukamel, R. E. et al. Repeat polymorphisms underlie top genetic
risk loci for glaucoma and colorectal cancer. Cell 186, 3659-
3673.623 (2023).

46. Martinez-Jimenez, F. et al. A compendium of mutational cancer
driver genes. Nat. Rev. Cancer 20, 555-572 (2020).

47. Villalobo, A. & Berchtold, M. W. The role of calmodulin in tumor
cell migration, invasiveness, and metastasis. Int. J. Mol. Sci. 21,
765 (2020).

48. Yang, D. et al. Branched-chain amino acid catabolism breaks
glutamine addiction to sustain hepatocellular carcinoma
progression. Cell Rep. 41, 111691 (2022).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

Nature Genetics | Volume 56 | October 2024 | 2104-2111

2m


http://www.nature.com/naturegenetics
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Article

https://doi.org/10.1038/s41588-024-01900-w

Methods

Ethics

Forthe eQTL data, all participants provided informed written consent,
and the research was approved by local research ethics committees
(SOCCS11/SS/0109 and 01/0/05) and National Health Service manage-
ment (SOCCS 2013/0014,2003/W/GEN/05).

GWAS statistics and definition of risk loci

GWAS summary association statistics were obtained from the recently
published GWAS meta-analysis 0f 100,204 CRC cases and 154,587 con-
trols’. Risk loci were defined as variants with P < 5 x 108 and that were
atleast 500 kb apart. Toidentify secondary signalsinside this window,
a conditional analysis was performed on the meta-analysis summary
statistics using genome-wide complex trait analysis with conditional
and joint analysis*’. As the GWAS data were based on east Asian and
Europeanindividuals, we used genotyping data from 6,684 unrelated
individuals of east Asian ancestry and 4,284 individuals of European
ancestry from the UK10K project®® and the 1000 Genomes Project™,
respectively, asareference for an estimation of linkage disequilibrium.
The conditional analysis was performed on each population separately,
and the data were combined using a meta-analysis, retaining associa-
tions where P, giona < 5 X 1078, In total, there were 204 autosomal vari-
antsidentified, which mapped to 170 loci.

Celllines and cell culture

CRC cell lines were cultured in 5% CO, at 37 °C, with SW403 (ACC294,
DSMZ),SW480 (ACC313,DSMZ) and SW948 (91030714, ECACC) grown
in DMEM (Gibco), HT29 (ACC299, DSMZ) in McCoy’s 5A (Modified)
Medium (Gibco) with GlutaMAX Supplement (Gibco), CL11 (ACC467,
DSMZ) in DMEM/F-12 (Gibco), and C32 (ECACC) in Iscove's Modified
Dulbecco's Medium (Gibco). Media were supplemented with 10% (20%
for CL11) heat-inactivated FBS (Sigma). The normal colon crypt cell
line HCEC-1CT (CKHT039-0229, Evercyte) was cultured in a4:1ratio of
DMEM and Medium 199 (Gibco) supplemented with ColoUp medium
(Evercyte) at 37 °C, with 3% O, and 5% CO,. All cell lines were cultured
until they reached 90% confluency and then passaged using TrypLE
(Gibco).

MPRAs

Variant selection. We used MPRAs to identify variants exhibiting
transcriptional differences. The nature of the assay requires that the
variantsto betested are predefined, and the number of variants tested
were constrained by oligonucleotide synthesis chip capacity. In light
of'this, using data from the CRC GWAS, we selected variants for MPRA
testing by first considering all variants in a 500-kb window spanning
each primary or conditional association (thatis, +250 kb around each
lead variant) whose Pvalues were within three orders of magnitude of
that of the lead variant. As this might not capture functional variants
that remain highly significant at some loci (that is, where the lead vari-
ant has an extremely strong association), we also considered variants
having —10g,6(Pariant) > 0.7 X (=10Z10(Pieadvarian)), Stipulating an r? of >0.2
for the lead variant and a P,,;,,,. of <107 in the GWAS. A total of 100
control variants were also evaluated: 50 were derived from common
variants (minor allele frequency > 0.05) that mapped to repressive
regions (greater than fourfold enriched versusinput) as defined by the
NIH Roadmap Epigenomics Project colonic (E-075) H3K27me3 mark,
and the remaining 50 were randomly generated.

Variant oligonucleotide library design. For each variant, 100-bp
flanking sequences were added, yielding genomic probe sequences of
201bp (100 +1+100). Oligonucleotides containing an Scel restriction
site, whichwas used for cloning, were excluded. Duringlibrary synthe-
sis, probe orientation was determined by the addition of two adapter
sequences (AGGACCGGATCAACT and CATTGCGTGAACCGA) at either
the 5’ and 3’ ends or the 3’ and 5’ ends relative to the probe sequence.

Each variant had four probes: one for each combination of forward
and reverse strands and one for each reference and alternative allele.
Library synthesis was performed by Twist Bioscience.

Library construction, transfection and sequencing. A lentiviral
MPRA was carried out as previously described®. In brief, the MPRA
library was amplified using 12 cycles of PCR, with adapter sequences as
primers. All PCR reactions were performed using Q5 High-Fidelity 2X
Master Mix (NEB). Subsequent rounds of PCRincorporated arandom
15-base polymer barcode sequence for probe identification. Barcoded
probeswereincorporatedinto a pLS-Scel vector (a gift from N. Ahituyv;
Addgene plasmid no.137725) by Gibson assembly using NEBuilder HiFi
DNA Assembly Cloning Kit (NEB). After ligation, 100 ng of plasmid
was transfected into NEB Stable Competent E. coli (High Efficiency)
(NEB) using an Eppendorf Eporator at 1.8 kV. Bacteria were plated on
carbenicillin (500 pg ml™) agar plates. A total of 2 x 10° colonies, suf-
ficient for 100 unique barcodes per probe, were collected, and plasmid
DNA was purified using ZymoPURE Il Plasmid Maxiprep Kits (Zymo
Research) beforelllumina-based library preparation. Barcode-to-probe
associationwas carried out by sequencing 4 nM of the pLS-Scel library
on an lllumina MiSeq using a MiSeq Reagent Kit v2 (300 cycles) with
three custom primers. Primer sequences are provided in Supplemen-
tary Table 9. Custom primers were diluted to a final concentration of
0.5 uM and added as follows: pLSmP-ass-seq-R1 (forward probe) read 1
(146 cycles), pLSmP-ass-seq-R2 (reverse probe) read 2 (146 cycles)
and pLSmP-ass-seq-ind1 (forward barcode) index read 1 (15 cycles).
The sample index read 2 (10 cycles) was performed using the default
lllumina P5 primer.

Lentivirus particles were produced in HEK239T cells (CRL-11268,
ATCC). For one T175 flask, 10 pg pLS-Scel, 6.5 pg psPAX2 and 3.5 pg
pMD2.G were diluted in 2 ml of Opti-MEM (Gibco) and 40 pl of Turbo-
Fect (Thermo Fisher Scientific) and added according to the manufac-
turer’s guidelines. Other virus preparation steps were carried out as
previously described®. HT29, SW403 and HCEC-1CT cells were used
for enhancer quantitation. Cells were transduced with a viral moiety
of infection of 80 based on cell-line-specific or batch-specific viral
transduction efficiencies using 8 UM polybrene (Sigma). SW403 cells
were transduced before attachment (reverse transduction), and the
other cell lines were allowed at least 24 h to attach. After 24 h, the
medium was removed, and the cells were incubated for an additional
48 h. The cells were lysed, and the RNA and DNA were purified using
an AllPrep DNA/RNA Kit (Qiagen). DNA and RNA library preparation
and sequencing were performed as previously described®. DNA and
RNA samples were uniquely indexed, and a 16-bp random molecular
identifier was added using PCR to eliminate optical duplicates. For each
cell line, three DNA and three RNA replicate libraries were combined
inequimolaramounts. DNA and RNA libraries from each cell line were
mixed atal:3ratioand diluted to 7.89 nM for sequencing. MPRA librar-
ieswere sequenced using aNovaSeq 6000 (Illumina) using the follow-
ing primers: pLSmP-ass-seq-ind1 (forward barcode) read 1 (15 cycles),
pLSmP-bc-seq (reverse barcode) read 2 (15 cycles) and pLSmP-UMI-seq
(forward unique molecular identifier) index read 1 (16 cycles) (Sup-
plementary Table 12). Sample indexes (index read 2, 10 cycles) were
sequenced using the default Illumina P5 primer.

Data analyses. Raw sequencing datawere converted to FASTQ format
using bel2fastq (Illumina). The MPRAflow*? pipeline v2.3.5was used to
associateand count the number of barcodes associated with each probe
sequence. To identify the different alleles for each variant, the FASTQ
files were modified toinclude the forward library adapter (AGGACCG-
GATCAACT). This sequence was also added to the design FASTA file
used by MPRAflow for alignment. For asequence to be associated with
agiven barcode, it had to be a perfect match to the library sequence,
which was enforced using a CIGAR string of 230M. For statistical anal-
ysis of the MPRA data, we used MPRAnalyze*® v1.12.0, which uses a
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nested pair of generalized linear models designed to estimate noise
in the DNA and RNA libraries. We filtered the barcodes and collected
those that contained all four allele-specific probes (that is, fwd_ref,
fwd_alt, rev_ref and rev_alt), and we only retained a barcode if there
was a DNA read present with a corresponding RNA read in the same
replicate. Library size correction factors were estimated according to
the replicate number, allele type (alternative or reference) and stand
(forward or reverse) using the upper quantile of nonzero values for
depth estimation. Owingto the large number of barcodes, we used the
‘scaled’ option, which uses the DNA counts directly as estimates rather
thangeneratinga DNAmodel. There was astrong correlationbetween
the scaled analysis and the fullmodelin adownsampled dataset (Sup-
plementary Fig. 8). A likelihood test was performed to test the effect
of the allele using the direction and replicate as covariates.

ChIPmentation

ChIPmentationwas performed on histone marks H3K4mel (C15410194,
Diagenode), H3K4me3 (C15410003-50, Diagenode), H3K27ac
(C15410196, Diagenode), H3K27me3 (C15410195, Diagenode),
H3K36me3 (C15410192, Diagenode) and CTCF (C15410210-50, Diagen-
ode) for the C32, CL11, HT29, SW403, SW480, SW948 cell lines using
a published protocol**, with minor modifications, as detailed in the
Supplementary Note. Data processing was performed using the Nex-
tflow nf-core chipseq pipeline v1.2.1 (ref. 55) with default parameters.

Omni-ATAC

ATAC-seq was performed on the C32, CACO2, CL11, HT29, SW403,
SW480, SW948 and HCEC-1CT cell lines as previously described*®.
Experimental protocols are detailed in the Supplementary Note. Data
processing was performed using the Nextflow nf-core atacseq pipeline
v1.2.1 (ref. 57) with default parameters. Peaks for both the ChIP-seq
and ATAC-seq datawere consistent across all cell lines (Supplementary
Fig.9).

Micro-C

We generated Micro-C chromatininteraction maps of the CL11, HT29,
SW403, SW480 and SW948 cell lines as previously described*® *°.
Experimental protocols are detailed in the Supplementary Note. The
data were analyzed using JuicerTools v1.22 (ref. 60) to count valid
interactions. We required valid interactions of >90% for classification
as cis-contacts, of which 60-70% had to be short-range cis-contacts.
If the metrics were satisfactory, the pooled library was sequenced on
aNovaSeq 6000 (Illumina) to adepth of atleast 300 million reads per
library, using 100 bp paired-end sequencing.

We used the nf-distiller pipeline® v0.3.4 to generate the interaction
maps fromthe raw FASTQ files, using matrix balancing normalization
and binning at1kb. FitHiC2 (ref. 62) was used to call significant interac-
tions, merging adjoining bins with significant interactions. TADs and
compartments were identified using cooltools® v0.5.4 with 30-kb and
100-kb windows, respectively, and binning at 10 kb. Compartments
were determined using an eigendecomposition of the contact matrix.
The GC content of each bin was used as a phasing track. Active and
inactive compartments are defined as having a positive and negative
value for the first eigenvector, respectively.

RNA extraction and library sequencing

RNA sequencing of the C32, CL11, HT29, SW403, SW948 and
HCEC-1CT cell lines was performed. The experimental protocols are
detailed in the Supplementary Note. Analysis of the RNA-seq data was
performed using the RNAflow pipeline®* v1.4.1with default parameters.

Cell-type specificity of risk variants

To identify the cell types through which CRC risk variants exert their
effects, we analyzed single-cell gene-expression profiles across differ-
ent tissues using the Tabula Sapiens v4 dataset® (-500,000 cells from

24 organs from 15 normal human subjects) and across different intes-
tinal regions using the Gut Cell Atlas* (-125,000 cells from 86 healthy
adults from 11 distinct locations in the gut). We used scDRSs® v1.0.1
to link the scRNA-seq data with polygenic disease risk at a single-cell
resolution, independent of cell type. In brief, using the CRC GWAS
association summary statistics, MAGMA®®v1.10 defined a putative set
of disease genes. Using the top 1,000 putative genes, a disease score
was calculated as a function of the GWAS z-scores and the scRNA-seq
expression values. Cell-specific association P values were calculated
by comparing normalized disease scores to an empirical distribution
of normalized scores across all control gene sets and all cells.

Histone mark enrichment analysis

To examine enrichmentin specific histone marks across therisk loci, we
adapted the variant set enrichment method described previously®”*5,
In brief, for each risk locus, a region of strong linkage disequilibrium
(defined as » > 0.8 and D’ > 0.8) was determined, and variants map-
ping to these regions were termed the associated variant set (AVS).
ChIP-seq data for the H3K4me3, H3K27ac, H3K4mel, H3K27me3,
H3K9ac, H3K9me3 and H3K36me3 chromatin marks from up to 128
celltypes were obtained from the NIH Roadmap Epigenomics Project
data®.For each mark, the overlap of the positions of variants in the AVS
and the ChIP-seq peaks was determined to produce a mapping tally.
Anulldistribution was generated by randomly selecting variants with
the samelinkage disequilibrium characteristics as the risk-associated
variants, and a null mapping tally was calculated. This process was
repeated 50,000 times, and approximate P values were calculated as
the proportion of permutations for which the null mapping tally was
greater or equal to the AVS mapping tally.

ChromHMM

We used ChromHMM®® v1.24 to predict chromatin states using the
H3K4mel, H3K4me3, H3K27ac, H3K27me3 and H3K36me3 histone
marks. The BAM files from the nf-core chipseq pipeline described
above were binarized, and a 15-state model was predicted (Supple-
mentary Fig. 10). States were annotated using previously published
annotations®* ",

Fine-mapping of risk loci

Using summary data from the CRC GWAS, we defined flanking regions
500 kb oneither side of the most significant variantat eachrisk locus.
We performed statistical fine-mapping of these CRC risk loci using
PolyFun® v1.4.1 and susieR?’ v0.11.92. We calculated the previous
causal probabilities nonparametrically using the established PolyFun
protocol, which estimates the per-SNP heritability for each variant,
weighted by the functional annotations. Annotation data were gath-
ered from the baseline-LF v2.2 annotation data®*’? provided by the
A. Price group (https://alkesgroup.broadinstitute.org/LDSCORE)
using the CRC-specific ChIP-seq and open chromatin data that were
generated in-house (Supplementary Table 1). Linkage disequilibrium
scores were calculated using datafrom 45,498 disease-free European
individualsin the Genomics England dataset (https://re-docs.genomic-
sengland.co.uk/aggv2). Using the probabilities estimated by PolyFun,
we fine-mapped loci across a 500-kb window using the Sum of Single
Effects model, which was implemented in susieR. For loci with one
independent variant, we set the maximum number of causal variants
to two, as susieR is unable to use linkage disequilibrium information
for a single variant. For loci with multiple independent variants, we
performed fine-mapping of the region including all independent
variants, and set the maximum number of causal variants equal to the
number of independent variants. The output from susieR included
a posterior inclusion probability (PIP) for each variant and the 95%
credible set that the variant belongs to. Variants with PIPs of >0.001
and that cumulatively reached a probability of 0.95 were included in
acredibleset.
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Transcription factor binding

We used TOBIAS” v0.14.0 to predict transcription factor binding
using the BINDetect method. Using the ATAC-seq data from the C32,
CACO2, CL11, HT29, SW403, SW480, SW948 and HCEC-ICT cell lines
inconjunction with the JASPAR 2022 core nonredundant transcription
factor motif database®, which was filtered to motifs found in humans,
we predicted whether there were any potential transcription factors
bound in open chromatin. The TOBIAS scores indicate how well the
transcription factor motif matches the genomic sequence.

We performed an enrichment analysis of bound transcription
factors according to the NIH Roadmap Epigenomics Project histone
analysis. The number of transcription factors predicted tobind to each
of the GWAS regions (based on the selected variants) were counted. A
null distribution was generated by randomly selecting variants with
P ariane > 0.95; awindow of asize equivalent to that of the GWAS datawas
formed, and a null transcription factor count was calculated. This pro-
cess was repeated 50,000 times, and approximate Pvalues were calcu-
lated as the proportion of permutations for whichthe null transcription
factor count was greater or equal to the GWAS transcription factor count.

ABC modelfor prediction of enhancer-gene interactions

To predict enhancer-gene connectionsineach cell line, we used ABC*
v0.2.2 in conjunction with data from ATAC-seq, H3K27ac ChIP-seq,
Micro-C and RNA-seq. The analysis was performed as previously
described? using default parameters. In brief, we investigated the
150,000 gene-enhancer interactions with the highest ABC scores
for all enhancer regions within 5 Mb of the TSS of a gene. Enhancer
regions were filtered such that those overlapping the GWAS risk loci
were retained.

eQTLsand SMR

Comprehensive detailsabout the RNA-seqand whole-genome sequenc-
ing datafromthe SOCCS and GTEx datasets are described inref. 74.In
brief, the GTEx data were derived from 367 postmortem transverse
colon samples, and the SOCCS data were derived from the normal
colon or rectum mucosa of 223 healthy individuals. eQTL analysis
was performed using Matrix eQTL v2.3 (ref. 75) on probabilistic esti-
mation of expression residuals-adjusted residuals’, and age, sex,
batch and a number of hidden covariates equal to one quarter of the
sample size in both datasets were taken into account. The variants
tested were limited to those within 0.5 Mb of lead variants, withaminor
allele frequency of >0.01 and associations with genes within 1 Mb.
Per-dataset results underwent a meta-analysis using a fixed-effects
inverse variance-weighted model in META”” v1.7. SMR** v1.3.1 analysis
was performed using the eQTL results from the meta-analysis and
GWAS summary statistics fromref. 2 using default parameters. AsSMR
is performed only on the top eQTLs for each gene, P,y values were
Bonferroni-corrected for multiple testing based on the number of
geneswithineachrisklocus. We retained results with Pgyg correcteq < 0-05
and Pyp; > 0.05. To analyze the preservation of CRC risk-associated
eQTL effects in tumors, eQTL summary statistics from TCGA COAD
(n=286) and READ (n = 94) samples were obtained from PancanQTL’®,
underwent a meta-analysis and subjected to SMR as described above.

3D chromatin structure disruption

To predict the effect of variants on the 3D structure of DNA, we used
Akita® v0.6, which uses a deep learning framework. The Micro-C data
were binned into 1,024 (2'°)-bp sets. Data were preprocessed using
default parameters, except for asequence length of 1,048,576 (2°) bp
andacrop lengthof 65,536 (2') bp. The model was trained using default
parameters, with 10% of the data used for testing and 10% used for
validation. We performed in silico mutagenesis on a nucleotide level
on200-bpregions centered on each tested variant. Disruption scores
were calculated as the L2 norm of the predicted differences between
the contact maps for each allele.

Scoring of variants
To prioritize the variants in each of the risk loci, we adopted the fol-
lowing scoring scheme:

» MPRA: variants with an FDR of <107 were given a score of 2, and
those with an FDR of <0.05 were given a score of 1. Each cell line
was considered separately.

- Statistical fine-mapping: variants with a PIP of >0 were given
ascore of 1 (that is, the variant was part of a credible set), and
those with a PIP of >0.5 were given a score of 2.

« Chromatin annotation: based on ChromHMM annotation, vari-
ants that fell within either a promoter or an enhancer region
were given a score of 2, and those that fell within regions with
weak predicted states (that is, with lower emission parameters)
were given ascore of 1.

« Open chromatin: if the variants fell within an ATAC-seq peak,
then they were given a score of 2.

« SMR: for both the normal and tumor samples, if a variant was
associated with a gene identified using SMR, then it was given a
score of 2.

 Akita: if >25% of the variants within 100bp of the tested variant
had a disruption score in the top 10% of all disruption scores,
then it was given a score of 2. If >25% of the variants within 100bp
of the tested variant had a disruption score in the top 20% of all
disruption scores, then it was given a score of 1.

« CTCF:if the variants fell within a CTCF peak, then they were
given ascore of 2.

« Long-range interaction: using the output from FitHiC (filtered
using —log,,(P) = 2), if the variant fell within one end of a Micro-C
contact and the other end was within a gene body, then it was
given ascore of 1. If the other end of the interaction contained a
TSS of agene, then the variant was given a score of 2.

Asmany of these analyses were performed on multiple cell lines, it
wasnecessary to find ascoring consensus across cell lines for collation
of'the scores. For the ATAC-seq, CTCF, Micro-C and ChromHMM data,
this consensus was that the annotation had to be present in >50% of
the celllines. For the ABC model and the transcription factor binding
prediction, we performed a binomial analysis of the scores from the
respective analysis tools. For each analysis, we identified the number of
timesthat the score wasinthe 90th percentile. We calculated the prob-
ability of the occurrence of this score using the binomial distribution
survivalfunction. If P< 0.05, the tested variant was assigned ascore of
1,and if P< 0.01, it was given ascore of 2.

The annotation scores for each variant were summed, and the
scores were ranked. The variants with scores in the top 20% of all scores
were designated as Tier 1 variants, those with scores inthe bottom 50%
as Tier 3 and the remainder as Tier 2.

Gene prioritization

Tolink the variants with genes, we used the data from the Micro-C TSSs,
the ABC model and SMR ofthe tumor and normal samples. We focused
on the Tier 1 variants, as they provided the most information regard-
ingannotations. A gene annotation had to be presentin atleast two of
the annotation sources to be suggested as a putative target gene. If no
genes reached this threshold, we included the interactions related to
the Micro-C datawithinagenebody andincluded these as weak predic-
tions. For any genes that did not have any Tier 1 variants, we used the
Tier 2 variantsinstead, and any genes that were found were labeled as
weak predictions. Finally, if no genes were identified throughout the
process and the variant was intronic to a gene, that gene was used as
aweak prediction.

Gene evidence
To formally examine whether target genes were known to be associ-
ated with cancer (and specifically CRC), we used OncoScore**v1.30.0,
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a text mining tool that ranks genes by their association with cancer
based onthe available biomedicalliterature. We used an OncoScore of
21.09 asthe threshold to define novelty. To complement this analysis,
we also performed a literature survey in MELODI Presto (accessed 3
April 2024)* using semantic predications in the Semantic MEDLINE
Database”, whichis based onall citations in PubMed. Within the Seman-
tic MEDLINE Database, pairs of terms were connected by a predicate,
which are collectively known as ‘literature triples’ (that is, ‘subject
term’-predicate—‘object term’). We performed the analysis using the
gene list as the subject and ‘colorectal cancer’ as the object. Driver
genes were determined using intOGen (released 1 February 2020)*°
and restricted to those from colorectal cohorts (COADREAD). Gene
distance information was obtained from HaploReg v4.1.

We used oncoEnrichR* v1.4.2.1 to analyze the gene sets. This
tool provides a suite of analyses, including cancer associations, drug
associations, synthetic lethality, gene fitness and protein-protein
interactions.

Regulatory interaction data were obtained from the DoRothEA
and OmniPath resources’*®°. These datasets contains a list of pre-
viously identified transcription factor-target interactions that are
scored based on multiple lines of evidence (namely, literature-curated
resources, ChIP-seq peaks, transcription factor binding site motifs
and gene-expression-inferred interactions). Regulatory interactions
were inferred using gene expressionin tumor samples (from TCGA) or
normal tissues (from GTex).

Cell viability and gene essentiality data were obtained from the
Cancer Dependency Map (DepMap, 2020_Q2release), which provides
information on a systematic genome-scale CRISPR-Cas9 drop-out
screenin 912 cancer celllines*2. We restricted the analysis to the CRC cell
lines from primary tumors (that is, nonmetastatic; n = 37). To identify
putative therapeutictargets, we used the results from the Project Score
database (2021_Q2release)*>**in DepMap. This generates target prior-
ity scores based on the integration of CRISPR knockout gene fitness
effects withgenomic biomarker and patient data (accounts for 30% of
the score and is based on evidence of a genetic biomarker associated
withatarget dependency, as well as tumor prevalence), and cell line fit-
ness effects (accounts for 70% of the score and is based on gene fitness,
genes expressed and genes not homozygously deleted). All genes are
assigned a target priority score between zero and 100 from lowest to
highest priority. A threshold score of 40 was established based onscores
calculated for targets withapproved or preclinical cancer compounds.

Drug tractability information was based on data from the Open
Targets Platform*, and pathway enrichment was performed using
Enrichr (released 8 June 2023)".

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

GWAS data are available from GWAS Catalog (accession no.
GCST90129505). Cell line data have been deposited in the Euro-
pean Genome-phenome Archive under the following accessions:
EGAD50000000596 (MPRA), EGAD50000000294 (Micro-C),
EGAD50000000295 (ChlIP-seq, all marks), EGAD50000000296
(ATAC-seq), EGAD50000000297 (RNA-seq). Annotation data for all
the GWAS regions are available on the University of California, Santa
Cruz (UCSC) Genome Browser (https://genome.ucsc.edu/s/philip.
law%40icr.ac.uk/CRC%20GWAS%20annotation).

Single cellRNA-seq data were obtained from the Gut Cell Atlas (https://
www.gutcellatlas.org) and the Tabula Sapiens project (https://
tabula-sapiens-portal.ds.czbiohub.org). Transcription factor binding
was based on datafromJASPAR (https://jaspar.genereg.net). Functional
annotations for the fine-mapping were obtained fromthe A. Price group
(https://alkesgroup.broadinstitute.org/LDSCORE). Histone marks in

different tissues were obtained from the NIH Roadmap Epigenomics
Project (https://egg2.wustl.edu/roadmap/web_portal).eQTL datawere
obtained from PancanQTL (http://bioinfo.life.hust.edu.cn/PancanQTL)
and GTEx (https://gtexportal.org). Literature mining was performedin
MELODI Presto (https://melodi-presto.mrcieu.ac.uk) using data from
the Semantic MEDLINE Database (https://Ihncbc.nlm.nih.gov/ii/tools/
SemRep_SemMedDB_SKR.html). Gene annotation datawere obtained
from OmniPath (https://omnipathdb.org), DoRothEA (https://saezlab.
github.io/dorothea), DepMap (https://depmap.org) and Open Targets
(https://www.opentargets.org), and analyzed in oncoEnrichR (https://
oncotools.elixir.no). Source data are provided with this paper.

Code availability
No custom code was generated. Publicly available code was used for all
aspects of data processing and analysis and is cited in the appropriate
section of the Methods.
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Antibodies used All antibodies obtained from Diagenode. Sug of target antibody was added per 3-5 x 1075 cell lysate.
# Catalog Antibody lot
1.C15410196 H3K27ac Antibody - ChIP-seq Grade ~ A1723-0041D
2.C15410195 H3K27me3 Antibody - ChIP-seq Grade  A0824D
3.C15410194 H3K4me1l Antibody - ChIP-seq Grade ~ A1862D
4.C15410192 H3K36me3 Antibody - ChIP-seq Grade ~ A1845P
5.C15410003-50 H3K4me3 Antibody - ChIP-seq Grade A8034D
6. C15410210-50 CTCF Antibody - ChIP-seq Grade A2354-0010

Validation All chip-seq grade antibodies were validated by Diagenode (Hologic, USA) and the details of validation experiments are provided in
the links. For example H3k27ac (C15410196) validation was performed in Hela cell lines by quantitative PCR using primer pairs for
active promoters of EIF4A2 and ACTB as positive controls while TSH2B and MYT1 promoters were used as negative controls. Further
details are available for each antibody using the relevant links.

https://www.diagenode.com/en/p/h3k27ac-polyclonal-antibody-premium-50-mg-18-ml; H3K27ac Antibody (Diagenode Cat#
C15410196 Lot# A1723-0041D)

https://www.diagenode.com/en/p/h3k27me3-polyclonal-antibody-premium-50-mg-27-ml; H3K27me3 Antibody (Diagenode Cat#
C15410195 Lot# A0824D)

https://www.diagenode.com/en/p/h3k4mel-polyclonal-antibody-premium-50-mg; H3K4me1l Antibody (Diagenode Cat# C15410194
Lot# A1862D)

https://www.diagenode.com/en/p/h3k36me3-polyclonal-antibody-premium-50-mg; H3K36me3 Antibody (Diagenode Cat#
C15410192 Lot# A1845P)

https://www.diagenode.com/en/p/h3k4me3-polyclonal-antibody-premium-50-ug-50-ul; H3K4me3 Antibody (Diagenode Cat#
C15410003-50 Lot# A8034D)

https://www.diagenode.com/en/p/ctcf-polyclonal-antibody-classic-50-mg; CTCF Antibody (Diagenode Cat# C15410210-50 Lot#
A2354-00234P)
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Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) DSMZ: https://celldive.dsmz.de/
ECACC: https://www.culturecollections.org.uk/
EverCyte:https://evercyte.com/
ATCC: https://www.atcc.org/
SW403 (ACC294, DSMZ)

SW480 (ACC313, DSMZ)

SW948 (91030714, ECACC)

HT29 (ACC299, DSMZ)

CL11 (ACC467, DSMZ)

C32 (12022908, ECACC)

HCEC-1CT (CkHT039-0229, Evercyte)
HEK293T (CRL-11268, ATCC)

Authentication All cell lines used are well characterised and established, and recently obtained from reputable vendors. We used whole
genome sequencing using NGS to perform STR profiling to authenticate our cell lines.

Mycoplasma contamination Routinely checked for Mycoplasma contamination kit (LOOKOUT MYCOPLASMA PCR DETECTION KIT, Sigma Aldrich , USA)

Commonly misidentified lines No commonly misidentified cell lines were used in the study
(See ICLAC register)

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied-
Authentication Describe-any-atthentication-procedures foreach seed stock-tised-ornovel-genotype-generated—Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

ChlP-seq

Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|Z| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links https://ega-archive.org/datasets/EGAD50000000295
May remain private before publication.

Files in database submission All fastg and bed files for C32, CL11, HT29, SW403, SW480, SW948 on H3K4me1,H3K4me3, H3K27ac, H3K27me3, H3K36me3
and CTCF, as well as input. Each dataset has two replicates.

Genome browser session https://genome.ucsc.edu/s/philip.law%40icr.ac.uk/CRC%20GWAS%20annotation
(e.g. UCSC)
Methodology
Replicates For each cell line each anitbody capture Chipmentation experiment was performed in two replicates. This comprise six antibodies

and an 1gG and a Input control

Sequencing depth Illumina Novaseq 6000, Single End sequencing, 100bp reads, Dual barcode (8bp,8bp), Sequencing depth varied from 30 million to
100 million reads.

Antibodies All antibodies obtained from Diagenode
# Catalog Antibody lot
1.C15410196 H3K27ac Antibody - ChIP-seq Grade ~ A1723-0041D
2.C15410195 H3K27me3 Antibody - ChIP-seq Grade  A0824D
3.C15410194 H3K4me1l Antibody - ChIP-seq Grade  A1862D
4.C15410192 H3K36me3 Antibody - ChIP-seq Grade ~ A1845P
5.C15410003-50 H3K4me3 Antibody - ChIP-seq Grade A8034D
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6. C15410210-50 CTCF Antibody - ChIP-seq Grade A2354-0010
Peak calling parameters  MACS broad peak

Data quality As part of the nf-core chipseq pipeline, extensive QC is performed, including adapter trimming, filtering duplicate reads and poorly
mapped reads

Software nf-core chipseq pipeline summary:
Raw read QC (FastQC)
Adapter trimming (Trim Galore!)
Alignment (BWA)
Mark duplicates (picard)
Merge alignments from multiple libraries of the same sample (picard)
Re-mark duplicates (picard)
Filtering to remove:
-reads mapping to blacklisted regions (SAMtools, BEDTools)
-reads that are marked as duplicates (SAMtools)
-reads that arent marked as primary alignments (SAMtools)
-reads that are unmapped (SAMtools)
-reads that map to multiple locations (SAMtools)
-reads containing > 4 mismatches (BAMTools)
-reads that have an insert size > 2kb (BAMTools; paired-end only)
-reads that map to different chromosomes (Pysam; paired-end only)
-reads that arent in FR orientation (Pysam; paired-end only)
-reads where only one read of the pair fails the above criteria (Pysam; paired-end only)
Alignment-level QC and estimation of library complexity (picard, Preseq)
Create normalised bigWig files scaled to 1 million mapped reads (BEDTools, bedGraphToBigWig)
Generate gene-body meta-profile from bigWig files (deepTools)
Calculate genome-wide IP enrichment relative to control (deepTools)
Calculate strand cross-correlation peak and ChIP-seq quality measures including NSC and RSC (phantompeakqualtools)
Call broad/narrow peaks (MACS2)
Annotate peaks relative to gene features (HOMER)
Create consensus peakset across all samples and create tabular file to aid in the filtering of the data (BEDTools)
Count reads in consensus peaks (featureCounts)
Differential binding analysis, PCA and clustering (R, DESeq?2)
Create IGV session file containing bigWig tracks, peaks and differential sites for data visualisation (IGV).
Present QC for raw read, alignment, peak-calling and differential binding results (MultiQC, R)
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