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Systematic prioritization of functional 
variants and effector genes underlying 
colorectal cancer risk

Philip J. Law    1, James Studd    1, James Smith1, Jayaram Vijayakrishnan    1, 
Bradley T. Harris    2,3, Maria Mandelia    1, Charlie Mills    1, 
Malcolm G. Dunlop    2 & Richard S. Houlston    1 

Genome-wide association studies of colorectal cancer (CRC) have identified 
170 autosomal risk loci. However, for most of these, the functional 
variants and their target genes are unknown. Here, we perform statistical 
fine-mapping incorporating tissue-specific epigenetic annotations and 
massively parallel reporter assays to systematically prioritize functional 
variants for each CRC risk locus. We identify plausible causal variants for the 
170 risk loci, with a single variant for 40. We link these variants to 208 target 
genes by analyzing colon-specific quantitative trait loci and implementing 
the activity-by-contact model, which integrates epigenomic features and 
Micro-C data, to predict enhancer–gene connections. By deciphering CRC 
risk loci, we identify direct links between risk variants and target genes, 
providing further insight into the molecular basis of CRC susceptibility 
and highlighting potential pharmaceutical targets for prevention and 
treatment.

CRC, which affects around 1.9 million people worldwide annually, has 
a strong heritable basis1. Our recent genome-wide association study2 
(GWAS) of 100,204 CRC cases and 154,587 controls has identified over 
200 statistically significant independent risk loci. Deciphering the 
functional basis of these risk associations has the potential to provide 
biological insights into the etiology of CRC. However, deconvolution of 
GWAS risk loci has proven challenging owing to linkage disequilibrium 
between variants, and because most risk variants localize to noncoding 
regions of the genome, particularly within enhancer elements. Com-
putational fine-mapping approaches can only predict putative causal 
variants based on linkage disequilibrium correlations3. To definitively 
identify variants with gene regulatory effects requires experimental 
validation.

Most noncoding GWAS risk variants are likely to function through 
cis-regulatory mechanisms that influence target gene expression. By 
investigating the transcriptional changes associated with different 

variants, it is possible to link specific alleles to changes in gene expres-
sion. Classical reporter assays can only assess the allelic transcrip-
tional activity of individual variants. By contrast, massively parallel 
reporter assays (MPRAs) provide a scalable approach to characterize 
the regulatory effects of thousands of variants4, and this strategy has 
recently been successfully exploited in studies to implicate variants 
associated with multiple disease states5, including myeloma6 and 
melanoma7,8.

Although advances in fine-mapping and functional annotation 
of risk loci have improved the nomination of causal variants, identify-
ing target genes for GWAS signals remains a central challenge. Tradi-
tionally, variants have been assigned to the closest gene. However, 
solely relying on physical proximity for prediction can be unreliable, 
as causal variants are often regulatory and can affect gene expression 
through long-range interactions9,10. Furthermore, it is now recognized 
that enhancers can have more than one target gene11. The analysis 
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genes (Fig. 1 and Extended Data Fig. 1). Our analyses provide a detailed 
interpretation of CRC risk signals and their underlying basis.

Results
Cell specificity and chromatin landscape at risk loci
To identify the cellular contexts of the CRC loci, we analyzed single-cell 
RNA sequencing (scRNA-seq) profiles across 24 different tissues using 
the Tabula Sapiens dataset23, as well as 11 intestinal regions in the Gut 
Cell Atlas24. We derived single-cell disease relevance scores (scDRSs), 
which link the scRNA-seq data with polygenic disease risk at single-cell 
resolution. This score assesses cell-type-specific expression for genes 
implicated by the GWAS association statistics. Genes whose expression 
was correlated with scDRSs were strongly enriched in large intestine 
and epithelial tissue (P < 10−7). A specific analysis of intestinal cells 
showed a strong association of risk variants with BEST4+ enterocytes 
and colonic epithelial cells (P < 10−7, Supplementary Fig. 1). GWAS vari-
ants are generally thought to influence risk through cis-regulatory 
mechanisms affecting tissue-specific gene expression. We confirmed 
significant enrichment of enhancer- and promoter-associated histone 
marks, including histone H3 lysine 4 trimethylation (H3K4me3), H3 
lysine 4 monomethylation (H3K4me1) and H3 lysine 27 acetylation 
(H3K27ac) in colonic and rectal mucosa cells using ChIP–seq data from 
the National Institutes of Health (NIH) Roadmap Epigenomics Project25 
(P < 10−5, Supplementary Fig. 2).

Statistical fine-mapping of risk loci
We fine-mapped each of the risk loci, including independent signals, 
incorporating functional annotation using PolyFun26 and susieR27 in 

of expression quantitative trait locus (eQTL) data generated across 
multiple cell types has undoubtedly greatly aided target gene iden-
tification. However, because published eQTLs capture only 9–13% of 
the GWAS heritability of cancers12, genomic data beyond gene tran-
scription are required to comprehensively decipher the functional 
basis of associations13. Chromatin interactions and their proximity in 
genomic space are important for the regulation of gene expression. 
The integration of data from chromatin accessibility14, epigenom-
ics histone ChIP-seq (chromatin immunoprecipitation followed by 
sequencing)15 and three-dimensional (3D) chromatin interactions16–18 
has been shown to improve the ability to identify causal variants and 
their likely target gene. The recognition of the limitations of reliance on 
a single analysis to identify causal variants and gene targets underlying 
GWAS signals has led to the adoption of data integration approaches7,8. 
For example, the INQUISIT pipeline, which scores gene expression, 
chromatin interactions and ChIP–seq annotations, has frequently 
been adopted by breast cancer researchers to identify candidate gene 
targets19,20. More recently, the computational approach implemented 
in the activity-by-contact (ABC) model has sought to systematically 
link regulatory elements to target genes through the combination of 
enhancer activity with 3D chromatin contact frequencies21,22.

To provide insight into the functional basis of the CRC risk loci, 
we integrated data from multiple data modalities. First, we nominated 
causal variants at each of the risk loci through statistical fine-mapping 
incorporating tissue-specific epigenetic annotations, and by perform-
ing MPRAs in multiple colonic cell lines. Second, by generating and 
analyzing tissue-specific gene expression data and high-resolution 
chromatin interaction profiles, we linked nominated variants to target 
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Fig. 1 | Overview of the study. Using data from GWASs for CRC, we identified 170 
regions of interest. Data from MPRAs, epigenetic marks (ChIP–seq), chromatin 
accessibility (ATAC-seq), gene expression (RNA-seq) and long-range chromatin 
interactions (Micro-C) were combined to derive an integrative score to prioritize 
the functional variants at each CRC risk locus. These variants were linked to 

target genes by analyzing colon-specific eQTLs and using SMR. In the GWAS plot, 
the coloured dots indicate the variants that are above the P value threshold. In 
the SMR plot, they represent the two different datasets (GWAS and eQTL). The 
coloured portions of DNA represent the genomic regions of interest that were 
studied.
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conjunction with ChIP–seq data on H3K4me1, H3K4me3, H3K27ac, 
H3K27me3, H3K36me3 and CCCTC-binding factor (CTCF) marks, as 
well as assay for transposase-accessible chromatin with sequencing 
(ATAC-seq) data generated from six CRC cell lines (C32, CL11, HT29, 
SW403, SW480 and SW948) (Supplementary Table 1). For each inde-
pendent risk locus, we extracted variants within a 1-Mb window and 
calculated the causal probabilities nonparametrically using the estab-
lished PolyFun protocol, which estimates the per-single nucleotide 
polymorphism (SNP) heritability weighted by their functional annota-
tions. Credible sets of causal variants were identified by susieR using the 
probabilities calculated by PolyFun. Posterior inclusion probabilities 
(PIPs) were ranked, and variants were added to the set until the cumu-
lative PIP reached a value of >0.95, with a minimum individual variant 
PIP of 0.001. We identified 1–14 credible sets per locus (median, 1), 
consisting of 1–226 variants (median, 1) (Supplementary Table 2).

Functional significance of risk variants
We next assessed the regulatory activity of variants at each of the risk 
loci using a complementary experimental approach. At each GWAS 
locus (defined by a 500-kb window spanning the lead variant), we ini-
tially identified all variants with a P value within three orders of magni-
tude of the P value of the lead variant. As this may exclude potentially 
functional variants at loci where the lead variant has an especially 
strong association, we also included variants with −log10(Pvariant) > 0.7 ×  
(−log10(Plead variant)), stipulating an r2 of >0.2 for the lead variant and a 
Pvariant of <10−5. We performed MPRAs to simultaneously identify func-
tional cis-regulatory variants, testing 8,880 variants (median of 39 
variants per locus).

We evaluated the enhancer activity of reference and alternative 
alleles of the variants by cloning the surrounding 200 bp of genomic 
sequences. To test variant function in cellular constructs representing 
tumor and normal states, we transfected primary CRC cell lines (HT29 
and SW403) and an immortalized primary colonic cell line (HCEC-1CT). 
Enhancer activity was quantified by sequencing barcodes in input 
DNA and mRNA (cDNA). Sequencing statistics and details of the qual-
ity control process are shown in Supplementary Table 3 and Supple-
mentary Fig. 3. A total of 275 unique variants displayed significant 
allelic transcriptional activity (false discovery rate (FDR) < 10−3; n = 133 
in HT29, n = 102 in SW403 and n = 143 in HCEC-1CT; Supplementary 
Table 4). These ‘MPRA-significant’ variants were more likely to be 
fine-mapped as the causal variant (chi-square test, P = 4.39 × 10−3) as 
well as fine-mapped to enhancer and promoter regions of the colonic 
epigenome (P = 3.66 × 10−18).

We focused on the underlying biological mechanisms through 
which genetic variants at CRC risk loci shape the regulatory environ-
ment around putative target genes. First, because risk variants can 
mediate their effects through altered transcription factor binding, 
we assessed transcription factor binding in chromatin-accessible 
regions using the JASPAR 2022 transcription factor motif database28 
in concert with the ATAC-seq data. The most common transcription 
factors predicted to bind at the loci included ZNF460 (found at ten 
loci), CTCF (n = 7), PRDM9 (n = 7), SP1 (n = 7) and KLF5 (n = 3), and 
these transcription factor binding sites were enriched at the GWAS loci 
(P < 10−4, Supplementary Fig. 4). Of note is KLF5, which was associated 
with the 13q22.1 risk locus, and PRDM9, a histone methyltransferase, 
which catalyzes H3K4 methylation. Second, we predicted enhancer–
gene connections across risk loci from ultra-high-resolution Micro-C 
chromatin interaction profiles generated in CL11, HT29, SW403, SW403 
and SW498 cell lines. The MPRA-significant variants preferentially 
localized to open chromatin (P = 7.32 × 10−35) and mapped to regions 
that interacted with the transcription start site (TSS) of genes through 
a Micro-C chromatin interaction (P = 7.28 × 10−4). In addition to con-
firming the interaction between rs6983267 at the 8q24.21 locus and 
the MYC TSS18,29,30, chromatin looping interactions implicate several 
other genes with established roles in CRC biology, including LAMC1, 

TGFB1 and KLF5. Using Akita31, a convolutional neural network based 
model for predicting 3D chromatin structure, 20% (1,798 out of 8,880) 
of the tested variants were predicted to affect 3D genome folding; 244 
variants mapped to a CTCF motif, and approximately half of these 
(n = 121) were predicted to severely affect the 3D chromatin structure.

Nominating causal variants using an integrative scoring 
system
To prioritize plausible causal variants at each locus, we integrated the 
multiple levels of functional annotations and fine-mapping data for all 
8,880 variants. We adopted a scoring approach similar to that of ref. 8, 
assigning a value between 0 and 2 for each variant and each annotation: 
0 represented no hit, 1 represented a hit and 2 represented a strong hit 
(see Methods for the designation of each annotation-specific score). 
For each locus, the annotation scores were summed, and the variants 
ranked. The variants with scores in the top 20% were designated as 
Tier 1 variants, those with scores in the bottom 50% as Tier 3, and the 
remainder as Tier 2 (Fig. 2). We identified 2,406 Tier 1 variants, 42 of 
which were also the top hit in the GWAS meta-analysis. Forty-nine of the 
GWAS loci did not have any Tier 1 variants, and 16 of these also did not 
have any Tier 2 SNPs, with the 16 corresponding to regions with little to 
no functional data (Supplementary Fig. 5 and Supplementary Table 2).

Linking nominated variants to target genes
To link variants at each locus to respective target susceptibility 
genes, we analyzed eQTL data from normal colon (SOCCS (Study of 
Colorectal Cancer in Scotland) colon or rectum epithelium, n = 213; 
Genotype-Tissue Expression (GTEx) transverse colonic mucosa, 
n = 367) and CRC tissues (The Cancer Genome Atlas Colon Adeno-
carcinoma (TCGA COAD), n = 286; Rectum Adenocarcinoma (READ), 
n = 94). Of the 275 MPRA-significant variants, 113 had a significant eQTL 
(PeQTL < 7.51 × 10−5; Bonferroni-corrected P value for the 665 unique 
genes tested in the eQTL analysis), and 79 of these displayed a consistent 
direction of effect between MPRAs and eQTLs (that is, a direction of 
gene expression that is concordant with MPRA-allelic transcriptional 
levels) (Supplementary Table 2). By performing a summary-data-based 
Mendelian randomization (SMR) analysis32, we identified 94 candidate 
target genes for 54 risk loci (PSMR-adjusted < 0.05; a median of one gene per 
locus) in the normal data, and 14 candidate target genes for 12 of the 
risk loci in the tumor data (Supplementary Table 5).

Following on, we evaluated the quantitative effect of enhancer–
gene regulation by analyzing Micro-C data in conjunction with 
ATAC-seq, H3K27ac ChIP–seq and RNA-seq data using the ABC tool22. 
ABC interactions typically regulated two to three genes within 15–54 kb, 
and 62 of the risk loci fell within predicted enhancer regions that regu-
late genes.

Focusing on the Tier 1 variants at each locus (1–5 variants per 
locus; median, 1), 94 of the GWAS loci were linked to genes predicted 
by at least two sources of evidence (SMR normal, SMR tumor, ABC and 
Micro-C), and 10 had one source of evidence (Supplementary Table 6). 
Forty-two loci could not be associated with a gene, with the majority of 
these falling in expression-inactive regions (B-compartments). For 82 
of the nominated loci, the closest gene was predicted to be the target 
gene, with 61 of these falling within introns. Approximately 70% of 
the nominated variants fell within the same topologically associating 
domain (TAD) as their target gene.

In addition to validating rs6983267, which mediates its effect 
through a long-range interaction with MYC18,29,30, as the basis of the 
8q24.21 association (Fig. 3a and Extended Data Fig. 2), our analysis pro-
vides evidence for the functional basis of the 170 risk loci and implicates 
208 target genes. Although many of the risk loci have not previously 
been the subject of detailed scrutiny, several of the target genes have 
either well-documented roles in CRC or are strong a priori candidates 
for having a role in tumor biology. For example, we identify rs1248418 
as the basis of the 10p12.1 association (top GWAS variant rs1773860; 
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r2 = 0.91, D′ = 0.98). The enhancer region to which rs1248418 localizes 
shows a long-range interaction with the TSS of the gene encoding 
BAMBI, a negative regulator of transforming growth factor-β (TGFβ) 
signaling (Fig. 3b and Extended Data Fig. 3). Similarly, through func-
tional annotation, we identify rs67631072 as the basis of the 1p34.3 
locus (top GWAS variant rs61776719; r2 = 1.0, D′ = 1.0), with evidence 
from SMR and Micro-C implicating FHL3 (Fig. 3c and Extended Data 

Fig. 4). The C-risk allele (Pvariant = 1.59 × 10−16) is associated with increased 
expression of FHL3 (PeQTL = 7.69 × 10−16), which has been shown to have 
oncogenic functions through interactions with SMAD2, SMAD3 and 
SMAD4, key mediators of TGFβ signaling33–35. Our analysis also impli-
cates rs9547700 (top GWAS variant rs12427846; r2 = 0.96, D′ = 0.98) 
as the functional basis of the 13q13.3 locus, and the risk allele is asso-
ciated with reduced transcriptional activity and decreased SMAD9 
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expression, further emphasizing the central role of genetic variation 
in TGFβ signaling pathways as a determinant of genetic susceptibility 
(Supplementary Fig. 6).

Gene list analysis
By performing this integrated analysis, we identified a set of 208 genes 
from the GWAS loci (Fig. 4 and Supplementary Table 6) and showed 
here a direct link between the risk variant and an implicated gene. To 
determine which of the target genes that we identified are already 
known to have a role in CRC, and more broadly cancer, we used the text 
mining tool OncoScore36, which examines text from all available studies 
in the biomedical literature. To complement this analysis, we queried 
semantic predications within the Semantic MEDLINE Database37 using 
MELODI Presto38. An integration of the results from these searches 
revealed that 142 of the 208 candidate target genes that we identified 
appear to have no documented role in CRC, and 47 of these presently 
have no established role in any cancer (Supplementary Tables 7 and 8).

One of the aspirations of GWASs is to inform therapeutics. To 
investigate the potential clinical utility of the CRC target genes iden-
tified at risk loci, we used oncoEnrichR39 to explore multiple sources 
of functional and drug curation, including Open Targets40,41 and Dep-
Map42. For ten of the genes, there are already approved drugs that 
provide an opportunity for repurposing (Supplementary Table 9). 
These include crofelemer and misoprostol. Crofelemer inhibits ANO1, 
a calcium-activated chloride channel, which has a role in epithelial 
fluid secretion, and the gene is overexpressed in CRC. Misoprostol 

is a PTGER3 (prostaglandin receptor) agonist, potentially capable of 
addressing the downregulation of this receptor in tumors. In addition 
to these, several of the target genes identified are attractive drug tar-
gets, with 44 having clinical or discovery precedence, and a further 31 
are likely to be tractable (Supplementary Table 10). Based on CRISPR 
knockout data, genomic biomarkers and patient data43, TBCD, KLF5 and 
SOX9 are also predicted to be promising therapeutic targets in CRC, as 
are CCND1, CDH1, MYC and POU5F1B in many different types of cancer 
(Supplementary Table 11).

After investigating regulatory networks in the gene list, we identi-
fied transcription factor regulatory interactions in cancer and normal 
cells. It was possible to observe sets of ‘hub’ genes, including MYC, 
MYNN, EGR1, ZNF263, CTCF and SP1 (Supplementary Fig. 7). Formally 
testing for molecular pathways enriched in the target genes revealed 
that the genes were enriched in TGFβ-related pathways (TGFβ signal-
ing pathway, Kyoto Encyclopedia of Genes and Genomes (KEGG), 
Padjusted (Padj) = 4.31 × 10−6; TGFβ signaling activation by blocking of 
tumor suppressors, Elsevier Pathway Collection, Padj = 4.4 × 10−5; Hippo 
signaling pathway, KEGG, Padj = 6.50 × 10−5; Wnt signaling pathway, 
KEGG, Padj = 9.38 × 10−3), as well as in cancer-related pathways (path-
ways in cancer, KEGG, Padj = 1.43 × 10−6). Given the central role of these 
pathways in CRC development, these findings expand opportunities 
for indirect targeting; for example, the use of porcupine inhibitors 
to indirectly target Wnt pathway activity44. Hence, adapted forms or 
modified dosing regimens of these drugs may offer alternative treat-
ment options.
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Discussion
To prioritize functional variants for the identification of CRC suscepti-
bility genes at risk loci, we systematically scored multiple genetic and 
functional features as well as assayed allelic transcriptional activity. 
Integration of these data nominated 208 variants at 170 risk loci, few 
of which have previously been formally investigated.

Our data support tissue-specific transcriptional regulation as a 
major mechanism through which GWAS variants influence CRC risk. 
Although 24% (40 out of 170) of the loci had a single Tier 1 variant, 58% 
(98 out of 170) featured more than one equally plausible functional 
variant. The potential of multiple functional variants at some loci to 
underscore CRC risk and plausibly target more than one gene is con-
sistent with a study reporting that multiple causal regulatory variants 
in high linkage disequilibrium are responsible for a subset of lympho-
blastoid cell eQTLs5. In 48% of the GWAS risk loci, the candidate target 
gene was the closest to the gene or intronic, often localizing within the 
same TAD. This is in line with the Open Targets gold standard dataset40, 
and this proximity effect has previously been noted and proposed to 
reflect evolutionary conservation13. For an appreciable proportion of 
risk loci, we found no obvious candidate genes, largely due to a paucity 
of functional data in these regions. This may be indicative of alternative 
mechanisms of action that were not explored here. For example, it has 
recently been proposed that the mechanistic basis of the 8q23.3 risk 
locus is a consequence of variable number tandem repeats45.

We acknowledge that this study has some limitations. First, 
MPRA-significant variants were not identified for 36% of the GWAS loci. 
The functional basis of these risk loci might operate through mecha-
nisms that cannot be tested by MPRAs. However, we cannot exclude 
technical issues or simply lack of statistical power to demonstrate a 
difference in allelic transcriptional activity. Second, for 96 loci, we 
could not assign a target gene using eQTLs. We have sought to address 
the cellular context of eQTLs, analyzing both normal and tumor data, 
although failure to demonstrate a relationship may reflect a lack of 
statistical power, especially for lower-frequency variants. Therefore, 
rather than rely solely on eQTLs, we performed an ABC-model-based 
analysis utilizing epigenomic features and Micro-C data to predict the 
enhancer–gene connections.

Accepting these caveats, we performed a multilayered analysis that 
enabled us to nominate the probable causal variants for the CRC risk loci 
and implicate 208 gene targets as the biological basis of associations. 
Only six of the genes we identified (BCL9L, CDH1, SMAD3, SOX9, TBX3 and 
TCF7L2) are established CRC driver genes46 (that is, genes with recurrent 
nonsynonymous somatic mutations in CRC under positive selection). 
This suggests a model by which genetic predisposition indirectly affects 
oncogenesis. In addition to emphasizing the role of genetic variation in 
established CRC genes and pathways, we identify candidate target genes 
with hitherto no previously well-established role. Notably, these include 
components of the calmodulin superfamily, CALML4 and CAMK2A. The 
calmodulin pathway is the principal calcium sensor regulating a myriad 
of vital biological processes, including cell proliferation, programmed 
cell death and autophagy, and is increasingly viewed as an attractive 
therapeutic target47. SLCO2A1, which has a role in the synthesis and clear-
ance of prostaglandins, along with FADS1, also highlights the importance 
of inflammation and the immune response in CRC development. The 
identification of ATXN10 and ATXN2 as candidate target genes provides 
support for the involvement of the Ras–MAP kinase pathway and EGFR 
trafficking in CRC development. BCKDHA catalyzes the breakdown of 
branched-chain amino acids, the dysregulation of which is recognized 
to have a role in the progression of a range of cancers48.

In summary, we provide further insight into the functional basis 
of risk loci, implicating novel genes in the development of CRC, which 
expands the potential for therapeutic targeting. Our analysis provides 
an outline for a generalized strategy to profile disease-associated 
GWAS loci using high-throughput variant screening in concert with 
multilayered functional annotation.
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Methods
Ethics
For the eQTL data, all participants provided informed written consent, 
and the research was approved by local research ethics committees 
(SOCCS 11/SS/0109 and 01/0/05) and National Health Service manage-
ment (SOCCS 2013/0014, 2003/W/GEN/05).

GWAS statistics and definition of risk loci
GWAS summary association statistics were obtained from the recently 
published GWAS meta-analysis of 100,204 CRC cases and 154,587 con-
trols2. Risk loci were defined as variants with P < 5 × 10−8 and that were 
at least 500 kb apart. To identify secondary signals inside this window, 
a conditional analysis was performed on the meta-analysis summary 
statistics using genome-wide complex trait analysis with conditional 
and joint analysis49. As the GWAS data were based on east Asian and 
European individuals, we used genotyping data from 6,684 unrelated 
individuals of east Asian ancestry and 4,284 individuals of European 
ancestry from the UK10K project50 and the 1000 Genomes Project51, 
respectively, as a reference for an estimation of linkage disequilibrium. 
The conditional analysis was performed on each population separately, 
and the data were combined using a meta-analysis, retaining associa-
tions where Pconditional < 5 × 10−8. In total, there were 204 autosomal vari-
ants identified, which mapped to 170 loci.

Cell lines and cell culture
CRC cell lines were cultured in 5% CO2 at 37 °C, with SW403 (ACC294, 
DSMZ), SW480 (ACC313, DSMZ) and SW948 (91030714, ECACC) grown 
in DMEM (Gibco), HT29 (ACC299, DSMZ) in McCoy’s 5A (Modified) 
Medium (Gibco) with GlutaMAX Supplement (Gibco), CL11 (ACC467, 
DSMZ) in DMEM/F-12 (Gibco), and C32 (ECACC) in Iscove's Modified 
Dulbecco's Medium (Gibco). Media were supplemented with 10% (20% 
for CL11) heat-inactivated FBS (Sigma). The normal colon crypt cell 
line HCEC-1CT (CkHT039-0229, Evercyte) was cultured in a 4:1 ratio of 
DMEM and Medium 199 (Gibco) supplemented with ColoUp medium 
(Evercyte) at 37 °C, with 3% O2 and 5% CO2. All cell lines were cultured 
until they reached 90% confluency and then passaged using TrypLE 
(Gibco).

MPRAs
Variant selection. We used MPRAs to identify variants exhibiting 
transcriptional differences. The nature of the assay requires that the 
variants to be tested are predefined, and the number of variants tested 
were constrained by oligonucleotide synthesis chip capacity. In light 
of this, using data from the CRC GWAS, we selected variants for MPRA 
testing by first considering all variants in a 500-kb window spanning 
each primary or conditional association (that is, ±250 kb around each 
lead variant) whose P values were within three orders of magnitude of 
that of the lead variant. As this might not capture functional variants 
that remain highly significant at some loci (that is, where the lead vari-
ant has an extremely strong association), we also considered variants 
having −log10(Pvariant) > 0.7 × (−log10(Plead variant)), stipulating an r2 of >0.2 
for the lead variant and a Pvariant of <10−5 in the GWAS. A total of 100 
control variants were also evaluated: 50 were derived from common 
variants (minor allele frequency > 0.05) that mapped to repressive 
regions (greater than fourfold enriched versus input) as defined by the 
NIH Roadmap Epigenomics Project colonic (E-075) H3K27me3 mark, 
and the remaining 50 were randomly generated.

Variant oligonucleotide library design. For each variant, 100-bp 
flanking sequences were added, yielding genomic probe sequences of 
201 bp (100 + 1 + 100). Oligonucleotides containing an SceI restriction 
site, which was used for cloning, were excluded. During library synthe-
sis, probe orientation was determined by the addition of two adapter 
sequences (AGGACCGGATCAACT and CATTGCGTGAACCGA) at either 
the 5′ and 3′ ends or the 3′ and 5′ ends relative to the probe sequence. 

Each variant had four probes: one for each combination of forward 
and reverse strands and one for each reference and alternative allele. 
Library synthesis was performed by Twist Bioscience.

Library construction, transfection and sequencing. A lentiviral 
MPRA was carried out as previously described52. In brief, the MPRA 
library was amplified using 12 cycles of PCR, with adapter sequences as 
primers. All PCR reactions were performed using Q5 High-Fidelity 2X 
Master Mix (NEB). Subsequent rounds of PCR incorporated a random 
15-base polymer barcode sequence for probe identification. Barcoded 
probes were incorporated into a pLS-SceI vector (a gift from N. Ahituv; 
Addgene plasmid no. 137725) by Gibson assembly using NEBuilder HiFi 
DNA Assembly Cloning Kit (NEB). After ligation, 100 ng of plasmid 
was transfected into NEB Stable Competent E. coli (High Efficiency) 
(NEB) using an Eppendorf Eporator at 1.8 kV. Bacteria were plated on 
carbenicillin (500 µg ml−1) agar plates. A total of 2 × 106 colonies, suf-
ficient for 100 unique barcodes per probe, were collected, and plasmid 
DNA was purified using ZymoPURE II Plasmid Maxiprep Kits (Zymo 
Research) before Illumina-based library preparation. Barcode-to-probe 
association was carried out by sequencing 4 nM of the pLS-SceI library 
on an Illumina MiSeq using a MiSeq Reagent Kit v2 (300 cycles) with 
three custom primers. Primer sequences are provided in Supplemen-
tary Table 9. Custom primers were diluted to a final concentration of 
0.5 μM and added as follows: pLSmP-ass-seq-R1 (forward probe) read 1 
(146 cycles), pLSmP-ass-seq-R2 (reverse probe) read 2 (146 cycles) 
and pLSmP-ass-seq-ind1 (forward barcode) index read 1 (15 cycles). 
The sample index read 2 (10 cycles) was performed using the default 
Illumina P5 primer.

Lentivirus particles were produced in HEK239T cells (CRL-11268, 
ATCC). For one T175 flask, 10 µg pLS-SceI, 6.5 µg psPAX2 and 3.5 µg 
pMD2.G were diluted in 2 ml of Opti-MEM (Gibco) and 40 µl of Turbo-
Fect (Thermo Fisher Scientific) and added according to the manufac-
turer’s guidelines. Other virus preparation steps were carried out as 
previously described52. HT29, SW403 and HCEC-1CT cells were used 
for enhancer quantitation. Cells were transduced with a viral moiety 
of infection of 80 based on cell-line-specific or batch-specific viral 
transduction efficiencies using 8 µM polybrene (Sigma). SW403 cells 
were transduced before attachment (reverse transduction), and the 
other cell lines were allowed at least 24 h to attach. After 24 h, the 
medium was removed, and the cells were incubated for an additional 
48 h. The cells were lysed, and the RNA and DNA were purified using 
an AllPrep DNA/RNA Kit (Qiagen). DNA and RNA library preparation 
and sequencing were performed as previously described52. DNA and 
RNA samples were uniquely indexed, and a 16-bp random molecular 
identifier was added using PCR to eliminate optical duplicates. For each 
cell line, three DNA and three RNA replicate libraries were combined 
in equimolar amounts. DNA and RNA libraries from each cell line were 
mixed at a 1:3 ratio and diluted to 7.89 nM for sequencing. MPRA librar-
ies were sequenced using a NovaSeq 6000 (Illumina) using the follow-
ing primers: pLSmP-ass-seq-ind1 (forward barcode) read 1 (15 cycles), 
pLSmP-bc-seq (reverse barcode) read 2 (15 cycles) and pLSmP-UMI-seq 
(forward unique molecular identifier) index read 1 (16 cycles) (Sup-
plementary Table 12). Sample indexes (index read 2, 10 cycles) were 
sequenced using the default Illumina P5 primer.

Data analyses. Raw sequencing data were converted to FASTQ format 
using bcl2fastq (Illumina). The MPRAflow52 pipeline v2.3.5 was used to 
associate and count the number of barcodes associated with each probe 
sequence. To identify the different alleles for each variant, the FASTQ 
files were modified to include the forward library adapter (AGGACCG-
GATCAACT). This sequence was also added to the design FASTA file 
used by MPRAflow for alignment. For a sequence to be associated with 
a given barcode, it had to be a perfect match to the library sequence, 
which was enforced using a CIGAR string of 230M. For statistical anal-
ysis of the MPRA data, we used MPRAnalyze53 v1.12.0, which uses a 
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nested pair of generalized linear models designed to estimate noise 
in the DNA and RNA libraries. We filtered the barcodes and collected 
those that contained all four allele-specific probes (that is, fwd_ref, 
fwd_alt, rev_ref and rev_alt), and we only retained a barcode if there 
was a DNA read present with a corresponding RNA read in the same 
replicate. Library size correction factors were estimated according to 
the replicate number, allele type (alternative or reference) and stand 
(forward or reverse) using the upper quantile of nonzero values for 
depth estimation. Owing to the large number of barcodes, we used the 
‘scaled’ option, which uses the DNA counts directly as estimates rather 
than generating a DNA model. There was a strong correlation between 
the scaled analysis and the full model in a downsampled dataset (Sup-
plementary Fig. 8). A likelihood test was performed to test the effect 
of the allele using the direction and replicate as covariates.

ChIPmentation
ChIPmentation was performed on histone marks H3K4me1 (C15410194, 
Diagenode), H3K4me3 (C15410003-50, Diagenode), H3K27ac 
(C15410196, Diagenode), H3K27me3 (C15410195, Diagenode), 
H3K36me3 (C15410192, Diagenode) and CTCF (C15410210-50, Diagen-
ode) for the C32, CL11, HT29, SW403, SW480, SW948 cell lines using 
a published protocol54, with minor modifications, as detailed in the 
Supplementary Note. Data processing was performed using the Nex-
tflow nf-core chipseq pipeline v1.2.1 (ref. 55) with default parameters.

Omni-ATAC
ATAC-seq was performed on the C32, CACO2, CL11, HT29, SW403, 
SW480, SW948 and HCEC-1CT cell lines as previously described56. 
Experimental protocols are detailed in the Supplementary Note. Data 
processing was performed using the Nextflow nf-core atacseq pipeline 
v1.2.1 (ref. 57) with default parameters. Peaks for both the ChIP–seq 
and ATAC-seq data were consistent across all cell lines (Supplementary 
Fig. 9).

Micro-C
We generated Micro-C chromatin interaction maps of the CL11, HT29, 
SW403, SW480 and SW948 cell lines as previously described58, 59. 
Experimental protocols are detailed in the Supplementary Note. The 
data were analyzed using JuicerTools v1.22 (ref. 60) to count valid 
interactions. We required valid interactions of >90% for classification 
as cis-contacts, of which 60–70% had to be short-range cis-contacts. 
If the metrics were satisfactory, the pooled library was sequenced on 
a NovaSeq 6000 (Illumina) to a depth of at least 300 million reads per 
library, using 100 bp paired-end sequencing.

We used the nf-distiller pipeline61 v0.3.4 to generate the interaction 
maps from the raw FASTQ files, using matrix balancing normalization 
and binning at 1 kb. FitHiC2 (ref. 62) was used to call significant interac-
tions, merging adjoining bins with significant interactions. TADs and 
compartments were identified using cooltools63 v0.5.4 with 30-kb and 
100-kb windows, respectively, and binning at 10 kb. Compartments 
were determined using an eigendecomposition of the contact matrix. 
The GC content of each bin was used as a phasing track. Active and 
inactive compartments are defined as having a positive and negative 
value for the first eigenvector, respectively.

RNA extraction and library sequencing
RNA sequencing of the C32, CL11, HT29, SW403, SW948 and 
HCEC-1CT cell lines was performed. The experimental protocols are 
detailed in the Supplementary Note. Analysis of the RNA-seq data was 
performed using the RNAflow pipeline64 v1.4.1 with default parameters.

Cell-type specificity of risk variants
To identify the cell types through which CRC risk variants exert their 
effects, we analyzed single-cell gene-expression profiles across differ-
ent tissues using the Tabula Sapiens v4 dataset23 (~500,000 cells from 

24 organs from 15 normal human subjects) and across different intes-
tinal regions using the Gut Cell Atlas24 (~125,000 cells from 86 healthy 
adults from 11 distinct locations in the gut). We used scDRSs65 v1.0.1 
to link the scRNA-seq data with polygenic disease risk at a single-cell 
resolution, independent of cell type. In brief, using the CRC GWAS 
association summary statistics, MAGMA66 v1.10 defined a putative set 
of disease genes. Using the top 1,000 putative genes, a disease score 
was calculated as a function of the GWAS z-scores and the scRNA-seq 
expression values. Cell-specific association P values were calculated 
by comparing normalized disease scores to an empirical distribution 
of normalized scores across all control gene sets and all cells.

Histone mark enrichment analysis
To examine enrichment in specific histone marks across the risk loci, we 
adapted the variant set enrichment method described previously67,68. 
In brief, for each risk locus, a region of strong linkage disequilibrium 
(defined as r2 ≥ 0.8 and D′ ≥ 0.8) was determined, and variants map-
ping to these regions were termed the associated variant set (AVS). 
ChIP–seq data for the H3K4me3, H3K27ac, H3K4me1, H3K27me3, 
H3K9ac, H3K9me3 and H3K36me3 chromatin marks from up to 128 
cell types were obtained from the NIH Roadmap Epigenomics Project 
data25. For each mark, the overlap of the positions of variants in the AVS 
and the ChIP–seq peaks was determined to produce a mapping tally. 
A null distribution was generated by randomly selecting variants with 
the same linkage disequilibrium characteristics as the risk-associated 
variants, and a null mapping tally was calculated. This process was 
repeated 50,000 times, and approximate P values were calculated as 
the proportion of permutations for which the null mapping tally was 
greater or equal to the AVS mapping tally.

ChromHMM
We used ChromHMM69 v1.24 to predict chromatin states using the 
H3K4me1, H3K4me3, H3K27ac, H3K27me3 and H3K36me3 histone 
marks. The BAM files from the nf-core chipseq pipeline described 
above were binarized, and a 15-state model was predicted (Supple-
mentary Fig. 10). States were annotated using previously published 
annotations69–71.

Fine-mapping of risk loci
Using summary data from the CRC GWAS, we defined flanking regions 
500 kb on either side of the most significant variant at each risk locus. 
We performed statistical fine-mapping of these CRC risk loci using 
PolyFun26 v1.4.1 and susieR27 v0.11.92. We calculated the previous 
causal probabilities nonparametrically using the established PolyFun 
protocol, which estimates the per-SNP heritability for each variant, 
weighted by the functional annotations. Annotation data were gath-
ered from the baseline-LF v2.2 annotation data26,72 provided by the 
A. Price group (https://alkesgroup.broadinstitute.org/LDSCORE) 
using the CRC-specific ChIP–seq and open chromatin data that were 
generated in-house (Supplementary Table 1). Linkage disequilibrium 
scores were calculated using data from 45,498 disease-free European 
individuals in the Genomics England dataset (https://re-docs.genomic-
sengland.co.uk/aggv2). Using the probabilities estimated by PolyFun, 
we fine-mapped loci across a 500-kb window using the Sum of Single 
Effects model, which was implemented in susieR. For loci with one 
independent variant, we set the maximum number of causal variants 
to two, as susieR is unable to use linkage disequilibrium information 
for a single variant. For loci with multiple independent variants, we 
performed fine-mapping of the region including all independent 
variants, and set the maximum number of causal variants equal to the 
number of independent variants. The output from susieR included 
a posterior inclusion probability (PIP) for each variant and the 95% 
credible set that the variant belongs to. Variants with PIPs of >0.001 
and that cumulatively reached a probability of 0.95 were included in 
a credible set.
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Transcription factor binding
We used TOBIAS73 v0.14.0 to predict transcription factor binding 
using the BINDetect method. Using the ATAC-seq data from the C32, 
CACO2, CL11, HT29, SW403, SW480, SW948 and HCEC-1CT cell lines 
in conjunction with the JASPAR 2022 core nonredundant transcription 
factor motif database28, which was filtered to motifs found in humans, 
we predicted whether there were any potential transcription factors 
bound in open chromatin. The TOBIAS scores indicate how well the 
transcription factor motif matches the genomic sequence.

We performed an enrichment analysis of bound transcription 
factors according to the NIH Roadmap Epigenomics Project histone 
analysis. The number of transcription factors predicted to bind to each 
of the GWAS regions (based on the selected variants) were counted. A 
null distribution was generated by randomly selecting variants with 
Pvariant > 0.95; a window of a size equivalent to that of the GWAS data was 
formed, and a null transcription factor count was calculated. This pro-
cess was repeated 50,000 times, and approximate P values were calcu-
lated as the proportion of permutations for which the null transcription 
factor count was greater or equal to the GWAS transcription factor count.

ABC model for prediction of enhancer–gene interactions
To predict enhancer–gene connections in each cell line, we used ABC22 
v0.2.2 in conjunction with data from ATAC-seq, H3K27ac ChIP–seq, 
Micro-C and RNA-seq. The analysis was performed as previously 
described22 using default parameters. In brief, we investigated the 
150,000 gene–enhancer interactions with the highest ABC scores 
for all enhancer regions within 5 Mb of the TSS of a gene. Enhancer 
regions were filtered such that those overlapping the GWAS risk loci 
were retained.

eQTLs and SMR
Comprehensive details about the RNA-seq and whole-genome sequenc-
ing data from the SOCCS and GTEx datasets are described in ref. 74. In 
brief, the GTEx data were derived from 367 postmortem transverse 
colon samples, and the SOCCS data were derived from the normal 
colon or rectum mucosa of 223 healthy individuals. eQTL analysis 
was performed using Matrix eQTL v2.3 (ref. 75) on probabilistic esti-
mation of expression residuals-adjusted residuals76, and age, sex, 
batch and a number of hidden covariates equal to one quarter of the 
sample size in both datasets were taken into account. The variants 
tested were limited to those within 0.5 Mb of lead variants, with a minor 
allele frequency of >0.01 and associations with genes within 1 Mb. 
Per-dataset results underwent a meta-analysis using a fixed-effects 
inverse variance-weighted model in META77 v1.7. SMR32 v1.3.1 analysis 
was performed using the eQTL results from the meta-analysis and 
GWAS summary statistics from ref. 2 using default parameters. As SMR 
is performed only on the top eQTLs for each gene, PSMR values were 
Bonferroni-corrected for multiple testing based on the number of 
genes within each risk locus. We retained results with PSMR-corrected < 0.05 
and PHEIDI > 0.05. To analyze the preservation of CRC risk-associated 
eQTL effects in tumors, eQTL summary statistics from TCGA COAD 
(n = 286) and READ (n = 94) samples were obtained from PancanQTL78, 
underwent a meta-analysis and subjected to SMR as described above.

3D chromatin structure disruption
To predict the effect of variants on the 3D structure of DNA, we used 
Akita31 v0.6, which uses a deep learning framework. The Micro-C data 
were binned into 1,024 (210)-bp sets. Data were preprocessed using 
default parameters, except for a sequence length of 1,048,576 (220) bp 
and a crop length of 65,536 (216) bp. The model was trained using default 
parameters, with 10% of the data used for testing and 10% used for 
validation. We performed in silico mutagenesis on a nucleotide level 
on 200-bp regions centered on each tested variant. Disruption scores 
were calculated as the L2 norm of the predicted differences between 
the contact maps for each allele.

Scoring of variants
To prioritize the variants in each of the risk loci, we adopted the fol-
lowing scoring scheme:

•	 MPRA: variants with an FDR of ≤10−3 were given a score of 2, and 
those with an FDR of ≤0.05 were given a score of 1. Each cell line 
was considered separately.

•	 Statistical fine-mapping: variants with a PIP of >0 were given 
a score of 1 (that is, the variant was part of a credible set), and 
those with a PIP of >0.5 were given a score of 2.

•	 Chromatin annotation: based on ChromHMM annotation, vari-
ants that fell within either a promoter or an enhancer region 
were given a score of 2, and those that fell within regions with 
weak predicted states (that is, with lower emission parameters) 
were given a score of 1.

•	 Open chromatin: if the variants fell within an ATAC-seq peak, 
then they were given a score of 2.

•	 SMR: for both the normal and tumor samples, if a variant was 
associated with a gene identified using SMR, then it was given a 
score of 2.

•	 Akita: if >25% of the variants within 100bp of the tested variant 
had a disruption score in the top 10% of all disruption scores, 
then it was given a score of 2. If >25% of the variants within 100bp 
of the tested variant had a disruption score in the top 20% of all 
disruption scores, then it was given a score of 1.

•	 CTCF: if the variants fell within a CTCF peak, then they were 
given a score of 2.

•	 Long-range interaction: using the output from FitHiC (filtered 
using −log10(P) ≥ 2), if the variant fell within one end of a Micro-C 
contact and the other end was within a gene body, then it was 
given a score of 1. If the other end of the interaction contained a 
TSS of a gene, then the variant was given a score of 2.

As many of these analyses were performed on multiple cell lines, it 
was necessary to find a scoring consensus across cell lines for collation 
of the scores. For the ATAC-seq, CTCF, Micro-C and ChromHMM data, 
this consensus was that the annotation had to be present in >50% of 
the cell lines. For the ABC model and the transcription factor binding 
prediction, we performed a binomial analysis of the scores from the 
respective analysis tools. For each analysis, we identified the number of 
times that the score was in the 90th percentile. We calculated the prob-
ability of the occurrence of this score using the binomial distribution 
survival function. If P < 0.05, the tested variant was assigned a score of 
1, and if P < 0.01, it was given a score of 2.

The annotation scores for each variant were summed, and the 
scores were ranked. The variants with scores in the top 20% of all scores 
were designated as Tier 1 variants, those with scores in the bottom 50% 
as Tier 3 and the remainder as Tier 2.

Gene prioritization
To link the variants with genes, we used the data from the Micro-C TSSs, 
the ABC model and SMR of the tumor and normal samples. We focused 
on the Tier 1 variants, as they provided the most information regard-
ing annotations. A gene annotation had to be present in at least two of 
the annotation sources to be suggested as a putative target gene. If no 
genes reached this threshold, we included the interactions related to 
the Micro-C data within a gene body and included these as weak predic-
tions. For any genes that did not have any Tier 1 variants, we used the 
Tier 2 variants instead, and any genes that were found were labeled as 
weak predictions. Finally, if no genes were identified throughout the 
process and the variant was intronic to a gene, that gene was used as 
a weak prediction.

Gene evidence
To formally examine whether target genes were known to be associ-
ated with cancer (and specifically CRC), we used OncoScore36 v1.30.0, 
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a text mining tool that ranks genes by their association with cancer 
based on the available biomedical literature. We used an OncoScore of 
21.09 as the threshold to define novelty. To complement this analysis, 
we also performed a literature survey in MELODI Presto (accessed 3 
April 2024)38 using semantic predications in the Semantic MEDLINE 
Database37, which is based on all citations in PubMed. Within the Seman-
tic MEDLINE Database, pairs of terms were connected by a predicate, 
which are collectively known as ‘literature triples’ (that is, ‘subject 
term’–predicate–‘object term’). We performed the analysis using the 
gene list as the subject and ‘colorectal cancer’ as the object. Driver 
genes were determined using intOGen (released 1 February 2020)46 
and restricted to those from colorectal cohorts (COADREAD). Gene 
distance information was obtained from HaploReg v4.1.

We used oncoEnrichR39 v1.4.2.1 to analyze the gene sets. This 
tool provides a suite of analyses, including cancer associations, drug 
associations, synthetic lethality, gene fitness and protein–protein 
interactions.

Regulatory interaction data were obtained from the DoRothEA 
and OmniPath resources79,80. These datasets contains a list of pre-
viously identified transcription factor–target interactions that are 
scored based on multiple lines of evidence (namely, literature-curated 
resources, ChIP–seq peaks, transcription factor binding site motifs 
and gene-expression-inferred interactions). Regulatory interactions 
were inferred using gene expression in tumor samples (from TCGA) or 
normal tissues (from GTex).

Cell viability and gene essentiality data were obtained from the 
Cancer Dependency Map (DepMap, 2020_Q2 release), which provides 
information on a systematic genome-scale CRISPR–Cas9 drop-out 
screen in 912 cancer cell lines42. We restricted the analysis to the CRC cell 
lines from primary tumors (that is, nonmetastatic; n = 37). To identify 
putative therapeutic targets, we used the results from the Project Score 
database (2021_Q2 release)42,43 in DepMap. This generates target prior-
ity scores based on the integration of CRISPR knockout gene fitness 
effects with genomic biomarker and patient data (accounts for 30% of 
the score and is based on evidence of a genetic biomarker associated 
with a target dependency, as well as tumor prevalence), and cell line fit-
ness effects (accounts for 70% of the score and is based on gene fitness, 
genes expressed and genes not homozygously deleted). All genes are 
assigned a target priority score between zero and 100 from lowest to 
highest priority. A threshold score of 40 was established based on scores 
calculated for targets with approved or preclinical cancer compounds.

Drug tractability information was based on data from the Open 
Targets Platform41, and pathway enrichment was performed using 
Enrichr (released 8 June 2023)81.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
GWAS data are available from GWAS Catalog (accession no. 
GCST90129505). Cell line data have been deposited in the Euro-
pean Genome-phenome Archive under the following accessions: 
EGAD50000000596 (MPRA), EGAD50000000294 (Micro-C), 
EGAD50000000295 (ChIP–seq, all marks), EGAD50000000296 
(ATAC-seq), EGAD50000000297 (RNA-seq). Annotation data for all 
the GWAS regions are available on the University of California, Santa 
Cruz (UCSC) Genome Browser (https://genome.ucsc.edu/s/philip.
law%40icr.ac.uk/CRC%20GWAS%20annotation).
Single cell RNA-seq data were obtained from the Gut Cell Atlas (https://
www.gutcellatlas.org) and the Tabula Sapiens project (https://
tabula-sapiens-portal.ds.czbiohub.org). Transcription factor binding 
was based on data from JASPAR (https://jaspar.genereg.net). Functional 
annotations for the fine-mapping were obtained from the A. Price group 
(https://alkesgroup.broadinstitute.org/LDSCORE). Histone marks in 

different tissues were obtained from the NIH Roadmap Epigenomics 
Project (https://egg2.wustl.edu/roadmap/web_portal). eQTL data were 
obtained from PancanQTL (http://bioinfo.life.hust.edu.cn/PancanQTL) 
and GTEx (https://gtexportal.org). Literature mining was performed in 
MELODI Presto (https://melodi-presto.mrcieu.ac.uk) using data from 
the Semantic MEDLINE Database (https://lhncbc.nlm.nih.gov/ii/tools/
SemRep_SemMedDB_SKR.html). Gene annotation data were obtained 
from OmniPath (https://omnipathdb.org), DoRothEA (https://saezlab.
github.io/dorothea), DepMap (https://depmap.org) and Open Targets 
(https://www.opentargets.org), and analyzed in oncoEnrichR (https://
oncotools.elixir.no). Source data are provided with this paper.

Code availability
No custom code was generated. Publicly available code was used for all 
aspects of data processing and analysis and is cited in the appropriate 
section of the Methods.
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Extended Data Fig. 1 | Detailed schematic of the analysis. Detailed schematic 
of the analysis performed. Using the loci identified by the CRC GWAS, we 
annotated the regions using multiple functional modalities including massively 
parallel reporter assays (MPRA) to observe allelic effects on transcription, 

epigenetic marks (ChIP-seq), chromatin accessibility (ATAC-seq), gene 
expression (RNA-seq) and long-range chromatin interactions (Micro-C). ABC: 
Activity By Contact.
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Extended Data Fig. 2 | Detailed annotation for the variants in 8q24 locus. Detailed functional annotation for the variants in 8q24 locus from UCSC Genome 
Browser, showing the Micro-C, chromHMM, ATAC-seq, and ChIP-seq data across the various cell lines. The putative variant, rs6983267, is highlighted in light blue (left). 
A secondary signal at rs4733767 is also shown (middle blue line).
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Extended Data Fig. 3 | Detailed annotation for the variants in 10p12 locus. Detailed annotation for the variants in 10p12 locus from UCSC Genome Browser. The 
putative variant, rs1248418, is highlighted in light blue.
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Extended Data Fig. 4 | Detailed annotation for the variants in 1p34 locus. Detailed annotation for the variants in 1p34 locus from UCSC Genome Browser. The 
putative variant, rs67631072, is highlighted in light blue.
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