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Abstract

Attention deficit hyperactivity disorder (ADHD) is a complex disorder that manifests variability 

in long-term outcomes and clinical presentations, however, the genetic contributions to such 

heterogeneity are not well understood. Here we show several genetic links to clinical heterogeneity 

in ADHD in a case-only study of 14 084 diagnosed individuals. First, we identify one genome-

wide significant locus by comparing cases with ADHD and autism spectrum disorder (ASD) to 

cases with ADHD but not ASD. Second, we show that cases with ASD and ADHD, substance use 

disorder (SUD) and ADHD, or first diagnosed with ADHD in adulthood have unique polygenic 

score profiles that distinguish them from complementary case subgroups and controls. Finally, 

a polygenic score for an ASD diagnosis in ADHD cases predicted cognitive performance in an 

independent developmental cohort. Our approach uncovered evidence of genetic heterogeneity in 

ADHD, helping understand its etiology and providing a model for studies of other disorders.
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Introduction

Attention deficit hyperactivity disorder (ADHD) is a multifactorial neurodevelopmental 

disorder with typical symptom onset in childhood, often persisting into adulthood, and 

affecting many aspects of life through impaired attention, impulsivity and hyperactivity1–

3. Clinical presentations are heterogeneous. Diagnosed individuals demonstrate variability 

in symptom severity, predominance and duration, treatment, age at diagnosis, need 

for hospitalization, and other long-term outcomes4–6. Some diagnosed individuals 

experience more negative outcomes like criminality7, premature mortality8, poor educational 

attainment9, or lower socioeconomic status10. Psychiatric and somatic comorbidities are 

common but prevalences and (co)occurrences can vary substantially among individuals 

and across the life-span4,11. Better understanding the etiology of clinical heterogeneity 

is important for improving long-term outcomes and precision care. Although genetic 

heterogeneity is a proposed feature of complex disorders12 and important to understand13, 

insights have proven elusive, especially when considering the extreme polygenic 

architectures of psychiatric disorders (e.g.,14,15).

Family studies show genetic factors play an important role in ADHD, with estimates of the 

narrow-sense heritability (h2) around 0.7416. This genetic contribution is complex, including 

copy number variants (CNVs)17,18, rare protein truncating variants (PTV)19, and polygenes 

- common variants with small, independent, additive effects on liability20. Estimates of 

SNP-based heritability (h2
SNP) for ADHD imply this polygene contribution is substantial 

(22%)20. ADHD associated polygenes are pleiotropic, shared broadly across clustered 

psychiatric, cognitive, and socio-behavioral traits, and concentrated in chromatin with active 

roles in neural development and functioning20. These insights come predominantly from 

consortia-driven meta-analyses21,22 that aggregate multiple cohorts sampled via different 

ascertainment criteria, case-control definitions, and healthcare contexts. Mapping robustly 

associated individual loci via genome-wide association studies (GWAS) does not appear 

overly sensitive to such cohort differences, however, inferences from polygenes may 

be more susceptible23,24. Polygene contributions to clinical heterogeneity in ADHD are 

plausible and have important implications for study design, across cohort replication, and 

providing more nuanced pictures of ADHD etiology13.

Recent studies have sought robust evidence of genetic heterogeneity for numerous complex 

disorders13, but many have been limited by conceptual, methodological, and data-related 

challenges that are exemplified by, but not limited to, ADHD. When considering ADHD, 

few cohorts have been ascertained with both the requisite statistical power for genetic 

analysis and the necessary depth and breadth of adjacent phenotyping for systematic 

investigations of clinical heterogeneity. As a result, analyses targeting heterogeneity are 

often conducted post-hoc or secondary to other aims (i.e., mapping disorder associated 

loci) where they may also be limited to a focus on single traits or selected variants. As 

examples, the association of previously discovered ADHD risk variants with comorbid 

substance use disorder (SUD)25, autism spectrum disorder (ASD)26, sex-differences27, or 

symptom persistence28. More generally, state of the field analytical approaches (e.g.,29) 

often emphasize variants with an a priori association to disorder onset and may miss 

or under prioritize contributions from modifier variants30,31 altering clinical trajectories 
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without such prior association (e.g., those disrupting drug metabolizing enzymes). Clinical 

presentations of complex disorders vary on many dimensions and likely due to diverse 

sets of genetic factors, so studies that overcome these prior limitations are poised to have 

wide-reaching impact.

Here, we study 14 084 individuals diagnosed with ADHD from the iPSYCH2012 case-

cohort study32 and a wealth of adjacent phenotyping from Danish population-wide health 

and civil registers33–36. We define a collection of ADHD-adjacent traits, using this term to 

refer to plausibly relevant, clinical phenotypes of individuals diagnosed with ADHD, that 

we assess for etiological relevance. We implement a well understood estimator of h2
SNP 

in a unique way to prioritize ADHD-adjacent traits most strongly associated with genetic 

differences among diagnosed individuals. Then, we conduct GWAS to identify single 

variants associated with prioritized traits and describe plausible biological mechanisms. We 

then apply a polygenic profiling approach using multivariate, multinomial logistic regression 

to simultaneously compare controls and multiple case groups across polygenic scores (PGS) 

for cognitive, psychiatric, and socio-behavioral traits, accounting for primary disorder (e.g., 

ADHD) PGS and covariates. We use this to identify evidence of genetic heterogeneity 

using multiple PGS. Finally, we construct PGS using variant effects from ADHD-adjacent 

trait GWAS to predict cognitive and behavioral performance in an independent, typically 

developing cohort. Our study adds robust, new perspectives on existing clinical debates 

surrounding ADHD etiology and can serve as a model for other complex disorders.

Results

ADHD-adjacent traits associate with genetic differences

We defined 22 ADHD-adjacent traits from register data to broadly describe variability in 

medication use, psychiatric comorbidity, need of care, and sex recorded at birth for 14 084 

individuals diagnosed with ADHD (Methods, Table 1, Supplementary table 1). We estimated 

the SNP heritability (h2
SNP) of each trait within the ADHD case group to prioritize those 

most relevant for more detailed investigation. (Methods, Figure 1, Supplementary table 2). 

We observed significant h2
SNP (p<0.002, adjusted for 22 tests) for three traits: a first ADHD 

diagnosis as an adult (≥18 years of age) (h2
SNP=0.143, s.e.=0.025, p=1.7×10−10), an ADHD-

adjacent diagnosis of ASD (h2
SNP=0.091, s.e.=0.024, p=2.7×10−5), and an ADHD-adjacent 

diagnosis of SUD (h2
SNP=0.085, s.e.=0.024, p=1.0×10−4). Seven traits had nominally 

significant p-values (p<0.05), suggesting with additional samples more traits would be 

implicated. We used hierarchical clustering to identify patterns in tetrachoric correlations 

of all pairs of traits observing roughly three groups: male sex-childhood diagnoses, 

medication traits, and adult first ADHD diagnosis-mood diagnoses (Supplementary table 

3, clustered heatmap: Supplementary figure 1). We note prioritized traits are at least 

partially independent: a first ADHD diagnosis as an adult positively associated with 

an SUD diagnosis (rTET=0.62, s.e.=0.01, p<1×10−10) and negatively associated with an 

ASD diagnosis (rTET= −0.43, s.e.=0.017, p<1×10−10). SUD diagnoses were negatively 

associated with ASD diagnoses (rTET= −0.33, s.e.=0.019, p<1×10−10). Sensitivity analysis 

demonstrate that our findings were not driven more plausibly by changing clinical guidelines 

(Supplementary Note, Supplementary figure 2–6 and Supplementary tables 4–6). ADHD-
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adjacent traits appear robustly associated with genetic differences, especially a first ADHD 

diagnosis as an adult, an ADHD-adjacent SUD diagnosis, and an ADHD-adjacent ASD 

diagnosis.

rs8178395 is associated with ADHD-adjacent ASD

We performed GWAS to identify single variants associated with the prioritized ADHD-

adjacent traits (Methods). No individual SNPs were associated (p>5×10−8) with a first 

ADHD diagnosis as an adult (Supplementary figure 7) or an ADHD-adjacent SUD diagnosis 

(Supplementary figure 8). However, one locus on chromosome 17q22 was significantly 

associated with an ADHD-adjacent ASD diagnosis (hg19: 55,341,733–57,341,733, lead 

SNP:rs8178395, minor allele (T) frequency (MAF)=0.14, odds ratio (OR)=1.30, s.e. on 

ln scale =0.05, pGWAS=1.98×10−08; Figure 2a, Supplementary figure 9). This locus was 

not identified in previous ADHD20 (rs8178395, p=0.44), ASD37 (rs8178395, p=0.26), or 

across-psychiatric disorders38 (rs8178289, a proxy SNP with r2 LD=0.9, p=0.23) GWAS, 

although these individuals were included in each meta-analysis. PheWAS for rs8178395 

and rs8178289 showed evidence for prior associations with measures of blood cell 

composition, protein levels, metabolites, cardiovascular complications, and sleep behavior 

(Supplementary figure 10, Supplementary table 7). rs8178395 appears reliably imputed 

(Supplementary figure 11–12, Supplementary table 8).

To determine if this variant is a novel ASD SNP or represents evidence of genetic 

heterogeneity within ADHD, we employed multinomial logistic regression (MLR) 

(Methods). This test extends the two-group logistic regression comparing ADHD with or 

without an adjacent ASD diagnosis to additionally compare individuals with an ASD, 

but not ADHD diagnosis, and controls with neither diagnosis. The frequency of the 

minor (T) allele of rs8178395 was significantly increased in the group with ADHD-

adjacent ASD relative to all other groups (vs. ADHD only, pMLR=2.4×10−8; vs. ASD 

only, pMLR=1.0×10−6; vs. controls, pMLR=2.9×10−7; Figure 2b, Supplementary table 9). 

rs8178395 indexes the first locus reported to have a specific association to individuals 

diagnosed with both ADHD and ASD. After excluding individuals diagnosed before 2000, 

2005, or 2008 this SNP remained genome-wide significant (Supplementary Table 10).

The locus indexed by rs8178395 contains 38 genes (Figure 2a). rs8178395 falls within an 

intron of LPO and has been associated with expression of DYNLL2, TSPOAP1, and SKA2 
in brain and MPO, RAD51C, RNF43, SEPTIN4, SMG8, SUPT4H1, TEX14, and TRIM37 
in other tissues (Methods, Supplementary table 11). Partitioned LD-score regression did 

not identify significant enrichment in selected adult or fetal brain derived annotations 

(Methods, Supplementary figures 13–15, Supplementary table 12). We performed a regional 

transcription association study (TWAS) (Methods) using expression levels imputed via 

adult39 and fetal brain40 expression quantitative trait loci (eQTLs) (Methods; Supplementary 

table 13), but did not identify significant candidates after correction (p<0.006); adult-

brain SKA2 expression was most significant (p=0.008). The proxy SNP for rs8178395 

(rs8178289, r2 LD=0.9) is also associated with TSPOAP1 expression in brain tissue (Figure 

2c) and, additionally, is reported by GTEx as a member of a haplotype containing splice 

QTLs (sQTL) for TSPOAP1-AS1, which encodes an associated antisense RNA active in 
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brain (Figure 2d) and other tissues41. Regulation of TSPOAP1 is a plausible mechanism 

as TSPOAP1 is a brain expressed gene42 encoding a binding protein coupling voltage 

gated calcium channels to neurotransmitter vesicles in the presynaptic active zone43, has a 

role in neurotransmitter release and synaptic transmission44, and exonic CNVs have been 

associated with ASD in families45.

For comparison we performed five supporting GWAS: case subgroup (e.g. ADHD adjacent 

ASD) vs. control, Methods, Supplementary Figures 16–18) and cross-trait (e.g ADHD 

or ASD) vs. control analyses (Methods, Supplementary Figure 19–20). P-values and 

odds ratios of index SNPs significant in at least one of the nine GWAS (Supplementary 

Table 14, Supplementary Figures 21–22) and LD-score genetic correlations among the 

GWAS (Supplementary Figure 23) suggest case-case GWAS emphasize different loci and 

polygenes.

ADHD-adjacent traits share polygenes with other traits

We estimated genetic correlations (ρG,SNP; Methods) between ADHD-adjacent traits and 46 

psychiatric, cognitive, and socio-behavioral traits using GWAS summary statistics (Figure 

3, Supplementary table 15). Trends were broadly similar across reference traits for first 

ADHD diagnosis as an adult and ADHD-adjacent SUD, and generally opposite to those 

for ADHD-adjacent ASD, consistent with phenotypic correlations (Supplementary figure 

1, Supplementary table 3). Genetic correlation trends for case-case GWAS were distinct 

from case-control, case subgroup-control, and cross-trait vs. control GWAS (Supplementary 

Figures 24–25; Supplementary Table 16–17). Individually, first diagnosis as an adult 

was correlated (ρG,SNP, FDR<0.05) with psychiatric traits, alcohol use (i.e., AUDIT, P 

score), reproductive behaviors, socioeconomic factors, education, and cognitive performance 

(Figure 3a), and showed a large negative trend with clinically ascertained ADHD (ρG,SNP= 

−0.5, s.e.=0.27, p=0.052). ADHD-adjacent SUD showed similar estimates of ρG,SNP with 

psychiatric outcomes, reproductive behaviors, education, and cognitive performance (Figure 

3b) and large trends for several SUD related traits (i.e., Alcohol and Opioid dependence). 

ADHD-adjacent ASD had different ρG,SNP for education and cognitive performance, 

socioeconomic factors, psychiatric, reproductive traits, sleeping, and smoking traits (Figure 

3c). ADHD-adjacent traits share polygenes with psychiatric, cognitive, and sociobehavioral 

traits that may define genetic heterogeneity in ADHD.

Polygenic profiles are linked to heterogeneity in ADHD

Next, we applied a polygenic profiling approach to test for polygene heterogeneity that 

can delineate ADHD-adjacent trait subgroups (Methods; Figure 4, Supplementary tables 

18–20). Multi-PGS profiles were different among individuals receiving a first diagnosis for 

ADHD as an adult (1st Dx adult; n=3 323), a first diagnosis for ADHD before adulthood 

(1st Dx child; n=10 761), and controls (ADHD-; n=21 409). The mean PGS for ADHD, 

depressive symptoms, major depression, years of schooling, age at first birth, and alcohol 

use (i.e. AUDIT P score) varied significantly among the groups (p < 0.05/169 =3×10−4; 

Figure 4a, stars; Supplementary table 18). These three-group-wise differences were driven 

by specific, highly significant pairwise contrasts (Figure 4a, black and red brackets). The 

two ADHD case groups generally deviated significantly from controls and in the same 
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direction. Individuals first diagnosed as an adult had significantly less positive PGS (i.e., 

closer to the population average) for ADHD and more positive PGS (i.e., further from 

the population average) for major depressive disorder than ADHD cases diagnosed before 

adulthood. Additional trends suggested more negative cognitive, education, and reproductive 

PGS for adult diagnosed ADHD cases. Simulations suggest the trends are not broadly 

consistent with models where adult diagnosis is simply due to ADHD liability associating 

with onset, a misdiagnosis of MDD, or education as an age dependent, heritable exposure 

(Supplementary Note, Supplementary Figures 26–30).

The multi-PGS profiles for individuals with an ADHD-adjacent SUD diagnosis (ADHD+, 

SUD+; n=2 627), without an ADHD-adjacent SUD diagnosis (ADHD+, SUD-; n=11 457), 

with an SUD but no ADHD diagnosis (ADHD-, SUD+; n=5 943), and with neither ADHD 

nor SUD diagnoses (ADHD-, SUD-, controls; n=20 509) were also different and with 

similar patterns to the previous result (Figure 4). The mean PGS for ADHD, depressive 

symptoms, major depression, schizophrenia, intelligence, years of schooling, age at first 

birth, and alcohol dependence varied significantly among the groups (p<4×10−4; Figure 4b, 

stars; Supplementary table 19). As above, case groups deviated from controls significantly 

and in the same direction. Notable pairwise differences (Figure 4b, black and red brackets) 

included individuals with ADHD-adjacent SUD diagnoses showing significantly more 

positive PGS for major depression and schizophrenia, and significantly more negative PGS 

for age at first birth, than ADHD without an adjacent SUD diagnosis. Individuals with 

ADHD-adjacent SUD diagnoses showed, relative to those with SUD diagnoses only (i.e., no 

ADHD diagnosis), significantly more negative PGS for education and intelligence, but no 

significant differences for other PGS.

Multi-PGS profiles for individuals with ADHD-adjacent ASD diagnoses (ADHD+, ASD+; 

n=2 284), with ADHD but no adjacent ASD diagnosis (ADHD+, ASD-; n=11 800), with 

ASD but not ADHD diagnoses (ADHD-, ASD+; n=9 804), and with neither (ADHD-, 

ASD- controls; n=21 197) were also different, but trends were broadly different from 

the previous two analyses. The mean PGS for ADHD, ASD, cross-disorder, intelligence, 

years of schooling, age at first birth, and chronotype varied significantly among the 

groups (p<4×10−4; Figure 4c, stars, Supplementary table 20). Individuals with ADHD-

adjacent ASD diagnoses had profiles that appeared to reflect both single-diagnosed groups, 

simultaneously. The ADHD-adjacent ASD group had significantly more positive ADHD and 

ASD PGS than controls, a trend towards more positive ASD (but not ADHD) PGS than the 

ADHD only group, and significantly more positive ADHD PGS (but not ASD) PGS than 

the ASD only group (Figure 4b, black and red brackets). Single diagnosed ASD and ADHD 

groups had opposite trends (i.e., above vs. below the population average) for intelligence and 

education PGS, and the ADHD-adjacent ASD group fell in between the two. Simulations 

suggest the trends are not broadly consistent with misdiagnosis and most consistent with 

models where diagnosed individuals have diagnoses that relate to an excess of liability for 

both disorders, simultaneously (Supplementary Note, Supplementary figures 31–39).

Large differences among groups that are not described as statistically significant (e.g., 

Figure 4b: college completion, ASD PGS for ASD and ADHD vs. ADHD only) are due to 

collinearity among constituent profile PGS fitted jointly (Methods) and highly significant 
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when fitted separately (Supplementary figure 40–41, Supplementary tables 21–23). Trends 

depicted as unadjusted levels of PGS in Figure 4 are directionally consistent with trends 

when depicted as partial PGS effects (i.e., regression coefficients) estimated in the joint 

models (Supplementary figure 42, Supplementary tables 18–20). Patterns of significant (and 

not-significant) findings are robust to censoring individuals diagnosed before 2000, 2005, or 

2008 (Methods, Supplementary tables 24–26).

ADHD-adjacent trait polygene scores associate with cognition

Finally, we sought external support for our finding that polygenic contributions to clinical 

heterogeneity in ADHD are shared with psychiatric, cognitive, socio-behavioral traits. We 

used our three ADHD-adjacent trait GWAS to construct PGS in the Adolescent Brain and 

Cognitive Development (ABCD) study46, an independent, typically developing cohort. Each 

PGS was tested for association with each of 51 behavioral and cognitive assessments, 

adjusting for ADHD PGS and potential confounders (Methods, Figure 5, Supplementary 

table 27). These analyses confirmed an association between the polygenic basis of an 

ADHD-adjacent ASD diagnoses and cognitive performance. Specifically, a higher PGS was 

significantly (p<0.001) associated with increased performance on overall cognitive function 

that appears driven by assessment in verbal cognition (e.g., crystalized composite, picture 

vocabulary scores; Figure 5c). No other tests were significant, although a few trends are 

noted: the signs of the relationships of the PGS and cognitive or psychiatric traits were 

in line with our previous analyses and multiple individual PGS trends were consistent 

for specific psychiatric or behavioral symptoms. We find consistent, independent support 

for a polygenic relationship between an ADHD-adjacent ASD diagnosis and cognitive 

performance, but small discovery GWAS and indirect, modest replication sample limit 

power for broader replication.

Discussion

In this study we used a unique data resource and analysis strategy to identify evidence 

for genetic heterogeneity underlying clinical heterogeneity in a widely studied complex 

disorder. We showed multiple, clinically relevant ADHD-adjacent traits were related to 

genetic variability among diagnosed individuals and that these genetic contributions were 

complex (i.e., marked by few large effects despite significant h2
SNP) but characterizable. 

Our multivariate analysis of polygenic profiles demonstrated that variability in polygenes 

associated with psychiatry, cognitive, and socio-behavioral traits underlie differences in 

clinical presentations of individuals diagnosed with ADHD. Our findings regarding age 

of first diagnosis and adjacent ASD diagnoses, in particular, make timely contributions to 

understanding the genetic etiology of ADHD and other results reflect themes relevant for the 

study of complex disorders more broadly.

Diagnostic practices around ADHD have evolved significantly over recent decades47, 

coinciding with a dramatic increase in prevalence48. These changes have relevance for our 

study as guidelines around the adult diagnosis of ADHD and comorbid ASD diagnosis 

in ADHD are two significant changes with DSM-51,47. In this study, we include ADHD 

diagnoses made from 1992 through 2012, with a majority (>70%) made after 2007. Even 
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still, our study takes place on the background of evolving clinical guidelines that could 

introduce diagnosis-year cohort effects. We observed the few, very earliest diagnosed 

individuals (n=500, <1999) may be subtly different from the rest of the cohort. In this 

cohort, the genetic relationship to year of diagnosis was smaller and less significant than 

to having a first diagnosis as an adult and having an ADHD adjacent diagnosis of SUD 

or ASD. Our primary findings are robust to censoring individuals diagnosed before 2000, 

before 2005, or before 2008. Future work could more directly test genetic correlates of 

changing clinical practice and increasing prevalence, which could have a larger impact on 

meta-cohorts combining diagnoses spanning more years.

Despite evidence of clinical co-occurrence in individuals and families49–51, shared genetic 

risk factors19,52, and biological overlap49, few GWAS have considered effects related to 

sharing, discriminating, or comorbidity. We identified a locus that appears novel for both 

disorders, with effects that appear specific to comorbid ADHD and ASD. This locus was 

not discovered by previous GWAS that focused on combined analysis of all ADHD and 

ASD cases53, variants that discriminate between ADHD and ASD53,54, comorbid cases and 

controls53, or case-control GWAS of each individually20,37, but none tested for association 

to a comorbid group, in a case-only design. In our bioinformatics characterizations, both 

eQTL and previous trait associations suggest the locus is functional, has a plausible 

connection to regulating neurobiology42–44, and is supported in a complementary design 

using multiplex ASD families45. While this association needs further replication, it suggests 

studying specific comorbidity patterns or presentations may help identify pleiotropic SNPs 

and disentangle antagonistic or heterogeneous variant effects.

Until the introduction of DSM-5 in 20131, formal guidelines did not allow ASD and ADHD 

to be diagnosed comorbid55. The validity of co-occurring syndromes is supported by the 

recognition of overlap in cognition56, genetics56, symptoms scores57, and neuroanatomic 

characteristics58. However, the possibility that the core etiologies of both disorders could 

exist in an individual, simultaneously, is an active area of research and debate55. Our 

polygenic profile approach suggests individuals with an ADHD-adjacent ASD diagnosis 

carry, at minimum, the polygenic etiologies of both disorders, a finding that is supported 

by a parallel, contemporaneous PGS analysis of iPSYCH53. This idea is supported 

by a recent register study in the Swedish population51 that reported comorbid ADHD 

and ASD diagnosis were most often made on the same day, by the same clinician, 

observing concurrent symptoms. This trend stands in contrast to similar studies of bipolar 

disorder and schizophrenia, that suggest an appreciable level of lifetime comorbidity may 

relate to evolving symptoms and difficulties in diagnosing first episode psychosis58. Our 

polygenic profiling approach supports the notion that ASD and ADHD can be experienced 

simultaneously, consistent with emerging trends in clinical epidemiology and evolving 

psychiatric nosology.

Adult-onset ADHD, it’s validity, existence, and whether it represents a distinct clinical 

or biological construct, is a particularly active and contentious research topic4,59. The 

crux of this debate rests on the timing of symptom onset. As above, it was DSM-51 that 

introduced criteria for an adult ADHD diagnosis where diagnosis requires retrospective 

self or informant reported childhood symptoms, but these reports may suffer recall bias, 
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and objective, representative longitudinal studies of premorbid symptoms are sparse. One 

perspective (e.g.28) is that a first diagnosis as an adult is persistent ADHD, perhaps 

missed during childhood, and, as symptoms may remit with age, be considered a more 

severe or biological form of ADHD. Here, we observed that, contrary to this perspective, 

individuals with a first registered diagnosis as an adult had less ADHD PGS suggesting 

they may have a more environmental, less reliable, or less severe form of the disorder60. 

Our polygenic profile approach offers varied support for each of these hypotheses in that 

adult diagnosed individuals had lower education PGS, higher non-ADHD psychiatric PGS, 

and similar profiles to individuals with ADHD-adjacent SUD diagnoses. A contemporary 

study of iPSYCH61 found similar PGS trends for secondary traits, but suggested that 

differences with regards to ADHD PGS may be driven by a persistent ADHD subgroup 

with confirmed diagnoses in both childhood and adulthood. Our data and approach implicate 

genetic heterogeneity in important debates surrounding adult ADHD..

Our study highlights themes that are broadly relevant for the study of complex disorders 

and associated heterogeneity. First, as demonstrated for MDD23, male pattern baldness62, 

and in simulations23,62,63, the polygenic background of case groups may become skewed 

if evolving nosology, case definitions, or censoring are not considered carefully. Here, we 

expect that evolving guidelines around comorbid ADHD and ASD may change the genetic 

landscape of typical ADHD and ASD case groups, implicitly, but active ascertainment 

or censoring mechanisms could have similar consequences. Second, PGS have received 

a lot of attention as potential clinical instruments for various applications64,65, but the 

focus is often on primary disorder scores (i.e., here, ADHD) and distinguishing cases from 

controls. Here, profiles of multiple polygenic scores were powerful in distinguishing among 

ADHD cases, and the strongest predictors were not primary disorder PGS. The idea that 

the polygenic background of a patient can alter a clinical trajectory is not new, but as 

PGS are aimed at more diverse clinical decisions (i.e., beyond case-control discrimination), 

more comprehensive summaries of polygenic background should be considered. Finally, 

methods for detecting heterogeneity might benefit from relaxing a priori restrictions to onset 

associated variants when focusing on polygenes. Our study may inform work on complex 

disorders beyond ADHD.

Our results must be considered in light of important limitations. We use register diagnoses, 

which are given with high reliability by trained psychiatrists, but are assigned per hospital 

contact, and may shift over time as symptoms evolve or clarify66. This could lead to 

some misdiagnosis. This issue is not unique to register studies but may offer a different 

perspective from studies of research diagnoses that include retrospective censoring or 

integration according to a hierarchy. Some individuals may seek treatment exclusively 

through primary care and those contacts are not available in iPSYCH. This may be 

especially relevant when considering symptom onset and first diagnosis as earlier contacts 

could be missed. Registered diagnoses may represent an increase in severity, if not onset, as 

a hospital referral could represent a change in need of care. iPSYCH is relatively young and 

may underestimate the prevalence of adult and later onset outcomes and only a combined 

ADHD subtype (ICD-10: F90.0). Important genetic differences may emerge if inattentive 

(ICD-10: F98.8) and hyperactive subtypes (ICD-10: F90.1, F90.8, or F90.9) were included. 

Methodologically, we compared groups of ADHD cases to estimate SNP-heritability and 
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performed GWAS to implicate genetic contributions to clinical heterogeneity. Just as 

with case-control analysis, these approaches are sensitive to spurious differences due to 

population stratification or heritable, disorder irrelevant features (e.g., hair color), if used 

to define patient groups13,29. We mitigate this by adjusting for ancestry related principal 

components, carefully selecting ADHD adjacent-traits with plausible clinical relevance, and 

including controls in our polygenic profile approach. Finally, the prevalence and clinical 

criteria for ADHD are evolving, and this may result in differences in the genetic architecture 

of cases ascertained in different years meaning our results may generalise less well to 

cohorts diagnosed in different time-windows.

This work is part of an emerging body of evidence in psychiatric genetics that suggests we 

are at a point where we can study not just what makes diagnosed individuals different from 

healthy controls, but also what differentiates diagnosed individuals with respect to outcomes.

Methods

iPSYCH2012 case-cohort study

The Lundbeck Foundation initiative for Integrative Psychiatric Research (iPSYCH)32 is a 

case-cohort study of individuals born in Denmark between 1981 and 2005 (n=1 472 762). 87 

764 individuals were sampled, including a random sample of 30 000 and 57 764 ascertained 

for diagnoses of attention-deficit hyperactivity disorder (ADHD), autism spectrum disorders 

(ASD), anorexia (ANO), affective disorder (AFF), bipolar disorder (BP), or schizophrenia 

(SCZ). DNA was extracted from dried bloodspots in the Danish Neonatal Screening 

Biobank67. Diagnoses were obtained from the Danish Psychiatric Central Research Register 

(PCR)35 and for anorexia also from the Danish National Patient Register (DNPR)34 from 1 

year birthday or 10 year birthday of study individuals to December 31, 2012. Linkage across 

registers uses the Danish Civil Registration System36. Diagnoses given by psychiatrists 

in primary care are not recorded in these registers. After genotype, kinship, and ancestry 

quality control (see below), this study included 14 084 of 18 726 individuals ascertained 

for ADHD (ICD-10: F90.0), 12 088 of 16 146 ascertained for ASD (ICD-10: F84.0, F84.1, 

F84.5, F84.8 or F84.9), and 21 197 of 30 000 controls diagnosed with neither ADHD nor 

ASD. Furthermore, 8 498 individuals with substance use disorders (SUD) (ICD-10: F1) 

were selected from among the 30 000 population controls and 57 764 psychiatric cases and 

finally, 20 509 of 30 000 controls with neither ADHD nor SUD. The use of this data follows 

standards of the Danish Scientific Ethics Committee, the Danish Health Data Authority, 

the Danish Data Protection Agency, and the Danish Neonatal Screening Biobank Steering 

Committee. Data access was via secure portals in accordance with Danish data protection 

guidelines set by the Danish Data Protection Agency, the Danish Health Data Authority, and 

Statistics Denmark.

Genotyping was performed on the Infinium PsychChip v1.0 array with amplified DNA 

extracted from dried bloodspots. Data quality control is described in detail elsewhere32,68. 

Briefly, 246 369 of the ~550 000 genotyped SNPs were deemed good quality, phased 

using SHAPEIT369, and imputed using the 1 000 genomes project phase370 as a 

reference with Impute271. Imputed additive genotype dosages and best-guess genotypes 

were checked for imputation quality (INFO>0.2), Hardy–Weinberg equilibrium (HWE; 
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p<1×10−6), association with genotyping wave (p<5×10−8), association with imputation 

batch (p<5×10−8), differing imputation quality between cases and controls (p<1×10−6), and 

minor allele frequency (MAF>0.01). 8 019 760 dosages and best-guess genotypes remained. 

Subjects of homogeneous genetic ancestry were selected after principal components analysis 

using EIGENSOFT v6.0.172. One from each pair of individuals with closer than third 

degree kinship as estimated with KING v1.973 was excluded, and no samples had 

abnormal heterozygosity, high levels of missing genotypes (>1%), nor genotype/recorded 

sex discordance.

Selecting ADHD-adjacent traits

DNPR34 and PCR35 contain information (e.g., date of admission, ICD diagnostic code, 

etc.) on all inpatient hospital contacts since 1977 and 1969, respectively, and outpatient 

and emergency room contacts since 1995. From these registers we defined two sets of 

ADHD-adjacent traits to capture psychiatric comorbidity. First, we coded the presence of 

specific psychiatric disorders as defined by the iPSYCH2012 case-cohort ascertainment 

criteria32, including ASD, AFF, ANO, and combined psychotic disorders (SCZ and BP). As 

a second set, we summarized psychiatric diagnoses more broadly, recording each ICD-10 

Behavioral and Mental Disorders subchapter recorded in either PCR or DNPR until 2016 

(F1, F2, F3, F4, F5, F6, F7, F8, F9 excluding ADHD (F90.0–9 and F98.8)). As before, 

we created variables representing a diagnosis from each subchapter. We also counted the 

number of hospitalizations with ADHD (ICD-10 F90.0) recorded as the main diagnosis of 

action in the PCR up until 2016, also dichotomized as a split by the median. A variable 

splitting cases on the first recorded ADHD diagnosis (ICD-10 F90.0) occurring before or 

after 18 years of age. Finally, a variable was created recording sex as reported at birth. 

Note that the version of ICD implemented in Denmark is the research version of ICD-10 

(“the green book” from 19933; https://icd.who.int/browse10/2019/en) which codes combined 

ADHD subtype as F90.0, inattentive as F98.8, and hyperactive subtypes as F90.1, F90.8, or 

F90.9. These codes are different than in the clinically modified version ICD-10-CM used in 

the US for coding claims (https://www.icd10data.com/ICD10CM/Codes) which refers to the 

combined subtype as F90.2 and inattentive as F90.0.

The Danish National Prescription Register (NPR)33 holds information on prescriptions 

redeemed from pharmacies in Denmark since 1995. The NPR does not cover drugs used 

during hospital admissions, by certain institutionalized individuals (e.g. psychiatric), or 

drugs supplied directly by hospitals or treatment centers. We defined three traits from the 

NPR noting cases with a record of at least two prescriptions after the age of 3 for drugs with 

the Anatomical Therapeutic Chemical (ATC) codes for stimulants (N06BA01, N06BA12, 

N06BA02, N06BA04), or atomoxetine (N06BA09), or both (i.e., any ADHD medication). A 

fourth trait counted the number of prescriptions an individual had filled and dichotomized 

on the median number (in this cohort) of total prescriptions. Further details are provided in 

Supplementary table 1.

We used tetrachoric correlations to describe the co-occurrence of ADHD-adjacent traits, 

estimating them with the R package polycorr v0.874 and adding 0.5 to zero cells75. 

Hierarchical clustering was performed using the heatmaply v1.376 package.
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SNP-based heritability

SNP heritability (h2
SNP) was estimated on the observed scale using GREML in GCTA 

v1.92.1 beta677 with 25 ancestry principal components as fixed effect covariates. The 

genetic relationship matrix (GRM) was constructed using GCTA and from best-guess 

genotypes with a MAF greater than 0.01. Significance was adjusted by Bonferroni 

correction of one-tailed p-values (p<0.05/22=0.002), and nominally significant tests 

(p<0.05) were deemed suggestive.

Genome-wide association studies

Case-case genome-wide association studies (GWAS) were performed within the ADHD 

case group (n=14 084). Logistic regression in plink v1.90b3.3478 was used to test 

the association between imputed additive allele counts and case subgroup membership, 

with 25 ancestry principal components as covariates. Genomic inflation was estimated 

as the unconstrained LD-score regression v1.0.179 intercept following: https://github.com/

bulik/ldsc/wiki. Individual SNPs with two-tailed p<5×10−8 were declared genome-wide 

significant. Lead SNPs were defined as the most significant SNP within a 2 megabase 

(mb) locus. We additionally considered GWAS for: three case subgroups vs. controls (First 

ADHD diagnosis as an adult (n=3 323) vs. controls (n=21 411), ADHD-adjacent diagnosis 

of SUD (n=2 627) vs. controls (n=21 411) and ADHD–adjacent diagnosis of ASD (n=2 

284) vs. controls (n=21 411)) and two cross-trait meta-analysis vs. controls (ADHD or SUD 

(n=20 065) vs. controls (n=20 509) and ADHD or ASD (n=23 926) vs. controls (n=21 197).

For genome-wide significant loci, multinomial logistic regression (MLR)80 was performed 

using the R package nnet v7.381. The MLR tests the logistic regression comparison of allele 

counts at a lead SNP between ADHD subgroups (i.e., individuals with comorbid ADHD 

and ASD, n=2 284, and individuals with ADHD but not ASD, n=11 800) to simultaneously 

include comparisons with individuals diagnosed with relevant complementary disorder (i.e., 

individuals with ASD but not ADHD, n=9 804) and undiagnosed controls (i.e., individuals 

with neither ADHD nor ASD, n=21 197).

For genome wide significant loci, candidate genes were selected according to three criteria: 

1) positional candidate genes were selected by ANNOVAR82 in FUMA v1.3.5e83 as 

overlapping a lead SNP’s genomic position, 2) eQTL candidate genes with previous 

expression association to a lead SNP in one of multiple sources aggregated by FUMA, 

3) transcriptional association candidate genes with predicted expression in adult and/or fetal 

brain. Here a transcription association (TWAS) analysis was used integrating published 

per-SNP effects on expression for fetal40 and adult84 brain, and FUSION v201885 to 

generate aggregate predicted expression in each individual. TWAS two-tailed p-values were 

considered significant after Bonferroni correction (p<0.05/9=0.006). For lead SNPs from 

genome-wide significant loci, the GWASatlas v2019111586 (https://atlas.ctglab.nl/) was used 

to pursue a pheWAS across 4 756 studies grouped according to the provided ontology. 

The proxy SNP for rs8178395 was identified using LDlink v4.0 (https://ldlink.nci.nih.gov/?

tab=help#LDproxy)87. eQTL and sQTL analysis were visualized summary data using tools 

provided by the GTEx Portal on 10 March 2021.
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We used stratified LD score regression v1.0.1 (LDSC)88 to partition h2
SNP among selected 

genome annotations, accounting for LD and baseline annotations. Annotations of interest 

included those defined by eQTLs from fetal brain40, eQTLs from adult39 brain, and 

regions of open chromatin measured by ATAC sequencing in fetal89 and adult90 brain. 

A “full baseline model” of 53 functional categories was employed following Finucane 

et al91. We followed the author protocols for analysis (https://github.com/bulik/ldsc/wiki/

Partitioned-Heritability). eQTL and ATAC LD-scores were created for the subset of human 

SNPs genotyped in HapMap v3 SNPs (HM3) using the LD-score regression software by 

identifying HM3 SNPs within a 500bp window (±250) around each eQTL SNP or within 

an ATAC open chromatin window. Category-specific LD-scores were the sum of LD (r2) for 

each HM3 SNP with SNPs meeting the previous functional criteria. The European subset of 

the 1000 Genomes Project Phase3 was used as an LD reference. Enrichment was estimated 

for each annotation as the proportion of heritability explained by each annotation divided by 

the proportion of SNPs in the genome falling in that category. Enrichment p-value calculated 

based on the coefficient (τC) of each annotation were declared significant after Bonferroni 

correction (p<0.05/28=0.0018) or suggestive when p<0.05.

SNP-based genetic correlations

SNP-based genetic correlations (ρG,SNP) were estimated using LD-Score regression 

comparing summary statistics for the three ADHD adjacent traits GWAS performed for 

this study and each of 46 traits from 10 psychiatric, cognitive, and socio-behavioral 

categories.: substance use, neurology, personality, sleeping, cognition, reproduction, 

education, neuroimaging, psychiatry, and ageing. Prioritized traits had FDR<0.05.

Polygenic scores in iPSYCH

GWAS summary statistics (Supplementary table 28) were downloaded from public 

repositories, cleaned using cleansumstats v1.6 (https://github.com/BioPsyk/cleansumstats), 

DENTIST v1.3 (https://github.com/Yves-CHEN/DENTIST), and effect sizes were 

reweighted using SBayesR92 implemented in GCTB v2.03beta (https://cnsgenomics.com/

software/gctb) Reference GWAS were selected to ensure no subject overlap with 

iPSYCH. SNP inclusion criteria were: MAF>0.05, INFO>0.98, and HWE p-value>1×10−5. 

Palindromic (A/T, C/G) SNPs, SNPs not uniquely mapped to hg19 positions, and SNPs not 

having unique IDs in dbSNP v151 were excluded. Details of the SBayesR workflow are 

shown in Supplementary figure 43.

We used multivariate, multinomial logistic regression (MLR)80 implemented in the R 

package nnet81 to test for heterogeneity in PGS profiles among ADHD case subgroups, non-

diagnosed controls, and individuals diagnosed with ASD or SUD but not ADHD. For each 

of the three ADHD adjacent traits, we jointly fit primary disorder PGS (i.e., ADHD, ASD), 

the set of PGS for traits that showed significant ρG,SNP with the ADHD variable in the 

LDSC analysis described above, and 25 ancestry principal components. MLR models fitting 

each PGS individually, along with ancestry covariates, are presented in the Supplementary 

tables 21–23. Three MLR were of primary interest. First, for ADHD-adjacent ASD, we 

compared individuals diagnosed with neither ADHD nor ASD (n=21 197), both ADHD 

and ASD (n=2 284), ADHD but not ASD (n=11 800), and ASD but not ADHD (n=9 
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804) on PGS profiles containing scores for ADHD20, ASD37, Cross-psychiatric disorders93, 

Mother’s age at death94, intelligence95, college completion96, years of schooling97, age 

at first birth98, chronotype99, and smoking initiation100. For ADHD-adjacent SUD, we 

compared individuals with neither ADHD nor SUD (n=20 509), both ADHD and SUD (n=2 

627), ADHD but not SUD (n=11 457), and SUD but not ADHD (n=5 943) on PGS profiles 

containing scores for ADHD20, depressive symptoms101, schizophrenia102, intelligence95, 

college completion96, years of schooling97, age at first birth98 and alcohol dependence103. 

For age of first ADHD diagnosis we compared individuals without a diagnosis for ADHD 

(n=21 409), with a first diagnosis of ADHD as an adult (>18 years of age) n=3 323), 

and with a first diagnosis of ADHD before age 18 (n=10 761) on PGS profiles containing 

scores for ADHD20, depressive symptoms101, major depressive disorder104, mother’s age 

at death94, childhood IQ105, college completion96, years of schooling97, age at first birth98 

and alcohol use (AUDIT, P score)106. A likelihood ratio test implemented in R with the 

anova function was used to compare the goodness of fit of the joint MLR models with and 

without each individual PGS and one-tailed p-values were used to determine significance of 

the variability in the mean PGS across groups (pglobal). Two-tailed p-values were used for 

individual, pairwise contrasts. Significance was declared after Bonferroni correction for 169 

p-values (p<0.05/169=3×10−4).

The adolescent brain cognitive development (ABCD) study

The Adolescent Brain and Cognitive Development (ABCD) study48,103 (http://

abcdstudy.org) is an observational study following 11 875 children from across the US, 

starting at age nine or ten with limited exclusion criteria to create a socio-economically 

and demographically representative cohort. ABCD administers biennial assessments of 

physical health, mental health, neuro cognition, family, cultural and environmental variables, 

SUD, genetic and other biomarkers, and multi-modal neuroimaging. Genotyping used the 

Smokescreen array, imputations used the Michigan Imputation Server, and quality control is 

described in Loughnan et al.107. We used measures of 51 assessments (Supplementary table 

29) covering categorical and dimensional psychopathology, mania symptoms, prodromal 

psychosis, impulsivity, and behavioral activation and inhibition collected at enrollment46. To 

protect against confounding by population structure, we focus on the homogenous, European 

ancestry sub-cohort of 5 455 children selected following genetic ancestry estimation using 

fastStructure108.

Polygenic scores in ABCD

PGS in ABCD were calculated using SBayesR92 to reweight summary statistics from each 

of the three ADHD adjacent trait GWAS described above and following the workflow 

shown in Supplementary figure 43. Generalized linear models (GLMs) were used to test 

the association of each of the three PGS across each of 51 assessments, separately. GLMs 

included fixed effects of ADHD case-control PGS, age, sex at birth, data collection site, 

and 10 ancestry principal components. To control for family effects (twins and siblings 

within the sample), we iteratively fit 100 models for each test taking a random selection 

on singletons (down-sampling to one individual from each family, n=4 622) and report 

the median across iterations. The distribution of each assessment (response variable) was 

analyzed to ensure normality or to handle zero inflation and right skewness. Non-zero 
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inflated distributions were rank normalized (as was performed for PGS) and the GLM was 

fitted using the family=gaussian option. For the right-skewed, zero-inflated distributions, 

data were shifted to ensure non-negativity and GLM were fitted with a gamma distribution 

and a log link function. Summary measures making up the Kiddie Schedule Disorders and 

Schizophrenia (K-SADS), except for the two K-SADS Total Symptoms measures, were 

binarized using a median split and fit using logistic regression, due to convergence issues 

using a gamma distribution. Bonferroni adjustment of two-tailed p-values was used to 

declare significance (p<0.05/51=0.001).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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available on request from the psychiatric genetic consortium (PGC) disorder working group 

chairs (https://pgc.unc.edu/for-researchers/data-access-committee/data-access-information/). 

The eQTL and sQTL visualizations and data used for the analyses described in this 

manuscript were obtained from the GTEx Portal (https://gtexportal.org/) on 10 March 2021 

and 23 October 2023.
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Fig. 1. ADHD-adjacent traits associate with genetic variability among diagnosed individuals.
The same 14 084 individuals diagnosed with ADHD were repeatedly partitioned into 22 

groups on the basis of ADHD-adjacent traits and the SNP-heritability (bars) of each trait 

was estimated with GCTA. Full statistical results and sample size for each estimate are 

available in Supplementary table 2. Significance (red star; p < 0.05/22=0.002) is after 

Bonferroni correction of one-tailed p-values from z-score tests. Error bars depict standard 

errors of the estimated observed scale SNP-heritability. Rx, prescription; dx, diagnosis; 

ADHD, attention-deficit hyperactivity disorder; ASD, autism spectrum disorders; AFF, 

affective disorders; ANO, anorexia; SCZ/BP, schizophrenia or bipolar disorder; SUD, 

substance use disorder
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Fig. 2. rs8178395 is specifically associated with an ADHD-adjacent ASD diagnosis.
a, Locus zoom of lead SNP (rs8178395) identified as genome-wide significant (two-sided 

p < 5×10–8) in GWAS using logistic regression comparing individuals diagnosed with 

both ADHD and ASD (n=2 284) to those only diagnosed with ADHD (n=11 800). LPO, 

DYNLL2, TSPOAP1, and SKA2 are prioritized as candidate genes according to different 

criteria. LD, linkage disequilibrium; cM, centimorgans; Mb, megabases; TAS, transcription 

association study; b, Using multinomial logistic regression, we observed the minor allele (T) 

of rs8178395 is significantly increased in frequency in the group of individuals diagnosed 

with both ADHD and ASD (ADHD +, ASD +) relative to those diagnosed with neither 

ADHD, nor ASD (black bracket; ADHD −, ASD −: two-tailed p=2.9×10−7) and either, 

exclusively (red brackets; ADHD +, ASD −: two-tailed p=2.4×10−8; ADHD −, ASD +: two-

tailed p=1.0×10−6). Significance is based on multinomial logistic regression and Bonferroni 

correction for the 3 follow up tests. See Supplementary tables 8–9 for additional details. 

Sig, Significant. c, The proxy SNP for rs8178395 (rs8178289, r2 LD: 0.9) is associated 

with TSPOAP1 expression in brain (and other) tissue(s). d, rs8178289 is also reported as 

a member of a haplotype containing a splice QTL for a TSPOAP1 associated antisense 

RNA, TSPOAP1-AS1, in the same (and other) tissue(s). c,d, eQTL and sQTL results were 

visualized using the GTEx portal with two-sided, unadjusted p-values from linear regression, 

center line representing the median, and box spanning 1st to 3rd quartiles.

LaBianca et al. Page 23

Nat Genet. Author manuscript; available in PMC 2024 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. ADHD-adjacent traits share polygenes with psychiatric, cognitive, and socio-behavioral 
traits.
LD score regression was used to estimate the genetic correlations between ADHD-adjacent 

traits and a reference set of psychiatric, cognitive, and socio-behavioral traits. a, A first 

diagnosis of ADHD as an adult (n=3 323 cases with adult ADHD dx, n=10 761 cases 

with childhood ADHD dx), b, an ADHD-adjacent SUD diagnosis (n=2 627 ADHD cases 

with SUD dx, n=11 457 ADHD cases without SUD dx), and c, an ADHD-adjacent 

ASD diagnosis (n=2 284 ADHD cases with ASD dx, n=11 457 ADHD cases without 

ASD dx) show different patterns of genetic correlation (bars) with 46 reference traits.. 

Error bars denote standard error of the genetic correlation estimates, arrowheads indicate 

standard errors extend beyond the natural range of the estimand (>1 or < −1), and multiple 

comparisons were adjusted using FDR < 0.05 (corresponding to two-tailed z-score p-value 

< 3.9 × 10–4). See Supplementary table 15 for full statistical results and Supplementary 

table 28 for sample size of 46 reference GWAS. LDSC, LD score regression; FDR, false 

discovery rate; dx, diagnosis; ADHD, attention-deficit hyperactivity disorder; ASD, autism 

spectrum disorders; SUD, substance use disorder.
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Fig. 4. Profiles of polygenic scores for psychiatric, cognitive, and socio-behavioral traits define 
aspects of heterogeneity in ADHD.
The mean level of polygenic scores (PGS; bars) are displayed for ADHD subgroups, 

controls, and complementary disorder groups after centering and standardizing based on 

a population random sample. a. Individuals not diagnosed with ADHD (ADHD −, n=21 

409), first diagnosed as an adult (1st Dx Adult, n=3 323), and first diagnosed as a child 

(1st Dx Child, n=10 761), b. Individuals diagnosed with neither ADHD, nor SUD (ADHD-, 

SUD-, n=20 509), both ADHD and SUD (ADHD+, SUD+, n=2 627), ADHD but not 

SUD (ADHD+, SUD-, n=11 457), and SUD but not ADHD (ADHD-, SUD+, n=5 943), 

and c. Individuals diagnosed with neither ADHD, nor ASD (ADHD-, ASD-, n=21 197), 

both ADHD and ASD (ADHD+, ASD+, n=2 284), ADHD but not ASD (ADHD+, ASD-, 

n=11 800), and ASD but not ADHD (ADHD-, ASD+, n=9 804), vary significantly with 

respect to multivariate profiles of PGS. Stars denote a significant global test (one-tailed 

p-value) for differences in PGS level among all groups, while brackets denote significant 

pairwise group contrasts (two-tailed p-value), accounting for all other PGS and 25 ancestry 

principle components in a joint multinomial logistic regression. Significance determined 

by Bonferonni correction, p<0.05/169=0.0003. Error bars denote standard error of mean. 

See Supplementary tables 18–20 for complete statistical results and Supplementary table 

28 for details of reference GWAS used for PGS. ADHD, attention deficit hyperactivity 
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disorder; ASD, autism spectrum disorder; SUD, substance use disorder; Dx, diagnosis; Sig., 

Significant, PGS, polygenic score.
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Fig. 5. Polygenes for ADHD-adjacent ASD are associated with cognitive performance in an 
independent, typically developing cohort.
Polygenic scores (PGS) constructed using summary statistics from ADHD-adjacent trait 

GWAS were tested in generalized linear models (GLM) for association with cognitive, 

behavioral, and psychiatric traits in n=5 449 nine or ten year-old children from the 

Adolescent brain cognitive development (ABCD) Study. The t-statistic of each regression 

(bars) reveals no significant associations for a PGS for adult diagnosed ADHD or b ADHD-

adjacent SUD, although consistent trends are prevalent, but c the PGS for an ADHD-

adjacent ASD diagnosis associated significantly with cognitive performance, replicating 

our previous finding that polygenes are shared among these two domains. Error bars 

depict standard deviation of the t-statistic. Two-tailed p-values were declared significant 

after Bonferroni correction (p<0.05/51=0.001;solid line) and suggestive with nominal 

trends(p<0.05; dotted line). Caregiver or youth in parenthesis denotes the informant for 

the assessment of the child. t, t-statistic. See Supplementary table 27 for complete statistical 

results and Supplementary table 28 for a description of the questionnaire used for each 

ABCD assessment.
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Table 1.
14 084 individuals diagnosed with ADHD vary on a number of clinically relevant adjacent 
traits.

Dx, diagnosis; Rx, prescription; ICD-10, international classification of disease, 10th revision, unmodified 2019 

version; ADHD, attention-deficit hyperactivity disorder. Full description and definition of the traits are 

presented in Supplementary table 1.

Category Trait Description Reference 
Group (0)

N0
Outcome 
Group (1)

N1

Medication

Any ADHD Rx Recorded prescription for any ADHD 
medication

never 1756 ever 12328

Stimulant Rx Recorded prescription for stimulant 
medication

never 2167 ever 11917

Atomoxetine Rx Recorded prescription for atomoxetine never 9948 ever 4136

Number of ADHD 
Rx

Number of recorded prescriptions for any 
ADHD medication

≤ 29 7052 > 29 7032

Adjacent 
diagnosis 
(Specific)

Any specific dx Any recorded diagnosis for an iPSYCH 
ascertained, specific disorder

never 10478 ever 3606

ASD dx Autism spectrum disorder (ICD-10: F84.0, 
F84.1, F84.5, F84.8 F84.9)

never 11800 ever 2284

AFF dx Affective disorder (ICD-10: F30–39) never 12796 ever 1288

ANO dx Anorexia (ICD-10: F50.0) never 14020 ever 64

SCZ/BP dx Schizophrenia or bipolar disorder 
(ICD-10: F20, F30–31)

never 13769 ever 315

Adjacent 
diagnosis (Broad)

Any broad dx Any recorded diagnosis for a mental, 
behavioral, and/or neurodevelopmental 
disorders according to ICD-10, chapter F

never 3171 ever 10913

Substance use 
disorder (SUD) dx

Mental and behavioral disorders due to 
psychoactive substance use (ICD-10: F10-
F19)

never 11457 ever 2627

Psychosis dx Schizophrenia, schizotypal, delusional, 
and other non-mood psychotic disorders 
(ICD-10: F20-F29)

never 13133 ever 951

Mood dx Mood/affective disorders (ICD-10: F30-
F39)

never 12250 ever 1843

Anxiety dx Anxiety, dissociative, stress-related, 
somatoform and other nonpsychotic 
mental disorders (ICD-10: F40-F49)

never 10373 ever 3711

Physio-behavioral dx Behavioral syndromes from physiological 
disturbances and physical factors (ICD-10: 
F50-F59)

never 13578 ever 506

Personality dx Disorders of adult personality and 
behavior (ICD-10: F60-F69)

never 12391 ever 1693

Intellectual dx Intellectual disabilities (ICD-10: F70-F79) never 12592 ever 1492

Developmental dx Pervasive and specific developmental 
disorders (ICD-10: F80-F89)

never 8713 ever 5371

Childhood dx Behavioral and emotional disorders with 
childhood and adolescent onset (ICD-10: 
F90-F99). Excludes F90.0–9 and F98.8..

never 10264 ever 3820

Need of Care
Number of ADHD 

contacts
Number of recorded hospital contacts 
with an ADHD diagnosis (ICD-10: F90.0, 
only)

≤2 9732 >2 4352
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Category Trait Description Reference 
Group (0)

N0
Outcome 
Group (1)

N1

First ADHD dx as an 
adult

Age at first recorded ADHD diagnosis 
(ICD-10: F90.0, only)

<18 years 10761 ≥18 years 3323

Sex Sex Biological sex recorded at birth female 3668 male 10416
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