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Abstract

Several molecular and phenotypic algorithms exist that establish genotype-phenotype correlations,
including facial recognition tools. However, no unified framework that investigates both

facial- and phenotypic data directly from individuals exists. We developed PhenoScore: an

open source, artificial intelligence-based phenomics framework, combining facial recognition
technology with Human Phenotype Ontology data analysis to quantify phenotypic similarity.

We prove PhenoScore’s ability to recognize distinct phenotypic entities by establishing
recognizable phenotypes for 37 of 40 investigated syndromes against clinical features observed

in individuals with other neurodevelopmental disorders and show it is a significant improvement
on existing approaches. PhenoScore provides predictions for individuals with variants of unknown
significance and enables sophisticated genotype-phenotype studies by testing hypotheses on
possible phenotypic (sub)groups. PhenoScore confirmed previously known phenotypic subgroups
caused by variants in the same gene for SA7B1, SETBFPI, and DEAFI and provides objective
clinical evidence for two distinct ADNP-related phenotypes, already established functionally.

Keywords

artificial intelligence; variant of unknown significance; rare disease; personalized medicine; facial
recognition; deep phenotyping

1 Introduction

A significant portion of individuals with clinically and genetically heterogeneous rare
diseases, such as neurodevelopmental disorders (NDD), has been molecularly diagnosed

in the last decade using whole-exome sequencing (WES) [1, 2, 3, 4]. Clinical WES

data interpretation relies on filtering and prioritization for rare genetic variants in disease-
gene panels, which are subsequently interpreted in the context of the patient’s clinical
presentation [5]. Whereas this strategy is essential to identify the disease-causing variant(s),
it is estimated that, depending on the number of genes included in the panel, dozens of
variants are prioritized as diagnostic noise [6] — and this number is expected to rise even
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more in the coming years with technological innovations, such as genome sequencing,
finding their way into the diagnostic arena [7, 8, 9].

At the molecular level, several computational methods, such as MutationTaster [10],
PolyPhen [11], SIFT [12], CADD score [13], have been designed to predict the
deleteriousness of variants to effectively prioritize causal variants. These tools use diverse
approaches, such as looking at the impact of the variant on protein structure (MutationTaster,
PolyPhen), taking conservation into account (MutationTaster, PolyPhen, SIFT) — or

trying to incorporate multiple sources of genomic information (CADD score). At the
phenotypic level, headway has been made by introducing Human Phenotype Ontology
(HPO), systematically capturing the presence of features observed in individuals with rare
diseases [14]. However, equivalent to molecular tools, algorithms using these HPO data

to quantify phenotypic HPO similarity between individuals with genetic disorders would
provide significant benefits to diagnose rare disease. Such a quantitative phenotypic score
could for instance assist with the interpretation of genetic variants of unknown clinical
significance (VUS), which constitute 10-30% of all variants clinically assessed [4, 15].
Reducing the number of VUSs is of essence since studies have shown that not all individuals
and families respond similarly to the result of a VUS test-result, and usually do not fully
comprehend its meaning [16, 17], potentially leading to frustration, and/or distress due to
the uncertainty involving a possible diagnosis and course of disease. Importantly, VUSs have
also been shown to inflict inappropriate medical decisions [18, 19].

Next to reclassifying VUSs, quantifying phenotypic HPO similarity at the cohort level
could also help to provide further steps towards personalized medicine by automatically
recognizing distinct phenotypic subtypes leading to more tailored clinical prognosis [20, 21,
22].

A branch of science that could assist in objectively quantifying phenotypic data is artificial
intelligence (Al). Al has dramatically reformed the manner clinical data are processed

and analyzed in recent years, with the Al revolution in medicine starting in pathology

and radiology [23, 24, 25, 26]. In genetics, these new techniques have been employed

in assisted interpretation of genomic variants [27, 28, 29] and combining molecular and
phenotypic evaluations, mainly looking at methods to use phenotypic data in HPO to
automatically prioritize genetic variants [30, 31, 32, 33, 34, 35, 36]. Furthermore, advances
in computer vision have led to the application of facial recognition technology in clinical
genetics [37, 38, 39, 40, 41, 42], with the current state-of-the-art application GestaltMatcher
achieving a top-10 accuracy of 64% [42]. Facial recognition can assist in the recognition of
(neuro)developmental syndromes, since the development of the brain and facial shape are
closely linked [43, 44, 45, 46] — and therefore, it comes as no surprise that a significant part
of genetic disorders have distinct facial features [47]. However, not all genetic syndromes
have a clear, recognizable facial gestalt, which hinders methods solely looking at facial
features. Moreover, a syndromic phenotype often includes more than ‘just the face’.
Whereas tools have previously looked at either combining molecular data with either HPO,
or alternatively, with facial features [1, 39], an important area has been left unexplored,
which combines the facial- and HPO data into an Al-framework to predict phenotypic
similarities without the need for genomic data input. Therefore, we developed PhenoScore: a
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next-generation open-source phenomics framework combining facial recognition technology
with clinical features, quantitatively collected in Human Phenotype Ontology (HPO) from
deep phenotyping.

2 Results

2.1 The PhenoScore framework

PhenoScore is a framework that currently consists of two modules: a component that
extracts the facial features from a 2D facial photograph and a second module that takes
HPO-based phenotypic similarity into account (Figure 1). The Al-based framework joins
these results in three outputs: a Brier score and corresponding p-value, defining the
individual’s clinical similarity to the syndrome assessed; a facial heatmap, highlighting
important facial features for the syndrome; and, a visualization of the most important

other (non-facial) clinical features. In the training phase of PhenoScore, first an age-,

sex-, ethnicity- matched control for every individual with the genetic syndrome of interest
is sampled from our in-house database of 1,200 individuals with neurodevelopmental
disorders. Next, the facial features are automatically extracted from the facial photographs
for both affected individuals and controls and the phenotypic HPO similarity is calculated
(with several HPO terms and their child terms first removed from the dataset, as these are
either facial HPO terms to be processed by the facial recognition module, or HPO terms that
are deemed subjective and therefore at risk for interobserver variability). A support vector
machine (SVM), a widely used classification algorithm in machine learning, is trained on
these features, resulting in a trained classifier that can be used to generate a score for
individuals, suspected to have the syndrome of interest. If we are interested in quantifying
phenotypic (sub)groups, a permutation test is added during the training phase, determining
whether the trained classifier performs better than random chance — providing evidence
whether the two groups are distinguishable by PhenoScore. Finally, to provide insight into
what PhenoScore is doing and to learn more about the investigated syndromes, explainable
Al is incorporated into PhenoScore as well, using Local Interpretable Model-agnostic
Explanations (LIME) [48, 49]. LIME works by generating random perturbed input data
and inspecting the change in predictions, thereby obtaining data on the relative importance
of each feature. By using LIME for both the facial- and HPO data, PhenoScore can generate
facial heatmaps and visualizations on the most important clinical features.

2.2 Proof-of-Concept using PhenoScore for Koolen-de Vries syndrome

First, we investigated whether using our combined PhenoScore was actually an improvement
on solely using either facial- or phenotypic data. The SVM was trained on both separate
feature sets alone (e.g. HPO and facial features) and subsequently compared with the
classification performance of PhenoScore. To measure classification performance, the Brier
score [50] was chosen as the performance measure to focus on: it is defined as the mean
squared difference between predicted outcome and observed actual outcome (lower is
better). Next to that, we also report the area under the receiving operator curve (AUC;

higher is better).
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To demonstrate the power of the PhenoScore framework, we first performed a proof-
of-concept study using 63 individuals with Koolen-de Vries syndrome (KdVS, OMIM
#610443, Figure 2), caused by either proven pathogenic loss-of-function variants in
KANSL1 (n=11) or the 17921.31 microdeletion (/7=52). KdVS most prominent features
reported in literature include hypotonia, intellectual disability, and joint laxity [51, 52, 53],
for which the interdependence in our modelling is preserved using the graph structure of
the HPO terms (Figure 2). Running PhenoScore on the 63 individuals with KdV'S, we
confirm the improvement on overall predictive performance when using both facial and
clinical features compared to using either one alone (Brier score 0.09 or AUC 0.94 for
PhenoScore, in contrast to 0.13/0.91 when using only facial data and 0.10/0.92 when using
only phenotypic data, Table 1).

We next randomly excluded four individuals (facial images shown in Figure 2) from

the training dataset and retrained PhenoSscore, allowing us to test the performance of
PhenoScore when treating them as if diagnoses of KdVS were unknown. We then used
PhenoScore to predict the similarity of these four individuals when comparing them with
59 remaining individuals with KdVS in the training set. PhenoScore output was displayed
using LIME, providing heatmaps of prioritized facial information according to PhenoScore
(Figure 2). In addition, the most important clinical features according to PhenoScore

to be predictive for KdVS were summarized by numerically scoring and ranking them.
According to PhenoScore, the nose and eyes are the most important facial parts when
recognizing KdVS — while the presence of hypotonia, moderate intellectual disability, EEG
abnormalities, strabismus, pes planus and motor delay are the clinical features of interest.
This is completely consistent with expert opinion and the literature [51, 52, 53] and shows
that the prediction is based on the extracted facial features from 2D photos and phenotypic
data in HPO — harnessing the power of both and outperforming the separate predictions.

2.3 Expanding PhenoScore to 40 syndromes

After our proof-of-concept using KdV'S, we next assessed the performance of PhenoScore
for the classification of other genetic syndromes too. Hereto, we selected 39 further
syndromes (Table 1 and Supplemental Table 1) including both clinically well-recognizable
syndromes based on facial gestalt, such as Kleefstra syndrome (OMIM #610253, caused
by pathogenic variants in EHMT1I), Helsmoortel-van der Aa syndrome (OMIM #615873,
caused by pathogenic variants in ADNP) and Coffin-Siris syndrome (OMIM #135900,
ARID1B), but also more recently identified syndromes for which facial gestalt is less
prominent, including IDDAM (OMIM #615032, CHDS8) and IDDFBA (OMIM #618089,
FBXO11).

Analyzing all these syndromes, we demonstrate that PhenoScore is a statistically significant
improvement on using either feature set alone, and therefore, the whole is more than the sum
of its parts in this case (median Brier score 0.24 for facial features on the whole dataset,
0.14 for HPO data and 0.13 for PhenoScore, p <0.001; median AUC 0.58 for facial features,
0.89 for HPO data and 0.91 for PhenoScore, p <0.001, Table 1). Furthermore, our post-hoc
checks show that there was no overfitting using the internal control dataset (Supplemental
Table 2 and Supplemental methods). To compare the performance of PhenoScore to other
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approaches, we generated predictions for all individuals with a genetic syndrome in the data
set using Phenomizer [30, 54] and LIRICAL [36]. Phenomizer correctly included the correct
diagnosis in its output in 29% of the individuals and LIRICAL in 39%, while PhenoScore
did so in 84% of individuals (p <0.001 for both, Supplemental Figure 1, Supplemental Table
3).

For 37 of 40 syndromes (93%), PhenoScore was able to identify predictive features

that characterized these syndromes and recognized a distinct phenotypic entity (Table 1,
Supplemental Figure 2). As expected, and visualized in the LIME heatmaps (Figure 3), these
features corresponded remarkably well with those described in the literature. For instance,
for Helsmoortel-van der Aa syndrome (ADNP, OMIM #615873), the eye- and forehead
regions are prioritized in the predictions, as seen in the generated heatmap (Figure 3) —
corresponding with the known dysmorphic characteristics for this syndrome.

Moreover, for a genetic syndrome which lacks explicit facial features, like IDDAM (caused
by pathogenic variants in CHDS), apparent overgrowth symptoms, such as macrocephaly
and tall stature, were identified as significant predictors, while no relevant facial features
were extracted, as displayed in the heatmap and summarized ranking scores. A similar case
is made for the genetic disorder associated with pathogenic variants in DYRK1A: while
the classifier based only on the facial features does not provide any meaningful predictions,
the addition of other phenotypic data in HPO did allow PhenoScore to distinguish this
syndrome as a phenotypic entity. These data suggest that PhenoScore objectively extracts,
distinguishes, and visualizes the specific clinical features for genetic syndromes and
highlights that the addition of non-facial phenotypic data in HPO is essential.

Finally, we demonstrate that the performance of PhenoScore is stable over different age-
and population of origin subgroups (Supplemental Table 4), by evaluating the predictive
performance using the predictions of all individuals included in this study when divided into
subgroups based on their age (<two years old, between two and six, between six and 12,

12 and 17, and 18 and older) and population of origin. While the performance is slightly
inferior for the included adults (a Brier score of 0.13), there seems to be no clear difference
for the other groups (Brier scores between 0.09 and 0.12, p=0.38). Although only 10%

of individuals included in this study being are of non-Caucasian/non-Western descent, the
subgroups for the population of origin analysis do not seem lead to overt differences in
predictive performance between ethnicities.

2.4 PhenoScore is scalable as it requires only a low number of individuals for training

Most genetic disorders are individually rare, with sometimes only 3-5 individuals reported
world-wide. We therefore next investigated how many data sets PhenoScore requires for
accurate classification of a specific syndrome. We checked the performance of PhenoScore
while increasing the number of individuals in the complete dataset of 40 genetic syndromes
with the combination of facial- and HPO features, starting with only 2 individuals.

This analysis revealed that, with five individuals to train on, the median classification
performance for the investigated syndromes is already clinically acceptable (AUC 0.80;
Figure 4). The classification performance can be further improved when the training sets
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increase in size (median AUC 0.89 with 10 individuals, while with 20 individuals the
median AUC is 0.92).

2.5 Use case 1: Objective clinical quantification for the interpretation of molecular VUS

To display the power of PhenoScore in the clinical interpretation of variants at an individual
level, we reassessed reported VUSs (ACMG class 3) in the Radboudumc department of
Human Genetics. These individuals were not included in the training of PhenoScore and
can therefore be considers real out-of-sample cases. In total, we identified 22 individuals in
whom a class 3 variant was reported in either of 16 of the 40 syndromes (Supplemental
Table 5). PhenoScores were calculated, and when using thresholds of <0.30 (for ‘no
phenotypic match’) and =0.70 (for ‘phenotypic match’), PhenoScore was able to classify
13/22 (59%) of the cases as either match (/7=3) or no match (/7=10). The other 9 cases had
an inconclusive PhenoScore result (scores >0.30 but <0.70). Interestingly, for 9/13 cases for
which PhenoScore was conclusive, the clinician made a decision for the VUS based on the
phenotype — PhenoScore was essential for the other four cases.

For most VUSs, pathogenicity during clinical follow-up was not clear at the time of writing,
but for six individuals, additional (genetic) testing has led to a change in pathogenicity
class. Two variants in AR/D1B were both regarded as benign: one after methylation analysis
(negative), the other variant since the individual was diagnosed with fragile X syndrome at
a later stage. PhenoScore agrees with both assessments with a low prediction probability of
phenotypic similarity (0.03 for both). Next to that, a splice variant in CHD8 with a high
PhenoScore of 0.93 was deemed pathogenic after RNA analysis was performed. Finally,

a variant in EHMT1 was deemed pathogenic after methylation analysis. This is the only
variant in which PhenoScore disagrees with the outcome of a functional test, with a low
score (0.04) — probably due to the phenotype not particularly matching. Furthermore,

for two variants in SMARCCZ, PhenoScore is inconclusive, while methylation analysis
reclassified these variants as benign.

2.6 Use case 2: Next-generation phenomics for the generation of sophisticated genotype-
phenotype correlations

Genotype-phenotype studies for rare diseases are often performed to gain insight into

the clinical spectrum, which allows clinicians to provide a more accurate counseling of
individuals with rare diseases. Molecularly, the toolkit to gain in-depth insight into aspects
of pathogenicity is generally applied in a research setting, and thus often not readily
available for diagnostic follow-up. From a clinical perspective, analyses are often limited

to cluster analysis and/or principle component analysis, but without being able to determine
what aspects clinically distinguish subtypes, if identified. We tested whether PhenoScore can
improve these hypothesis-driven approaches to distinguish, or discover, clinical subtypes.

For four genes in our dataset, i.e. ADNP, DEAF1, SATB1and SETBPFI, it has previously
been determined that there are (at least) two molecular subtypes. For SA7BI1 for instance,

it has been acknowledged that individuals with missense variants and those with loss-of-
function variants are clinically and molecularly distinctive (OMIM #619228 and #619229).
As a proof-of-concept, PhenoScore convincingly distinguished two groups for SATB1 (Brier
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score 0.18, AUC 0.81, p=0.02), confirming the original results [55]. For DEAFI, it has
been demonstrated that there are two phenotypic entities based on mode of inheritance, with
one being being autosomal recessive (OMIM #615828) and the other autosomal dominant
(OMIM #617171) [56]. Next to that, genetic variants in SETBPI can lead to either Schinzel-
Giedeon-Syndrome (OMIM #269150, missense gain-of-function variants) [57] or MRD29
(OMIM #616078, loss-of-function variants leading to haploinsufficiency) [58]. Analysing
both these subgroups shows that PhenoScore distinguishes theses groups (for SETBP1, Brier
score of 0.02 and AUC of 1.0, p<0.001; DEAFI leads to a Brier of 0.13 and AUC of 0.94
p<0.001, Supplemental Figure 5), suggesting that PhenoScore can readily identify clinical
entities associated to the same gene.

For ADNP, it was recently shown that individuals with pathogenic variants in ADNP show
one of two distinct methylation signatures (type 2, when variant affects position between
€.2000 and ¢.2340; or type 1, when the variant occurs outside of this interval), suggesting
the possibility of two syndromes associated with this gene [59]. Clinically, however, these
individuals could not be conclusively distinguished [60]. Prior to determining PhenoScores,
we categorized the individuals as having either a type 1 or type 2 ADNP signature. Initially,
we assessed the performance of PhenoScore using only individuals (7=33) for whom both
facial photographs and clinical features were available, but failed to identify a statistically
significant difference between the groups (Brier 0.30, AUC 0.52, p = 0.35). However,

using the ADNP Human Disease Genes website (https://humandiseasegenes.info/ ADNP),
we could collect HPO-only data of more individuals. Using this dataset, we obtained clinical
features in HPO of 58 individuals (29 in each group), and on these data PhenoScore did
show evidence for two phenotypically different entities (Brier 0.24, AUC of 0.71, p=0.01).
Inspecting the generated PhenoScore explanations for clinically relevant differences (Figure
5), it seems that recurrent infections and gastrointestinal problems (reflux, constipation,
feeding difficulties) are 2—-3 times more common in type 2 than in type 1.

Finally, to further explore the classification of VUSs in genetic syndromes that are
phenotypically alike (such as the previously named phenotypic subgroups), we generated
predictions for each phenotypic subgroup as it were a VUS for the model created for

the other phenotypic subgroup of the same gene. For instance, the individuals of the

first ADNP methylation group were classified using the model that was trained on

ADNP methylation group 2 individuals and NDD controls. Depending on the similarity

in phenotype between the two subgroups, there are no (for SETBPI) phenotypic matches,
to almost all individuals that are classified as phenotypic matches (for ADNP), since these
individuals are (much) more phenotypically alike the investigated syndrome than the control
population (Supplemental Table 6).

3 Discussion

PhenoScore provides a significant step in the advancement of Al in clinical genetics: a novel
machine learning phenomics framework unifying facial and phenotypic features using high-
quality data directly from affected individuals instead of generic phenotypic descriptions of
a syndrome. Others have introduced Al in this domain of healthcare, with for instance the
application of using HPO terms to prioritize genetic variants while comparing individuals to
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the known phenotype of disorders in the literature [30, 31, 61, 36]. The utilization of facial
recognition technology to assist clinicians in diagnosing individuals has been successful too,
with most, unfortunately, relying on proprietary commercial algorithms [37, 38, 39, 40, 35,
41, 42]. We now show a next step, with an open-source framework that takes the complete
phenotype into account, including both facial- and phenotypic features directly from affected
individuals, and uses Al to provide a score on how well the patient’s phenotype (as a whole)
matches individuals with a known syndrome.

PhenoScore detected a recognizable phenotype in the large majority of investigated genetic
syndromes (37/40; 93%), is a significant improvement over existing algorithms such as
Phenomizer and LIRICAL, and only needed as little as five individuals for acceptable
classification performance. In this manner, PhenoScore assists clinicians and molecular
biologists in quantifying phenotypic similarity, at both an individual- and group level for
theoretically all OMIM-listed disorders. One of the disorders for which PhenoScore failed
to identify a phenotype was for variants in ACTLG6A. Interestingly, this is the only of

40 syndromes that has not been recognized by OMIM as a genetic disorder, due to lack

of (phenotypic) evidence. For the other two genetic syndromes that PhenoScore failed

to identify (MRD29 caused by pathogenic variants in SETBP1 and MRD56, CLTC),

some clinical features could be recognized - but apparently not enough to establish a
definitive phenotypic entity, probably due to the low number of individuals with these
syndromes included. PhenoScore did distinguish MRD56 from Schinzel-Giedeon-Syndrome
(both associated with pathogenic variants in SE7BPI) when compared directly. Apparently,
individuals with MRD56 are hard to distinguish from controls with neurodevelopmental
disorders — but individuals with Schinzel-Giedeon-Syndrome are phenotypically different
from these controls (Figure 3) and therefore PhenoScore is able to differentiate the two
phenotypic subgroups in SETBPI. Further investigating these phenotypic subgroups and
generating predictions for each subgroup with a model that is trained on the other subgroups
and controls (Supplemental Table 6) shows that PhenoScore indeed investigates phenotypic
similarity. However, this indicates as well that a clinician should be careful in interpreting
the results of the VUS prediction if it is possible that the investigated individual has another,
but phenotypically similar, disorder than the suspected disorder because of the VUS — as
the rate of false positive results could be elevated in that scenario.

Assisting variant classification of VUSs is an obvious use-case for PhenoScore. Of course,
several /n vitro functional assays are available to assess variant pathogenicity, but so

far these are mostly used for genes involved in oncogenetic disorders [62, 63]. For
neurodevelopmental disorders, these assays are scarce since they need to be developed on

a gene-per-gene basis, and for these rare disorders, this is usually not cost-effective and
solely done for research purposes. Other methods to assess genetic variants include protein
structural analysis [64], which however still relies on the availability of relevant protein
structures. Our approach theoretically works for any (genetic) condition with a recognizable
phenotype, provided there are sufficient individuals for training the algorithm, and that HPO
data and 2D-facial photos are available. Indeed, PhenoScore is as good as its input data.

In the field of rare diseases, however, major efforts are put in obtaining these high-quality
quantitative phenotypic data, as for instance shown by collections of datasets by the Human
Disease Genes website series [65], GeneReviews, DECIPHER and OMIM [66, 67, 68].
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Here, the use of HPO terms, in combination with the use of Resnik scores (ensuring that the
use of similar HPO terms leads to comparable results), minimizes the effect of variation in
clinical terminology used between clinicians, and thus deriving the most benefits from the
Al-based quantitative phenotypic framework. Although these measures should minimize any
difference in predictive performance when applying PhenoScore in other institutions, further
prospective clinical validation studies, preferably in a multi-center prospective design also
including institutions from non-Western countries, are needed to confirm this.

PhenoScore also helped to objectively obtain genotype-phenotype correlations, by training
on suspected phenotypic subgroups combined by permutation testing to quantify statistical
significance. We replicated earlier findings in SATB1, DEAFI and SETBPI, quantitatively
underscoring that different molecular mechanisms or inheritance patterns lead to a
significantly different, but recognizable, phenotype. Whereas for these genes the associated
different phenotypes were also subjectively identifiably from expert opinion, the power

of PhenoScore was shown by demonstrating the existence of two distinct phenotypes
associated with pathogenic variants in ADNP. Molecularly, two different methylation
signatures have been published, which were discriminated by the mutation location in
ADNP69, 59, 60], but for which clinically, no differences were observed. PhenoScore

was not only able to prove the existence of clinically distinctive groups, but also provided
insight into which clinical features separates the two clinical entities. For instance,
neurodevelopmental problems are more common in the ADNP-type 1, while gastrointestinal
symptoms, recurrent infections and short stature are 2—3 times more common in ADNP-type
2. These clinical features have a significant impact on an individual’s quality of life, hence,
by identifying these subgroups, PhenoScore directly impacts clinical care, prognosis and
recommendations for these individuals and families.

These subgroup analyses could in theory be performed for every (genetic) syndrome
caused by different types of SNVs or CNVs — which is the case in a significant

portion of the currently ~1600 known NDD genes. While recognizing specific novel
subgroups is a first step towards personalized medicine and provides improved clinical
prognosis and recommendations (as shown for the subgroups in ADNPand SATBI), not
finding a distinct difference is useful too: it helps to assess whether two types of genetic
variation have the same effect (i.e. whether missense variants cause haploinsufficiency).
By quantifying the complete phenotypic similarity and visualizing differences between
(sub)groups, PhenoScore empowers detailed genotype-phenotype studies, leading to new
insights on both the genetic- and phenotypic level.

The discriminating clinical features for the two ADNP-related disorders were not
represented in a different facial gestalt, emphasizing the importance of adding HPO data
across all organ systems. In addition, given that these two phenotypic subgroups were not
identified from more subjective clinical analysis, using a predefined structured Al method
of phenotypic data analysis provides novel insights. To facilitate easy use in routine clinical
care, it is, however, also of paramount importance to be able to intuitively understand the
Al output. We therefore also provided graphical output such as facial heatmaps to visualize
which (facial) features specified PhenoScore output.
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Detailed genotype-phenotype analysis could in theory be performed for every (genetic)
syndrome, suggesting that PhenoScore may be a valueable tool to also foster novel
molecular insights. That is, for many of the 1,600 known genes associated to an NDD
phenotype, multiple types of genetic variants (e.g. SNVs and CNVs) may cause the disorder.
Whereas the molecular mechanism for CNVs often relate to dosage-sensitivity, such as
haploinsufficiency, the mechanisms for SNVs leading to missense variants in those genes,
are often more variable. PhenoScore may assess phenotypic differences between individuals
with the same syndrome, but caused by either CNVs (“‘group 1”) or missense variants
(“‘group 2’) and help to establish whether those missense variants are also haploinsufficient.
Similarly, PhenoScore could be utilized to find phenotypic outliers, of which the molecular
mechanism leading to disease might be novel.

In conclusion, PhenoScore bridges a gap between the fields of Al and Clinical Genetics

by quantifying phenotypic similarity, assisting not only in genetic variant interpretation, but
also facilitating objective genotype-phenotype studies. We showcased its use for individuals
with NDD, whose phenotypes were captured using HPO. PhenoScore can, however, also
easily be used beyond the field of rare disease, as adjustments to use other (graph-based)
ontologies, such as for instance SNOMED [70], can readily be integrated. The PhenoScore
Al-based framework is thus easily extended to other domains of (clinical) genetics, or even
to completely different branches of medicine, due to its open-source modular design.

4 Materials and Methods

4.1 Inclusion of individuals

The literature was searched for clinical studies which included facial photographs for

40 randomly selected genetic syndromes associated with NDD. The photographs were
collected and clinical features, if available, were converted to HPO terms. Currently,
PhenoScore is trained using data of 711 non-familial individuals diagnosed with one of the
40 different genetic syndromes, collected from 105 different publications (Table 1 includes
the complete overview of the demographics per genetic syndrome and Supplemental Table
1 all publications used as sources for the data used in this study). The phenotypic data were
uploaded to the specific gene website in the HDG website series [65] to ensure their public
availability. The use of these data was approved by the ethical committee of the Radboud
university medical center (#2020-6151 and #2020-7142).

4.2 Data processing

To obtain a representative control group for our machine learning models, for each
syndrome with 77 individuals, 7 age-, sex- and ethnicity matched controls with a
neurodevelopmental disorder seen at our outpatient clinic at the Radboud university medical
center were selected as described previously [39] from our internal control database with
over 1200 individuals with both facial image and quantitative phenotypic data available (for
a complete overview of the workflow of this study, Figure 1). When no matched control

was available, that particular individual was excluded from our analysis. Next to that, when
individuals were related to each other, one individual was chosen (based on the quality of the
picture) from that family.
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For each syndrome, nested cross-validation was used to assess the performance of the
classifiers. The number of folds during the outer-loop of the nested cross-validation varied
due to the considerable variation in dataset size: for every syndrome with at least five
individuals, 5-fold cross-validation was used — otherwise, leave-one-out cross-validation
was chosen. The hyperparameters of the model (section 4.5) were then tuned during the
inner-loop of the nested cross-validation procedure. All performance metrics reported in this
study, whether it be AUC, Brier score or accuracy, are calculated based on the predictions
during the outer-loop.

As the selection of the randomly selected controls might significantly influence the
performance, for each genetic syndrome, different controls were sampled during five
random restarts and the mean AUC and Brier scores of these five iterations were noted.
Furthermore, to confirm the source of the data did not significantly influence our results,

we performed post-hoc analyses by using not only the individuals from our internal control
dataset. This included analyses with the other syndromes as controls, but also included
additional analyses excluding the Koolen-de Vries individuals who were seen at our clinic at
the Radboudumc Nijmegen (see Supplemental methods).

4.3 Extraction of facial features

The facial features were extracted using VGGFace2 [71, 72], a state-of-the-art facial
recognition method that utilizes a deep neural network. To avoid overfitting, we did not
retrain VGGFace2, but used its pretrained weights instead. The images were then processed
by VGGFace2 and the representation in the penultimate layer of the network was obtained.
This representation was then used as the facial feature vector. The process was performed as
described previously: for the entire (technological) methodology, please see [73].

4.4 Phenotypic similarity

To create a homogeneous dataset, the phenotype of every individual in this study was
manually converted into HPO terms [14]. A selection of HPO terms and all their child
nodes were removed to eliminate any subjectivity in assessing an individual. These were
Behavioral abnormality (HP:0000708), Abnormality of the face (HP:0000271), Abnormal
digit morphology (HP:0011297), Abnormal ear morphology (HP.0031703), Abnormal eye
morphology (HP:0012372), and every node which is a child node of either of these. We
chose these terms as these are either facial features (to be assessed by our facial recognition
model) or are suspected to vary across clinicians doing the assessment of an individual. In
this manner, 3,810 HPO terms were excluded with 12,259 terms remaining (although it was
investigated what the consequences of including all HPO terms were, Supplemental Table
7). To further reduce possible inter-observer variability, the phenotypic similarity between
individuals was calculated using the Resnik score [74], since it takes the semantic similarity
between symptoms into account. The Resnik score utilizes the information content (1C) of
a symptom. In an ontology akin to the HPO, the IC of a specific term can be seen as a
measure of the rarity of a term. Naturally, terms closer to the root of the HPO tree have

a lower IC. For instance, Abnormality of the nervous system (HP:0000707) has an IC of
0.60. In contrast, Focal impaired awareness motor seizure with dystonia (HP:0032717),
significantly further down the HPO tree, has an IC of 8.97. This corresponds to our intuition:
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rare features provide more information than common features — since the prior probability
of an individual reporting a rare symptom is, by definition, smaller. The Resnik score uses
this property by defining the similarity between two HPO terms as the IC of their most
informative (that is, with the highest IC) common ancestor in the HPO tree. Since terms
lower in the tree have a higher IC, the most informative common ancestor corresponds to
the last HPO term, which has both compared HPO terms as child nodes when traversing
the tree downwards. As an example: for the HPO terms Reflex seizure (HP:0020207)

and Focal motor seizure (HP:0011153), the most informative common ancestor is Seizure
(HP:0001250), which has an IC of 1.70. The Resnik similarity score for Reflex seizure
(HP:0020207) and Focal motor seizure (HP:0011153) is therefore 1.70. Next, we used

the best-match average (BMA\) to calculate the similarity between two individuals (who
usually report multiple HPO terms), in which the average is taken over all best-matched
pairwise semantic similarities, as previous studies determined it to be most effective [75].
The idea is similar to that discussed above: if two individuals share a rare symptom (Focal
impaired awareness motor seizure with dystonia (HP:0032717), for instance), they are more
similar than two individuals who only share a common symptom such as Abnormality of
the nervous system (HP:0000707). The Resnik similarity score was calculated for every
individual and control and then averaged for both groups. In the end, this led to a /x2
matrix for the HPO features: an average similarity score for each individual versus affected
individuals and a score for each individual versus the control group. We calculated the BMA
Resnik score between the individuals using the phenopy library in Python 3.9 [76].

4.5 Construction of machine learning model

Finally, the data were used to train a binary classifier. We selected a support vector machine
(SVM) as our classifier, known for its excellent overall performance in classification tasks.
The SVM was trained using the standard radial basis function kernel and a hyperparameter
grid search for C, with values investigated being le-5, 1e-3, 1, 1e3 and 1e5. For smaller
datasets (less than five individuals), a logistic regression model was chosen, because the
SVM does not support probability scores by default and needs an additional internal cross-
validation procedure to provide those (further reducing the dataset). All experiments were
run on a machine with two graphical processing units (both an NVIDIA RTX2080). It is
possible to train PhenoScore on a standard laptop without a designated graphical processing
unit, however, if facial heatmaps are required, the process may take several hours per
syndrome.

After determining the predictive performance of the model, we determined how many data
the classifier needed for an acceptable classification performance in clinical practice. Per
syndrome, we started with randomly selecting two individuals and two matched controls,
training the model on those, and using the rest of the individuals (77— 2, as one individual
is used as training data) and matched controls as a test set (two individuals that were not
used in the first iteration as the grid search in the SVM classifier needs at least two training
samples). We ran five random restarts, randomly selecting another individual and matched
control in each iteration. In each restart, cross-validation was employed as in the general
training of PhenoScore. The Brier score and AUC were noted and averaged over the five
restarts. Next, the size of the training set was increased by one patient, and one matched
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control. By increasing the training set by one individual and matched control each time
and recording the performance, the model’s performance with an increasing number of
individuals is assessed (Figure 4).

The Wilcoxon signed-rank test was used to determine statistically significant differences in
the performance of the classifiers since it is a non-parametric test and, therefore, suitable —
as these data are not normally distributed.

4.6 Explainability of predictions

To see which features contained important information for our model, we generated Local
Interpretable Model-agnostic Explanations (LIME) [48, 49]. The main idea of this method
is to train a relatively simple local surrogate model to approximate the predictions of the
model of interest. Next, the original input data is perturbed, and the corresponding change

in predictions is inspected to obtain the relative importance of individual features. A key
advantage of LIME is that it is applicable to any model and can therefore be used directly on
top of our pipeline.

When using LIME for image data, it is common practice to divide the image into several
segments, called superpixels. Therefore, we generated a raster of 25x25 pixel squares for
each facial image, randomly offset for each of 100 runs. Each pixel’s relative importance
was averaged over these runs to obtain a higher resolution visualization of their significance.
For the clinical data, the original HPO features were perturbed to obtain the most significant
ones in predictions. In this case, LIME uses input data in which some HPO features are
added and some are removed from the input data, to see what the effect on the prediction is.

LIME explanations were generated for the individuals with that genetic syndrome and the
five highest prediction scores in each iteration of sampling controls, so 25 times in total,
for both the facial heatmaps and the phenotypic explanations. These explanations were then
averaged, to obtain an overall explanation representative for that specific genetic syndrome.
To ensure only real important features were recovered, only HPO terms that were identified
in at least 15 individuals (out of 25 in total) were used in this analysis.

4.7 Hypothesis testing

To see whether we could extend the use of our classifier to other applications than the
reclassification of VUSs, we designed a random permutation test for the performance of

our model. This enables the testing of a specific hypothesis for facial features, phenotypes,
or both. An example would be determining whether a newly discovered genetic syndrome
consists of several (phenotypic/facial) subtypes. Using our framework, we trained a classifier
on the labels of the suspected subgroups. By performing a random permutation test, a
p-value is calculated, so that the appearance of the subgroups can be quantified. For

a complete overview of the exact methodology of this permutation test, please see the
Supplemental Methods.
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4.8 Benchmarking PhenoScore

To determine whether our approach is an improvement over existing methods, we used the
Phenomizer algorithm [30, 77] and LIRICAL [36] (considered as state-of-the-art [78]) to
generate predictions for all individuals with a genetic syndrome in our data set (except

for the genetic syndrome associated with ACT7L6A, as absence of an OMIM number
prohibits Phenomizer and LIRICAL to generate predictions). Since Phenomizer does not
output a prediction score, but rather a p-value, we counted a prediction as positive if

the specific genetic syndrome was included in the list of possible diagnoses with an
uncorrected p-value smaller than 0.05 — otherwise it was seen as a negative prediction.
Furthermore, since Phenomizer and LIRICAL do not process facial images, we included the
previously excluded HPO terms (Behavioral abnormality (HP:0000708), Abnormality of the
face (HP:0000271), Abnormal digit morphology (HP:0011297), Abnormal ear morphology
(HP:0031703), Abnormal eye morphology (HP:0012372)) as well as all the corresponding
child nodes in the input for Phenomizer and LIRICAL. The number of positive- and negative
predictions for Phenomizer (using 0.5 as a cut-off for its predictions), LIRICAL (with a
pretest probability of 0.5 to mimic a VUS prediction) and PhenoScore were counted, and

a possible statistical significant difference was assessed using a chi-squared test. Other
thresholds for the p-value of Phenomizer and the scores of LIRICAL and PhenoScore were
investigated as well to see the influence on the results (Supplemental Table 3).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1:
A) Here, the global workflow of this study is displayed, with the training and construction

of PhenoScore. n7individuals and 77 age-, sex- and ethnicity matched controls are

selected for each syndrome. The facial features are extracted using a convolutional

neural network, VGGFace2, and in parallel, the phenotypic similarity of individuals and
controls is calculated. PhenoScore is then trained on both the facial features and the HPO
similarity combined. PhenoScore outputs the classification metrics (the Brier score, AUC
and corresponding p-value) to report how well it is able to distinguish the investigated
phenotypic groups. Furthermore, facial heatmaps and visualisations for the most important
phenotypic features are generated as well. B) The trained PhenoScore model for a specific
syndrome is used for a new individual with a VUS. Again, the phenotypic similarity and
facial distances are calculated, and these are used as input for PhenoScore after training. The
output is a score and assesses whether the individual of interest has that specific syndrome,
thus the VUS being (likely) pathogenic.

VUS: variant of unknown significance; NDD: neurodevelopmental disorders
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Figure 2:
A) The HPO terms of all included individuals with Koolen-de Vries (KdVS) are shown here.

HPO terms present in 20% or more of the individuals are annotated with text, and larger
nodes correspond to a higher prevalence of that specific clinical feature. The graph structure
corresponds to that of the HPO terms. ID = intellectual disability. B) Four individuals
diagnosed with Koolen-de Vries syndrome are presented here (written informed consent for
the publication of these facial images was obtained). These were randomly selected from the
included dataset without any selection criterion.

Figure 2: C) For the four randomly selected individuals, three predictions are shown:

using the facial image, using the phenotypic data, and finally, the PhenoScore, which
combines both. Furthermore, heatmaps are generated using local interpretable model-
agnostic explanations (LIME) to see which facial areas are most important according to

our model, where blue correlates with KAVS and red areas correlate with controls. The
nose and eyes are clearly prioritized, corresponding to the known dysmorphic features in
Koolen-de Vries. Furthermore, the most important clinical features are shown for each
individual and the contribution (corresponding to the LIME regression coefficient) of that
feature to the prediction. D) Finally, a summarized heatmap was generated to investigate
the overall most important facial and phenotypic features. We averaged the heatmaps of the
five individuals with Koolen-de Vries with the highest prediction. Next to that, to obtain the
most important clinical features, too, we averaged the LIME regression coefficient for the
different symptoms of the five highest-scoring individuals based on HPO. Shown clinical
features are ordered based on importance, and the size of the circle indicates the relative
importance of the feature. ID=intellectual disability
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Figure 3:
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Inteiectuat disabilty, severe
Broad-based gait
Gastroesophageal reflux
Constipation

d with control

Correlated with syndrome

The heatmaps and most important clinical features of all 40 genetic syndromes included
in this study are displayed in this figure. The facial heatmaps and the phenotypic data are
the average LIME heatmaps of the five individuals per genetic syndrome with the highest
predictive score. For the phenotypic data, in this figure, only features positively correlated
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with the genetic syndrome of interest are included. The standard face used as background

is a non-existent person generated using StyleGAN [80]. In general, the facial heatmaps
correspond well to dysmorphic features known in literature of the investigated syndromes. In
specific regions, however, faces from cases are more similar to controls than to other cases
(in red), signifying that random facial variance also contributes to the predictions whereas
these would expected to be neutral. The PhenoScore in this figure refers to the AUC of the
model for that genetic syndrome.
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Figure 4:
The performance of the SVM using both facial- and HPO features with different sizes of

the training set is shown here. Both the median Brier score and the median AUC improve
if the number of individuals to train on is larger — as would be expected. Interestingly,
only five individuals are needed for an already acceptable classification performance, with
performance increasing with a larger training set, as is expected.

Nat Genet. Author manuscript; available in PMC 2024 September 20.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnuely Joyiny

Dingemans et al.

PhenoScore: 0.83

A Face: 0.5 HPO: 0.83 B

0% Generalized {SREEERAGII 5% =

H -4
»

s 25% E£G abnBrmRIY] 86% 2
g | 50% ot GilgeHizigisabilty, mild 0% X g
2 &
3 0% 3
@ c
~ o 2
E o
< 0% - o
v : (5]

% [T 3C ) °

Correlated

with il

variants variants
PhenoScore: 0.94

Page 25

/
|

HPO: 0.88 I |
1% Impaired pafAiSeREEORINI 7% Aone
§' s Incellect@i@Bability, severe  43%
2
é” CcLASS | @) NONSENSE (@) FRAMESHIFT ) PROTEINDEL proteN | [l [ ]
a
@ epi-ADNP-1 epi-ADNP-2
<
a 25% (n=24) 68% (n=28)
n=7 4% (n=23) 34% (n=29)
p -
Correlated Correlated - L
with AR form WS S \ith AD form 1% (n=21) 33%(n=217)
25% (n=24) 64% (n=28)
PhenoScore: 1.0
Face: 0.76 HPO: 1.0 21% (n=24) 32% (n=28)
4 0% etayed speech and I{fifilage developmene3%
Yy \ &% Abnormalityof fan anetle 0% 33% (n=24) ing d i 54% (n=28)
3
3 L00% B neck o
.§:T‘ ’ ’ % Microfffognathia on 17%: (n=29) 41% (n=27)
a H son syport ] publc one o 21% (n=24) |REEERERERnnd flapping 4% (n=24)
3 b o Lofgilav o
& ‘ - 1o0% [ — o 26% (n=27) [IRESTiEEERIE sbility, mild 4% (n=25)
@l j 50% Massively thicHEH long bone cortices 0%
y 1005 B ribs o 37% (n=27) [JiRESiiEEEuRiaiEg bility, moderate 24% (n=25)
ia I T T e— - v v T r
= s e
Correlated Correlated —0.2 -0.1 0.0 0.1 0.2
with SGS  MESS— —\jith MRD29 LIME regression coefficient
Figure5:

A) The facial heatmaps and most important clinical features for the three confirmatory
subgroup analyses. First (top-left), the analysis when comparing the two phenotypic
subgroups associated with pathogenic variants in DEAFI; top-right shows the PhenoScore
results when analysing the subgroups for SATB1 and finally, in the bottom panel the
outcome for SETBP1 is displayed. The PhenoScores in this figure correspond to the AUC
when training the model.

B) Above: a lollipop plot (generated using St. Jude’s ProteinPaint) of the genetic variants
currently collected using the ADNPHDG website [65]. Of the 58 included individuals,

29 had a variant in the ¢.2000-2340 region, indicated by others as having a different
methylation signature than variants outside this region [59]. Using only the HPO module of
our PhenoScore framework, we first matched the groups on sex-, ethnicity- and age when
possible to create two groups of the same size (29 vs. 29). We then trained a classifier on the
two groups and found a significant difference (Brier score of 0.24, AUC of 0.71, p=0.01).
Below: the most important clinical features according to our model (determined using
LIME) and the corresponding prevalence in both groups.
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