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The complex and dynamic cellular composition of the human endometrium
remains poorly understood. Previous endometrial single-cell atlases
profiled few donors and lacked consensus in defining cell types. We
introduce the Human Endometrial Cell Atlas (HECA), a high-resolution
single-cell reference atlas (313,527 cells) combining published and new
endometrial single-cell transcriptomics datasets of 63 women with and
without endometriosis. HECA assigns consensus and identifies previously
unreported cell types, mapped in situ using spatial transcriptomics and
validated using a new independent single-nuclei dataset (312,246 nuclei,
63 donors). In the functionalis, we identify intricate stromal-epithelial

cell coordination via transforming growth factor beta (TGF[3) signaling.

In the basalis, we define signaling between fibroblasts and an epithelial
population expressing progenitor markers. Integration of HECA with
large-scale endometriosis genome-wide association study data pinpoints
decidualized stromal cells and macrophages as most likely dysregulated in
endometriosis. The HECA is a valuable resource for studying endometrial
physiology and disorders, and for guiding microphysiological in vitro
systems development.

Humanreproduction depends onthe endometrium, theinner mucosal
lining of the uterus. It prepares an optimal environment for embryo
implantation and development. In the absence of pregnancy, the
endometrium sheds each month during menstruation. Morphologi-
cally, the endometrium is composed of two layers: the ever-changing
functionalis (adjacent to the uterine cavity) and the relatively constant
basalis (adjacent to the myometrium). In response to ovarian steroid
hormones, the functionalis undergoes repeated cycles of shedding,
repair without scarring, extensive growth and differentiation’2.

At the cellular level, the endometrium is particularly complex.
Its epithelium consists of a horizontally interconnected network of
basalis glands®~ contiguous with coiled functionalis glands extend-
ing vertically towards the uterine cavity, where a layer of functionalis
luminal cells lines the endometrial surface. The basalis glands harbor
epithelial stem/progenitor cells needed to regenerate the functionalis
glands after menstruation®°. Stromal, fibroblast, perivascular (PV) and
endothelial cells provide support and structural integrity, including
richvasculature within the tissue. An array ofimmune cells play crucial
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roles in endometrial shedding, repair™'? and embryo implantation®.
Fine-tuned and timely communication between these cells is key for
endometrial functioning and menstrual cycle progression.

Duringreproductiveyears, the endometriumis highly heterogene-
ous, bothinter-andintra-individually, requiring alarge sample size to
account for the dynamic changes it undergoes bothin time (across the
menstrual cycle) and in space (across different tissue microenviron-
ments). Several foundational studies atlasing the cellular composition
ofthe human endometrium with single-cell** and spatial® " technolo-
gieshavebeen published. However, these cell censuses so far profiled a
limited number of samples, and lacked even coverage of the menstrual
cycle phases, consensus cell state annotation and reproducible marker
gene signatures. Additionally, they varied considerably in terms of
clinical and phenotypic characterization of the individuals profiled.
These factors have complicated comparisons across studies, with, for
example, inconsistenciesin the identification and naming of epithelial
and stromal cell states. Anintegrated single-cell reference atlas of the
humanendometrium, encompassing the widest possible range of cell
states and samples, is now warranted.

Endometrial heterogeneity is further increased by endometrial/
uterine disorders whichare highly prevalent globally**?*. For example,
~190 million women world-wide suffer from endometriosis**?*, where
endometrial-like cells grow outside of the uterus (that s, ectopically).
Conflicting evidence exists about whether and to what extent the
endometriumitself (thatis, the eutopic endometrium) differs between
those with and without endometriosis**?. Recently, single-cell stud-
ies, analyzing small sample sizes, reported dysregulation of the stro-
mal and immune compartments in the endometrium of women with
endometriosis to various degrees'®'***? Larger sample sets are now
needed to unpick whether and how the endometrium differs in those
withand without endometriosis. Well-annotated reference cell atlases
can provide invaluable insights.

Here, we assemble a consensus HECA (https://www.reproduc-
tivecellatlas.org/endometrium_reference.html) by harmonizing the
transcriptomic and donor metadata information of -626,000 cells and
nuclei from previously published and newly generated datasets. We
identify cell populations not reported by previous atlases, including
anepithelial CDH2" population in the basalis and distinct populations
of functionalis epithelial and stromal cells characteristic of the early
secretory phase. We describe the molecular signals likely mediating
the spatiotemporal organization and function of cellular niches across
the menstrual cycle and provide aninteractive portal to visualize and
query the predicted cell-cell communication at https://www.repro-
ductivecellatlas.org/endometrium_reference.html. Finally, we use
the HECA to give cellular context to genetic associations identified
by the largest endometriosis genome-wide association study (GWAS)
meta-analysis®. This analysis identifies macrophages and subsets
of decidualized stromal cells as the cell types expressing the genes
affected by the variants associated with endometriosis.

Results

Harmonized datato generate the HECA

To comprehensively define endometrial cell types and states across
the menstrual cycle, we analyzed a total of ~626,000 high-quality cells
and nuclei from 121 individuals (Fig. 1a,b and Supplementary Note 1).
First, we created a single-cell reference atlas (that is, the HECA;
Fig.1c), by integrating six publicly available single-cell RNA sequenc-
ing (scRNA-seq) datasets (Wang et al."*, Garcia-Alonso etal.””, Tanetal.',
Laietal.””, Fonseca etal.” and Huang et al."®) with our newly generated
anchor dataset (termed the Mareckova (cells) dataset). The anchor
dataset contained samples from donors with similar clinical charac-
teristics as the donors profiled in the previously published datasets,
allowingus to correct for dataset-specific signatures while preserving
biological ones duringintegration (Fig. 1b and Supplementary Note 1).
Harmonization of metadata across the studies and application of

strict data quality control (QC) filters was essential for the integration
(Methods). The finalintegrated HECA consisted of ~313,527 high-quality
cellsfrom seven datasets, of which ~76,000 cells were newly profiled by
us (Supplementary Tables1and 2). Itincluded atotal of 63 individuals
both with endometriosis (that is, cases) and without endometriosis
(thatis, controls), with samples collected either during natural cycles or
when taking exogenous hormones (Fig. 1b,c, Extended Data Figs. 1a-i,
2a,b and 3 and Supplementary Table 1). Most samples analyzed were
superficial biopsies of theendometrium, predominantly sampling the
functionalis layer fromliving donors. Three samples from the uteri of
donorswho died of nongynecological causes contained full thickness
endometrium, encompassing both the functionalis and basalis layers,
with attached subjacent myometrium.

We observed striking differences between the cellular composi-
tion of the integrated scRNA-seq datasets, with variable recovery of
epithelial, mesenchymal, endothelial and immune cells (Fig. 1e and
Supplementary Table 3). Choice of tissue digestion protocol, sam-
plingbias (technical variation), menstrual cycle stage and use of exog-
enous hormones (biological variation) could all be responsible for
the differences observed (Supplementary Note 1 and Extended Data
Fig. 1a-i). The dataset-specific cellular proportions prompted us to
generate anindependent single-nucleus RNA sequencing (snRNA-seq)
dataset for 63 additional donors (Fig. 1b,d), five of them overlapping
with the scRNA-seq dataset. The large number of individuals in the
snRNA-seq dataset allowed us to overcome the technical variation
introduced when data are generated by different laboratories. We
profiled ~312,246 high-quality nuclei from snap-frozen samples of
superficial endometrial biopsies (Fig. 1b,d, Extended Data Figs. 2c
and4aand Supplementary Table 2), collected during natural cycles and
when taking exogenous hormones, and including donors with and with-
out endometriosis (Fig. 1b). This dataset represents the largest set of
human endometrial samples profiled at the single-cell/single-nucleus
transcriptomiclevel by asingle laboratory so far. Toalign the cell state
annotations across the scRNA-seq and snRNA-seq datasets, and to
determine therobustness of the HECA, we transferred cell state labels
between datasets using machine learning (Methods). Of theendome-
trial cells identified by scRNA-seq, the majority were validated in the
nuclei dataset (Extended Data Fig. 4b,c).

As expected, most of the cell populations were of endometrial
origin, but the atlas also contained populations exclusively present in
the myometrium fromthe whole-uterine samples (for example, uterine
smoothmuscle cells (uUSMCs) and myometrial PV cells). Inaddition, we
detected asmallnumber of mesenchymal HOXA13" and epithelial KRT5*
cells, whichbased on their marker gene expression were likely cervical
cell contamination. This was supported by their transcriptomic similar-
ity tocervical cellswhenwe compared the HECA with a publicly available
scRNA-seq dataset of the cervix*® (Extended DataFig. 1e-i). We did not
detect any endometriosis-specific cell state in either the scRNA-seq or
thesnRNA-seqdata, providing further evidence that at the cellular level
of the endometrium, differences between controls and cases may be
more subtle. However, additional cell states appeared in samples from
donors taking exogenous hormones, indicating that exogenous hor-
mones strongly impact the global transcriptome of epithelial cells, an
observation supported by both datasources (Extended Data Fig. 5a—f).

Altogether, we generated the most comprehensive reference atlas
of the human endometrium to date—the HECA. Researchers can map
and contextualize newly processed samples onto the HECA following
the computational tutorials in Supplementary Note 2.

Spatiotemporal complexity of the endometrial epithelium
The endometrial epithelium consists of a complex network of basalis
glands, functionalis glands extending into the uterine cavity and a
layer of luminal cells (Fig. 1a). Here, we thoroughly characterized the
cellstates forming the different regions of the endometrial epithelium
across the proliferative and secretory phases.
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(endothelial, epithelial,immune and mesenchymal lineages) as shownin
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Weidentified a population of SOX9* basalis (CDH2") cells that was
not reported by previous single-cell transcriptomics atlases. These
cells expressed markers described for endometrial epithelial stem/
progenitor cells (SOX9, CDH2, AXIN2, ALDHIAI (refs. 9,31-34)) (Fig. 2a).
Using spatial transcriptomics and single-molecule fluorescencein situ
hybridization (smFISH) imaging, we mapped this population to the
basalis glandsregionin full thickness endometrial biopsies fromboth
proliferative and secretory phases (Fig. 2b,c).

Cell-cell interaction analyses indicated that the SOX9 basalis
(CDHZ2") population interacts with the fibroblast basalis (that is,
fibroblast basalis C7) population via the expression of CXCR4 and
CXCL12, respectively (Fig. 2d and Extended Data Fig. 6a,b). In addi-
tion, we detected an enrichment of interactions that suggest active
WNT (RSPO1/LGR4/LRP6) and fibroblast growth factor (FGF; FGF7/
FGFR?2) signaling (Extended Data Fig. 6¢, Supplementary Note 3 and
Supplementary Table 4). CXCL12, WNT and FGF signaling are known
to have a role in the maintenance of the stem cell niche in other tis-
sues™*, suggesting the existence of a signaling center that favors the
maintenance of the endometrial SOX9 basalis (CDH2") population, in
amanner typical of a stem cell niche.

The cellular composition of the functionalis glands showed highly
dynamic changes across the proliferative and secretory phases (Fig.2a).
During the proliferative phase, we uncovered further heterogeneity
within the known SOX9* cell population®. Specifically, we identified
two SOX9* cell states: SOX9 functionalis I and II, which we mapped to
the functionalis glands (Extended Data Fig. 7a). The SOX9 functionalis
I population expressed CDH2 and high levels of SOX9 and was marked
by the expression of PHLDAI and SLC7A11 (Extended Data Fig. 7b).
Italso expressed the WNT inhibitor DKK1, and, in line with this, AXIN2
was downregulated in both SOX9 functionalis states (Fig. 2a). The
SOX9 functionalis Il population exhibited lower expression of SOX9
and CDH2, and distinctly expressed KMO, IHH and EMIDI. The luminal
proliferative epithelium was defined by the presence of SOX9 luminal
(LGRS"), pre-ciliated and ciliated cells (Figs. 1fand 2a), as we described
previously®. As expected, a larger proportion of cycling epithelial cells
was detected in the proliferative phase (Fig. 1f).

During the secretory phase, the SOX9* populations were markedly
reduced as the endometrium underwent further differentiation to
prepare areceptive environment for blastocystimplantation (Fig. 1f).
Havingalarger number of samples allowed us to further subdivide the
secretory phase into early, early-mid, mid and late secretory phases
and to define the populations associated with these stages (Fig. 1f).
We uncovered the transcriptomic profiles of cells characteristic of the
functionalis layer during the early secretory phase (that is, the preG-
landular and preLuminal populations; Fig. 2a,e,f). These populations
were transcriptomically similar to the previously described glandular
and luminal populations®, but appeared at earlier stages of the secre-
tory phase (after the progesterone surge) and expressed markers not
defined previously. OPRK1, SUFU, CBR3 and HPRTI were specific to the
preGlandular population and SULTIEI to the preLuminal population

(Fig. 2a). Using spatial transcriptomics, we confidently mapped both
populations to early but not mid secretory samples. Specifically, the
preLuminal population mapped to the lumen and the preGlandu-
lar population to the functionalis glands (Fig. 2f and Extended Data
Fig.7c), which we further confirmed by smFISH (Fig. 2e and Extended
DataFig.7d,e).

The number of preGlandular and preLuminal cells decreased in
the early-mid and mid secretory phase samples, with the dominant cell
states being the previously described glandular, luminal and ciliated
populations” (Fig. 1f). Lastly, analyzing a single sample from the late
secretory phase, we observed the presence of a glandular secretory
population that upregulated FGF7, a mitogen with a wound healing
rolein other contexts**.

We detected a previously described population of MUC5B"* epi-
thelial cells™ expressing MUCSB, TFF3,SAAI and BPIFBI. As in previous
studies'®, we also observed varied expression of the cell type marker
MUCS5Bwhen staining full thickness endometrial biopsies using smFISH
(Extended Data Fig. 7f). However, when projecting a publicly avail-
able scRNA-seq dataset of the cervix*° onto our HECA (Extended Data
Fig. 1h), we found a cluster of cervical epithelial cells matching the
transcriptome of this population (Extended Data Fig. 1g-i). This result
implies the MUCSB cells are likely to be present in the endocervical
columnar epithelial cells****, and we cannot disregard the possibility
thatin the HECA, the MUC5B population comes exclusively from the
endocervix.

In summary, we defined and spatially located previously unre-
ported epithelial cell states across the proliferative and secretory
phases, including a putative stem/progenitor cell population found
within the basalis and multiple transitory cell states dominating the
functionalis (Fig. 2g).

Stromal-epithelial cell crosstalk across the menstrual cycle
During the menstrual cycle, stromal and epithelial cells synchronize
their differentiation under the influence of ovarian hormones, as
well as locally produced paracrine factors. Here we used the HECA’s
fine-grained classification of stromal and epithelial cell states across
the menstrual cycle toinfer cell-cell communication occurringin vivo
along the endometrial niches in space (that is, basalis, functionalis)
and time (that is, menstrual cycle phases).

Within the functionalis layer, endometrial stromal cells specific
to the proliferative phase (eStromal cells) and decidualized stromal
cells specific to the secretory phase (dStromal cells) were defined
previously at the single-cell level . Inthe HECA, we further identified a
type of eStromal cells (eStromal matrix metalloproteinases (MMPs)) in
samples collected during the menstrual and early proliferative phases
(Fig.3a, Extended DataFig.1d and Supplementary Note 4), character-
ized by the upregulation of metalloproteases (MMP1, MMP10, MMP3)
andinhibin A (INHBA) (Fig. 3a).

In secretory phase samples, we uncovered three dStromal cell
states appearing at different stages of the secretory phase. Early

Fig. 2| Spatiotemporal complexity of epithelial cells. a, Dot plot showing
normalized, log-transformed and variance-scaled expression of genes (x axis) for
epithelial cell states (y axis) in scRNA-seq data. b, Visium spatial transcriptomics
dataand an H&E image of the same tissue section. Spot color indicates
cell2location-estimated cell density for the SOX9 basalis (CDH2*) populationin
sections of whole-uterus biopsies (n = 2 biologically independent samples) from
donors A13 (proliferative phase) and A30 (secretory phase). ¢, High-resolution
multiplexed smFISH of a section of a whole-uterus biopsy from donor A13
stained for DAPI (white, nuclei), EPCAM (magenta, epithelium), SOX9 (yellow,
epithelium) and CDH2 (red, basalis epithelium) (n = 2 biologically independent
samples). The dotted line highlights the basalis endometrium where signals for
all markers co-localize within the basalis glands. The inset shows a representative
magnified area. Scale bars, 100 pm. d, Dot plot showing normalized,
log-transformed and variance-scaled expression of CXCR4 and CXCLI2 (xaxis) ina
selection of epithelial and mesenchymal cells (y axis) in sScRNA-seq data. Asterisk

denotes asignificant cell-cellinteraction identified through CellPhoneDB
analyses. e, Left, high-resolution multiplexed smFISH of a section of a superficial
biopsy from donor FX1233 showing the expression of DAPI (white, nuclei),
EPCAM (magenta, epithelium), CBR3 (cyan, preGlandular cells) and OPRK1
(yellow, preGlandular cells) (n = 2 biologically independent samples). Top right,
amagnified image of the luminal region with low OPRK1 and CBR3signal. Bottom
right, amagnified image of the glandular region with high and co-localized
OPRK1and CBR3signal. Scale bars, 100 pm. f, Visium spatial transcriptomics data
and an H&E image of the same tissue section. Spot color indicates cell2location-
estimated cell density for the preLuminal, Luminal, preGlandular and Glandular
populationsin asection of a superficial biopsy from donor FX0028 (early
secretory phase; n =2 biologically independent samples) and a section of
awhole-uterus biopsy from donor A30 (mid secretory phase; n=1). Scale

bars,1 mm. g, Schematic illustration of the spatiotemporal complexity of the
endometrial epithelium across the proliferative and secretory phases.
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decidualized stromal cells (dStromal early) were enriched in the early
secretory phase samples and upregulated the progesterone-induced
gene PLCLI (ref. 45) (Fig. 3a,b). The mid decidualized stromal popula-
tion (dStromal mid) mapped to early-mid and mid secretory phase
samples and upregulated DKK1I (Fig.3a,b),aWNT inhibitor crucial for
the differentiation of epithelial secretory glands®. Late decidualized
stromal cells (dStromal late) were present in both mid and late secre-
tory phase samples (Fig. 1f) and upregulated the premenstrual marker
LEFTY2(ref.46) (Fig. 3a). Both the dStromal mid and late populations
downregulated estrogen and progesterone receptors (ESR1and PGR).

We uncovered a putative intricate spatiotemporal regulation
of transforming growth factor beta (TGF[3) signaling (Fig. 3¢). Spe-
cifically, the TGF superfamily receptors were ubiquitously expressed
by all epithelial and stromal cells at all stages of the menstrual cycle
(Extended Data Fig. 6d). Meanwhile, the ligands of TGFf3 and growth
differentiation factor (GDF) subfamilies (TGFBIand GDF7, respectively)
were upregulated by all stromal cells until mid/late secretory phase,
when expression dropped (Fig. 3¢). Interestingly, the activity of TGF3
signaling appeared confined within specific spatial and temporal
boundaries by its antagonists, LEFTYIand LEFTY2.0Ononehand, LEFTY1
was expressed by epithelial cells of the lumen (ciliated and luminal) and
LEFTY2by uSMCs of the myometrium (Fig. 3c), establishing atop-bot-
tomspatial boundary of TGFf3 activity. On the other hand, the temporal
boundary seemed to be determined by the expression of LEFTY2 as
wellas SMAD? (the inhibitor of SMAD proteins, downstream effectors
of TGF3), expressed by the dStromal late population (Fig. 3a) towards
the end of the menstrual cycle (Fig. 3c).

Takentogether, our datasupported apotential risein TGF3, WNT,
insulin*®and retinoic acid* signaling from early stages of the prolifera-
tive phase (Fig. 3d). WNT inhibition (via DDKI) marked the beginning
of the secretory phase with the decidualization of stromal cells. In
the late secretory phase, our data supported a signaling switch in
the use of TGFp signaling, insulin growth factors and retinoic acid
metabolism (Fig. 3c,d). The full collection of cell-cell communication
factors, identified through CellPhoneDB analyses’, can be visualized
inour CellPhoneDBViz portal (https://www.cellphonedb.org/viz/viz.
html?projectid=harmonized_endometrial_atlas&auth=7xWkX47Qa
tox6dikwb-TgA).

Macrophages in endometrial regeneration

Togaininsightsinto the diversity and dynamics ofinnate immune cells
intheregenerationand differentiation of the endometriumin natural
menstrual cycles, we annotated theimmune compartment (n = 32,322
cells and n =24,820 nuclei; Methods). These datasets captured the
three uterine natural killer cell (uNK) populations (uNK1, uNK2, uNK3)
and the two uterine macrophage (uM) populations (uM1 and uM2)
previously identified by usin the endometrium during pregnancy (that
is, decidua)® (Fig. 4a and Extended Data Fig. 8a—e). uM1 expressed
pro-inflammatory genes such as /L1B and EREG, while uM2 expressed
anti-inflammatory genes such as HMOX1 (ref. 52). uM2 also expressed
tissue-resident macrophage markers suchas FOLR2 and LYVEI (ref. 53)
(Extended Data Fig. 8d,e). Differential cell abundance analysis (Sup-
plementary Note 5) demonstrated an increase in the abundance of
uNKI1 cells during the secretory phase, in line with previous reports

of granular endometrialimmune cells proliferating during the secre-
tory phase*** (Fig. 4b and Extended Data Fig. 8f). We did not detect
cell abundance changes of the other immune cell types between the
proliferative and secretory phases.

To deepen our understanding of the roles uMs and uNKs play in
endometrial regeneration, we interrogated their cell-cell communica-
tion withstromal, endothelial and PV cells. We found that the eStromal
MMPs population (characteristic of the menstrual phase) expressed
integrins and cytokines (CCL5, RARRES2) which can bind their cognate
receptors upregulated by uMs (CCR1, CCRL2) (Fig. 4c, Extended Data
Fig. 9a and Supplementary Table 4). This interaction likely supports
the previously described recruitment of uMs to the tissue during men-
struation®**”. BothuM1and uM2 upregulated PDGFB, a protein fromthe
PDGF family, known for its role in wound healing and repair in various
tissues®®*’. In the endometrium, it could operate by binding to the
PDGFRB receptor, which is upregulated by eStromal MMPs and also
presentinthe other stromal cells (Fig. 4c and Extended Data Fig. 9b).
Additionally, uMs upregulated TNF (uM1), as well as growth factors such
as/GF1(uM2) and EREG (uM1). These could stimulate the proliferation
and survival of eStromal MMPs and proliferative eStromal cells by bind-
ing to their corresponding receptors (EGFR, TNFRSFIA, TNFRSF1B and
IGFIR) (Fig. 4c). Finally, both uMs also expressed immunoregulatory
genes (IL10, LGALS9, TREM2) that could enhance anti-inflammatory
responses in the proliferative phase endometrium required for the
characteristic scarless regeneration of this tissue (Fig. 4c).

Angiogenesis is also critical for tissue repair, and macrophages
are known to play a role in this process®. To investigate the potential
interplay between uMs and endometrial vasculature, we first defined
the vascular niche. We identified three subsets of endothelial cells
(venous, arterial and lymphatic) and three subsets of endometrial PV
cells (ePV-1a expressing STEAP4, ePV-1b expressing STC2 and ePV-2
expressing MMPI1) (Extended Data Fig. 8g,h). ePV-2 exhibited tran-
scriptomicsimilarities toendometrial stromal cells, suggesting a transi-
tional population between PV and stromal cells (Extended Data Fig. 1c).

Cell-cell communication analyses predicted signaling between
the vasculature and uMs, and to a lesser extent also with uNK1 cells.
Endothelial cells and ePV-1s expressed multiple extracellular matrix
proteins and cytokines (CCL14, CCL23, CCL26), which potentially could
act torecruit innate immune cells (Extended Data Fig. 9c and Sup-
plementary Table 4). Additionally, PV cells expressed CSF1 (major
macrophage growth factor), which could create a favorable environ-
ment for macrophages, stimulating their differentiation and func-
tion. In turn, uMs expressed multiple growth factor members of the
pro-angiogenic VEGF family (VEGFA in uM1 and VEGFB in uM2) and
vascular remodeling factors (TNF inuM1and OSM®* and CXCLS8 (ref. 63)
inboth uMs), whose cognate receptors (NRP1, NRP2, FLT1, TNFRSFIA-B,
OSMR, LIFR, ACKRI) were expressed by the endothelial cells (Fig. 4e
and Extended Data Fig. 9¢,d). Among the innate lymphocytes, uNK1
was the only cell subset that expressed pro-angiogenic factors (VEGFB
and PIGF), although at lower levels than uMs (Fig. 4e).

Altogether, our analyses suggested that uMs are the major endo-
metrial immune cells involved in blood vessel formation, wound
healing and anti-inflammatory responses (Fig. 4f,g). The latter two
processes are likely to aid the stromal cells in healing without scarring.

Fig.3 | Endometrial stromal cell heterogeneity and stromal-epithelial

cell crosstalk across the menstrual cycle. a, Dot plot showing normalized,
log-transformed and variance-scaled expression of genes (x axis) characteristic
ofthe identified stromal cell states (y axis) in scRNA-seq data. b, Visium spatial
transcriptomics data and an H&E image of the same tissue section are shown.
Spot color indicates estimated cell state density for a specific cell population in
each Visium spot as computed by cell2location. Spatial mapping of the eStromal,
dStromal early and dStromal mid cell populations is shown in a section of
awhole-uterus biopsy from donor A13 (top panel, proliferative phase;
arepresentative image of n = 2 independent samples from the same donor),
asection of a superficial biopsy from donor FX0033 (middle panel, early

secretory phase; arepresentative image of n = 2 biologically independent
samples) and a section of a whole-uterus biopsy from donor A30 (bottom panel,
mid secretory phase; arepresentative image of n = 2independent samples from
the same donor). Mapping of menstrual cycle phase-relevant epithelial cell
populations is also shown in the niche composition panel. Scale bars, 1 mm.

¢, Dot plot showing normalized, log-transformed and variance-scaled expression
of genes coding for ligands involved in TGFB, insulin, retinoic acidand WNT
signaling (xaxis) in epithelial and mesenchymal cell states (y axis) in SCRNA-

seq data.d, Schematic illustration of the temporal complexity of endometrial
stromal cells and signaling pathways across the proliferative and secretory
phases. RA, retinoic acid.
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Altered stromal-immune cell homeostasis in endometriosis

We next investigated whether cellular composition of the endome-
trium differs between endometriosis cases and controls during natural
menstrual cycles, as we did not detect any endometriosis-specific cell

types (Supplementary Note 5). After accounting for menstrual cycle
phase, differential abundance analysis of our nuclei dataset revealed
lower abundance of decidualized stromal cells (dStromal mid) and
higher abundance of uM1 macrophagesinendometriosis cases (Fig. 5a).
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Fig. 4 |Predicted ligand-receptor interactions and role of macrophagesin
endometrial repair and regeneration. a, Left, UMAP projections of scRNA-seq
datafor 32,322 immune cells colored by cell type. Right, UMAP projections of
snRNA-seq data for 24,820 immune cells/nuclei colored by cell type.

b, Beeswarm plot of the distribution of log fold change between the proliferative
and secretory phases in neighborhoods containing immune cells from different
celltypes in scRNA-seq data. Differentially abundant neighborhoods at log fold
change > 2.5 and spatial FDR < 0.1are colored. ¢, Dot plot showing normalized,
log-transformed and variance-scaled expression of genes (y axis) in uNK and uM
cell states (xaxis) in scRNA-seq data. Asterisk denotes significantly upregulated
expression at FDR < 0.05.d, Dot plots showing normalized, log-transformed
and variance-scaled expression of signaling molecules and receptors (y axes)
upregulated in uNK, uM and stromal cell states (x axes) in scRNA-seq data.
Asterisk denotes significantly upregulated expression at FDR < 0.05. The
predicted cell-cell communication between uNK, uM and stromal cell states,

includingits likely role, is shown by differently colored arrows. e, Dot plot
showing normalized, log-transformed and variance-scaled expression of pro-
angiogenic signaling molecules (y axis) upregulated in uNK and uM cell states
(xaxis) in scRNA-seq data. Asterisk denotes significantly upregulated expression
atFDR < 0.05.f, Schematicillustration of macrophage and stromal cell signaling
during the menstrual and proliferative phases, likely involved in macrophage cell
recruitment, increasing wound healing abilities and dampening inflammation
instromal cells. g, Schematic illustration of macrophage, endothelial celland PV
cellsignaling likely involved in macrophage recruitment and angiogenesis. Cells
from donors on hormones and donors with endometriosis were excluded from
analyses showninb-e of this figure. Asterisk denotes significantly upregulated
expression FDR < 0.05. cDC, conventional dendritic cells; FDR, false discovery
rate; ILC3, innate lymphoid cell type 3; pDC, plasmacytoid dendritic cell;

T, regulatory T cells.
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confidence interval.

Interestingly, decidualized stromal cells (dStromal early and dStromal
mid) and macrophages (uM1and uM2) were also identified as the top
cell types enriched for the expression of genes positionally close to
endometriosisrisk variants when performing functional GWAS (fGWAS)
analysis across the HECA cell types (Fig. 5b and Supplementary Note 6).
The fGWAS analysis provided cellular contextto alarge-scaleendome-
triosis GWAS meta-analysis®.

To further explore the four cell populations identified as
endometriosis-relevant, we performed differential gene expression
analyses between controls and endometriosis cases (Supplementary
Tables5and 6 and Supplementary Note 7). In the stromal compartment
of endometriosis cases, we observed changes in gene expression that
are likely to alter the WNT and insulin signaling pathways (Fig. 5¢).

Specifically, GREBI (a GWAS-linked gene induced by WNT signaling®**°)
was significantly upregulated while DKKI (WNT inhibitor) was signifi-
cantly downregulated in both dStromal early and dStromal mid cells
in endometriosis. These changes suggested sustained WNT signaling
in the secretory phase endometrium of donors with endometriosis.
Similarly, we observed a dysregulation of insulin growth factors /GF1
(aGWAS:-linked gene) and /GF2.In dStromal early and dStromal mid pop-
ulations, IGF1wassignificantly upregulated while IGF2was significantly
downregulated inendometriosis cases. /GF1and IGF2 play rolesin cell
proliferationand differentiation®®®, suggesting dysregulation of these
processes may occur in endometriosis. In the macrophage compart-
ment, andinline with previous reportsin mice®®, we observed a signifi-
cantupregulation of IGF1in uM2 of endometriosis cases (Fig. 5d).Inthe

Nature Genetics | Volume 56 | September 2024 | 1925-1937

1933


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-024-01873-w

uM1 population, a significant increase in expression of inflammatory
genes (TNFRSFIB, CEBPD) was detected in endometriosis, in keeping
with previousreports ofincreased inflammation in endometriosis®*°.
Taken together, the identified shifts in cell abundance,
disease-relevant populations through fGWAS and differential gene
expression analyses suggest dysregulation of stromal-immune cell
homeostasis in the endometrium of women with endometriosis.

Discussion

Globally, millions of women are affected by endometrial/uterine disor-
ders”**”! yet the endometrium and the role of its cellular heterogene-
ityinthese pathologies have been hugely understudied compared with
other humantissues and diseases’. In this study, we present the HECA,
acomprehensive cellular atlas of the humanendometrium assembled
forindividuals with/without endometriosis to date. The HECA provides
acrucial step towardsimproving our understanding of endometrial cell
heterogeneity in health and disease as it: (1) incorporates the largest
number of cells and individuals; (2) presents consensus cell annota-
tion across studies; (3) provides the most granular cell state annota-
tion and cell spatial location in situ; (4) offers a platform for easy and
rapid annotation of future scRNA-seq studies of the endometrium;
and (5) enables the contextualization of genetic association screens
for endometrial/uterine disorders.

By comprehensively analyzing and spatially mapping ~614,000
high-quality cells and nuclei from 121individuals, we substantially sur-
passed the number of donors and cells profiled by the initial, pioneering
endometrial single-cell studies' . The large sample size enabled us
to identify previously unreported cell states at the single-cell level,
including a population of CDH2' (that is, N-cadherin) epithelial cells.
This population’s marker gene expression®**, localization within the
basalis glands and predicted cell-cell communication with a basalis
fibroblast populationindicated that these cells could be the previously
described epithelial stem/progenitor cells. Defining the transcriptomic
profile of these cells opens new avenues for exploring their roleinendo-
metrial repair and regeneration, as well as disease pathophysiology.
Additionally, we captured multiple previously unreported transitory
cell states (for example, preLuminal, preGlandular, subsets of decidu-
alized stromal cells) during the early/mid secretory phase—adynamic
period crucial for endometrial receptivity preparation in response to
rising progesterone levels. A tightly regulated cellular response to the
changing levels of ovarian hormones is essential for menstrual cycle
progression, maintenance of tissue homeostasis and fertility. Thus,
theidentified cell states could present promising targets for therapyin
endometrial/uterine disorders that are characterized by the disruption
of hormone-dependent downstream signaling and cellular responses”.

Aside from ovarian hormones, locally produced paracrine factors
are essential for menstrual cycle progression. We provided a detailed
map (and an interactive platform) of the predicted in vivo cell-cell
communication across the cycle, whichisanimportantaddition to the
body of existing knowledge predominantly derived from in vitro cell
cultures™ "¢, Of particular interest is how TGFp activity is controlled
by various epithelial and mesenchymal cell states in both space and
time. The identification and detailed description of in vivo signaling
pathways involved in menstrual cycle progression could now be used
torefine the media used for culturingendometrial organoids, currently
supplemented with TGF inhibitors’”’%, Incorporating the spatial and
temporal TGF signaling could improve the physiological response and
differentiation of these cells when treated with hormones mimicking
the menstrual cycle, and thus reduce some of the previously observed
differences between in vivo and in vitro endometrial cells”. We also
revealed a range of interactions by which uMs may aid the process of
scarless endometrial regeneration, supporting previous research pro-
posingarole for uMsin this process’®. Interactions between uMs and
stromal cells were most evident around menstruation, emphasizing
the crucial role of uMs during this phase®?. To further dissect the dialog

between macrophages and stromal cells during endometrial repair and
regeneration, additional samples from the menstrual phase should be
analyzed. Understanding whether disruption of these macrophage-
stromal interactions contributes to widely common menstrual disor-
ders (for example, abnormal uterine bleeding) could pave new paths
for the development of immunology-based treatment.

Lastly, we demonstrated the utility of the HECA to give cellular
context toalarge-scale endometriosis GWAS meta-analysis®’. We iden-
tified two subtypes of decidualized stromal cells and macrophages
as endometriosis-relevant. The observed dysregulation of stromal-
immune cell homeostasis is in line with previous reports!'®20-2723:8384
but, overall, findings have beeninconsistent. Our current findings sug-
gest arole of uM1 and uM2 macrophage populations in contributing
to an abnormal inflammatory environment within the endometrium
of patients with endometriosis. At the messenger RNA level, our data
indicated sustained WNT and dysregulated insulin signaling to be
a feature of the dStromal early/mid populations in endometriosis
cases. This is in line with previous observations of downregulation
of IGF2 and impaired WNT inhibition in the endometrium of women
with endometriosis during the secretory phase® . We previously
showed thatinhibition of WNT signaling by stromal cells in response
to progesterone is crucial in supporting the differentiation of glan-
dular epithelium®. Our current findings suggest that this process
may be altered in endometriosis. Yet, the observed differences in
expression were subtle (that s, individual genes exhibited small fold
changes likely due to their combinatorial contribution), requiring
further validation. The involvement of WNT and insulin pathways in
progesterone-mediated cellular responses could now be tested using
three-dimensionalin vitro models of the endometrium encompassing
both stromal and epithelial cells®,

In summary, the HECA is a large-scale integrated reference atlas
of the human endometrium, providing aconceptual framework upon
which future studies can be built. With all resources publicly available
inaneasy-to-access interactive format, the HECA offers a platform/tool
foradvancingresearchinto endometrial physiology and disorders, as
well as guiding the development of physiologically relevant in vitro
model systems of the human endometrium.
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Methods
Patient samples
Superficial endometrial samples collected for the Mareckova et al.
dataset came from four studies: (1) Endometriosis Oxford (ENDOX), (2)
Fibroids and Endometriosis Oxford (FENOX), (3) the Sanger Human Cell
Atlasing Project and (4) the Immunology and Subfertility study. Both
ENDOX (REC: 09/H0604/58) and FENOX (REC:17/SC/0664) obtained
ethicalapproval from the Central University Research Ethics Commit-
tee, University of Oxford. Yorkshire & The Humber-Leeds East Research
Ethics Committee approved the Sanger Human Cell Atlasing Project
(REC:19/YH/0441). The Immunology of Subfertility study (REC: 08/
H0606/94) was approved by the Oxford Research Ethics Committee
C.Inall instances, written, informed consent was provided by study
participants before obtaining tissue samples and phenotypic data.
Full thickness uterine wall samples were obtained from deceased
transplant organ donors after ethical approval (REC:15/EE/0152, East of
England-Cambridge South Research Ethics Committee) and informed
consent from the donor families. The uterus was removed within1 h of
circulatory arrest.

Donor inclusion criteria and endometriosis evaluation

Only individuals during their reproductive years were recruited and
were considered as having ‘natural cycles’ only if they had not taken
any hormonal treatment at least 3 months before sample collection.
Donorswithendometrial cancer were excluded. Inaddition, we aimed
to exclude patients with other benign uterine/endometrial patholo-
gies (thatis, fibroids, polyps, adenomyosis, hyperplasia). However, in
some cases (n =15), later histological evaluations revealed the pres-
ence of these pathologies (Supplementary Table 1). Patients taking
partinthe ENDOX and FENOX studies (n = 69) were undergoing lapa-
roscopic surgery for suspected endometriosis or infertility reasons
at the John Radcliffe Hospital, Oxford. At the beginning of surgery,
a pipelle biopsy of the endometrium was taken and the presence/
absence of endometriosis, including endometriosis stage as per the
revised American Society for Reproductive Medicine (rASRM stages
I-1V), was assigned upon surgical evaluation during the laparoscopy.
Four additional control samples (that is, samples from donors with-
outendometriosis) came from the Sanger Cell Atlasing Project study
(n=3) and the Immunology of Subfertility study (n=1). Absence of
endometriosis was determined based on the clinical and medical
history of the patients. For the Sanger Cell Atlasing Project, patients
attended a coil clinic for contraceptive reasons. During the coil inser-
tion procedure, a biopsy of the endometrium was taken in an outpa-
tient setting. For the Immunology and Subfertility study, patients
were undergoingin vitro fertilization and anendometrial biopsy was
taken in an outpatient setting one cycle before the patient became
pregnant and had alive birth.

Assignment of menstrual stage

Optimal cutting temperature (OCT) blocks were sectioned at 10 pm
thickness and hematoxylin and eosin (H&E)-stained following standard
protocols. Menstrual phase was assigned based on histological evalua-
tionby twoindependent pathologists. Where this was not possible, the
menstrual phase was assigned based on the transcriptomic data and
cellular profiles of the samples (Supplementary Table 1).

Tissue processing

Superficial biopsies of the endometrium were collected using the
Pipellesampling device and immediately transferred intoice-cold PBS
solution (Gibco, cat. no.10010023). The endometrial tissue was then
cutintosmaller pieces and either movedinto a cryovial and snap-frozen
on dry ice (for single-nuclei extraction and processing) or moved
into ice-cold HypoThermosol FRS solution (Sigma Aldrich, cat. no.
H4416) and stored at 4 °C until further processing (either to be digested
fresh or cryopreserved and digested later for single-cell processing).

Where possible and sample size allowed, a small piece of tissue was
also embedded in OCT compound (ThermoFisher Scientific, cat. no.
23730571) inside acryomold and rapidly frozenindry ice/isopentane
slurry for histological evaluation and analyses.

Whole-uterus samples used for scRNA-seq and imaging analy-
ses were stored in HypoThermosol FRS at 4 °C until processing. For
imaging analyses, the samples were further dissected, embedded
in OCT media and rapidly frozen in dry ice/isopentane slurry. For
scRNA-seq (donor A70), toenrich endometrial cells, the endometrium
was excised from the myometrium using scalpels and digested as
detailed below.

Further details on tissue cryopreservation and dissociation for
single cells/nuclei are described in Supplementary Note 8.

H&E staining and imaging

Fresh frozen sections were removed from —80 °C storage and air-dried
before being fixed in10% neutral buffered formalin for 5 min. After rins-
ing with deionized water, slides were dipped in Mayer’s hematoxylin
solution for 90 s.Slides were completely rinsed in 4-5washes of deion-
ized water, which also served to blue the hematoxylin. Aqueous eosin
(1%) was manually applied onto sections with a pipette and rinsed with
deionized water after1-3 s.Slides were dehydrated through an ethanol
series (70%,70%,100%,100%) and cleared twicein100% xylene. Slides
were coverslipped and allowed to air dry before being imaged on a
Hamamatsu Nanozoomer 2.0HT digital slide scanner.

Multiplexed smFISH and high-resolution imaging

Large tissue section staining and fluorescent imaging were conducted
largely as described previously®’. Sections were cut from fresh frozen
samples embedded in OCT at a thickness of 10 pm using a cryostat,
placed onto SuperFrost Plus slides (VWR) and stored at —80 °C until
stained. Tissue sections were then processed using a Leica BOND RX
to automate staining with the RNAscope Multiplex Fluorescent Rea-
gentKitv2 Assay (Advanced Cell Diagnostics, Bio-Techne), according
to the manufacturers’ instructions. Probes used are found in Sup-
plementary Table 9. Before staining, tissue sections were post-fixed
in 4% paraformaldehyde in PBS for 15 min at 4 °C, then dehydrated
through aseries of 50%, 70%,100% and 100% ethanol, for 5 min each.
Following manual pre-treatment, automated processing included
epitope retrieval by protease digestion with Protease IV for 30 min
before probe hybridization. Tyramide signal amplification with Opal
520, Opal 570 and Opal 650 (Akoya Biosciences), TSA-biotin (TSA Plus
BiotinKit, Perkin EImer) and streptavidin-conjugated Atto 425 (Sigma
Aldrich) was used to develop RNAscope probe channels. Stained sec-
tions were imaged with a Perkin EImer Opera Phenix High-Content
Screening System, in confocal mode with 1 um z-step size, using a
%20 (numerical aperture (NA) 0.16,0.299 um per pixel) or x40 (NA 1.1,
0.149 pm per pixel) water-immersion objective. Channels: DAPI (exci-
tation 375 nm, emission 435-480 nm), Atto 425 (excitation 425 nm,
emission 463-501 nm), Opal 520 (excitation 488 nm, emission 500-
550 nm), Opal 570 (excitation 561 nm, emission 570-630 nm), Opal
650 (excitation 640 nm, emission 650-760 nm). Image stitching:
confocal image stacks were stitched as two-dimensional maximum
intensity projections using proprietary Acapella scripts provided by
Perkin Elmer.

10x Genomics Chromium GEX library preparation and
sequencing

Both cells and nuclei undergoing scRNA-seq and snRNA-seq were
loaded according to the manufacturer’s protocol for the Chromium
Single Cell 3’Kit v.3.0 and v.3.1(10x Genomics) to attainbetween 2,000
and 10,000 cells/nuclei per reaction. Libraries were sequenced, aiming
at a minimum coverage of 50,000 raw reads per cell, on the lllumina
Novaseq 6000 system, using the sequencing format: read 1: 28 cycles;
i7index:10 cycles; i5index: 10 cycles; read 2: 90 cycles.
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10x Genomics Visium library preparation and sequencing

We generated 10x Genomics Visium transcriptomic slides from two
superficial biopsies. Briefly, 10 pm cryosections were cut and placed
on Visium slides vl 3’. These were processed according to the manu-
facturer’s instructions. Briefly, sections were fixed with cold metha-
nol, stained with H&E and imaged on aHamamatsu NanoZoomer S60
before permeabilization (20 minand 28 min), reverse transcriptionand
complementary DNA synthesis using a template-switching protocol.
Second-strand cDNA was liberated from the slide and single-indexed
libraries prepared using a10x Genomics PCR-based protocol. Libraries
were pooled and sequenced on a Novaseq 6000, with the following
sequencing format: read 1: 28 cycles; i7 index: 10 cycles; i5 index: 10
cycles; and read 2: 90 cycles.

External human endometrial scRNA-seq and Visium datasets
We collected raw sequencing data from previously published human
endometrial scRNA-seq datasets. Specifically, we downloaded pub-
licly available .fastq files either from the Gene Expression Omni-
bus (GEO) or ArrayExpress. These datasets included: (1) Wang et al.
(GEO accession number GSE111976)", (2) Garcia-Alonso et al. (Array
Express accession numbers E-MTAB-10287 and E-MTAB-9260)", (3)
Tan et al. (GEO accession number GSE179640)', (4) Lai et al. (GEO
accession number GSE183837)%, (5) Fonseca et al. (GEO accession
number GSE213216)" and (6) Huang et al. (GEO accession number
GSE214411)™. Only samples profiling eutopic endometrium from
women duringtheir reproductive years were included. Samples from
endometriosis lesions or from menopausal women were excluded.
We also collected scRNA-seq datafrom human cervical samples from
the Genome Sequence Archive of the National Genomics Data Center
(accession number PRJCA008573)°.

For spatial transcriptomics analysis, we used the 10x Genomics
Visium from two full thickness uterus samples previously generated
by us, available at ArrayExpress (accession number E-MTAB-9260).

Alignment and quantification of scRNA-seq/snRNA-seq data
Reads fromboth the newly generated scRNA-seq/snRNA-seq libraries
and external datasets were alignment to the 10x Genomics’ human
reference genome GRCh38-2020-A, followed by cell calling, transcript
quantification and QC using the Cell Ranger Software (v.6.0.2; 10x
Genomics) with default parameters. Cell Ranger filtered count matrices
were used for downstream analysis.

Downstream scRNA-seq and snRNA-seq analysis

Donor demultiplexing and doublet identification. For 84 of
the newly generated libraries (26 in the scRNA-seq and 58 in the
snRNA-seq datasets) we multiplexed cell suspensions from two
different donors. To ensure that we could confidently assign cells
back to their donor, we genotyped some donors as described in
Supplementary Note 9, and then pooled sample combinations in a
way that each scRNA-seq and snRNA-seq library contained at least
one genotyped donor.

Toassign each cell/nucleusinthe scRNA-seqand snRNA-seqlibrar-
ies back to its donor-of-origin, we genotyped each barcode. Specifi-
cally, we called the single nucleotide polymorphisms (SNPs) in the
reads from each barcode and piled them up using the cellSNP tool
v.1.2.2 (ref. 90). Here, reads were genotyped from the Cell Ranger BAM
files using a reference list of human common variants from the 1000
Genome Project (hg38 version with minor allele frequency > 0.0005)
whichwe downloaded from https://sourceforge.net/projects/cellsnp/
files/SNPIlist. Once the cellsin scRNA-seq and snRNA-seq libraries were
genotyped, we linked them back to their donor-of-origin genotype
(obtained using Illumina Global Array) using vireoSNP v.0.5.8 (ref. 91)
with default parameters (n_donor = 2). Barcodes classified as either
‘doublet’ (that is, containing the two genotypes) or ‘unassigned’ were
discarded in downstream analysis.

Doublet detection based on transcriptional mixtures. We quantified
cell-doubletlikelihood for each barcode with Scrublet software v.0.2.1
(ref. 92) on a per-library basis. We used a two-step diffusion doublet
identification followed by Bonferroni false discovery rate correction
and a significance threshold of 0.01, as described in ref. 93. Barcodes
estimated as doublets were not excluded from theinitial analysis, and
instead these were kept in the downstream analysis and used to identify
doublet-enriched clusters.

Quality filters, batch correction and clustering. For both scRNA-seq
and snRNA-seq libraries, we used the filtered count matrices from
Cell Ranger 6.0.2 for downstream analysis and analyzed them with
Scanpyv.1.7.0 (ref. 94), with the pipeline following their recommended
standard practices. We applied stringent QC to further filter the cells
called by Cell Ranger to retain only high-quality cells. Specifically, we
excluded cells either (1) expressing fewer than 1,000 genes or (2) with
a mitochondrial content higher than 20%. For some datasets, these
filters discarded more than 50% of the initial called cells.

Next, we flagged cell cycle genes using a data-driven approach as
describedinrefs. 93,95. Todo so, after converting the expression space
tolog(CPM/100 +1), where CPM is counts per million, we transpose the
object togene space, performing principal component analysis (PCA),
neighbor identification and Leiden clustering. The gene members of
the gene cluster encompassing well-known cycling genes (CDK1, MKI67,
CCNB2and PCNA) were all flagged as cell cycling genes, and discarded in
eachdownstreamanalysis. In parallel, we also used the scanpy function
‘score_genes_cell_cycle’toinfer the cell cycle stage of each cell (that s,
G1,G2/Mor S) that was later used to interpret the clusters.

Next, we generated an integrated manifold for scRNA-seq and
snRNA-seq datasets separately. The scRNA-seq manifold included
data from six previously published studies as well as the scRNA-seq
datanewly generated by us. The snRNA-seq exclusively contains newly
generated datafor this study. To minimize cell cycle bias, the previously
flagged cell cycle genes were excluded. Theintegrated manifolds were
generated using single-cell Variational Inference (scVI) v.0.6.8 (ref. 96),
with both the donor and study ID (that is, the dataset—for scRNA-seq
only) as batches. All the remaining parameters were kept as default,
with n_latent =32, n_layers = 2. The scVI low dimensional space was
estimated on the top 2,000 most highly variable genes in each data-
set, whichwere defined using Seurat v3 flavor on the raw counts. With
the resulting scVI-corrected latent representation of each cell, we
estimated the neighbor graph, generated a uniform manifold approxi-
mation and projection (UMAP) visualization and performed Leiden
clustering. The resolution of the clustering was adjusted manually so
thatall the previously described endometrial cell states” were resolved.

The same integration strategy described in the paragraph above
was used to reanalyse each of the four main cell lineages (that is, epi-
thelial, mesenchymal,immune and endothelial) to further resolve the
cellular heterogeneity in those compartments. Here, we subset the
cellstothoseinthelineage and repeated scVlintegration using the top
2,000 most highly variable genes within each lineage. The donor and
thestudy ID were kept as batches, with default parameters, n_latent = 64
and n_layers = 2. The resulting scVI-corrected latent representations
were used to derive per-lineage UMAPs and perform Leiden cluster-
ing. For the reanalysis of the immune compartment, donors taking
exogenous hormones (Tan et al. dataset’®) were excluded due to inte-
gration challenges.

Annotation of cell types

We performed afull re-annotation of the cell clustersinthe integrated
scRNA-seq manifold. First, we carried out a new QC round to exclude
clusters that were likely driven by technical artefacts (that is, low QC
cells or doublets). Briefly, we flagged as low QC those clusters that (1)
express an overall lower number of genes, (2) express an overall lower
number of counts, (3) display a higher than average mitochondrial or
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nuclear RNA content and, importantly, (4) do not express any distinc-
tive gene (and thus are not representing any independent biological
entity). Next, we flagged as doublets those clusters that met the follow-
ing criteria: (1) exhibit higher scrublet doublet score; (2) express marker
genes from multiple lineages (for example, display both epithelial and
immune markers) and (3) do notexpress any distinctive gene. Distinc-
tive marker genes were identified using the Term Frequency-Inverse
Document Frequency approach (TF-IDF), asimplemented in the SoupX
package v.1.5.0 (ref. 97).

Next, we assigned cell type labels to remaining high-quality clus-
ters. General lineage annotation (that is, epithelial, mesenchymal,
endothelial and immune) was done on the main manifold. Cell state
annotation was inferred from the per-lineage manifold (that is, from
reanalyzing the cellsin each lineage, as described in the previous sec-
tion), taking into account the following variables: (1) the menstrual
cycle phase bias (or any other clinical variable such as exogenous
hormones, endometriosis and so on), (2) the expression of previously
described markers, (3) the differentially expressed genes and (4) the
spatial location, either by performing smFISH or by deconvoluting
the cellular composition of Visium spots. Cell type labels defined in
the per-lineage manifold were then visualized on the general manifold.

Because of the higher gene coverage of the scRNA-seq data, cell
type identification and annotation were done primarily on the inte-
grated scRNA-seq dataset. To annotate the snRNA-seq clusters, we
trained a Support Vector Machine (SVM) classifier (sklearn.svm.SVC)
on the scRNA-seq dataset and transferred labels onto the denoized
(thatis, decontaminated of ambient RNA) snRNA-seq dataset. Denois-
ing of snRNA-seq was done with DecontX from the R celda package
v.1.6.1. Predicted cell type annotations on snRNA-seq were validated
or disproved by looking at the expression of marker genes. Five sam-
ples underwent both single-cell and single-nuclei profiling and were
further used as technical replicates to evaluate the agreement between
nuclei-cell annotations.

To annotate immune cells in our datasets we first used celltypist
v.0.1.9, whichis alogistic regression classifier optimized by the stochas-
ticgradient descentalgorithm?®. We trained the model by: (1) using both
the ‘immune high’and ‘immune low’ models built into cell types and (2)
next training our own model on the immune cells from the endometrial
cell atlas®™. After projecting labels from all three datasets, we refined
the annotations using expression of bona fide markers on each cluster.

Query-to-HECA mapping

We used the scArches model surgery framework® to project new samples
profiling human cervix from control donors onto the same latent space
assingle-cell HECA. See Supplementary Note 2.3 for further details.

Alignment and quantification of Visium data

The newly generated 10x Visium spatial sequencing data were pro-
cessed using Space Ranger Software (v.2.0.1) to identify the spots
under tissue, align reads to the 10x Genomics human reference genome
GRCh38-2020-A and quantify gene counts. Spots were automatically
aligned to the paired H&E images by Space Ranger software. All spots
under tissue detected by Space Ranger were included in downstream
analysis.

Downstream analysis of Visium data

Location of cell types in Visium data. We spatially mapped the cell
types from the scRNA-seq dataset on the Visium slides with cell2loca-
tion tool v.0.06-alpha (ref. 100). We deconvoluted both the Visium
slides newly generated in this study from superficial biopsies and the
ones downloaded from E-MTAB-9260 covering full thickness uterus.
Asreference, we used the cell type signatures from the scRNA-seq data-
set, subsetting the cells to those expressing more than 2,000 genes.
Cell2location was run with default parameters, with the exception of
cells_per_spot which was set to 20. Each Visium section was analyzed

separately. The estimated abundance for each cell type was visualized
following the cell2location tutorial.

Cell-cell communication analysis with CellPhoneDB

Because two cell types can only interact paracrinally or juxtacrinally if
they co-localize in space and time, we first manually classified the cell
typesinto the spatiotemporal microenvironments where they coexist
(forexample, endothelial and PV cells coexist in the vessels, while preG-
landular cells coexist with dStromal early cellsin the functionalis layer
oftheearly secretory endometrium). Spatial location was derived from
previous knowledge, smFISH experiments or cell type deconvolution
of Visium spots with cell2location. The temporal location was directly
derived from the menstrual phase where the cell types are detected.

Toidentify paracrine or juxtacrineinteractions between the cells
co-localizing in an endometrial microenvironment, we used the dif-
ferentially expressed genes (DEGs)-based method of CellphoneDB
v.4.0.0 (ref. 101). Using this method, we retrieved interacting pairs of
ligands and receptors meeting the following requirements: (1) all the
interacting partners were expressed by at least 10% of the cell type
under consideration; (2) the interacting cell type pairs share an endo-
metrial microenvironment and (3) at least one of the interacting part-
ners (for example, either the ligand or the receptor) was significantly
upregulatedinthe corresponding cell state of alineage (Wilcoxon tests;
adjusted P< 0.01and alog, fold change > 0.75). Differential expression
analysis was performed on a per-lineage basis to identify the genes
specifically upregulated in a cell state compared with the other cell
statesinthe samelineage. Donors under exogenous hormonal therapy
were excluded from the analysis. These interactions between HECA
cell types can be iteratively queried via the CellPhoneDBViz browser
athttps://www.reproductivecellatlas.org.

The interactions identified were further tested by the LIANA+
(ref.102) tool. LIANA+ uses anintegrative database of ligand-receptor
interactions (including the CellphoneDB database) and computes
a combined score by ranking and aggregating the ligand-receptor
interaction prediction from multiple statistical frameworks (includ-
ing the generic CellPhoneDB statistical analysis). We ran LIANA+ on
each endometrial microenvironment, set specificity_rank < 0.2 as
our significance threshold and report the validated cellular inter-
actions in Supplementary Table 4. The full table of interactions
retrieved by LIANA+ can be found at https://github.com/ventolab/
HECA-Human-Endometrial-Cell-Atlas/tree/main/cellphoneDB.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Datasets are available from ArrayExpress (www.ebi.ac.uk/array-
express), with accession numbers E-MTAB-14039 (scRNA-seq and
snRNA-seq) and E-MTAB-14058 (Visium spatial transcriptomics). Mul-
tiplexed smFISH images are available from BioStudies (www.ebi.ac.uk/
biostudies), with accession number S-BIAD1182. All data are available
for public access. scRNA-seq and snRNA-seq datasets to reproduce
UMAPs and dot plots can be accessed and downloaded through the
web portal: https://www.reproductivecellatlas.org/endometrium_
reference.html.

Code availability
All the code used for data analysis is available at: https://github.com/
ventolab/HECA-Human-Endometrial-Cell-Atlas.
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Extended Data Fig. 1| Single-cell RNA-sequencing datasets of the Human
Endometrial Cell Atlas (HECA) and the cervix. a, UMAP projections of SCRNA-
seq data for HECA coloured by cell lineage, dataset, menstrual cycle, cell cycle
phase and biopsy type. b, Dot plot showing normalised, log-transformed and
variance-scaled expression of genes (x-axis) characteristic of the main cell
lineages (y-axis) in the HECA. ¢, Dot plot showing normalised, log-transformed
and variance-scaled expression of genes (x-axis) characteristic of mesenchymal
and endothelial cells (y-axis) in the HECA. d, Bar plot showing the cellular
composition of endometrial biopsies in the different menstrual cycle groups
(y-axis). e, UMAP projection of a scANVIrepresentation of the HECA coloured by
the cell states identified. Red dotted-lined shapes outline the MUCS5B, KRT5 and
HOXA13 populations. f, UMAP projection of the Liu et al.** scRNA-seq dataset of
human cervix coloured by Liu’s clusters and the four main cell lineages. g, Dot
plot showing normalised, log-transformed and variance-scaled expression of
genes (x-axis) characteristic of the cell clusters identified in the Liu et al.* cervix
dataset by the authors (y-axis). Purple rectangles highlight the epithelial and

mesenchymal clusters that expressed markers characteristic of the MUC5B,
KRT5 and HOXA13 populations defined in the HECA. h, UMAP projection of the
mapping of the Liu et al. *° cervix dataset onto the scANVI representation of

the HECA coloured by either the endometrial cell states identified in the HECA
or the cervix cell states Liu et al.*° (grey). Red dotted-lined shapes outline the
MUCS5B, KRT5 and HOXA13 populations of the HECA. i, UMAP projection of the
mapping of the Liu et al.*® cervix dataset onto the scANVI representation of the
HECA coloured by the matched cervix cell clusters identified by Liu et al.”. Red
dotted-lines outline the MUC5B, KRT5 and HOXA13 populations of the HECA.
dStromal, decidualised stromal cells; ePV, endometrial perivascular cells;
eStromal, endometrial stromal cells specific to proliferative phase; HECA, human
endometrial cell atlas; MMPs, matrix metalloproteinases; NK, natural killer cells;
scRNA-seq, single-cell RNA-sequencing; scANVI, single-cell ANnotation using
Variational Inference; T, T cells; UMAP, uniform manifold approximation and
projection; uSMCs, uterine smooth muscle cells.

Nature Genetics


http://www.nature.com/naturegenetics

Article https://doi.org/10.1038/s41588-024-01873-w

Proportion of each cellype Proportion of each cell type
a (scRNA-seq datasets) c (Mareckova snRNA-seq dataset)
Wang_SAMN 15049051 i | 1 FX9027 ———————————— T ]
Wang_SAMN15049050 I— FX9024 — -
Wang_SAMN15049049 1 FX9022 [ -
Wang_SAMN15049048 "N FX9021 -
Wang_SAMN15049047 {s— 1 FX9020 {mm -
Wang_SAMN15049046 L FX9018 w1 =
Wang_SAMN15049045 I u FX9016 1 —
Wang_SAMN15049044 4 m - u FX9014 {momm  mem - I
Wang_SAMN15049043 1 FX9013 {m m —
Wang_SAMN15049042 {smmmms - FX9012 m —
Tan_EQ9 jummmmmi  mm [T —] FX9011 .
Tan_E08 4= mm u — FX9010 1
Tan_EQ7 {mm E— - FX9009 -—
Tan_E06 ] - FX9008 [
Tan_E05 = - FX9007 {mi I —
Tan_E04 {mm wm I —— FX9006 -
Tan_E03 4 mem |— L — FX9005 ]
Tan_E02 — FX1236 s om [ —
Tan_EO01{1 —_— FX1233 ]
Tan_C03{m I — FX1223 3 o e— | — —
Tan_C02 - - L = FX1215 ]
Tan_CO01 {mwmi - -— — FX1205 {mm -
Mareckova_SEQ6 i | — FX1191 41 | E—
Mareckova_SE03 n FX1170 -
Mareckova_SE02 - - e E—— [ — FX1163 -—
Mareckova_FX9006 1 FX1160 {u— -
Mareckova_FX1289 [ FX1158 fum — —
Mareckova_FX1285 — FX1156 -
Mareckova_FX1259 . FX1150 frmm
Mareckova_FX1254 {u [ FX1146 -
= Mareckova_FX1249 1 _ Extiat =
9] Mareckova_FX1176 —— - & FX1136 fu-wmmn
S Mareckova FX1156 | § FX1130 s —
a Mareckova_FX1146 " A FX1129 mommm  — —— —
Mareckova_FX1125 - FX1125 fm -
Mareckova_FX1119 n - FX1122 -
Mareckova_ES345 " FX1119 I | — -
Mareckova_A70{= — FX1111 {mmw - ]
Lai_GSM5572240fmm e | FX1106 — —
Lai_GSM5572239 " FX1104 — —
Lai_GSM5572238 1 FX1101 @ -
Huang_GSM6605440 T | T ] FX1100 —
Huang_GSM6605439 - e — FX1097 m — -
Huang_GSM6605438 ! . FX1087 -
Huang_GSM6605437 N ' FX1080 —
Huang_GSM6605436 [ ' FX1074 4 m
Huang_GSM6605435 ! ' &gggg | =
Huang_GSM6605434 - I - Foose '_ :
Huang_GSM6605433 - N1 L] ] FX0052 4 -
Huang_GSM6605432 4= 1 - FX0033 -
Huang_GSM6605431 1 1 FX0028 -
GarciaAlonso_E3 e ./ 7 "} B EX0024 Jmm -
GarciaAlonso_E2 {mmm e — C—
f - FX0022 {m —_—
GarciaAlonso_E1 = EX0011 -
(G;arc!aAIonso_ASO — EX0795 o —
arciaAlonso_A134 [ ] EX0789 . ——
Fonseca_18{ ] EX0661 - —
Fonseca_17 ' EX0540 S O ——
Fonseca_16 N — — EX0366 -
Fonseca_h: — ' EX0288 I I E—
Fonseca_1 I EX0277 -
Egﬂzzi‘% 1 — | | — EX0045 1. - &
- 00 02 04 06 08 o 0.0 02 04 06 08 1.0
(colour as described below for panel a)
Cell Type
H 1 | SOX9 basalis (CDH2+) [0 6 | preGlandular 12 | preCiliated [ 17 | uSMCs 21| ePV2 [ 26 | dStromal mid 32 | Venous
w2 | SOX9 functionalis | (CDH2+) mmm 7 | Glandular 13 | Ciliated = 18 | mPV 22 | eStromal MMPs = 27 | dStromal late [ 33 | Arterial
3 | SOX9 functionalis Il = 8 | Glandular secretory = 14 | MUC5B 19| ePVia 23 | eStromal I 28 | Fibroblast basalis 34 | Lymphatic
[ 4 | SOX9 luminal (LGR5+) I 9 | Glandular secretory (FGF7+) 15| KRTS 20| ePV1b [ 24 | eStromal cycling = 29 | HOXA13 35 | Immune Lymphoid
w5 | Cycling = 10 | preLuminal 16 | Hormones w25 | dStromal early 30 | Hormones [ 36 | Immune Myeloid
11| Luminal [0 31 | Hormones
b Number of cells from each cell type
Huang-JENNINNIEN I | 1
F
o]
& | L ||
[a)]
0 20000 40000 60000 80000
(colour as described in panel a)
Extended Data Fig. 2| Distribution of cell types across samples in cells and represents a dataset, coloured by cell type. ¢, Bar plot showing the proportion
nuclei. a, Bar plot showing the proportion of cell types in each sample. Each of cell typesin each donor from the nuclei dataset. Each row represents adonor,
row corresponds to a donor, grouped by study and coloured by cell type. b, Bar coloured by cell type.

plot representing the number of cells of each cell type in each dataset. Each row

Nature Genetics


http://www.nature.com/naturegenetics

Article https://doi.org/10.1038/s41588-024-01873-w

HECA labels HECA labels

i b
3| HIRoAEemAsc) 34| RYmeh (Sevnacy

32| Venous (ACKR1+) 235 | mmane Mysloid

Lymphatic

35 | Immune Lymphoid

- 30 | Hormones ,
28 | Fibroblast basalis (C7+)
1]l 27 | dStromal late

‘ 36 | Immune Myeloid

Tan et al.
Authors’ labels
35 | Immune Lymphoid

Wang et al.
Authors’ labels

pDC
Mast cells

NK cells

26 | dStromal mid

31 | Hormones

Macrophages

Myeloid 3 30 | Hormones | 25 | dStromal early
Myeloid 2 HOXA13 Lymphocytes . = - 24 | eStromal cycling
Myeloid 1 Fibroblast basalis (C7+) Smooth muscle cells™ = w23 :St:gmal ps
Plasma B-Iymghocyte —— 06 3358%2! Ir’ﬂtig Endothelia g SEW& 121++)
B-lymphocytes - = 25|dStromal early - eP&h TEAF)4+)

- w24 | eStromal cycling 1 ng’ -
T-ymphocytes ' 23| eStromal -] Eﬁ ores

X 4 — 14| MUCS5B
Mesothelial 221 st | MM Stromal fibroblasts| \ 13 | Ciliated
Mural cells || 22| eStroma s ) 12 | preCiliated
Endothelial ePV 2 (MMP11+)
. ePV 1b STCZE)
Fibroblast 3 el'—l‘:\</1a STEAP4+) 11| Luminal
Fibroblast 2 USMCs Ciliated
' l 10 | preLuminal
Fibroblast 1 16 | Hormones P 9 | Glandular secretory (FGF7+)

Unciliated epithelia 2 =
8 | Glandular secretory
B0 -

15 | KRT5
7 | Glandular

14 | MUC58B
13 | Ciliated

Ciliated epithelial

reCiliated
u Cl'n'gl Unciliated epithelia 1 | 6| preGlandular
Z & deaan o 5 | Epithelial cycling

114 | SOX9 luminal (LGR5+)
~ 3 | SOX9 functionalis Il

'l 2 | SOX9 functionalis | (CDH2+)

langulal
landular
16 | preGlandular

ial cyclin

uminal (LGR5+)
unctionalis |1
unctionalis | &CDH2+)
basalis (CDH2+)

|
u| a'rngecrepx (FGF7+)
Epithelial 2 r secretol

Epithelial 1

HECA labels

~ 34 | Lymphatic

33 | Arterial (SEMA3G+)
32 | Venous (ACKR1+)

36 | Immune Myeloid
35| Immune Lymphoid
— ga ormones
- ormones
29
28

HOXA13
@ 27| dStromal late

Garcia-Alonso et al.
Authors’ labels

Myloid =
Lymphoid \ #°
Endothelial SEMA3G

Endothelial ACKR1

Fibroblast C7
uSMC

Fibroblast basalis (C7+)

26 | dStromal mid

] 25 | dStromal early

PV STEAP4 | 24 | eStromal cycling

23 | eStromal

\ = 22 | eStromal MMPs

\\ \ 21| ePV 2 (MMP11+)
,\ \ 20 ePV1b§STCZ+)
S\ 19 | ePV 1a (STEAP4+)

18| mPV
17 | uSMCs
16 | Hormones
15 [ KRT!

= 14| MUC5B
13 [ Ciliated

5
= P
r:%u ar secretow FGF7
ndu Ol
7 | Glandular

i
andular secre
- 6 | preGlandular
= 5 | Epithelial cycling
= 4| SOX9 luminal (LGR5+)
3 | SOX9 functionalis Il
— 2| SOX9 functionalis | (CDH2+)
= 1| SOX9 basalis (CDH2+)

Ci [ilated
Cilfgﬁgg}%ﬁ

Extended DataFig. 3| Comparison of cell type labels from original publications and HECA. Sankey plot showing the correspondence between cell type labels from
original publications (left) and HECA (right) from the Tan (a), Wang (b) and Garcia-Alonso (c) datasets respectively. In each plot, the width of each line is proportional

to number of cells.

Nature Genetics


http://www.nature.com/naturegenetics

Article https://doi.org/10.1038/s41588-024-01873-w

a cell lineage cell cycle phase menstrual cycle group endometriosis status
N\ A\ )
v * q L2

N Endothelial o o| = Hormones &V
o el o o o o
< * Epithelial 4 G1 = », Menstrual < Endometriosis
% Immune = .SZM = ® Proliferative = Without Endometriosis

Mesenchymal = e > | ®Secretory 2

© Unknown
“
UMAP1 UMAP1 UMAP1 UMAP1
b ' onali orali . [
SOX9 basalis (CDH2+) SOX9 functionalis I - SOX9 functionalis Il SOX9 luminal (LGR5+) Fibroblast basalis (C7+) uSMCs ePV-1 (STEAP4+) ePV-1b (SCT2+)  ePV-2 (MMP11+)
preGlandular Glandular Glandular secretory
eStromal MMPs eStromal dStromal early dStromal mid dStromal late
¢ ~x .
preLuminal Luminal preCiliated Ciliated
HOXA13 Hormones
MUC5B Hormones
»
d General General e
endothelial immune
. | Lymphoid . Steroid =3
Venous  Arterial Lymphatic ALMLeIO'd receptors Fraction of cells % Cell state proportions per menstrual cycle group (%)
.l in group (%) o Hormones (n = 14).
,» Venous (ACKR1+) 3. [ O] . ® S Menstrual (n = 4)
& Arterial (SEMA3G+) 1000 26 4060807100 2 Proliferative (n = 24)
@ Lymphatic{ 10 0 O S Secretory (n = 20){m
§ Lymphoidq =10 o (O | Mean expression ‘é Unknown (n = 1), 1
] in group 5
Myeloid [ShEN ] E—— 2 20 40 60 80 100
— 7T 00 05 1.0 Bar colour corresponds to cell states described in Figure 1c.
LLYTcScOITOWL S =S Z0ONKE XS
I SEZzEsaLNXTro - o<
BSgEFL2adgeERzEB82 8
©2 87 o°&E%k 3
»
Marker genes
f Basalis Functionalis
General Prolif. Glands Slmen Elllated Steroid
epithelial phase Proliferative phase Secretory phase Proliferative phase _Secretory phase MUCS5B__ receptors
SOX9 basalis (CDH2+)] @ © s - 0o o « @ + o o - - o0 o . o e T . o

SOX9 functionalis | (CDH2+){ @ O o « o e e ° o [ ] e ©0 0 o o o o o o | ° [ ] )

SOX9 functionalis 111 © © ° e o o . ®@ - ° 0o O o 3 o o o o i Fraction ofé}ells

» preGlandular{ @ O - o e o OO N X)) - e o o o ° : [ ) .m group (%)

8 Glandular{ @ © - ale o . o e e o 00 N XX ] o o o @] e

K] Glandular secretory] @ © - P . e o o@e s 00@ 0 o - e s a0 i O | 20406080100

S SOX9 luminal (LGR5+){ © @ @ o o 60 o oo . T e @ o@ | ) )

preLuminal{ @ ® olo o . ° o °o 0o 0 0 o . o @cic00-00 | . @ Mea{;e);gfssmn
Luminal{ @ © ole o « o e e 0o 0 0 0 o o+ 0 o @ oo e-00 . o l:g*
preCiliated{ 0 @ 0lo e ° . 00 o © 0 0 o o oo o - o . Qe ° Ol oo o5 10
Ciliated{ © @ - 0o @ s © o . o0 o o 0 O © s O - o o 0 O © 0 o 00 -lo » 0@ e - (@)
MUC5B{ © © o alo o . o o o 0 o o @ o o o o o ° ® o @
XSANOENIC INT-T - SO ISQerDoLANRTALLNCONNSSC--0LLO@ANOD®OS = o -
L Xoaz< I Tz <X [=] X @ = oL XA Wz ~serao gwz>ne Jdox ~ 2 m 14
$05325:FRIF38 e 65 - E822 0887358k E3 2
§RP=<F ©<g537 o 2200 £~ =24354% as° E &
@ o 2 o
< 2]
Marker genes
g General General General Fibrobl
mesenchymal PV stromal ibroblast
Stromal &Stromal dStromal basalis ~ Steroid
uSMCs ePV-1a ePV-1b  ePV-1b progenitor eStromal MMPs dStromal early  dStromal mid _ dStromal late _C7+ receptors
uSMCs{ @ O/ ® o @ o @0 O°c - @e o o @0 i - @ - . e - - 900000
ePV-1a (STEAP4+){ O @i o - {0 = = T R = S S R < « i 10 0@ Fraction of cells
ePV-1b (STC2+){ O O} - ® - . ® ¢« 0 0 - @@® - 0O ¢ o o 0 o o o -0 - - o ON-N®) in group (%)
w ePV-2 (MMP11+){ O ©/ - [ ) . e - @0 @O @ o 0 o o e o - . 0@ -° (1]
oo

8 eStromal MMPs { @ @ - 00 @ o - LI . e 1O ® @ | 20406080100

2 eStromal{ O @] - - @@ o - @c- o000 s O - . B XX ]

8 i a o .

8 eStromal (cycling){ O @ @ -® O @000 o e 0@ Mean expression
dStromal early{ O @ ° o - @ O © 0 - s o0 coe@e - .. . @@ in group
dStromal mid{ O @; - . o ® o© o .« s 0 . c o @ - « e o o [CX:-K®)
dStromal late { @ @ - . o @ O -0 oo - o i - @ A sf- 000 |00 05 10

Fibroblast basalis (C7+){1 @ @: @ ®-0 o @e o 0@ cle o ° o X YoK XO)
EEE R R EEREEREY E R T EE AR P EEF PR R EE T R R EEERE EF R R EER N X Y XX

4 [ R | = = a -0 J Iaax Soma = ¥ om- 2> @ ¥

R R P N R RS LR R R L T A

> & o s> o FQ == z T X = o o
0= 4 s o S F [Se)
SE < 6®3= g = QP2 F=§ o = 558 © =
« Marker genes

Extended Data Fig. 4 | See next page for caption.

Nature Genetics


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-024-01873-w

Extended Data Fig. 4 | Single-nucleus RNA-sequencing cell state
identification and marker gene expression. a, UMAP projections of the
snRNA-seq data coloured by cell lineage, cell cycle phase, menstrual cycle
group, and endometriosis status. b, UMAP projections of the epithelial cell
lineage of the snRNA-seq dataset coloured by the identified epithelial cell
states of the HECA as assigned by label transfer. ¢, UMAP projections of the
mesenchymal cell lineage of the snRNA-seq dataset coloured by the identified
mesenchymal cell states of the HECA as assigned by label transfer. d, Dot plot
showing normalised, log-transformed and variance-scaled expression of genes
(x-axis) characteristic of the endothelial and immune nuclei (y-axis). e, Bar plot
showing the cellular composition of endometrial biopsies belonging to the

different menstrual cycle groups (y-axis). f, Dot plot showing normalised, log-
transformed and variance-scaled expression of genes (x-axis) characteristic of
the identified epithelial cell states (y-axis) in snRNA-seq data. g, Dot plot showing
normalised, log-transformed and variance-scaled expression of genes (x-axis)
characteristic of the identified mesenchymal cell states (y-axis) in snRNA-seq
data. dStromal, decidualised stromal cells; ePV, endometrial perivascular cells;
eStromal, endometrial stromal cells specific to proliferative phase; HECA, human
endometrial cell atlas; MMPs, matrix metalloproteinases; mPV, myometrial
perivascular cells; Prolif., proliferative; secret., secretory; snRNA-seq, single-
nucleus RNA-sequencing; UMAP, uniform manifold approximation and
projection; uSMCs, uterine smooth muscle cells.
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Extended Data Fig. 6 | Expression of ligands and receptorsinvolved in
epithelial- stromal cell communication. a, Dotplot plot reporting the variance-
scaled mean expression of CXCL12 (ligand of CXCR4). Red circlesindicate that at
least one of the interacting partnersis differentially expressed in one of the cell
typesin the pair. b, High-resolution multiplexed smFISH of endometrium section
(donor A70; n =2biologically independent samples) showing the expression of
DAPI (white), SOX9 (red), CXCR4 (yellow), CXCL12 (magenta), C7 (cyan). White
arrows indicate regions where all signals can be detected in high proximity. Scale
bars =100 pm. ¢, Dotplot plot reporting the variance-scaled mean expression of
the two or more (if heteromeric complexes) transcripts coding for the interacting

proteins in pairs of cell types. Red circles indicate that at least one of the
interacting partners is differentially expressed in one of the cell types in the pair.
d, Dot plot showing normalised, log-transformed and variance-scaled expression
of genes coding for TGFB, insulin, retinoic acid and WNT signalling receptors
(x-axis) in the epithelial and mesenchymal cell states identified (y-axis) in the
scRNA-seq data. eStromal, endometrial stromal cells specific to proliferative
phase; dStromal, decidualised stromal cells; MMPs, matrix metalloproteinases;
scRNA-seq, single-cell RNA-sequencing; TGFf, transforming growth factor beta;
uSMCs, uterine smooth muscle cells; smFISH, single molecule fluorescence in
situ hybridisation.
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Extended Data Fig. 7 | Spatial mapping of epithelial cell populations.

a, Visium spatial transcriptomics data and an H&E image of a full thickness
uterine section (donor A13, n = 2 independent samples from the same donor).
Spot colour indicates cell2location-estimated cell density for SOX9 functionalis
Iand Il populations. Scale bars =1 mm. b, High-resolution multiplexed smFISH of
full thickness endometrium sections (donor A70; n = 3 biologically independent
samples) showing the expression of DAPI (white, nuclei), PHLDALI (yellow,

SOX9 Functionalis I cells), SOX9 (red, SOX9+ epithelium), and EPCAM (cyan,
epithelium). White arrows indicate PHLDA1-expressing SOX9 Functionalis|
cells. Scale bars = 500 um. ¢, Visium spatial transcriptomics data and an H&E
image of the same superficial biopsy section (donor FX0033, early secretory
phase; n =2biologically independent samples). Spot colour indicates
cell2location-estimated cell density for the preLuminal, Luminal, preGlandular
and Glandular populations. Scale bars =1 mm. d, High-resolution multiplexed
smFISH of a superficial biopsy section (donor FX0033, early secretory phase;

n =3 biologically independent samples) showing the expression of DAPI (white,
nuclei), EPCAM (red, epithelium), LGRS (magenta, luminal cell), and SULT1E1

(yellow, preLuminal cells). White arrows indicate luminal regions with high
LGRS and SULTI1E1 signals. The dashed outline indicates the magnified area of
the luminal region with high and co-localised LGRS and SULT1E1signals. e, High-
resolution multiplexed smFISH of a superficial biopsy section (donor FX9006,
early secretory phase; n =2 biologically independent samples) showing the
expression of DAPI (white, nuclei), EPCAM (magenta, epithelium), CBR3 (cyan,
preGlandular cells), and OPRK1 (yellow, preGlandular cells). The dashed outline
indicates a magnified area of the glands with high and co-localised OPRK1and
CBR3signals. White arrows indicate luminal regions with low OPRK1and CBR3
signals. f, High-resolution multiplexed smFISH of full thickness endometrium
sections from the proliferative phase (donors A66 and A13) and secretory phase
(donor A30) showing the expression of DAPI (white, nuclei), EPCAM (magenta,
epithelium), and MUCSB (yellow, MUC5B cells) (n = 3 biologically independent
samples). The dashed outline indicates the magnified areas. Asterisks indicate
representative regions where the MUCS5B signal was detected and varied across
samples. Scale bars =100 pm, unless differently specified. smFISH, single
molecule fluorescence in situ hybridisation.
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Extended Data Fig. 8 | Immune cells in scRNA-seq and snRNA-seq data.

a, UMAP projections of scRNA-seq data forimmune cells coloured by dataset,
menstrual cycle group, cell cycle phase and biopsy type. b, UMAP projections

of snRNA-seq data for immune cells coloured by menstrual cycle group and cell
cycle phase. c, UMAP projection of snRNA-seq data forimmune cells coloured
by the probability of assigning the immune cell types identified in the scRNA-seq
data. Support Vector Machine (SVM) classifier was trained using the immune
cell scRNA-seq data and the predicted cell type annotations were then projected
onto the snRNA-seq data with the probability shown. d, Dot plot showing
normalised, log-transformed and variance-scaled expression of genes (x-axis)
characteristic of the identified immune cell states (y-axis) in the scRNA-seq data.
e, Dot plot showing normalised, log-transformed and variance-scaled expression
of genes (x-axis) characteristic of the identified immune cell states (y-axis) in the
snRNA-seq data. f, Beeswarm plot of the distribution of log fold change across
the menstrual cycle (proliferative and secretory phases) in neighbourhoods
containing immune cells from different cell type clusters in snRNA-seq data.

Differentially abundant neighbourhoods at log fold change > 2.5 and spatial

FDR < 0.1are coloured. g, Visium spatial transcriptomics data for donors A13
(proliferative phase) and A30 (secretory phase) (n = 2 biologically independent
samples) are shown. Spot colour indicates estimated cell state density for a
specific population of perivascular cells (mPV, ePV-1a, ePV-1b and ePV-2) ineach
Visium spot, as computed by cell2location. h, Dot plot showing normalised,
log-transformed and variance-scaled expression of genes (x-axis) characteristic
of theidentified endothelial, perivascular and stromal cells (y-axis) in the sScRNA-
seqdata. cDC, conventional dendritic cells; eStromal, endometrial stromal cells
specific to proliferative phase; ePV, endometrial perivascular cells; FDR, false
discovery rate; ILC3, innate lymphoid cell type 3; mPV, myometrial perivascular
cells; pDC, plasmacytoid dendritic cells; RBC, red blood cells; scRNA-seq, single-
cellRNA-sequencing; snRNA-seq, single-nucleus RNA-sequencing; SVM, support
vector machine; T Reg, T regulatory cells; uM, uterine macrophages; UMAP,
uniform manifold approximation and projection; uNK, uterine natural killer cells.
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Extended DataFig. 9 | Predicted cell-cell interactions underpinning
endometrial regeneration and angiogenesis. a, Dotplot plot reporting the
variance-scaled mean expression of the two or more (if heteromeric complexes)
transcripts coding for the interacting proteins in pairs of cell types. Red circles
indicate that at least one of the interacting partners is differentially expressed in
one of the cell typesin the pair. Interactions are classified based on whether they
are predicted to play arole in recruitment, wound healing orimmunomodulation
during endometrial regeneration. b, High-resolution multiplexed smFISH of full
thickness endometrium sections (donor A70; n = 3; independent samples from
the same donor) showing the expression of DAPI (white, nuclei), CD14 (yellow,
macrophages), PDGFB (red), MME (magenta, eStromal MMPs), PDGFRB (cyan,
PDGFB receptor). The dashed outline indicates the area shown magnified to

the right. White arrows indicate regions of interaction between macrophages
and eStromal MMPs by means of signal colocalization and/or proximity. Scale

bars =100 pm. ¢, Dotplot plot reporting the variance-scaled mean expression of
the two or more (if heteromeric complexes) transcripts coding for the interacting
proteins in pairs of cell types. Red circles indicate that at least one of the
interacting partners is differentially expressed in one of the cell types in the pair.
Interactions are classified based on whether they are predicted to play arolein
cell recruitment or pro-angiogenic processes within the vascular niche. d, High-
resolution multiplexed smFISH of full thickness endometrium sections (donor
A13; n =3;independent samples from the same donor) showing the expression
of DAPI (white, nuclei), CD14 (yellow, macrophages), OSM (red), CDHS (magenta,
endothelial cells), OSMR (cyan, OSMreceptor). The dashed outline indicates the
area shown magnified underneath. White arrows indicate regions of interaction
between macrophages and endothelial cells by means of signal colocalization

or proximity. Scale bars =100 pm. smFISH, single molecule fluorescence in situ
hybridisation.
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IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
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|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
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|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

Data analysis

No software was used for data collection

Data analysis:

o Alignment, quantification and donor deconvolution of scRNA-seq and snRNA-seq data: Cell Ranger Software v.6.0.2; vireoSNP v.0.5.8.

o Alignment, quantification and quality control of Visium data: Space Ranger Software v.2.0.1; Scanpy v.1.7.0.

o Downstream scRNA-seq/snRNA-seq analysis: Scanpy v.1.7.0; Scrublet v.0.2.1 ; scVI v.0.6.8; cell2location v.0.06-alpha, scarches v.0.5.9;
cellphonedb v.4.0.0; celltypist v.0.1.9; R celda v.1.6.1; R Seurat v.3; R limma v.3.54.2; ; RMilo v1.6.0; R SoupX v.1.5.0.

o Custom code available at https://github.com/ventolab/HECA-Human-Endometrial-Cell-Atlas.

o scArches tutorials at https://github.com/ventolab/HECA-Human-Endometrial-Cell-Atlas/blob/main/tutorials/query_to_ref_mapping.ipynb to
support mapping new samples to the HECA reference cells based on any input gene expression count matrix.

o Interactive cell-cell communication visualisation platform, cellxgene objects for both scRNA-seq and snRNA-seq data and scVI model
weigths for the scArches tutorial available at: https://www.reproductivecellatlas.org/endometrium_reference.html

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Datasets are available from ArrayExpress (www.ebi.ac.uk/arrayexpress), with accession number E-MTAB-14039 (sc/snRNA-seq) and E-MTAB-14058 (Visium spatial
transcriptomics). Multiplexed smFISH images are available from BioStudies(www.ebi.ac.uk/biostudies), with accession number S-BIAD1182. All data is public access.
Source data are provided with this paper. scRNA-seq and snRNA-seq datasets to reproduce UMAPs and dotplots can be accessed and downloaded through the web
portals https://www.reproductivecellatlas.org/endometrium_reference.html.
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Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
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Reporting on sex and gender Information on sex and gender was not collected in the studies under which we collected samples used for our study. This
information was also not provided by the previously published datasets that we re-analysed. All participants were referred to
as women.

Reporting on race, ethnicity, or = We did not report on race, ethnicity, or other socially relevant groupings as this information was not available for all

other socially relevant participants included in the datasets analysed.
groupings
Population characteristics Only individuals during their reproductive years were recruited and only considered having ‘natural cycles’ if they had not

taken any hormonal treatment at least 3 months prior to sample collection. Donors with endometrial cancer were excluded.
In addition, we aimed to exclude patients with other benign uterine/endometrial pathologies (i.e. fibroids, polyps,
adenomyosis,hyperplasia). However, in some cases (n = 15), later histological evaluations revealed the presence of these
pathologies (details can be found in Supplementary Table 1). Patients taking part in the ENDOX and FENOX studies (n = 69)
were undergoing laparoscopic surgery for suspected endometriosis or infertility reasons. At the beginning of surgery, a
superficial pipelle biopsy of the endometrium was taken and the presence/absence of endometriosis, including
endometriosis stage (rASRM stages I-IV) assigned upon surgical evaluation during the laparoscopy. Four additional control
samples (i.e. samples from donors without endometriosis) came from the Sanger Cell Atlasing Project study (n = 3) and
Immunology of Subfertility study (n = 1). Absence of endometriosis was determined based on the clinical and medical history
of the patients. For the Sanger Cell Atlasing Project, patients attended a coil clinic for contraceptive reasons. During the coil
insertion procedure, a biopsy of the endometrium was taken in an outpatient setting. For the Immunology and Subfertility
study, patients were undergoing in vitro fertilisation and an endometrial biopsy was taken in an outpatient setting one cycle
before the patient became pregnant and had a live birth.

Recruitment All tissue samples used for this study were obtained with written informed consent from all participants in accordance with
the guidelines in The Declaration of Helsinki 2000. For the full-thickness uterine wall samples coming from deceased
transplant organ donors, full informed consent was obtained from the donor families.

Ethics oversight The collected superficial endometrial samples came from four studies: (i) Endometriosis Oxford (ENDOX), (ii) Fibroids and
Endometriosis Oxford (FENOX), (iii) Sanger Human Cell Atlasing Project, and (iv) Immunology and Subfertility study. Both
ENDOX (REC: 09/H0604/58) and FENOX (REC: 17/SC/0664) obtained ethical approvals from the Central University Research
Ethics Committee, University of Oxford. Yorkshire & The Humber - Leeds East Research Ethics Committee approved the
Sanger Human Cell Atlasing Project (REC: 19/YH/0441). The Immunology of Subfertility study (REC: 08/H0606/94) was
approved by the Oxford Research Ethics Committee C. The collection of full-thickness uterine wall samples was approved by
East of England—Cambridge South Research Ethics Committee (REC: 15/EE/0152).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size In total, we collected samples from 75 individuals. We obtained superficial endometrial biopsies from 73 individuals and one full-thickness
uterine wall sample from 1 individual (A70) for scRNA-seq and snRNA-seq experiments. We obtained an additional full-thickness uterine wall
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sample (donor A66) for imaging analyses.

We generated new scRNA-seq data for 16 donors, and snRNA-seq data for 63 donors. For 5 donors, both scRNA-seq and snRNA-seq data were
generated (see Replication below).

We integrated our scRNA-seq dataset (n =16 donors) with previously published data (n = 49 donors) from the following 6 studies:

(i) Wang et al. (GEO accession number GSE111976), re-analysed 10 samples with the following donor IDs: SAMN15049042, SAMN15049043,
SAMN15049044, SAMN15049045, SAMN 15049046, SAMN15049047, SAMN15049048, SAMN15049049, SAMN 15049050, SAMN15049051.

(ii) Garcia-Alonso et al. (ArrayExpress accession number EMTAB-10287), re-analysed 5 samples with the following donor IDs: A13, A30, E1, E2,
E3.

(iii) Tan et al. (GEO accession number GSE179640), re-analysed 12 samples with the following donor IDs: C01, C02, CO3, EO1, E02, EO3, E04,
EOS5, EO6, EQ7, EO8, EOQ9.

(iv) Lai et al. (GEO accession number GSE183837), re-analysed 3 samples with the following donor IDs: GSM5572238, GSM5572239,
GSM5572240.

(v) Fonseca et al. GEO accession number GSE213216), re-analysed 7 samples with the following donor IDs: Fonseca_10, Fonseca_11,
Fonseca_13, Fonseca_14, Fonseca_16, Fonseca_17, Fonseca_18, Fonseca_19.

(vi) Huang et al. (GEO accession number GSE214411), re-analysed 10 samples with the following donor IDs: GSM6605431, GSM6605432,
GSM6605433, GSM6605434, GSM6605435, GSM6605436, GSM6605437, GSM6605438, GSM6605439, GSM6605440.

Our study analysed the largest number of individuals and cells with respect to single-cell RNA transcriptomic profiling of the endometrium.
This samples set should be sufficient to capture the main cell types and states in the tissue of the menstrual cycle phases analysed.

In addition, novel subsets defined transcriptomically in our dataset (e.g. preGlandular, preLuminal, SOX9 basalis CDH2+ populations) have
been validated using orthogonal methods (e.g. spatial transcriptomics, single molecule fluorescence in situ hybridisation imaging).

Data exclusions  No data were excluded from the analyses.

Replication For 5 donors, both single-cell and single-nuclei RNA-sequencing data was generated (donor IDs: FX1119, FX1146, FX1156, FX9006). We
confirmed the same cell populations could be identified in single-cell and single-nuclei data.

All smFISH experiments were replicated and validated by at least n=2 biologically independent samples.

Randomization  Thisis not applicable to our study as during surgery, participants were either diagnosed with endometriosis or confirmed they did not have
any visible endometriosis.

Blinding Tissue histology evaluation and menstrual phase staging of the newly collected samples was conducted by at least two independent

pathologist, all of them blinded.
The rest of investigators involved in the study were aware of the clinical status of the donor and the collected metadata.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
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