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Abstract

Colonoscopy is acknowledged as the foremost technique for detecting polyps and facilitating early screening and prevention
of colorectal cancer. In clinical settings, the segmentation of polyps from colonoscopy images holds paramount importance
as it furnishes critical diagnostic and surgical information. Nevertheless, the precise segmentation of colon polyp images
is still a challenging task owing to the varied sizes and morphological features of colon polyps and the indistinct boundary
between polyps and mucosa. In this study, we present a novel network architecture named ECTransNet to address the chal-
lenges in polyp segmentation. Specifically, we propose an edge complementary module that effectively fuses the differences
between features with multiple resolutions. This enables the network to exchange features across different levels and results
in a substantial improvement in the edge fineness of the polyp segmentation. Additionally, we utilize a feature aggregation
decoder that leverages residual blocks to adaptively fuse high-order to low-order features. This strategy restores local edges
in low-order features while preserving the spatial information of targets in high-order features, ultimately enhancing the
segmentation accuracy. According to extensive experiments conducted on ECTransNet, the results demonstrate that this
method outperforms most state-of-the-art approaches on five publicly available datasets. Specifically, our method achieved
mDice scores of 0.901 and 0.923 on the Kvasir-SEG and CVC-ClinicDB datasets, respectively. On the Endoscene, CVC-
ColonDB, and ETIS datasets, we obtained mDice scores of 0.907, 0.766, and 0.728, respectively.
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Introduction

Medical image segmentation has become a prevalent
approach for the classification of distinct anatomical struc-
tures within a given tomographic image. It is utilized in
various applications, such as liver segmentation [1], gas-
tric lesion segmentation [2], and pancreas segmentation [3]
or polyp segmentation, which enables the differentiation
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between abnormal regions and normal regions. Polyps are
abnormal growths on the surfaces of organs (such as the
colon, rectum, stomach, and throat) that can potentially
lead to cancer. Colorectal cancer is ranked as the third most
common cancer in males and the second most common
in females, according to the World Health Organization’s
global human database [4]. Polyps can be classified into
two main types: non-neoplastic (including inflammatory,
juvenile, and hyperplastic polyps) and neoplastic (including
adenomatous and serrated polyps). The clinical characteris-
tics of polyps depend on their type, location, size, and num-
ber. Some polyps are asymptomatic, while others may cause
bleeding, pain, changes in bowel habits, or other complica-
tions. Timely detection and removal of precancerous polyps
can effectively reduce the incidence of colorectal cancer.
Currently, colonoscopy examination represents the most
conventional approach for polyp detection. However, recent
reports have highlighted that approximately 26% of colo-
noscopy examinations result in missed lesions due to its
reliance on manual manipulation and the clinical acuity
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and experience of the endoscopist [5]. Colonic polyp image
segmentation is a technique used to identify and sepa-
rate polyp regions from the background in colonoscopic
images or videos. It provides accurate and reliable infor-
mation regarding the position, size, shape, and quantity of
polyps. Subsequently, through the utilization of computer-
ized image analysis and identification of detailed features,
it enables pathological classification, thereby achieving the
objective of rapid screening. Consequently, this technique
has the potential to reduce oversights and omissions by
endoscopists, thereby lowering the miss rate of polyps or
other abnormal tissues. This holds significant importance
in the prevention of colorectal cancer.

Nevertheless, polyp image segmentation still faces several
challenges and issues [6]. Firstly, the quality of colonoscopy
images is influenced by various factors such as lighting con-
ditions, occlusions, blurriness, artifacts, blood, mucus, and
more. These factors can decrease image contrast and clarity,
thereby increasing the difficulty of segmentation. Secondly,
polyps exhibit diversity and uncertainty in their appearance,
including variations in size, shape, color, texture, and other
features. Such variations may exist not only among different
types of polyps but also within different regions of the same
polyp, leading to segmentation instability and inconsistency.

Conventional techniques for polyp segmentation primar-
ily rely on low-level attributes such as texture [7], geomet-
ric features [8], and simple linear iterative clustering of
super-pixels [9]. Regrettably, these methods tend to pro-
duce inferior segmentation accuracy and limited generali-
zation capability. With the development of deep learning in
medical image analysis, deep learning techniques provide
an efficient and accurate solution for polyp segmentation.
In recent years, several image segmentation models based
on convolutional neural networks (CNNs) have exhibited
remarkable performance [10-12].

The U-shaped encoder—decoder architecture has gained
increasing attention due to its potential to generate high-
resolution predictions by leveraging multi-level features for
reconstruction. The utilization of skip connections enables
the effective transmission of complex and information-
rich feature maps from the encoder network to the decoder
sub-networks in deep neural networks. This technique
facilitates the propagation of high-level semantic features
while retaining fine-grained details throughout the network
architecture [13, 14]. PraNet [15] utilized reverse attention
mechanisms to effectively localize polyp boundary regions.
This is achieved by incorporating advanced feature aggre-
gation and boundary attention blocks within the network
architecture, which aid in aligning misaligned predictions
and improving overall segmentation accuracy. Hardnet-
mseg [16] built upon PraNet and proposed a simplified
encoder—decoder architecture. Specifically, they replaced
the original Res2Net backbone network with Hardnet [17]
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and removed the attention mechanism to achieve faster and
more accurate polyp segmentation. HRENet [18] introduced
the information context enhancement (ICE) technique and
the adaptive feature aggregation (AFA) module, along with
training using edge and structure consistency perception loss
(ES-CLoss), resulting in outstanding model performance.

PolypSeg [19] employed two distinct modules, the adap-
tive scale context module (ASCM) and the semantic global
context module (SGCM), to address the inherent dimen-
sional variations between polyps and enhance the fusion of
high- and low-level features. ASCM is specifically designed
to improve feature representation by adapting to the vary-
ing scales of polyps, while SGCM facilitates global context
modeling to effectively fuse features at different scales.

To address the challenges of scale imbalance and color
distribution caused by target size, SANet [20] employed
probability correction and color migration strategies. To
address redundancies and complementarities within multi-
scale features, MSNet [21] introduced multi-scale subtrac-
tive networks. In a similar vein, MSRFNet [22] incorporated
a cross-scale fusion mechanism to disseminate high- and
low-level features while also introducing a shape flow net-
work to refine polyp boundaries. TGANet [23] utilized a
text-guided approach to assimilate the distinctive features
of polyps of varying dimensions, with the ultimate goal of
enhancing the network’s capacity to generalize across dif-
ferent polyp sizes.

The majority of the aforementioned research methods are
based on CNNs. While they have shown certain improve-
ments in segmentation accuracy compared to traditional
approaches based on superpixels and textures, there is still
room for enhancement in terms of polyp boundary locali-
zation and segmentation. PraNet utilizes reverse attention
to enhance the model’s ability to locate polyp bounda-
ries, but its segmentation accuracy remains unsatisfactory.
HRENet and PolypSeg have employed approaches that
enhance global contextual semantic relationships, result-
ing in improved model performance. However, CNNs often
lose some crucial information during the downsampling
process and have limited receptive fields, which weakens
their ability to build global contextual semantic relation-
ships. As a result, traditional CNN methods often exhibit
limited generalization ability when applied to polyp images
from different patients [24]. MSNet and MSRFNet address
this limitation by processing multi-scale feature maps, but
they lack attention to semantic information among pixels.
TGANet employs text-guided attention to focus on features
of polyps at different sizes, enhancing generalization ability.
However, there is still a need for further improvement in the
segmentation of local details in TGANet.

To enhance the focus on semantic information among
pixels, we attempted to incorporate the transformer [25]
encoder into the task of polyp image segmentation. Unlike
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traditional convolutional neural networks, the transformer
utilizes self-attention mechanisms, enabling the model to
capture a larger effective receptive field. For long sequence
data, the transformer can learn dependencies between differ-
ent positions in the sequence through self-attention, thereby
better capturing global contextual semantic information.
However, the transformer may lack the ability to extract
local feature information effectively. Therefore, we decided
to adopt a hybrid structure combining convolutional neural
networks and transformer. We used the convolutional neural
networks to extract local polyp features and then employed
the self-attention mechanism of the transformer to build
global semantic relationships among pixels in the polyp
feature maps. This approach overcomes the weak ability of
convolutional neural networks to construct global contextual
semantic relationships, thereby improving the accuracy and
generalization of the model for polyp segmentation. Further-
more, to address the issue of polyp boundary localization,
we designed an edge complementary module (ECM). The
ECM fuses and complements polyp feature maps at multi-
ple resolutions, reducing the loss of crucial information and
effectively capturing boundary cues of the polyps.

In this study, we propose a novel polyp image segmenta-
tion model called ECTransNet, aimed at improving the accu-
racy and generalization of polyp image segmentation tasks.
ECTransNet combines convolutional neural networks, trans-
former, and ECM, integrating the local feature extraction
capability of convolutional neural networks with the global
semantic relationship construction capability of transformer.
In the feature map decoding process, to better utilize the fea-
ture maps outputted by ECM, we introduce a residual-based
feature aggregation decoder (FAD) that adaptively fuses
high-level and low-level features. This approach preserves
accurate spatial position information while enhancing the
model’s capability to segment local details. The objective
of this research is to validate this deep learning model and
test the feasibility of this approach.

Materials and Methods
Datasets

This study utilized five publicly available polyp datasets,
namely, Kvasir-SEG [26], CVC-ClinicDB [27], Endoscene
[28], CVC-ColonDB [29], and ETIS [30]. A detailed
description of each dataset will be provided below.

Kvasir-SEG The Kvasir-SEG dataset consists of 1000 polyp
images with their corresponding annotations. What sets
this dataset apart from others is that the size and shape
of the polyps vary within images. The image sizes range
from 332 x 487 to 1920 x 1072. In the dataset, there are

700 large polyps, greater than 160 x 160, 48 small polyps,
less than 64 x 64, and 323 medium-sized polyps. Of these,
900 images were used for training and validation, and 100
images were used for testing.

CVC-ClinicDB CVC-ClinicDB contains 612 images from 25
colonoscopy examination videos, from which 29 sequences
were selected. The image size is 384 X 288. 550 images were
used for training and validation, and 62 images were used
for testing.

Endoscene Endoscene contains 912 images from 44 colo-
noscopy examination sequences of 36 patients. As the
Endoscene dataset is a combination of CVC-ClinicDB and
CVC-300, we used CVC-300 as a testing dataset, which con-
sists of 60 images in total.

CVC-ColonDB CVC-ColonDB comes from 15 different colo-
noscopy examination sequences, from which 380 images
were sampled. All 380 images were used for testing.

ETIS ETIS contains 196 images collected from 34
colonoscopy examination videos. The image size is
1225 x 966. The polyp shapes in this dataset have a
larger variation than other datasets, and they are mostly
small and difficult to detect, making this dataset very
challenging. All 196 images in the dataset were used
for testing.

We followed the same training setting as PraNet and ran-
domly split the images of Kvasir-SEG and CVC-ClinicDB
into 80% for training (800 images from Kvasir and 488
images from CVC-ClinicDB were mixed together) and 10%
for validation (100 images from Kvasir and 62 images from
CVC-ClinicDB), and the remaining images were used for
testing. Furthermore, due to the correlation between a set
of colonoscopy images from the same patient, to minimize
errors, we ensured that during the dataset partitioning, 1 to
4 images were randomly extracted from each patient’s colo-
noscopy images as the test set. The specific data partitioning
is illustrated in Table 1.

Table 1 Datasets used in our experiments

Dataset Images  Input size Train  Valid  Test
Kvasir-SEG 1000 Variable 800 100 100
CVC-ClinicDB 612 384 %288 488 62 62
Endoscene 912 574 %500 - - 60
CVC-ColonDB 380 574 %500 - - 380
ETIS 196 1225%966 - - 196
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Data Preprocessing

In this study, the number of polyp images available for
training the deep learning model was only 1288, which is
significantly insufficient for training a robust model and
prone to overfitting. Therefore, during the training phase,
we employed data augmentation techniques to enhance the
dataset by applying various operations, including random
horizontal flipping, random vertical flipping, random rota-
tion of 35 degrees, and random cropping. These augmenta-
tion methods were utilized to mitigate the limitations caused
by the limited training data and enhance the generalization
capability of the model.

Specifically, for data augmentation, we applied the hori-
zontal flip function from the “albumentations” library in
Python to perform horizontal flipping on a batch of data.
The probability parameter, p, of the horizontal flip function
was set to 0.5, meaning that during each training iteration,
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50% of the images were randomly selected for horizontal
flipping. The same settings were applied to random vertical
flipping and random rotation.

Regarding random cropping, this operation involved ran-
domly erasing regions within the image. In our study, we
utilized random erasing with 10 rectangular regions of size
32 %32 pixels each. The probability parameter, p, for this
operation was also set to 0.5. The specific visual effects of
these augmentation techniques can be observed in Fig. 1.

Methods

The proposed automatic polyp image segmentation model
is named ECTransNet. This model effectively integrates
multi-scale polyp boundary information and enhances fea-
ture representations to achieve more precise and accurate
polyp segmentation maps. Figure 2 illustrates the overall
architecture of ECTransNet, which includes Res2Net [31],
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Fig.2 The proposed ECTransNet architectures
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transformer encoder, edge complementary module (ECM),
convolutional block attention module (CBAM) [32], and fea-
ture aggregation module (FAD). In the following sections,
we will provide detailed descriptions of these components
and discuss how they contribute to the effectiveness of the
ECTransNet.

Encoder Module

ECTransNet is a network based on the Res2Net encoder
for an input polyp image of size h X w. The backbone net-
work of Res2Net extracts four levels of resolution features
{f.i=1,2,3,4}, resolution [h/2,w/2/| of the image. We
divide f; into low-level feature {fi,i = 1}, edge features
{ =2, 3}, and position feature { = 4}. We introduce
the transformer encoder and dilated convolution layer as the
bottleneck layer of the model to reduce the dimensionality of
the features and increase the nonlinear expression capability
of the model. The position feature { = 4} is fed into the
bottleneck layer to obtain a global feature map of the polyp F .

Res2Net is an improved multi-scale feature extraction net-
work built upon the foundation of ResNet [33]. It introduces
hierarchical residual connections within a single residual
block, enabling each network layer to capture features from
multiple scales and receptive fields. Res2Net has demon-
strated superior performance compared to ResNet in tasks
such as image classification, semantic segmentation, and
object detection. Moreover, it can be seamlessly integrated
with other neural network models, offering convenience
and flexibility in various applications. As shown in Fig. 3b,
the input image matrix is evenly divided into s parts at the
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Fig.3 Differences between ResNet and Res2Net

channel level, denoted as x;, where 1 <i < s. In the figure,
1x 1 Conv represents a 1 X 1convolutional block, while 3 x 3
represents a 3 X 3 convolutional block. The feature formula
is represented as follows:

xi=1;
conv(x;)i = 2;
conv(x; +y,_ )2 <i<s.

Yi =

In the formula, conv represents the 3 X 3 convolution opera-
tion. Finally, all y; are concatenated together to obtain multi-
scale features that capture finer-grained representations.

Transformer is a neural network model based on self-
attention mechanism that has made significant contributions
in the field of natural language processing (NLP). Inspired
by its success in NLP, researchers have applied the trans-
former to visual data such as images and videos, achieving
impressive results and making it a prominent research topic
in the field of computer vision. Transformer mainly consists
of an encoder and a decoder, which rely entirely on self-
attention mechanisms to capture the global dependencies in
the sequence. Figure 4 shows the structure of the transformer
encoder, which is composed of stacked layers as shown in
Fig. 4. Each layer has two sub-layers: the first sub-layer
includes a multi-head attention, a residual connection, and
a layer normalization, and the second sub-layer includes a
feed-forward neural network layer, a residual connection, and
a layer normalization.

The essence of the multi-head attention layer lies in perform-
ing multiple independent attention computations, enabling the
model to capture different features. Multiple heads may focus
on different aspects, enhancing the model’s expressive capacity.
Residual connections address the issues of gradient vanishing
and network degradation by adding the input and output of the
network. Layer normalization accelerates model convergence
and acts as a regularization technique. The feed-forward neural
network consists of multiple linear transformations and nonlin-
ear functions, allowing nonlinear transformations of features
within sequences and improving the model’s expressive power
and generalization ability.

Edge Complementary Module and Feature
Aggregation Decoder

The ECM plays a crucial role in extracting polyp bound-
ary information, allowing for the complementary fusion of
information from different scales. It effectively captures the
boundary information cues of the polyps, enabling the gen-
eration of more detailed polyp segmentation maps.

As illustrated in Fig. 5a, the ECM consists of two paral-
lel sets of dilated convolutions [34] with dilation rates of
1, 3, and 6, respectively.
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If we represent the operation of a 3 X 3 dilated con-
volution, followed by batch normalization and ReLU, as
CBR(:), then the feature map can be expressed as follows:

fz,a = CBR(f2,r=1) @ CBR(fz,r:3) @ CBR(f2,r=6)

f3,a = CBR(f3,r=l) @ CBR(f3,r:3) @ CBR(f3,r=6)

Here, @ represents the concatenation operation. f, , and
f3., are feature maps that have been fused with different
dimensions, providing richer feature information. Next,
the difference feature matrix between the global feature
map F, and f; , is computed, as well as the difference fea-
ture matrix between f, ,and f; ;:

f2,b = lfS,a _f2,a|

@ Springer

f3,b = |Fg —f3,a|

Specifically, the global feature map F|, is subtracted ele-
ment-wise from the local feature map f; ,, and the absolute
value of the resulting matrix is computed to obtain the dif-
ference feature f; . Similarly, the local feature maps f; , and
/>, undergo element-wise subtraction, and the absolute value
of the resulting matrix is computed to obtain the difference
feature f, ;.

The difference feature maps f, , and f; , contain informa-
tion about the feature disparities between images of different
resolutions. Shallow-level features extracted by convolutional
neural networks often contain abundant local details such as
color, texture, edges, and corners. As the network goes deeper,
the receptive field of the network expands, enabling the extrac-
tion of more abstract features such as objects, scenes, and posi-
tional information in the images. However, the perception of
fine details diminishes. Therefore, by performing difference
calculations on feature maps extracted by shallow-level net-
works, we can extract boundary information between polyps
and the background, leading to more precise polyp localiza-
tion and reducing over-segmentation and under-segmentation
issues. Further difference calculations are performed on f, ,

and f3
fz,c = VS,b _fz,b|

In order to effectively utilize the boundary information of
polyps among different resolutions, we perform convolutional
extraction of useful information on f, , and f, ., followed by
matrix element addition operation. This process reduces the
loss of critical information and yields more accurate detailed
features of the polyps. The feature map obtained after f, and
Jf3undergo the ECM is illustrated as follows:

Jo = CBR(fZ,b) + CBR(fz,c)

f= CBR(f3,b)

The FAD enables more effective utilization of the extracted
feature maps from the encoder and edge complementation
modules. Its structure is depicted in Fig. 5b. It performs adap-
tive fusion of features from different levels, enabling the res-
toration of polyp location information while preserving more
precise local detail information. Starting from the global fea-
ture map F’ e both F' o and f; are fed into the FAD, resulting in
the generation of the decoded map D;:

D, = RB(Fg ®f3)

Next, D, f,5, and f, enter the FAD to progressively
restore the boundaries and detailed information of the polyp,
resulting in D,:
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Fig.5 The details of ECM and
FAD
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Subsequently, the fusion process is performed by combin-
ing D, f,5, and f:

D3 =RB(DD, ®f,, ® /)

Finally, D, is employed to generate an accurate segmentation
map of the polyp. Here, @ denotes the concatenation operation,
and RB represents the residual module. Additionally, prior to
entering the FAD, f; undergoes CBAM, which is an attention
module composed of channel attention and spatial attention.
It enables the inference of attention maps in both channel and
spatial dimensions, which are then fused with the feature maps
to adaptively optimize the importance of features. As f; corre-
sponds to the shallow-level features of the image, it possesses a
high resolution and contains abundant local details of the polyp.
However, it also carries a significant amount of noise, which
can affect the final polyp segmentation map.

Therefore, CBAM is employed to filter out irrelevant fea-
ture information from f}, enabling the utilization of local details
while simultaneously reducing the impact of background noise
and other disturbances on the final segmentation map.

RB

RB  Residual block

— Feedforward flow of features

Loss Function

Our approach for model supervision involved the implemen-
tation of binary cross entropy (BCE) loss and dice loss [35].
BCEloss is a loss function applicable to binary classifica-
tion tasks, designed to quantify the disparity between target
values and predicted values. Its mathematical expression is
presented as follows:

Lgcp = —w * (Y % log(X) + (1 = Y) * log(1 — X))

where X is the model prediction value, Y is the label truth
value, w is the weight value, and the default is 1.

The dice loss function was proposed to address the issue
of imbalanced positive and negative samples within a data-
set. Given the limited acquisition methods for colonoscopy
polyp datasets and the significant disparities often present
between positive and negative samples, employing only the
BCE loss function would lead to a model that predominantly
predicts the majority class. The dice loss function serves as
a measure of similarity between two samples, with values
ranging from O to 1. Larger values indicate higher similarity
between samples. By utilizing both BCE loss and dice loss

@ Springer
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Table 2 Quantitative results on Kvasir-SEG datasets

Method Backbone mDice mloU Recall Precision P-values
Dataset: Kvasir-SEG
U-Net [10] - 0.818 0.743 0.807 0.902 7.59e-05
(0.805-0.834) (0.715-0.763) (0.781-0.835) (0.887-0.915)
U-Net++[11] - 0.839 0.772 0.861 0.895 9.74e-05
(0.827-0.851) (0.751-0.784) (0.853-0.873) (0.885-0.902)
DeepLabV3+[36] Xception 0.890 0.831 0.885 0.920 5.31e-03
(0.885-0.896) (0.828-0.834) (0.881-0.889) (0.918-0.923)
PraNet [15] Res2Net50 0.896 0.838 0.894 0.921 1.53e-02
(0.891-0.898) (0.835-0.841) (0.891-0.897) (0.918-0.923)
TGANet [23] ResNet50 0.896 0.839 0.890 0.932 2.19e-02
(0.895-0.900) (0.836-0.843) (0.887-0.897) (0.930-0.934)
ECTransNet (ours) Res2Net50 0.901 0.847 0.890 0.946 -
(0.898-0.902) (0.846-0.849) (0.888-0.891) (0.945-0.949)

together, they complement each other and enhance the accu-
racy and robustness of segmentation. The specific formula
for dice loss is as follows:

21X NY|
IX|+ Y]

LDice -

Thus, the final loss function used for the decoder output
takes the form of the following:

Loss = Lgcg + Lp;.,

Results
Implementation Details and Evaluation Metrics
We built our model with PyTorch and accelerated it with

an NVIDIA RTX3090 GPU. We use AdamW optimizer
with initial learning rate set to 0.0001 and batch size of 16.

Table 3 Quantitative results on CVC-ClinicDB datasets

Training is performed for a total of 200 epochs. Our loss
function is a combination of dice loss and BCE loss. During
training, we scaled the images to 256 X256 and enhanced the
data with random horizontal and vertical flips, rotations, and
random cropping operations. For quantitative evaluation, we
use some common metrics: average dice, average loU, recall,
and precision.

Experiments on the Public Polyp Benchmarks

We compared ECTransNet with several state-of-the-art meth-
ods, including U-Net, U-Net++, DeepLabV3+, PraNet, and
TGANet. These algorithms are widely used for polyp segmen-
tation and general medical image segmentation. The results
of these methods in Tables 2, 3, 4, 5, and 6 were obtained by
re-executing their publicly released code or models, while the
partitioning of their datasets was identical to our approach. The
quantitative results are presented in Tables 2, 3, 4, 5, and 6.
For convenience, we have highlighted the best results for each
evaluation metric in bold text.

Method Backbone mDice mloU Recall Precision P-values
Dataset: CVC-ClinicDB
U-Net [10] - 0.831 0.783 0.867 0.885 7.65e-07
(0.825-0.837) (0.779-0.785) (0.863-0.872) (0.882-0.889)
U-Net++[11] - 0.852 0.809 0.907 0.887 1.91e-07
(0.849-0.855) (0.807-0.811) (0.904-0.912) (0.884-0.891)
DeepLabV3+[36] Xception 0.893 0.843 0.894 0.919 6.65e-07
(0.891-0.895) (0.841-0.845) (0.892-0.896) (0.915-0.923)
PraNet [15] Res2Net50 0.895 0.853 0912 0.899 2.43e-06
(0.892-0.898) (0.849-0.857) (0.907-0.915) (0.890-0.903)
TGANet [23] ResNet50 0.922 0.871 0.934 0.924 7.83e-01
(0.915-0.928) (0.865-0.877) (0.930-0.938) (0.917-0.930)
ECTransNet (ours) Res2Net50 0.923 0.878 0.931 0.933 -

(0.921-0.924)

(0.875-0.880)

(0.928-0.933)

(0.931-0.935)
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Table 4 Quantitative results on Endoscene datasets
Method Backbone mDice mloU Recall Precision P-values
Dataset: Endoscene
U-Net [10] - 0.710 0.630 0.706 0.864 1.49¢-07
(0.705-0.713) (0.625-0.634) (0.705-0.709) (0.861-0.868)
U-Net++[11] - 0.762 0.690 0.756 0.861 4.07e-07
(0.758-0.765) (0.687-0.692) (0.753-0.759) (0.859-0.862)
DeepLabV3+[36] Xception 0.864 0.788 0.923 0.849 2.25e-05
(0.861-0.867) (0.785-0.791) (0.921-0.925) (0.847-0.851)
PraNet [15] Res2Net50 0.866 0.795 0.903 0.871 3.31e-05
(0.864-0.868) (0.793-0.798) (0.901-0.905) (0.868-0.875)
TGANet [23] ResNet50 0.878 0.806 0.965 0.828 1.71e-04
(0.873-0.882) (0.799-0.810) (0.961-0.967) (0.821-0.832)
ECTransNet (ours) Res2Net50 0.907 0.840 0.954 0.877 -
(0.901-0.910) (0.831-0.842) (0.950-0.955) (0.866-0.882)

In addition, we performed a paired ¢-test between the dice
scores obtained by ECTransNet and those obtained by other
methods. The table below reports the P-values of the paired
t-test. When the P-value is less than 0.05, it indicates sig-
nificant differences in the dice scores between ECTransNet
and the corresponding methods.

Results on Kvasir-SEG In Table 2, we present the quantitative
evaluation of ECTransNet, while the qualitative results are
reported in Fig. 6. From the quantitative results, it is evident
that our method outperforms all other state-of-the-art (SOTA)
methods in metrics other than recall. Compared to PraNet, our
method demonstrates an improvement of 0.5% in mDice, 0.9%
in mloU, and 2.5% in precision, while experiencing a decrease
of 0.4% in recall. The actual segmentation effect is shown in
Fig. 6. It can be observed that our method accurately captures
the boundary information of polyps in images containing mul-
tiple polyps from the Kvasir-SEG dataset, yielding precise seg-
mentation of the polyp count. In contrast, other methods often
exhibit instances of missed detections.

Table 5 Quantitative results on CVC-ColonDB datasets

Results on CVC-ClinicDB Quantitative results of CVC-
ClinicDB are presented in Table 3. Compared to the highly
competitive TGANet, our method demonstrates improve-
ments of 0.1% in mDIce, 0.7% in mIoU, and 0.9% in Preci-
sion, while experiencing a decrease of 0.3% in recall score.
The segmentation results of ClinicDB, as shown in Fig. 6,
reveal that ECTransNet accurately segments polyps, while
TGANet exhibits over-segmentation. Although PraNet and
DeepLabV3+ accurately locate the polyps, their handling
of details is insufficient. The ECM within our ECTransNet
effectively leverages the differences between features at vari-
ous resolutions, capturing the edge information of polyps,
facilitating multi-scale feature complementarity, and obtain-
ing more precise local features of polyps.

Results on Endoscene Quantitative results on the Endoscene
dataset are reported in Table 4. It is evident that our
ECTransNet outperforms other SOTA methods in terms of
mDice and mloU, exhibiting significant improvements of 2.9%
and 3.4%, respectively, compared to TGANet. Our method

Method Backbone mDice mloU Recall Precision P-values
Dataset: CVC- ColonDB
U-Net [10] - 0.627 0.562 0.654 0.812 3.86e-08
(0.622-0.629) (0.560-0.565) (0.651-0.659) (0.809-0.814)
U-Net++[11] - 0.628 0.578 0.721 0.785 5.03e-08
(0.625-0.632) (0.572-0.581) (0.718-0.723) (0.781-0.787)
DeepLabV3+[36] Xception 0.727 0.647 0.752 0.824 2.96e-05
(0.721-0.732) (0.643-0.651) (0.749-0.757) (0.822-0.828)
PraNet [15] Res2Net50 0.713 0.642 0.710 0.808 1.7e-06
(0.710-0.716) (0.639-0.645) (0.708-0.712) (0.805-0.811)
TGANEet [23] ResNet50 0.752 0.674 0.787 0.798 3.05e-03
(0.747-0.757) (0.670-0.677) (0.783-0.793) (0.796-0.800)
ECTransNet (ours) Res2Net50 0.766 0.687 0.765 0.873 -

(0.764-0.768)

(0.683-0.689)

(0.760-0.769)

(0.870-0.879)
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Table 6 Quantitative results on ETIS datasets

Method Backbone mDice mloU Recall Precision P-values
Dataset: ETIS
U-Net [10] - 0.414 0.368 0.467 0.717 1.74e-06
(0.411-0.419) (0.359-0.372) (0.458-0.471) (0.706-0.721)
U-Net++[11] - 0.423 0.352 0.406 0.685 1.38e-06
(0.418-0.427) (0.341-0.355) (0.394-0.413) (0.681-0.688)
DeepLabV3+[36] Xception 0.627 0.567 0.701 0.704 1.40e-04
(0.621-0.634) (0.554-0.569) (0.695-0.709) (0.697-0.712)
PraNet [15] Res2Net50 0.626 0.570 0.698 0.752 1.32e-04
(0.623-0.631) (0.562-0.573) (0.695-0.703) (0.748-0.757)
TGANet [23] ResNet50 0.703 0.674 0.788 0.798 2.36e-02
(0.696-0.709) (0.670-0.677) (0.784-0.793) (0.796-0.800)
ECTransNet (ours) Res2Net50 0.728 0.655 0.769 0.800 -

(0.719-0.733)

(0.649-0.660)

(0.758-0.772)

(0.790-0.812)

achieves a recall score 1.1% lower than TGANet, while sur-
passing TGANet by 4.9% in precision. Figure 6 demonstrates
that for small-sized polyp images in the Endoscene dataset, our
ECTransNet performs well in segmentation. The FAD module
in ECTransNet effectively integrates high-level and low-level
features, benefiting from the accurate polyp-specific local
detail feature maps generated by ECM. By fusing and decod-
ing feature maps of different scales, FAD generates precise
segmentation prediction maps.

Kvasir

ClinicDB

Endoscene

ColonDB

ETIS

Unet Unet++

images

Fig.6 Visual comparison of polyp segmentation results
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Results on CVC-ColonDB In this study, we exclusively
employed CVC-ColonDB as our test dataset, which was
not involved in the model training process and thus remains
invisible to the model. As depicted in Table 5, our approach
demonstrates superior generalization capabilities compared
to other SOTA methods. Specifically, when compared to the
highly competitive TGANet, our method exhibits respective
improvements of 1.4% and 1.3% in mDice and mloU met-
rics. As illustrated in Fig. 6, our method accurately identifies

DeeplLabV3+

PraNet

TGANet

Qurs

Ground truth
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polyps and background in the ColonDB dataset, whereas the
segmentation performance of alternative methods is consid-
erably inferior. This discrepancy arises from the utilization
of transformer encoder in ECTransNet, which encode global
semantic relationships among pixels in the polyp’s global
feature map, enabling enhanced discrimination between pol-
yps and the background.

Results on ETIS The ETIS dataset is also invisible to the
model, and it is a challenging dataset because most of
its polyp images vary greatly in morphology. As shown
in Table 6, our ECTransNet achieves the highest mDice
and precision scores, while TGANet achieves the highest
mloU and recall scores. Figure 6 illustrates the segmen-
tation prediction maps for the ETIS dataset, highlighting
the performance of different methods. It is evident that our
ECTransNet maintains robustness when confronted with
polyp images from various sources.

Ablation Study

In order to investigate the roles of each component within
ECTransNet, we conducted ablation experiments on the
Kvasir-SEG dataset to validate the effectiveness of the trans-
former encoder, ECM, FAD, and CBAM. By sequentially
removing these modules from ECTransNet while preserving
the integrity of other modules, we trained the models and
observed their impact on model performance. The quanti-
tative results of our ablation experiments are presented in
Table 7. Firstly, we eliminated the transformer encoder,
resulting in a decrease of 0.7% in mDice score and 0.6% in
mloU score. This indicates that the pixel-wise global seman-
tic relationships constructed by the transformer encoder con-
tribute to the segmentation performance of the model.
Subsequently, we removed the ECM, which had a notable
impact on the model. The mDice and mlIoU scores were
0.878 and 0.838, respectively, representing a decrease of
2.3% and 0.9% compared to ECTransNet. This suggests
that the complementary fusion of feature maps across dif-
ferent scales by ECM is beneficial for the final segmentation

prediction. It allows for a more effective utilization of the
differences in features at different resolutions, resulting in
feature maps that are richer and more accurate in informa-
tion. Then, we removed the FAD and utilized only upsam-
pling for segmentation map restoration. It was observed that
the performance of the model was significantly influenced
by FAD. After removing FAD, the mDice and mloU scores
of ECTransNet decreased by 2% and 1.5%, respectively.
FAD facilitates the fusion of high-level and low-level fea-
tures and utilizes feature maps of different scales to restore
the segmentation prediction map. Additionally, the residual
modules within FAD enhance the accuracy of feature extrac-
tion and improve the model’s ability to restore boundary
information of polyps.

To fuse the low-level features, we employed the CBAM
for information filtering. The CBAM consists of both chan-
nel attention and spatial attention mechanisms. Since low-
level feature maps often contain abundant local details and
irrelevant noise, we utilized channel attention to focus on the
channels containing useful information in the feature maps.
Subsequently, spatial attention was employed to highlight
the local features of polyps. Therefore, the CBAM aids the
model in effectively predicting the local detailed features
of polyps and obtaining more precise segmentation predic-
tion maps. As shown in Table 7, after removing CBAM, the
model experienced a decrease of 0.5% and 0.2% in mDice
and mloU scores, respectively, on the Kvasir-SEG dataset.

Discussion

The challenges in polyp image segmentation primarily stem
from the similarity between polyps and the background
color, substantial morphological variations, and the blurred
boundaries between polyps and the mucosa. Deep learning
models often result in varying degrees of over-segmentation
or under-segmentation. U-Net addresses these challenges by
utilizing skip connections to integrate high- and low-level
features, thereby recovering lost information during the

Table 7 Ablation study for
ECTransNet on the Kvasir-SEG

Experiment description mDice mloU Recall Precision
ECTransNet (ours) 0.901 0.847 0.890 0.946

(0.898-0.902) (0.846-0.849) (0.887-0.891) (0.945-0.949)
Without transformer encoder 0.893 0.841 0.875 0.931

Without ECM

Without FAD

Without CBAM

(0.890-0.895)
0.878
(0.874-0.880)
0.881
(0.876-0.885)
0.896
(0.892-0.898)

(0.837-0.843)
0.838
(0.835-0.841)
0.832
(0.830-0.835)
0.845
(0.842-0.847)

(0.872-0.881)
0.879
(0.877-0.883)
0.884
(0.881-0.886)
0.889
(0.886-0.892)

(0.928-0.934)
0.941
(0.938-0.943)
0.927
(0.925-0.929)
0.939
(0.937-0.942)
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downsampling process. However, a semantic gap commonly
exists between high- and low-level features. The presence
of a substantial amount of noise in the low-level features
of polyp images often leads to a notable impact on the
final segmentation map. U-Net++, an extension of U-Net,
removes the long connections and introduces a multitude of
short connections. While it integrates features from various
hierarchical levels, its capacity to establish semantic rela-
tionships among pixels is limited, resulting in the omission
of multiple polyps.

DeeplabV3+employs a feature pyramid to integrate the
global feature maps of polyps, resulting in improved seg-
mentation performance for polyp images. However, due to
its reliance on only one skip connection during the decoding
stage to incorporate local feature maps, it suffers from the
loss of critical fine-grained details, leading to a deteriora-
tion in its ability to accurately segment the edges of polyps.
The aforementioned shortcomings lead to inferior segmenta-
tion results for both U-Net and DeepLabV3+, as depicted in
Tables 2, 3, 4, 5, and 6.

PraNet leverages a reverse attention module to indirectly
extract contour cues. However, it still falls short in ade-
quately capturing segmentation details and effectively han-
dling the segmentation of multiple polyps. While it improves
the accuracy of polyp segmentation, it tends to exhibit omis-
sion when dealing with multiple target polyps, as observed
in Fig. 6 (Kvasir-SEG dataset). On the other hand, TGANet
employs text-guided attention to address the challenge of
varying sizes and quantities of polyps. This approach ena-
bles the network to learn additional feature representations
for distinguishing polyps of different sizes. Nevertheless,
TGANet also lacks attention towards the semantic informa-
tion among pixels, which limits its ability to capture pixel-
level semantic details.

We introduce transformer encoder into ECTransNet,
leveraging a global self-attention mechanism to extract the
semantic relationship between polyp pixels and background
pixels, thereby obtaining precise spatial information about
the polyps’ locations. Similarly, our ECTransNet also adopts
skip connection structures. Additionally, we construct an
ECM to capture feature differences among different levels
of local feature maps, highlighting the local detailed infor-
mation of polyps in the feature maps. We incorporate these
features into the decoding process to generate more accu-
rate segmentation maps. According to Tables 2 and 3, it
can be observed that ECTransNet achieves the best mDice
and mloU scores on Kvasir-SEG and CVC-ClinicDB data-
sets, with values of 0.901 and 0.847 and 0.923 and 0.878,
respectively. These results outperform the highly competi-
tive TGANet. In order to better fuse high- and low-level
features, we construct a residual-based feature aggregation
decoder (FAD). This decoder takes polyp feature maps
at multiple scales as input, allowing for the restoration of

@ Springer

accurate polyp locations while preserving more local details.
As shown in Fig. 6, it is evident that our ECTransNet retains
more local details compared to other methods, particularly
on the ClinicDB dataset.

In real clinical environments, the performance of deep
learning-based segmentation methods can be influenced by
imaging protocols and variations among different patients.
In such cases, models that can adapt to different source data-
sets are considered more generalizable. In Tables 4, 5, and 6,
the Endoscene, CVC-ColonDB, and ETIS datasets are con-
sidered invisible to the model since they were not included
in the model’s training process. In the Endoscene and CVC-
ColonDB datasets, our method achieves the best mDice
and mloU scores of 0.907 and 0.840 and 0.766 and 0.687,
respectively. In the ETIS dataset, ECTransNet achieves
the best mDice score of 0.728, while the most competitive
TGANet obtains the best mIoU score of 0.674. These results
indicate that our ECTransNet is more generalizable. This
can be attributed to the effectiveness of our ECM in com-
plementing the differences in polyp feature information at
various resolutions, preserving the representative informa-
tion of polyps. Furthermore, the precise restoration of polyps
is achieved through the utilization of FAD, contributing to
the improved performance of our approach.

Additionally, we conducted ablation experiments to vali-
date the effectiveness of each component in ECTransNet.
We removed the corresponding modules from the model
while keeping the remaining components intact and trained
the modified model. Table 7 demonstrates that when the
transformer encoder is removed, there is a decrease of 0.8%
in mDice and 0.6% in mloU. This indicates that the trans-
former encoder plays a crucial role in extracting the semantic
relationships for feature extraction in the model. It enables
more accurate acquisition of spatial information regarding
the polyps and establishes global semantic relationships
among polyp pixels. Next, we removed the ECM, resulting
in a decrease of 2.3% and 0.9% in mDice and mIoU, respec-
tively. The model’s performance experienced a significant
decline. The ECM module performs differential computa-
tions on feature maps of varying resolutions and integrates
complementary information to emphasize the boundaries of
polyps, facilitating better extraction of local features. This is
crucial for enhancing the accuracy of polyp segmentation.

Similarly, Table 7 demonstrates that the removal of FAD
had a considerable impact on the model’s performance,
resulting in a noteworthy decrease of 2% and 1.5% in mDice
and mloU, respectively. Additionally, recall and precision
also exhibited varying degrees of decline. The FAD module
integrates feature maps from both ECM and Res2Net. The
feature maps extracted by ECM contain essential informa-
tion related to polyp boundaries, while Res2Net’s feature
maps encompass detailed polyp information. FAD utilizes
feature maps of different scales to minimize the loss of
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critical polyp information and performs fusion of high- and
low-level features, thereby generating precise polyp segmen-
tation maps.

Furthermore, in the integration of low-level features,
we employ CBAM to perform feature filtering on the low-
level features. Although low-level features contain rich
detailed characteristics, they also exhibit a considerable
amount of irrelevant noise. Hence, we utilize CBAM to
filter these features. The channel attention and spatial
attention mechanisms within CBAM enable the infer-
ence of attention maps in both the channel and spatial
dimensions. Subsequently, these attention maps are fused
with the feature maps, allowing for the adaptive optimiza-
tion of feature importance. In Table 7, it can be observed
that after removing the CBAM module, the mDice and
mloU metrics decreased by 0.5% and 0.2%, respectively.
Throughout the ablation experiment, the removal of ECM
and FAD led to a significant decline in the model’s per-
formance. Furthermore, the other modules also exerted
varying degrees of influence on the model.

One limitation of our study is that although our method
accurately localizes the majority of polyp positions for seg-
mentation, it performs poorly on images with low contrast
and severe artifacts. This issue has become a focal point for
our future research endeavors. We aim to contribute novel
insights to the task of polyp image segmentation. Moving
forward, we plan to address the aforementioned challenges
by refining the design of our network architecture to handle
more complex scenarios.
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