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Abstract
Colonoscopy is acknowledged as the foremost technique for detecting polyps and facilitating early screening and prevention 
of colorectal cancer. In clinical settings, the segmentation of polyps from colonoscopy images holds paramount importance 
as it furnishes critical diagnostic and surgical information. Nevertheless, the precise segmentation of colon polyp images 
is still a challenging task owing to the varied sizes and morphological features of colon polyps and the indistinct boundary 
between polyps and mucosa. In this study, we present a novel network architecture named ECTransNet to address the chal-
lenges in polyp segmentation. Specifically, we propose an edge complementary module that effectively fuses the differences 
between features with multiple resolutions. This enables the network to exchange features across different levels and results 
in a substantial improvement in the edge fineness of the polyp segmentation. Additionally, we utilize a feature aggregation 
decoder that leverages residual blocks to adaptively fuse high-order to low-order features. This strategy restores local edges 
in low-order features while preserving the spatial information of targets in high-order features, ultimately enhancing the 
segmentation accuracy. According to extensive experiments conducted on ECTransNet, the results demonstrate that this 
method outperforms most state-of-the-art approaches on five publicly available datasets. Specifically, our method achieved 
mDice scores of 0.901 and 0.923 on the Kvasir-SEG and CVC-ClinicDB datasets, respectively. On the Endoscene, CVC-
ColonDB, and ETIS datasets, we obtained mDice scores of 0.907, 0.766, and 0.728, respectively.

Keywords Colonoscopy · Polyp segmentation · Multi-scale features · ECTransNet

Introduction

Medical image segmentation has become a prevalent 
approach for the classification of distinct anatomical struc-
tures within a given tomographic image. It is utilized in 
various applications, such as liver segmentation [1], gas-
tric lesion segmentation [2], and pancreas segmentation [3] 
or polyp segmentation, which enables the differentiation 

between abnormal regions and normal regions. Polyps are 
abnormal growths on the surfaces of organs (such as the 
colon, rectum, stomach, and throat) that can potentially 
lead to cancer. Colorectal cancer is ranked as the third most 
common cancer in males and the second most common 
in females, according to the World Health Organization’s 
global human database [4]. Polyps can be classified into 
two main types: non-neoplastic (including inflammatory, 
juvenile, and hyperplastic polyps) and neoplastic (including 
adenomatous and serrated polyps). The clinical characteris-
tics of polyps depend on their type, location, size, and num-
ber. Some polyps are asymptomatic, while others may cause 
bleeding, pain, changes in bowel habits, or other complica-
tions. Timely detection and removal of precancerous polyps 
can effectively reduce the incidence of colorectal cancer.

Currently, colonoscopy examination represents the most 
conventional approach for polyp detection. However, recent 
reports have highlighted that approximately 26% of colo-
noscopy examinations result in missed lesions due to its 
reliance on manual manipulation and the clinical acuity 
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and experience of the endoscopist [5]. Colonic polyp image 
segmentation is a technique used to identify and sepa-
rate polyp regions from the background in colonoscopic 
images or videos. It provides accurate and reliable infor-
mation regarding the position, size, shape, and quantity of 
polyps. Subsequently, through the utilization of computer-
ized image analysis and identification of detailed features, 
it enables pathological classification, thereby achieving the 
objective of rapid screening. Consequently, this technique 
has the potential to reduce oversights and omissions by 
endoscopists, thereby lowering the miss rate of polyps or 
other abnormal tissues. This holds significant importance 
in the prevention of colorectal cancer.

Nevertheless, polyp image segmentation still faces several 
challenges and issues [6]. Firstly, the quality of colonoscopy 
images is influenced by various factors such as lighting con-
ditions, occlusions, blurriness, artifacts, blood, mucus, and 
more. These factors can decrease image contrast and clarity, 
thereby increasing the difficulty of segmentation. Secondly, 
polyps exhibit diversity and uncertainty in their appearance, 
including variations in size, shape, color, texture, and other 
features. Such variations may exist not only among different 
types of polyps but also within different regions of the same 
polyp, leading to segmentation instability and inconsistency.

Conventional techniques for polyp segmentation primar-
ily rely on low-level attributes such as texture [7], geomet-
ric features [8], and simple linear iterative clustering of 
super-pixels [9]. Regrettably, these methods tend to pro-
duce inferior segmentation accuracy and limited generali-
zation capability. With the development of deep learning in 
medical image analysis, deep learning techniques provide 
an efficient and accurate solution for polyp segmentation. 
In recent years, several image segmentation models based 
on convolutional neural networks (CNNs) have exhibited 
remarkable performance [10–12].

The U-shaped encoder–decoder architecture has gained 
increasing attention due to its potential to generate high-
resolution predictions by leveraging multi-level features for 
reconstruction. The utilization of skip connections enables 
the effective transmission of complex and information-
rich feature maps from the encoder network to the decoder 
sub-networks in deep neural networks. This technique 
facilitates the propagation of high-level semantic features 
while retaining fine-grained details throughout the network 
architecture [13, 14]. PraNet [15] utilized reverse attention 
mechanisms to effectively localize polyp boundary regions. 
This is achieved by incorporating advanced feature aggre-
gation and boundary attention blocks within the network 
architecture, which aid in aligning misaligned predictions 
and improving overall segmentation accuracy. Hardnet-
mseg [16] built upon PraNet and proposed a simplified 
encoder–decoder architecture. Specifically, they replaced 
the original Res2Net backbone network with Hardnet [17] 

and removed the attention mechanism to achieve faster and 
more accurate polyp segmentation. HRENet [18] introduced 
the information context enhancement (ICE) technique and 
the adaptive feature aggregation (AFA) module, along with 
training using edge and structure consistency perception loss 
(ES-CLoss), resulting in outstanding model performance.

PolypSeg [19] employed two distinct modules, the adap-
tive scale context module (ASCM) and the semantic global 
context module (SGCM), to address the inherent dimen-
sional variations between polyps and enhance the fusion of 
high- and low-level features. ASCM is specifically designed 
to improve feature representation by adapting to the vary-
ing scales of polyps, while SGCM facilitates global context 
modeling to effectively fuse features at different scales.

To address the challenges of scale imbalance and color 
distribution caused by target size, SANet [20] employed 
probability correction and color migration strategies. To 
address redundancies and complementarities within multi-
scale features, MSNet [21] introduced multi-scale subtrac-
tive networks. In a similar vein, MSRFNet [22] incorporated 
a cross-scale fusion mechanism to disseminate high- and 
low-level features while also introducing a shape flow net-
work to refine polyp boundaries. TGANet [23] utilized a 
text-guided approach to assimilate the distinctive features 
of polyps of varying dimensions, with the ultimate goal of 
enhancing the network’s capacity to generalize across dif-
ferent polyp sizes.

The majority of the aforementioned research methods are 
based on CNNs. While they have shown certain improve-
ments in segmentation accuracy compared to traditional 
approaches based on superpixels and textures, there is still 
room for enhancement in terms of polyp boundary locali-
zation and segmentation. PraNet utilizes reverse attention 
to enhance the model’s ability to locate polyp bounda-
ries, but its segmentation accuracy remains unsatisfactory. 
HRENet and PolypSeg have employed approaches that 
enhance global contextual semantic relationships, result-
ing in improved model performance. However, CNNs often 
lose some crucial information during the downsampling 
process and have limited receptive fields, which weakens 
their ability to build global contextual semantic relation-
ships. As a result, traditional CNN methods often exhibit 
limited generalization ability when applied to polyp images 
from different patients [24]. MSNet and MSRFNet address 
this limitation by processing multi-scale feature maps, but 
they lack attention to semantic information among pixels. 
TGANet employs text-guided attention to focus on features 
of polyps at different sizes, enhancing generalization ability. 
However, there is still a need for further improvement in the 
segmentation of local details in TGANet.

To enhance the focus on semantic information among 
pixels, we attempted to incorporate the transformer [25] 
encoder into the task of polyp image segmentation. Unlike 
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traditional convolutional neural networks, the transformer 
utilizes self-attention mechanisms, enabling the model to 
capture a larger effective receptive field. For long sequence 
data, the transformer can learn dependencies between differ-
ent positions in the sequence through self-attention, thereby 
better capturing global contextual semantic information. 
However, the transformer may lack the ability to extract 
local feature information effectively. Therefore, we decided 
to adopt a hybrid structure combining convolutional neural 
networks and transformer. We used the convolutional neural 
networks to extract local polyp features and then employed 
the self-attention mechanism of the transformer to build 
global semantic relationships among pixels in the polyp 
feature maps. This approach overcomes the weak ability of 
convolutional neural networks to construct global contextual 
semantic relationships, thereby improving the accuracy and 
generalization of the model for polyp segmentation. Further-
more, to address the issue of polyp boundary localization, 
we designed an edge complementary module (ECM). The 
ECM fuses and complements polyp feature maps at multi-
ple resolutions, reducing the loss of crucial information and 
effectively capturing boundary cues of the polyps.

In this study, we propose a novel polyp image segmenta-
tion model called ECTransNet, aimed at improving the accu-
racy and generalization of polyp image segmentation tasks. 
ECTransNet combines convolutional neural networks, trans-
former, and ECM, integrating the local feature extraction 
capability of convolutional neural networks with the global 
semantic relationship construction capability of transformer. 
In the feature map decoding process, to better utilize the fea-
ture maps outputted by ECM, we introduce a residual-based 
feature aggregation decoder (FAD) that adaptively fuses 
high-level and low-level features. This approach preserves 
accurate spatial position information while enhancing the 
model’s capability to segment local details. The objective 
of this research is to validate this deep learning model and 
test the feasibility of this approach.

Materials and Methods

Datasets

This study utilized five publicly available polyp datasets, 
namely, Kvasir-SEG [26], CVC-ClinicDB [27], Endoscene 
[28], CVC-ColonDB [29], and ETIS [30]. A detailed 
description of each dataset will be provided below.

Kvasir‑SEG The Kvasir-SEG dataset consists of 1000 polyp 
images with their corresponding annotations. What sets 
this dataset apart from others is that the size and shape 
of the polyps vary within images. The image sizes range 
from 332 × 487 to 1920 × 1072. In the dataset, there are 

700 large polyps, greater than 160 × 160, 48 small polyps, 
less than 64 × 64, and 323 medium-sized polyps. Of these, 
900 images were used for training and validation, and 100 
images were used for testing.

CVC‑ClinicDB CVC-ClinicDB contains 612 images from 25 
colonoscopy examination videos, from which 29 sequences 
were selected. The image size is 384 × 288. 550 images were 
used for training and validation, and 62 images were used 
for testing.

Endoscene Endoscene contains 912 images from 44 colo-
noscopy examination sequences of 36 patients. As the 
Endoscene dataset is a combination of CVC-ClinicDB and 
CVC-300, we used CVC-300 as a testing dataset, which con-
sists of 60 images in total.

CVC‑ColonDB CVC-ColonDB comes from 15 different colo-
noscopy examination sequences, from which 380 images 
were sampled. All 380 images were used for testing.

ETIS ETIS contains 196 images collected from 34 
colonoscopy examination videos. The image size is 
1225 × 966. The polyp shapes in this dataset have a 
larger variation than other datasets, and they are mostly 
small and difficult to detect, making this dataset very 
challenging. All 196 images in the dataset were used 
for testing.

We followed the same training setting as PraNet and ran-
domly split the images of Kvasir-SEG and CVC-ClinicDB 
into 80% for training (800 images from Kvasir and 488 
images from CVC-ClinicDB were mixed together) and 10% 
for validation (100 images from Kvasir and 62 images from 
CVC-ClinicDB), and the remaining images were used for 
testing. Furthermore, due to the correlation between a set 
of colonoscopy images from the same patient, to minimize 
errors, we ensured that during the dataset partitioning, 1 to 
4 images were randomly extracted from each patient’s colo-
noscopy images as the test set. The specific data partitioning 
is illustrated in Table 1.

Table 1  Datasets used in our experiments

Dataset Images Input size Train Valid Test

Kvasir-SEG 1000 Variable 800 100 100
CVC-ClinicDB 612 384 × 288 488 62 62
Endoscene 912 574 × 500 - - 60
CVC-ColonDB 380 574 × 500 - - 380
ETIS 196 1225 × 966 - - 196
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Data Preprocessing

In this study, the number of polyp images available for 
training the deep learning model was only 1288, which is 
significantly insufficient for training a robust model and 
prone to overfitting. Therefore, during the training phase, 
we employed data augmentation techniques to enhance the 
dataset by applying various operations, including random 
horizontal flipping, random vertical flipping, random rota-
tion of 35 degrees, and random cropping. These augmenta-
tion methods were utilized to mitigate the limitations caused 
by the limited training data and enhance the generalization 
capability of the model.

Specifically, for data augmentation, we applied the hori-
zontal flip function from the “albumentations” library in 
Python to perform horizontal flipping on a batch of data. 
The probability parameter, p, of the horizontal flip function 
was set to 0.5, meaning that during each training iteration, 

50% of the images were randomly selected for horizontal 
flipping. The same settings were applied to random vertical 
flipping and random rotation.

Regarding random cropping, this operation involved ran-
domly erasing regions within the image. In our study, we 
utilized random erasing with 10 rectangular regions of size 
32 × 32 pixels each. The probability parameter, p, for this 
operation was also set to 0.5. The specific visual effects of 
these augmentation techniques can be observed in Fig. 1.

Methods

The proposed automatic polyp image segmentation model 
is named ECTransNet. This model effectively integrates 
multi-scale polyp boundary information and enhances fea-
ture representations to achieve more precise and accurate 
polyp segmentation maps. Figure 2 illustrates the overall 
architecture of ECTransNet, which includes Res2Net [31], 

Fig. 1  Image data enhancement

Fig. 2  The proposed ECTransNet architectures
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transformer encoder, edge complementary module (ECM), 
convolutional block attention module (CBAM) [32], and fea-
ture aggregation module (FAD). In the following sections, 
we will provide detailed descriptions of these components 
and discuss how they contribute to the effectiveness of the 
ECTransNet.

Encoder Module

ECTransNet is a network based on the Res2Net encoder 
for an input polyp image of size h × w. The backbone net-
work of Res2Net extracts four levels of resolution features {
fi, i = 1, 2, 3, 4

}
 , resolution 

[
h∕2i,w∕2i

]
 of the image. We 

divide fi into low-level feature 
{
fi, i = 1

}
 , edge features {

fi, i = 2, 3
}
 , and position feature 

{
fi, i = 4

}
 . We introduce 

the transformer encoder and dilated convolution layer as the 
bottleneck layer of the model to reduce the dimensionality of 
the features and increase the nonlinear expression capability 
of the model. The position feature 

{
fi, i = 4

}
 is fed into the 

bottleneck layer to obtain a global feature map of the polyp Fg.
Res2Net is an improved multi-scale feature extraction net-

work built upon the foundation of ResNet [33]. It introduces 
hierarchical residual connections within a single residual 
block, enabling each network layer to capture features from 
multiple scales and receptive fields. Res2Net has demon-
strated superior performance compared to ResNet in tasks 
such as image classification, semantic segmentation, and 
object detection. Moreover, it can be seamlessly integrated 
with other neural network models, offering convenience 
and flexibility in various applications. As shown in Fig. 3b, 
the input image matrix is evenly divided into s parts at the 

channel level, denoted as xi , where 1 ≤ i ≤ s . In the figure, 
1 × 1 Conv represents a 1 × 1convolutional block, while 3 × 3 
represents a 3 × 3 convolutional block. The feature formula 
is represented as follows:

In the formula, conv represents the 3 × 3 convolution opera-
tion. Finally, all yi are concatenated together to obtain multi-
scale features that capture finer-grained representations.

Transformer is a neural network model based on self-
attention mechanism that has made significant contributions 
in the field of natural language processing (NLP). Inspired 
by its success in NLP, researchers have applied the trans-
former to visual data such as images and videos, achieving 
impressive results and making it a prominent research topic 
in the field of computer vision. Transformer mainly consists 
of an encoder and a decoder, which rely entirely on self-
attention mechanisms to capture the global dependencies in 
the sequence. Figure 4 shows the structure of the transformer 
encoder, which is composed of stacked layers as shown in 
Fig. 4. Each layer has two sub-layers: the first sub-layer 
includes a multi-head attention, a residual connection, and 
a layer normalization, and the second sub-layer includes a 
feed-forward neural network layer, a residual connection, and 
a layer normalization.

The essence of the multi-head attention layer lies in perform-
ing multiple independent attention computations, enabling the 
model to capture different features. Multiple heads may focus 
on different aspects, enhancing the model’s expressive capacity. 
Residual connections address the issues of gradient vanishing 
and network degradation by adding the input and output of the 
network. Layer normalization accelerates model convergence 
and acts as a regularization technique. The feed-forward neural 
network consists of multiple linear transformations and nonlin-
ear functions, allowing nonlinear transformations of features 
within sequences and improving the model’s expressive power 
and generalization ability.

Edge Complementary Module and Feature  
Aggregation Decoder

The ECM plays a crucial role in extracting polyp bound-
ary information, allowing for the complementary fusion of 
information from different scales. It effectively captures the 
boundary information cues of the polyps, enabling the gen-
eration of more detailed polyp segmentation maps.

As illustrated in Fig. 5a, the ECM consists of two paral-
lel sets of dilated convolutions [34] with dilation rates of 
1, 3, and 6, respectively.

yi =

⎧
⎪⎨⎪⎩

xii = 1;

conv
�
xi
�
i = 2;

conv
�
xi + yi−1

�
2 < i ≤ s.

Fig. 3  Differences between ResNet and Res2Net
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If we represent the operation of a 3 × 3 dilated con-
volution, followed by batch normalization and ReLU, as 
CBR(⋅) , then the feature map can be expressed as follows:

Here, ⊕ represents the concatenation operation. f2,a and 
f3,a are feature maps that have been fused with different 
dimensions, providing richer feature information. Next, 
the difference feature matrix between the global feature 
map Fg and f3,a is computed, as well as the difference fea-
ture matrix between f2,a and f3,a:

f2,a = CBR
(
f2,r=1

)
⊕ CBR

(
f2,r=3

)
⊕ CBR

(
f2,r=6

)

f3,a = CBR
(
f3,r=1

)
⊕ CBR

(
f3,r=3

)
⊕ CBR

(
f3,r=6

)

f2,b = |f3,a − f2,a|

Specifically, the global feature map Fg is subtracted ele-
ment-wise from the local feature map f3,a , and the absolute 
value of the resulting matrix is computed to obtain the dif-
ference feature f3,b . Similarly, the local feature maps f3,a and 
f2,a undergo element-wise subtraction, and the absolute value 
of the resulting matrix is computed to obtain the difference 
feature f2,b.

The difference feature maps f2,b and f3,b contain informa-
tion about the feature disparities between images of different 
resolutions. Shallow-level features extracted by convolutional 
neural networks often contain abundant local details such as 
color, texture, edges, and corners. As the network goes deeper, 
the receptive field of the network expands, enabling the extrac-
tion of more abstract features such as objects, scenes, and posi-
tional information in the images. However, the perception of 
fine details diminishes. Therefore, by performing difference 
calculations on feature maps extracted by shallow-level net-
works, we can extract boundary information between polyps 
and the background, leading to more precise polyp localiza-
tion and reducing over-segmentation and under-segmentation 
issues. Further difference calculations are performed on f2,b 
and f3,b:

In order to effectively utilize the boundary information of 
polyps among different resolutions, we perform convolutional 
extraction of useful information on f2,b and f2,c , followed by 
matrix element addition operation. This process reduces the 
loss of critical information and yields more accurate detailed 
features of the polyps. The feature map obtained after f2 and 
f3 undergo the ECM is illustrated as follows:

The FAD enables more effective utilization of the extracted 
feature maps from the encoder and edge complementation 
modules. Its structure is depicted in Fig. 5b. It performs adap-
tive fusion of features from different levels, enabling the res-
toration of polyp location information while preserving more 
precise local detail information. Starting from the global fea-
ture map Fg , both Fg and f3 are fed into the FAD, resulting in 
the generation of the decoded map D1:

Next, D1 , fe3 , and f2 enter the FAD to progressively 
restore the boundaries and detailed information of the polyp, 
resulting in D2:

f3,b = |F
g
− f3,a|

f2,c = |f3,b − f2,b|

fe2 = CBR
(
f2,b

)
+ CBR

(
f2,c

)

fe3 = CBR
(
f3,b

)

D1 = RB(Fg ⊕ f3)

Fig. 4  Transformer encoder
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Subsequently, the fusion process is performed by combin-
ing D2 , fe2 , and f1:

Finally, D3 is employed to generate an accurate segmentation 
map of the polyp. Here, ⊕ denotes the concatenation operation, 
and RB represents the residual module. Additionally, prior to 
entering the FAD, f1 undergoes CBAM, which is an attention 
module composed of channel attention and spatial attention. 
It enables the inference of attention maps in both channel and 
spatial dimensions, which are then fused with the feature maps 
to adaptively optimize the importance of features. As f1 corre-
sponds to the shallow-level features of the image, it possesses a 
high resolution and contains abundant local details of the polyp. 
However, it also carries a significant amount of noise, which 
can affect the final polyp segmentation map.

Therefore, CBAM is employed to filter out irrelevant fea-
ture information from f1 , enabling the utilization of local details 
while simultaneously reducing the impact of background noise 
and other disturbances on the final segmentation map.

D2 = RB(D1 ⊕ fe3 ⊕ f2)

D3 = RB(D2 ⊕ fe2 ⊕ f1)

Loss Function

Our approach for model supervision involved the implemen-
tation of binary cross entropy (BCE) loss and dice loss [35]. 
BCEloss is a loss function applicable to binary classifica-
tion tasks, designed to quantify the disparity between target 
values and predicted values. Its mathematical expression is 
presented as follows:

where X is the model prediction value, Y  is the label truth 
value, w is the weight value, and the default is 1.

The dice loss function was proposed to address the issue 
of imbalanced positive and negative samples within a data-
set. Given the limited acquisition methods for colonoscopy 
polyp datasets and the significant disparities often present 
between positive and negative samples, employing only the 
BCE loss function would lead to a model that predominantly 
predicts the majority class. The dice loss function serves as 
a measure of similarity between two samples, with values 
ranging from 0 to 1. Larger values indicate higher similarity 
between samples. By utilizing both BCE loss and dice loss 

LBCE = −w ∗ (Y ∗ log(X) + (1 − Y) ∗ log(1 − X))

Fig. 5  The details of ECM and 
FAD
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together, they complement each other and enhance the accu-
racy and robustness of segmentation. The specific formula 
for dice loss is as follows:

Thus, the final loss function used for the decoder output 
takes the form of the following:

Results

Implementation Details and Evaluation Metrics

We built our model with PyTorch and accelerated it with 
an NVIDIA RTX3090 GPU. We use AdamW optimizer 
with initial learning rate set to 0.0001 and batch size of 16. 

LDice = 1 −
2|X ∩ Y|
|X| + |Y|

Loss = LBCE + LDice

Training is performed for a total of 200 epochs. Our loss 
function is a combination of dice loss and BCE loss. During 
training, we scaled the images to 256 × 256 and enhanced the 
data with random horizontal and vertical flips, rotations, and 
random cropping operations. For quantitative evaluation, we 
use some common metrics: average dice, average IoU, recall, 
and precision.

Experiments on the Public Polyp Benchmarks

We compared ECTransNet with several state-of-the-art meth-
ods, including U-Net, U-Net++, DeepLabV3+, PraNet, and 
TGANet. These algorithms are widely used for polyp segmen-
tation and general medical image segmentation. The results 
of these methods in Tables 2, 3, 4, 5, and 6 were obtained by 
re-executing their publicly released code or models, while the 
partitioning of their datasets was identical to our approach. The 
quantitative results are presented in Tables 2, 3, 4, 5, and 6. 
For convenience, we have highlighted the best results for each 
evaluation metric in bold text.

Table 2  Quantitative results on Kvasir-SEG datasets

Method Backbone mDice mIoU Recall Precision P-values

Dataset: Kvasir-SEG
  U-Net [10] - 0.818

(0.805–0.834)
0.743
(0.715–0.763)

0.807
(0.781–0.835)

0.902
(0.887–0.915)

7.59e-05

  U-Net++ [11] - 0.839
(0.827–0.851)

0.772
(0.751–0.784)

0.861
(0.853–0.873)

0.895
(0.885–0.902)

9.74e-05

  DeepLabV3+ [36] Xception 0.890
(0.885–0.896)

0.831
(0.828–0.834)

0.885
(0.881–0.889)

0.920
(0.918–0.923)

5.31e-03

  PraNet [15] Res2Net50 0.896
(0.891–0.898)

0.838
(0.835–0.841)

0.894
(0.891–0.897)

0.921
(0.918–0.923)

1.53e-02

  TGANet [23] ResNet50 0.896
(0.895–0.900)

0.839
(0.836–0.843)

0.890
(0.887–0.897)

0.932
(0.930–0.934)

2.19e-02

  ECTransNet (ours) Res2Net50 0.901
(0.898–0.902)

0.847
(0.846–0.849)

0.890
(0.888–0.891)

0.946
(0.945–0.949)

-

Table 3  Quantitative results on CVC-ClinicDB datasets

Method Backbone mDice mIoU Recall Precision P-values

Dataset: CVC-ClinicDB
  U-Net [10] - 0.831

(0.825–0.837)
0.783
(0.779–0.785)

0.867
(0.863–0.872)

0.885
(0.882–0.889)

7.65e-07

  U-Net++ [11] - 0.852
(0.849–0.855)

0.809
(0.807–0.811)

0.907
(0.904–0.912)

0.887
(0.884–0.891)

1.91e-07

  DeepLabV3+ [36] Xception 0.893
(0.891–0.895)

0.843
(0.841–0.845)

0.894
(0.892–0.896)

0.919
(0.915–0.923)

6.65e-07

  PraNet [15] Res2Net50 0.895
(0.892–0.898)

0.853
(0.849–0.857)

0.912
(0.907–0.915)

0.899
(0.890–0.903)

2.43e-06

  TGANet [23] ResNet50 0.922
(0.915–0.928)

0.871
(0.865–0.877)

0.934
(0.930–0.938)

0.924
(0.917–0.930)

7.83e-01

  ECTransNet (ours) Res2Net50 0.923
(0.921–0.924)

0.878
(0.875–0.880)

0.931
(0.928–0.933)

0.933
(0.931–0.935)

-
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In addition, we performed a paired t-test between the dice 
scores obtained by ECTransNet and those obtained by other 
methods. The table below reports the P-values of the paired 
t-test. When the P-value is less than 0.05, it indicates sig-
nificant differences in the dice scores between ECTransNet 
and the corresponding methods.

Results on Kvasir‑SEG In Table 2, we present the quantitative 
evaluation of ECTransNet, while the qualitative results are 
reported in Fig. 6. From the quantitative results, it is evident 
that our method outperforms all other state-of-the-art (SOTA) 
methods in metrics other than recall. Compared to PraNet, our 
method demonstrates an improvement of 0.5% in mDice, 0.9% 
in mIoU, and 2.5% in precision, while experiencing a decrease 
of 0.4% in recall. The actual segmentation effect is shown in 
Fig. 6. It can be observed that our method accurately captures 
the boundary information of polyps in images containing mul-
tiple polyps from the Kvasir-SEG dataset, yielding precise seg-
mentation of the polyp count. In contrast, other methods often 
exhibit instances of missed detections.

Results on CVC‑ClinicDB Quantitative results of CVC-
ClinicDB are presented in Table 3. Compared to the highly 
competitive TGANet, our method demonstrates improve-
ments of 0.1% in mDIce, 0.7% in mIoU, and 0.9% in Preci-
sion, while experiencing a decrease of 0.3% in recall score. 
The segmentation results of ClinicDB, as shown in Fig. 6, 
reveal that ECTransNet accurately segments polyps, while 
TGANet exhibits over-segmentation. Although PraNet and 
DeepLabV3+ accurately locate the polyps, their handling 
of details is insufficient. The ECM within our ECTransNet 
effectively leverages the differences between features at vari-
ous resolutions, capturing the edge information of polyps, 
facilitating multi-scale feature complementarity, and obtain-
ing more precise local features of polyps.

Results on Endoscene Quantitative results on the Endoscene 
dataset are reported in Table  4. It is evident that our 
ECTransNet outperforms other SOTA methods in terms of 
mDice and mIoU, exhibiting significant improvements of 2.9% 
and 3.4%, respectively, compared to TGANet. Our method 

Table 4  Quantitative results on Endoscene datasets

Method Backbone mDice mIoU Recall Precision P-values

Dataset: Endoscene
  U-Net [10] - 0.710

(0.705–0.713)
0.630
(0.625–0.634)

0.706
(0.705–0.709)

0.864
(0.861–0.868)

1.49e-07

  U-Net++ [11] - 0.762
(0.758–0.765)

0.690
(0.687–0.692)

0.756
(0.753–0.759)

0.861
(0.859–0.862)

4.07e-07

  DeepLabV3+ [36] Xception 0.864
(0.861–0.867)

0.788
(0.785–0.791)

0.923
(0.921–0.925)

0.849
(0.847–0.851)

2.25e-05

  PraNet [15] Res2Net50 0.866
(0.864–0.868)

0.795
(0.793–0.798)

0.903
(0.901–0.905)

0.871
(0.868–0.875)

3.31e-05

  TGANet [23] ResNet50 0.878
(0.873–0.882)

0.806
(0.799–0.810)

0.965
(0.961–0.967)

0.828
(0.821–0.832)

1.71e-04

  ECTransNet (ours) Res2Net50 0.907
(0.901–0.910)

0.840
(0.831–0.842)

0.954
(0.950–0.955)

0.877
(0.866–0.882)

-

Table 5  Quantitative results on CVC-ColonDB datasets

Method Backbone mDice mIoU Recall Precision P-values

Dataset: CVC- ColonDB
  U-Net [10] - 0.627

(0.622–0.629)
0.562
(0.560–0.565)

0.654
(0.651–0.659)

0.812
(0.809–0.814)

3.86e-08

  U-Net++ [11] - 0.628
(0.625–0.632)

0.578
(0.572–0.581)

0.721
(0.718–0.723)

0.785
(0.781–0.787)

5.03e-08

  DeepLabV3+ [36] Xception 0.727
(0.721–0.732)

0.647
(0.643–0.651)

0.752
(0.749–0.757)

0.824
(0.822–0.828)

2.96e-05

  PraNet [15] Res2Net50 0.713
(0.710–0.716)

0.642
(0.639–0.645)

0.710
(0.708–0.712)

0.808
(0.805–0.811)

1.7e-06

  TGANet [23] ResNet50 0.752
(0.747–0.757)

0.674
(0.670–0.677)

0.787
(0.783–0.793)

0.798
(0.796–0.800)

3.05e-03

  ECTransNet (ours) Res2Net50 0.766
(0.764–0.768)

0.687
(0.683–0.689)

0.765
(0.760–0.769)

0.873
(0.870–0.879)

-
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achieves a recall score 1.1% lower than TGANet, while sur-
passing TGANet by 4.9% in precision. Figure 6 demonstrates 
that for small-sized polyp images in the Endoscene dataset, our 
ECTransNet performs well in segmentation. The FAD module 
in ECTransNet effectively integrates high-level and low-level 
features, benefiting from the accurate polyp-specific local 
detail feature maps generated by ECM. By fusing and decod-
ing feature maps of different scales, FAD generates precise 
segmentation prediction maps.

Results on CVC‑ColonDB In this study, we exclusively 
employed CVC-ColonDB as our test dataset, which was 
not involved in the model training process and thus remains 
invisible to the model. As depicted in Table 5, our approach 
demonstrates superior generalization capabilities compared 
to other SOTA methods. Specifically, when compared to the 
highly competitive TGANet, our method exhibits respective 
improvements of 1.4% and 1.3% in mDice and mIoU met-
rics. As illustrated in Fig. 6, our method accurately identifies 

Table 6  Quantitative results on ETIS datasets

Method Backbone mDice mIoU Recall Precision P-values

Dataset: ETIS
  U-Net [10] - 0.414

(0.411–0.419)
0.368
(0.359–0.372)

0.467
(0.458–0.471)

0.717
(0.706–0.721)

1.74e-06

  U-Net++ [11] - 0.423
(0.418–0.427)

0.352
(0.341–0.355)

0.406
(0.394–0.413)

0.685
(0.681–0.688)

1.38e-06

  DeepLabV3+ [36] Xception 0.627
(0.621–0.634)

0.567
(0.554–0.569)

0.701
(0.695–0.709)

0.704
(0.697–0.712)

1.40e-04

  PraNet [15] Res2Net50 0.626
(0.623–0.631)

0.570
(0.562–0.573)

0.698
(0.695–0.703)

0.752
(0.748–0.757)

1.32e-04

  TGANet [23] ResNet50 0.703
(0.696–0.709)

0.674
(0.670–0.677)

0.788
(0.784–0.793)

0.798
(0.796–0.800)

2.36e-02

  ECTransNet (ours) Res2Net50 0.728
(0.719–0.733)

0.655
(0.649–0.660)

0.769
(0.758–0.772)

0.800
(0.790–0.812)

-

Fig. 6  Visual comparison of polyp segmentation results
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polyps and background in the ColonDB dataset, whereas the 
segmentation performance of alternative methods is consid-
erably inferior. This discrepancy arises from the utilization 
of transformer encoder in ECTransNet, which encode global 
semantic relationships among pixels in the polyp’s global 
feature map, enabling enhanced discrimination between pol-
yps and the background.

Results on ETIS The ETIS dataset is also invisible to the 
model, and it is a challenging dataset because most of 
its polyp images vary greatly in morphology. As shown 
in Table 6, our ECTransNet achieves the highest mDice 
and precision scores, while TGANet achieves the highest 
mIoU and recall scores. Figure 6 illustrates the segmen-
tation prediction maps for the ETIS dataset, highlighting 
the performance of different methods. It is evident that our 
ECTransNet maintains robustness when confronted with 
polyp images from various sources.

Ablation Study

In order to investigate the roles of each component within 
ECTransNet, we conducted ablation experiments on the 
Kvasir-SEG dataset to validate the effectiveness of the trans-
former encoder, ECM, FAD, and CBAM. By sequentially 
removing these modules from ECTransNet while preserving 
the integrity of other modules, we trained the models and 
observed their impact on model performance. The quanti-
tative results of our ablation experiments are presented in 
Table 7. Firstly, we eliminated the transformer encoder, 
resulting in a decrease of 0.7% in mDice score and 0.6% in 
mIoU score. This indicates that the pixel-wise global seman-
tic relationships constructed by the transformer encoder con-
tribute to the segmentation performance of the model.

Subsequently, we removed the ECM, which had a notable 
impact on the model. The mDice and mIoU scores were 
0.878 and 0.838, respectively, representing a decrease of 
2.3% and 0.9% compared to ECTransNet. This suggests 
that the complementary fusion of feature maps across dif-
ferent scales by ECM is beneficial for the final segmentation 

prediction. It allows for a more effective utilization of the 
differences in features at different resolutions, resulting in 
feature maps that are richer and more accurate in informa-
tion. Then, we removed the FAD and utilized only upsam-
pling for segmentation map restoration. It was observed that 
the performance of the model was significantly influenced 
by FAD. After removing FAD, the mDice and mIoU scores 
of ECTransNet decreased by 2% and 1.5%, respectively. 
FAD facilitates the fusion of high-level and low-level fea-
tures and utilizes feature maps of different scales to restore 
the segmentation prediction map. Additionally, the residual 
modules within FAD enhance the accuracy of feature extrac-
tion and improve the model’s ability to restore boundary 
information of polyps.

To fuse the low-level features, we employed the CBAM 
for information filtering. The CBAM consists of both chan-
nel attention and spatial attention mechanisms. Since low-
level feature maps often contain abundant local details and 
irrelevant noise, we utilized channel attention to focus on the 
channels containing useful information in the feature maps. 
Subsequently, spatial attention was employed to highlight 
the local features of polyps. Therefore, the CBAM aids the 
model in effectively predicting the local detailed features 
of polyps and obtaining more precise segmentation predic-
tion maps. As shown in Table 7, after removing CBAM, the 
model experienced a decrease of 0.5% and 0.2% in mDice 
and mIoU scores, respectively, on the Kvasir-SEG dataset.

Discussion

The challenges in polyp image segmentation primarily stem 
from the similarity between polyps and the background 
color, substantial morphological variations, and the blurred 
boundaries between polyps and the mucosa. Deep learning 
models often result in varying degrees of over-segmentation 
or under-segmentation. U-Net addresses these challenges by 
utilizing skip connections to integrate high- and low-level 
features, thereby recovering lost information during the 

Table 7  Ablation study for 
ECTransNet on the Kvasir-SEG

Experiment description mDice mIoU Recall Precision

ECTransNet (ours) 0.901
(0.898–0.902)

0.847
(0.846–0.849)

0.890
(0.887–0.891)

0.946
(0.945–0.949)

Without transformer encoder 0.893
(0.890–0.895)

0.841
(0.837–0.843)

0.875
(0.872–0.881)

0.931
(0.928–0.934)

Without ECM 0.878
(0.874–0.880)

0.838
(0.835–0.841)

0.879
(0.877–0.883)

0.941
(0.938–0.943)

Without FAD 0.881
(0.876–0.885)

0.832
(0.830–0.835)

0.884
(0.881–0.886)

0.927
(0.925–0.929)

Without CBAM 0.896
(0.892–0.898)

0.845
(0.842–0.847)

0.889
(0.886–0.892)

0.939
(0.937–0.942)



2438 Journal of Digital Imaging (2023) 36:2427–2440

1 3

downsampling process. However, a semantic gap commonly 
exists between high- and low-level features. The presence 
of a substantial amount of noise in the low-level features 
of polyp images often leads to a notable impact on the 
final segmentation map. U-Net ++, an extension of U-Net, 
removes the long connections and introduces a multitude of 
short connections. While it integrates features from various 
hierarchical levels, its capacity to establish semantic rela-
tionships among pixels is limited, resulting in the omission 
of multiple polyps.

DeeplabV3+ employs a feature pyramid to integrate the 
global feature maps of polyps, resulting in improved seg-
mentation performance for polyp images. However, due to 
its reliance on only one skip connection during the decoding 
stage to incorporate local feature maps, it suffers from the 
loss of critical fine-grained details, leading to a deteriora-
tion in its ability to accurately segment the edges of polyps. 
The aforementioned shortcomings lead to inferior segmenta-
tion results for both U-Net and DeepLabV3+, as depicted in 
Tables 2, 3, 4, 5, and 6.

PraNet leverages a reverse attention module to indirectly 
extract contour cues. However, it still falls short in ade-
quately capturing segmentation details and effectively han-
dling the segmentation of multiple polyps. While it improves 
the accuracy of polyp segmentation, it tends to exhibit omis-
sion when dealing with multiple target polyps, as observed 
in Fig. 6 (Kvasir-SEG dataset). On the other hand, TGANet 
employs text-guided attention to address the challenge of 
varying sizes and quantities of polyps. This approach ena-
bles the network to learn additional feature representations 
for distinguishing polyps of different sizes. Nevertheless, 
TGANet also lacks attention towards the semantic informa-
tion among pixels, which limits its ability to capture pixel-
level semantic details.

We introduce transformer encoder into ECTransNet, 
leveraging a global self-attention mechanism to extract the 
semantic relationship between polyp pixels and background 
pixels, thereby obtaining precise spatial information about 
the polyps’ locations. Similarly, our ECTransNet also adopts 
skip connection structures. Additionally, we construct an 
ECM to capture feature differences among different levels 
of local feature maps, highlighting the local detailed infor-
mation of polyps in the feature maps. We incorporate these 
features into the decoding process to generate more accu-
rate segmentation maps. According to Tables 2 and 3, it 
can be observed that ECTransNet achieves the best mDice 
and mIoU scores on Kvasir-SEG and CVC-ClinicDB data-
sets, with values of 0.901 and 0.847 and 0.923 and 0.878, 
respectively. These results outperform the highly competi-
tive TGANet. In order to better fuse high- and low-level 
features, we construct a residual-based feature aggregation 
decoder (FAD). This decoder takes polyp feature maps 
at multiple scales as input, allowing for the restoration of 

accurate polyp locations while preserving more local details. 
As shown in Fig. 6, it is evident that our ECTransNet retains 
more local details compared to other methods, particularly 
on the ClinicDB dataset.

In real clinical environments, the performance of deep 
learning-based segmentation methods can be influenced by 
imaging protocols and variations among different patients. 
In such cases, models that can adapt to different source data-
sets are considered more generalizable. In Tables 4, 5, and 6, 
the Endoscene, CVC-ColonDB, and ETIS datasets are con-
sidered invisible to the model since they were not included 
in the model’s training process. In the Endoscene and CVC-
ColonDB datasets, our method achieves the best mDice 
and mIoU scores of 0.907 and 0.840 and 0.766 and 0.687, 
respectively. In the ETIS dataset, ECTransNet achieves 
the best mDice score of 0.728, while the most competitive 
TGANet obtains the best mIoU score of 0.674. These results 
indicate that our ECTransNet is more generalizable. This 
can be attributed to the effectiveness of our ECM in com-
plementing the differences in polyp feature information at 
various resolutions, preserving the representative informa-
tion of polyps. Furthermore, the precise restoration of polyps 
is achieved through the utilization of FAD, contributing to 
the improved performance of our approach.

Additionally, we conducted ablation experiments to vali-
date the effectiveness of each component in ECTransNet. 
We removed the corresponding modules from the model 
while keeping the remaining components intact and trained 
the modified model. Table 7 demonstrates that when the 
transformer encoder is removed, there is a decrease of 0.8% 
in mDice and 0.6% in mIoU. This indicates that the trans-
former encoder plays a crucial role in extracting the semantic 
relationships for feature extraction in the model. It enables 
more accurate acquisition of spatial information regarding 
the polyps and establishes global semantic relationships 
among polyp pixels. Next, we removed the ECM, resulting 
in a decrease of 2.3% and 0.9% in mDice and mIoU, respec-
tively. The model’s performance experienced a significant 
decline. The ECM module performs differential computa-
tions on feature maps of varying resolutions and integrates 
complementary information to emphasize the boundaries of 
polyps, facilitating better extraction of local features. This is 
crucial for enhancing the accuracy of polyp segmentation.

Similarly, Table 7 demonstrates that the removal of FAD 
had a considerable impact on the model’s performance, 
resulting in a noteworthy decrease of 2% and 1.5% in mDice 
and mIoU, respectively. Additionally, recall and precision 
also exhibited varying degrees of decline. The FAD module 
integrates feature maps from both ECM and Res2Net. The 
feature maps extracted by ECM contain essential informa-
tion related to polyp boundaries, while Res2Net’s feature 
maps encompass detailed polyp information. FAD utilizes 
feature maps of different scales to minimize the loss of 
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critical polyp information and performs fusion of high- and 
low-level features, thereby generating precise polyp segmen-
tation maps.

Furthermore, in the integration of low-level features, 
we employ CBAM to perform feature filtering on the low-
level features. Although low-level features contain rich 
detailed characteristics, they also exhibit a considerable 
amount of irrelevant noise. Hence, we utilize CBAM to 
filter these features. The channel attention and spatial 
attention mechanisms within CBAM enable the infer-
ence of attention maps in both the channel and spatial 
dimensions. Subsequently, these attention maps are fused 
with the feature maps, allowing for the adaptive optimiza-
tion of feature importance. In Table 7, it can be observed 
that after removing the CBAM module, the mDice and 
mIoU metrics decreased by 0.5% and 0.2%, respectively. 
Throughout the ablation experiment, the removal of ECM 
and FAD led to a significant decline in the model’s per-
formance. Furthermore, the other modules also exerted 
varying degrees of influence on the model.

One limitation of our study is that although our method 
accurately localizes the majority of polyp positions for seg-
mentation, it performs poorly on images with low contrast 
and severe artifacts. This issue has become a focal point for 
our future research endeavors. We aim to contribute novel 
insights to the task of polyp image segmentation. Moving 
forward, we plan to address the aforementioned challenges 
by refining the design of our network architecture to handle 
more complex scenarios.
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