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Abstract
Glucose transporter-1 (GLUT-1) expression level is a biomarker of tumour hypoxia condition in immunohistochemistry 
(IHC)-stained images. Thus, the GLUT-1 scoring is a routine procedure currently employed for predicting tumour hypoxia 
markers in clinical practice. However, visual assessment of GLUT-1 scores is subjective and consequently prone to inter-
pathologist variability. Therefore, this study proposes an automated method for assessing GLUT-1 scores in IHC colorectal 
carcinoma images. For this purpose, we leverage deep transfer learning methodologies for evaluating the performance 
of six different pre-trained convolutional neural network (CNN) architectures: AlexNet, VGG16, GoogleNet, ResNet50, 
DenseNet-201 and ShuffleNet. The target CNNs are fine-tuned as classifiers or adapted as feature extractors with support 
vector machine (SVM) to classify GLUT-1 scores in IHC images. Our experimental results show that the winning model is 
the trained SVM classifier on the extracted deep features fusion Feat-Concat from DenseNet201, ResNet50 and GoogLeNet 
extractors. It yields the highest prediction accuracy of 98.86%, thus outperforming the other classifiers on our dataset. We 
also conclude, from comparing the methodologies, that the off-the-shelf feature extraction is better than the fine-tuning 
model in terms of time and resources required for training.
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Introduction

It is known that most solid tumour tissues have an abnormal 
vasculature resulting in poor delivery of oxygen to localised 
regions. Therefore, these regions are characterised by low 
oxygen concentration, known as tumour hypoxia [1]. Hypoxia 
is currently receiving attention as the centre for the hall-
marks of cancer; this is because of its major characteristics of 

chemotherapy and radiotherapy resistance and a major prog-
nostic factor [2]. Oxygen gradient in the order of diffusion and 
consumption plays a critical role in the dynamics of the tumour 
microenvironment, and this creates room for the development 
of hypoxic regions in almost all solid tumours [3]. The hypoxic 
regions in all solid tumours vary in size and extent due to the 
different gradients and supply as well as distribution of oxygen 
in these regions [4]. The need for oxygen in solid tumours dif-
fers; some tumours that are irregular and disorganised require 
a reduced oxygen gradient, whilst others require an increase in 
oxygen demand which arises as a result of tumour metabolism 
[5]. The imbalance between oxygen demand and supply in solid 
tumours makes hypoxia a unique hallmark of cancer as it cre-
ates room for tumours to more adverse features that include epi-
thelial–mesenchymal transition (EMT) and mesenchymal–epi-
thelial transition that produces cancer stem cell (CSC) niche, 
resistance to chemotherapy and radiotherapy resistance, poor 
clinical prognosis and immune damping as well as increase 
genomic instability and increases cells abilities to evade apop-
tosis [4, 6]. Hypoxia and angiogenesis work hand in hand for all 
solid tumours to be fully established and therefore are linked to 
aggressiveness and metastasis of solid tumours, hence among 
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the most relevant micro-environmental factors [5]. Tumour 
hypoxia leads to the production and activation of hypoxia-
inducible factor (HIF) family members, including HIF-1 and 
HIF-2; these HIFs’ proteins later activate more genes that pro-
mote hypoxia such as the GLUT-1 and carbonic anhydrase-9 
(CAIX) [7] which are both well-known membrane-bound bio-
markers that induce and increase the hypoxic condition in solid 
[8]. Thus, the GLUT-1 as a cell surface receptor is one of the 
genes associated with tumour hypoxia in different forms of can-
cer including breast, prostate and colorectal and hence classed 
as a hypoxic stem cell marker cancer [9]. The semi-quantitative  
scoring system is employed for estimating the amount of 
GLUT-1 expression. Several studies [9–12] have employed the 
semi-quantitative scoring system to assess the level of hypoxia 
marker using the GLUT-1 protein expression. The clinical sig-
nificance of the different scores of tumour hypoxia therapy is 
aimed at understanding how much hypoxia is developed and 
spread across solid tumours and cells. The deeper the hypoxic 
environment, the more difficult it gets for chemotherapy and 
radiotherapy to reach tumour sites. Hence, there is a need for 
the use of hypoxia-activated pro-drugs (HAPs) as targeted 
therapy. For the apparent progress in cancer therapies, the vis-
ual examination still is the standard way of measuring tumour 
hypoxia markers in clinical practice, which is affected by inter-
observer variation [13–15]. In addition, commercial software 
such as QuPath imaging software requires an expert pathologist 
to quantify the intensity of GLUT1 ImmunoStaining in tumour 
cells. Therefore, one of the steps of tumour therapy develop-
ment would be promoted by a robust automated scoring method 
to facilitate clinical tests, improve the diagnosis quality, avoid 
the variation among histopathologists and reduce the time and 
costs of diagnoses. This, in turn, results in better assessment 
outcomes and improved patient experience [15].

Traditional machine learning-based methods rely heav-
ily on extracting some specific visual features manually 
from images. So, such hand-crafted features can only deal 
with some low-level information about images. Further-
more, the relevant domain knowledge is necessary to select 
useful features, which can be greatly muddled by subjec-
tive extractor bias. In contrast, deep learning-based meth-
ods can extract high-level abstract features from images 
automatically in a standardised way. CNNs are one form 
of deep learning that can extract the image’s hierarchical 
features at multiple layers, i.e. the features at each layer are 
computed from the representations of the previous layer. 
Such hierarchical features can be learned gradually from 
low-level to high-level through a deep architecture [15]. 
Thus, multi-level abstraction enables deep learning net-
works to be well suited for discovering the complex struc-
tures within high-dimensional data, such as whole slide 
images [16]. In addition, such CNNs have the ability to 
learn complex mapping functions directly from input data, 
without the help of human-crafted features [16].

Although deep learning algorithms achieved state-of-the-
art results in the digital histopathology domain, they have 
some unique challenges in their implementation. One of the 
major challenges is the large number of annotated images 
needed for training deep CNNs that may not be available, 
especially in the digital histopathology domain [16]. In con-
trast, training deep CNNs with limited training data leads 
to over-fitting and a poor generation of features on data. 
Over-fitting is critical when the data contain high image 
appearance variance, which is usually common in digital 
histopathological images. Furthermore, training deep CNN 
from scratch requires high computational costs and extensive 
memory resources and time. Thus, such approaches have 
practical limitations in the digital histopathology field [14]. 
In recent years, there has been a debate that the methodology 
of deep transfer learning could tackle the aforementioned 
challenges more effectively. Deep transfer learning is lever-
aged as a helpful tool to overcome the data scarcity problem 
in the digital histopathology field. Therefore, this work has 
adopted the most common deep transfer learning to present 
an automated method for scoring the tumour hypoxia marker 
using the GLUT-1 protein expression. Towards the end, this 
work proposes alternative tumour hypoxia scoring evalua-
tion using deep learning technology to objectively predict 
those patients that require targeted therapy HAPs instead of 
chemotherapy or radiotherapy.

The rest of the paper is organised as follows: the related 
works are briefly discussed in the second section. The pro-
posed methodology is explained in the third section. The 
carried out experiments and their results are presented in the 
fourth section. Lastly, the fifth section concludes the paper.

Related Work

The traditional IHC scoring methods rely on hand-craft 
features. This is due to the lack of IHC images in clinical 
practice. So IHC images need the high cost of antibodies, 
autostainer machine equipment and the complex laboratory 
process. To our knowledge, no work has been done for the 
automatic GLUT1 scoring using deep learning techniques. 
Therefore, this section reviews some of the works that are 
similar to our work. These works have participated in the 
contest human epidermal growth factor receptor 2 (HER2) 
scoring challenge on invasive breast cancer images. It was 
organised by the University of Warwick, the University 
of Nottingham and the Academic–Industrial Collabora-
tion for Digital Pathology. It aimed to advance automated 
methods for HER2 scoring on IHC-stained images. HER2 
expression is used as a predictor of invasive breast cancer 
progression in clinical practice. More information on the 
HER2 Challenge dataset can be found in the paper pub-
lished by Qaiser et al. [17].
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Since the HER2 scoring challenge contest, several studies 
[18–21] have been carried out by using traditional machine 
learning methods for HER2 scoring. Cordeiro et al. [18] 
have utilised and compared the SVM, K-nearest neighbours 
(KNN), multi-layer perceptron classifier (MLP) and deci-
sion tree classifiers for HER2 scoring according to image 
patch level and patient level with colour and texture features. 
Mukundan [19] has employed uniform local binary pattern 
(ULBP), characteristic curves, entropy and energy features 
with logistic regression and SVM classifier to score HER2-
stained tissue samples. Tewary et al. [20] have utilised col-
our space-based membrane extraction followed by an SVM 
classifier for HER2 scoring. Chang et al. [21] have employed 
the colour channel to extract the morphology, texture and 
intensity features, and then they were utilised for training 
the SVM classifier. But these methods depend on extracting 
visual features manually from images which in turn requires 
an expert pathologist.

The others [17, 22–25] investigated deep learning meth-
ods. This is due to deep learning methods providing impres-
sive results in many applications of histopathological image 
analysis. Starting from [17], Qaiser et al. have presented 
the winning teams of the HER2 challenge contest that 
employed CNN-based methods. The winning teams lever-
aged deep transfer learning methodologies to address the 
lack of annotated training images in the HER2 challenge 
dataset. They have fine-tuned the latest pre-trained CNNs 
at the time as classifiers for HER2 scoring. For instance, 
the MUCS team [17] submitted three versions, the AlexNet 
model was adapted to MUCS-1 and MUCS-2, and the Goog-
LeNet model was adapted to MUCS-3. MUCS-1 network is 
fine-tuned to classify four output classes that correspond to 
HER2 scores from 0 to 3 +. MUCS-2 and MUCS-3 had an 
additional output class for the background. The background 
class contained the regions with texture having only a weak 
appearance of nuclei (without blueish or brownish colour). 
MTB NLP team [17] trained the modified architectures of 
AlexNet and VGG-16 and then employed a random forest 
classifier to produce the final class probabilities for each 
score. In a similar manner, the VISILAB team [17] fine-
tuned the GoogLeNet model, and the FSUJena team [17] 
fine-tuned the AlexNet model to four HER2 scores. Whilst 
in [22], the authors have used direct feeding to the AlexNet 
model for HER2 scoring. In [23], the authors have proposed 
Her2Net architecture with LSTM recurrent network for 
segmenting and labelling the HER2-stained tissue samples. 
In [24], the authors have applied super-pixel-based tissue 
region segmentation to extract colour and texture features 
and then followed by SVM to distinguish epithelial and stro-
mal regions, which are scored using a modified UNet model. 
In [25], the authors utilised deep transfer learning with fine-
tuned five pre-trained CNNs by fully connected dense layers 
for 3 classes and then presented a collective voting scheme 

for HER2 scoring. They have adopted VGG16, VGG19, 
ResNet50, MobileNetV2 and NASNet-Mobile architectures 
for image-based and patch-based labelling.

In this work, we have explored the common deep transfer 
learning methodologies to score GLUT-1 protein expres-
sion in a colorectal cancer tissue microarray (TMA) of IHC 
images. We have investigated and compared the predictive 
performance of six different pre-trained CNNs architectures: 
AlexNet, VGG16, GoogLnet, ResNet50, DenseNet-201 and 
ShuffleNet. These architectures were fine-tuned as classi-
fiers or adapted as extractors to get the transferable off-the-
shelf features on our IHC image dataset.

Materials and Methods

In this section, we first present the acquisition approach of 
dataset images and then outline the essential steps to be fol-
lowed in dataset image preparation. Next, we show the appro-
priate choice of architecture and methodology for our applica-
tion. Finally, the proposed methodology for the discrimination 
of the GLUT1 scoring is quantitatively explained.

Image Dataset Acquisition

The images were obtained from the institute of cancer thera-
peutics, the University of Bradford, and the necessary ethi-
cal approval has been obtained. The images were prepared 
by immunohistochemistry (IHC) staining for ALDH7A1 and 
GLUT-1 on HT-29 tissue microarray (TMA) of human clinical 
specimens of colorectal cancer adenocarcinoma. The IHC is a 
widely used technique in pathology. It is now used in all aspects 
of modern research to identify specific antigens within a tissue 
section from formalin-fixed paraffin-embedded (FFPE) tissue, 
e.g. in tissue microarrays (TMAs) and 3D dimensional sphe-
roids grown from cells. The method utilises an antigen-specific 
antibody interaction and detection using a light microscope 
[26]. The TMA clinical sample slide number G063 (Biomax.
us) carries 150 cores of clinical sample on the whole side in 
which 100 are colorectal cancer (CRC) tissues, and 50 were 
either malignant, adjacent tissue to the cancer tissue or normal 
tissues; these give a total number of 50 cases of colorectal can-
cer in each whole TMA slide. A whole slide IHC analysis was 
done to analyse ALDH7A1 protein expression in CRC clinical 
tissues. The clinical samples were collected between July and 
August 2019 from thirty-three male patients and thirteen female 
patients. So, these clinical samples whole slide comprises both 
male and female colorectal cancer patients and different age 
distributions from the highest age distribution of 82-year-old 
male patient sample with grade 1 and stage IIB CRC, whilst 
the least clinical sample on the whole slide was from a 33-year-
old female patient sample with grade 1 and staged IIB CRC 
(CO1505). The IHC images were scanned using Aperio Digital 
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Pathology Slide Scanners (Aperio AT2) and then captured at 0.5 
um/pixel and 200 μm diameter. The whole cores and examples 
of GLUT-1 expression of IHC colon adenocarcinoma images 
were shown in Figs. 1 and 2, respectively.

Annotation of Dataset Images

Two trained histopathologists scored the TMA cores accord-
ing to the proportion of Glut-1 and ALDH7A1 staining in 

the entire cores. They have quantified the different scores 
using QuPath Imaging Software with version 0.2.6. Such 
software provides percentage (%) mean expression of pro-
tein measured as intensity per pixel. So they have analysed 
all the semi-quantitative scores per expression of GLUT-1 
and ALDH7A1 at different stages of CRC TMA using the 
QuPath Imaging Software version 0.2.6. The TMA cores 
were semi-quantitatively scored: score 0 (no staining with 
0%), score 1 (light staining with 0–5%), score 2 (medium 

Fig. 1   The G063 clinical sample of 150 tumour cores of Aperio Leica software

Fig. 2   Examples of GLUT-1 
expression at different stages 
of IHC colon adenocarcinoma 
images; magnification of the 
upper panel is × 5 (0.1 um/
pixel), and the lower panel 
is × 20 (0.5 um/pixel)
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staining with 5–15%), score-3 (heavy staining with15–30%) 
and score 4 (intense staining with > 30%) and a score given 
for whole section. The settings used were TMA de-arrayer 
(optional) at TMA core diameter of 1.2  mm, intensity 
parameters threshold of 0.1 and Max background intensity 
of 2. The intensity threshold parameters are under score 
compartment; cytoplasm, DAB OD mean, threshold 1 + 0.2, 
threshold 1 + 0.4 and threshold 1 + 0.6. And all of these were 
ran at single threshold. The examples of our dataset images 
are shown in Fig. 2. 

Derivation of Dataset Images

The dataset images were obtained by hand-picking the regions 
of interest from TMA cores that contained the most representa-
tive samples from each class. The regions were selected at a 
low resolution and mapped to the highest resolution (0.5 um/
pixel) to generate the patches. We derived approximately ten 
to twelve images for each TMA core to balance the number of 
images among the classes. A total of 1750 IHC images were 
extracted at 0.5 um/pixel. Each class contains 350 images, 
where we derived dataset images with size 512 × 512 pixels 
and then stored them in jpeg compression format.

Colour Normalisation

For this purpose, we utilised a colour de-convolution method 
described in [27] for highlighting the brown-stain areas (Diam-
inobenzidine, DAB) of reactive membranes in the IHC image.

Partition of Dataset Images

The dataset images were divided randomly into 80% train-
ing set (1400 images) and 20% testing set (350 images); 
i.e. each class was trained with 280 images and tested with 
70 images. The testing set does not utilise for training our 
proposed architectures.

Augmentation of Dataset Images

Several studies [16, 28] have observed that the limited 
amount of training data is one of the major challenges in 
deep learning. In this regard, data augmentation is one of 
the possible solutions to create additional artificial train-
ing images through some transformations for learning deep 
features from the images and thus increasing the deep net-
work performance. In this study, we augmented the training 
images of our dataset by rotated them with angles of 90, 
180 and 270 degrees and then flipped them in the horizontal 
and vertical direction. This is to enlarge the training images 
size without affecting the quality of input images [29] and 
avoid the problems of over-fitting and poorly generation of 
features [30].

Standard Performance Evaluation Metrics

The performance of different classifiers is evaluated accord-
ing to standard metrics formulated for multi-class classifica-
tion as depicted in Eqs. 1, 2, 3 and 4:

•	 Accuracy metric: this criterion is used to measure a clas-
sifier’s ability for predicting actual classes correctly. It 
is formulated as

•	 Recall metric: it is also known as sensitivity; this crite-
rion is used to measure a classifier’s ability for predicting 
each individual class correctly. It is formulated as

•	 Precision metric: this criterion is used to measure a clas-
sifier’s ability for predicting relevant instances for each 
individual class. It is formulated as

•	 F1-score metric: this criterion is a harmonic mean of the 
recall and precision metrics. It is formulated as

where tpi is the number of true positives (i.e. the correctly 
classification for ith class), fpi is the number of false posi-
tives (i.e. wrongly classification for ith class), fni is the 
number of false negatives (i.e. missed classification for ith 
class), tni the is the number of true negatives (i.e. correctly 
classification not belong to ith class), and L is the number 
of classes.

In this study, standard performance metrics were 
extracted from the confusion matrix [31]. Thus the 5 × 5 
confusion matrix for classifying five-class that utilised 
in this work is shown in Fig. 3. So the accuracy, recall 
and precision could be calculated using the following 
equations:

(1)Acc =
1

L

L∑

i=1

tpi + tni

tpi + tni + fpi + fni
,

(2)Ri =
tpi

tpi + fni
,

(3)Pi =
tpi

tpi + fpi
,

(4)F1score =
2 × Pi × Ri

Pi + Ri

,

(5)

ACC =

∑L−1

i=0
tpi

∑L−1

i=0
tpi +

∑L−1

i=0

∑L−1

j=0
Eij

,∀i ≠ j, i = j = {0, 1, 2, 3, 4}

(6)Ri =
tpi

tpi +
∑L−1

j=0,∀i≠j
Eij

, i = {0, 1, 2, 3, 4}
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From Fig. 3, the term Eij is the error classification to the 
actual class i according to predicted class j. By substitut-
ing into Eqs. 1, 2 and 3, we find that tpi + fpi =

∑L−1

i=0
tpi,  

fni =
∑L−1

j=0,∀i≠j
Eij and fpi =

∑L−1

j=0,∀i≠j
Eji.

Choice of Deep Transfer Learning Methodology

In this section, we introduce the concept of two common 
methodologies.

Fine‑Tuning CNN

In this methodology, the target pre-trained CNN network 
layers can be replaced by new ones and then retrained on the 
new dataset. It is possible to fine-tune all the network layers 
or fix the earlier layers and only fine-tune the last layers of 
the network [32]. The weights in transferred layers are fro-
zen and initialised from a source pre-trained network, whilst 
the weights in new layers are trained using a back-propaga-
tion algorithm [33]. In the back-propagation algorithm, the 
weights in the new layers are adjusted by back-propagating 
the new task’s errors into the transfer layers during training. 
It is faster than constructing a new CNN network, i.e. a pre-
trained CNN on millions of images could be taken to retrain 
for new classification using only hundreds of images [33]. 
Furthermore, it gains convergence faster than learning from 
scratch so that it can solve the convergence problem [34].

(7)Pi =
tpi

tpi +
∑L−1

j=0,∀i≠j
Eji

, i = {0, 1, 2, 3, 4}
Off‑the‑Shelf Feature Extraction

Such methodology adapts the pre-trained CNNs to extract 
the deep features which then are utilised to train a separate 
classifier for prediction without consuming time and effort 
for training. These extractors are characterised by the gen-
eralisation property which enables the deep features to be 
transferred to other applications [35]. Therefore, the gener-
alisability property is particularly useful when there is not 
enough dataset for training the CNN from scratch.

Architecture of the Proposed Models

Choice of the appropriate architecture for a specific applica-
tion is an essential step. In this work, we have investigated 
six pre-trained CNNs trained on the ImageNet dataset [36]:

•	 AlexNet architecture [13] was the winner of the ImageNet 
2012 challenge that popularised CNNs. It contains five 
convolutional layers followed by rectification, three max-
pooling layers and three fully connected layers.

•	 VGG architecture [37] was proposed by the Visual 
Geometry Group at the University of Oxford. It has a 
similar architecture to AlexNet with more convolutional 
layers. In VGG architecture, the convolutional layers use 
only 3 × 3 filters, as well the pooling layers employ only 
2 × 2 filters. VGG16 model has thirteen convolutional 
layers followed by rectification, five max-pooling layers 
and three fully connected layers.

•	 GoogLeNet architecture [32] contains twenty-two con-
volutional layers with nine inception blocks and a fully 
connected layer. The inception module consists of four 
parallel convolution kernels that process the same input, 
and the extracted different features are then concatenated 
at the end. Each inception module has six convolutional 
layers followed by rectification.

•	 Residual architecture [38] uses skip connections to reduce 
the effect of the vanishing gradient problem significantly. 
ResNet-50 has 50 convolutional layers followed by rectifi-
cation and a fully connected layer. It contains 16 residual 
blocks with the skip layer element-wise addition layer to 
enable the network to pass the features from lower to higher 
levels to acquire more complicated features.

•	 DenseNet architecture [39] utilises the skip connections 
from each layer to the succeeding layers that promote 
reusing the features through the entirety of the network. 
DenseNet-201 contains 201 convolutional layers and a 
fully connected layer. It has dense blocks that concat-
enate outputs from all the previous layers as its input.

•	 ShuffleNet architecture [40] contains grouped convolu-
tion, channel shuffling and element-wise addition of two 
inputs. So, it combines the characteristics of residual and 

Fig. 3   A confusion matrix for the five-class classification
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dense blocks. It utilises the channel shuffle operation to 
overcome the consequences of using group convolutions.

In the AlexNet and VGG-16 models, the feature extraction 
part is regarded from the input layer to the last max-pooling 
layer, whereas the classification part is three fully connected 
layers. Whilst in the other models, from the input layer to the 
global average pooling layer is the feature extraction part, and 
the fully connected layer is the classification part. The different 
blocks for proposed architectures are shown in Fig. 4.

Proposed Methodology

This study has investigated the common deep transfer learn-
ing methodologies: fine-tuning of pre-trained CNNs for a 
new classification and off-the-shelf features extraction 
from pre-trained models. In the first approach, we initialise 
the target network with pre-trained weights on the source 
task and then partially re-training them on the target task. 
Whilst the second approach extracts the deep features from 
the source task without re-training the network and then uses 
them to train a third-party classifier.

Fine‑Tuning Target CNN Classifiers

In this experiment, we compare the performance of six different 
pre-trained models: AlexNet, VGG16, GoogLeNet, ResNet-50, 
DenseNet-201 and ShuffleNet. We carried out our experiments 
by fine-tuning these target models as classifiers. We fine-tuned 
the fully connected layer of these models by replacing the last 
three layers with new layers for five classes; i.e. the new layers 

are mapped to our dataset. We specifically replace the fully con-
nected, softmax and classification layers with three correspond-
ing new layers. Subsequently, the weights in transferred layers 
were preserved, whilst the weights in new layers were updated 
continuously using the back-propagation algorithm.

Tuning Target CNN Feature Extractors

In this experiment, we have compared the performance of SVM 
classifiers that were trained on the extracted deep features from 
a specific layer in the proposed networks as follows: global 
average pooling “avg-pool” layer for GoogLeNet, ResNet-50, 
DenseNet-201 and ShuffleNet, whilst “f7” fully connected 
layer for AlexNet and VGG16. The SVM classifiers were 
tuned and trained on the extracted deep features using the train-
ing set and then evaluated using the test set. In the sequel, the 
extracted deep feature vectors from fully connected layer fc7 of 
AlexNet and VGG-16 will be referred to as Feat-Alex and Feat-
Vgg16, respectively. As the same, the extracted deep feature 
vectors from the global average pooling layer of GoogLeNet, 
ResNet-50, DenseNet and SuffleNet will be referred to as Feat-
GoogLe, Feat-Res50, Feat-Dense and Feat-Suffle, respectively.

Experiments and Results

Three experiments are carried out using our dataset images. 
The experiments are implemented in MATLAB R2020a on a 
desktop computer with a 3.60-GHz Intel® CPU, Dual-Core-
i7-7700, 32 GB RAM and NVIDIA GeForce GTX 1070 

Fig. 4   Block structure for different proposed architectures, where “Conv”, “ReLU” and “BN” represents the convolution layer, rectified linear 
unit and batch normalisation layer, respectively
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GPU. In our experiments, the target CNN models were fed 
with the augmented IHC images, which were resized accord-
ing to their input layer size. AlexNet architecture requires 
input images of size 227 × 227 × 3, whilst other architec-
tures require input images of size 224 × 224 × 3, where 3 
is the number of colour channels. Now, the dataset images 
are ready to employ according to the used approach. In the 
fine-tuning classifier, augmented data is fed to the target net-
works for training. Whereas in feature extraction approach, 
augmented data is used to train target SVM classifiers. This 
will be further explained in the following sections. Figure 5 
illustrates the flow chart diagram of how these approaches 
can be carried out.

Evaluation of Tuned Classifiers

In this section, we discuss the setup of the tuned classifiers 
and the analysis of obtained results.

Tuned Classifier Setup

The tuned classifier setup is as follows:

•	 For transfer learning, to learn the new layers faster 
than the transferred layers, set the parameter values of 

the fully connected layer as learn rate factors (LRFs) to 
a large value, whereas initial learning rate (ILR) is to 
a small value. Therefore, weight learn rate factor, bias 
learn rate factor and initial learning rate values were set 
to 20, 20 and 0.0001, respectively. Then the target net-
works were retrained by augmented training data.

•	 For network training, target networks were run for 90 
epochs. The training was done using stochastic gradi-
ent descent (SGD) with momentum set to 0.90 with a 
batch size of 128. The learning rate was initially set to 
0.0001 as a starting point and was decremented after 
each update. The programme validated target networks 
every three iterations; 3 iterations per epoch were 
selected as the maximum number. The different models 
were trained and tested with the same training and test-
ing sets for a fair comparison. Figure 6 shows the train-
ing process of the different fine-tuned classifiers.

Analysis of the Results Obtained

The analysis of the results obtained is as follows:

•	 Training progress analysis: the analysis of the obtained 
results in Fig. 6 indicates that the fine-tuning models are 

Fig. 5   Flowchart diagram for 
the proposed methodologies
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Fig. 6   Visualisation of the training progress for different target networks
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rapidly gaining convergence during the training stage. 
Where the convergence approximately occurred in the 
first twenty epochs. This is also shown by Tajbakhsh et al. 
[31] indicating that the fine-tuning CNN approach gains 
convergence faster. From the 60th epoch, the accuracy 
rate was approximately steady for all target networks; i.e. 
the values of accuracy rates rose slowly. This is the main 
reason for ending the training at the 90th epoch.

•	 Timing training analysis: from the analysis of tim-
ing training of the six target networks, we found that 
AlexNet is the fastest; it took 45 min to train. For the 
same training data, VGG16, GoogLeNet, ResNet50, 
DenseNet and ShuffleNet took 90, 270, 120, 300 and 
200 min, respectively.

•	 Performance analysis: 5 × 5 confusion matrices were used 
to represent the obtained prediction results of the cancerous 
pathological samples. Five scores represented the percent-
age of GLUT1 staining in tumour cells. Here, the X-axis 
represents the actual values, and the Y-axis represents the 
predicted values. These 5 × 5 confusion matrices are shown 
in Fig. 7. Statistical performance measurement results of 
different fine-tuned classifiers were summarised in Tables 1 

and 2. Accuracy, recall, precision and F1-score metrics were 
computed by using Eqs. 5, 6, 7 and 4, respectively. As can be 
seen from Table 1, the higher successful classification was 
achieved by the tuned ResNet50 and tuned GoogLeNet with 
accuracy rates that were 96.86% and 95.17%, respectively. 
Followed by tuned AlexNet, DenseNet, VGG16 and Shuffle 
models with accuracy rates were 95.14%, 94.00%, 92.57% 
and 91.17%, respectively. In the same way, from Table 2, we 
find that the tuned ResNet-50 model has obtained the highest 
F1-score values than the other models.

Fig. 7   Confusion matrices for various fine-tuned CNN evaluations

Table 1   Accuracy metric for different tuned classifiers

Fine-tuned model Accuracy (%)

Tuned AlexNet 95.14
Tuned VGG16 92.57
Tuned GoogLeNet 95.71
Tuned ResNet-50 96.86
Tuned DenseNet-201 94.00
Tuned ShuffleNet 91.71
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Evaluation of the SVM Classifiers

In this methodology, the experiment was carried out by 
using the target SVM classifiers that have been trained on 
the extracted deep feature vectors from the activation layer 
of the six proposed extractors. The extracted deep feature 
vectors are illustrated in Table 3. The flow diagram of the 
steps involved in the experiment is illustrated in Fig. 5. As 
in the previous section, we discuss the setup of the SVM 
classifiers and then the analysis of obtained results.

SVM Classifier Setup

The target SVM classifiers were set up by combining them 
with an error-correcting output codes (ECOC) function as 
described in [41]. ECOC function is commonly used for 
modelling a multi-class classification problem. It divides a 
K class problem into K(K−1)

2
 binary learners, then assigns a 

one-versus-one coding design to determine the classes for 

such binary learning [41]. Setting SVM classifiers with the 
ECOC framework could improve classification accuracy, 
even compared to other multi-class models.

Analysis of the SVM Classifiers’ Performance

By the analysis of timing training, we recorded that 
classifier training time on Feat-Alex, Feat-Vgg16, Feat-
GoogLe, Feat-Res50, Feat-Dense and Feat-Suffle took 
29, 35, 49, 44, 58 and 32 min, respectively.
The obtained results of the experiment were represented 
in the 5 × 5 confusion matrices as shown in Fig. 8. Statis-
tical performance measurement results of SVM classifiers 
were reported in Tables 4 and 5. The performance results 
were computed by using Eqs. 5, 6, 7 and 4. It can be noted 
that the trained SVM classifier on the Feat-Dense vector 
has obtained the highest value than the other vectors in 
terms of classification accuracy (97.43%), recall, preci-
sion and F1-score values.

Evaluation of the Proposed Feature Selection Approach

In the previous experiment, Feat-Dense201, Feat-Res50 
and Feat-GoogLe vectors won the three best accuracies, 
which is why they were chosen in this experiment. Sev-
eral studies [42–44] have employed the feature selection 
approach to improve classification accuracy and reduce 
over-fitting and training time. The goal of this experiment 

Table 2   Standard metrics for 
various fine-tuned classifiers

Proposed architecture Metrics IHC Score

Score0 Score1 Score2 Score3 Score4

AlexNet Pi 0.93 0.94 0.96 0.96 0.97
Ri 0.96 0.92 0.93 0.97 0.99
F1score 0.94 0.93 0.94 0.96 0.98

VGG16 Pi 0.90 0.91 0.94 0.93 0.94
Ri 0.94 0.88 0.89 0.96 0.97
F1score 0.92 0.89 0.91 0.94 0.95

GoogleNet Pi 0.94 0.94 0.97 0.96 0.97
Ri 0.96 0.92 0.96 0.96 1.00
F1score 0.95 0.93 0.96 0.96 0.98

ResNet50 Pi 0.96 0.94 0.99 0.97 0. 99
Ri 0.96 0.96 0.96 0.97 1.00
F1score 0.96 0.95 0.97 0.97 0.99

DenseNet Pi 0.91 0.94 0.96 0.94 0.94
Ri 0.96 0.87 0.94 0.96 0.99
F1score 0.93 0.90 0.95 0.95 0.96

ShuffleNet Pi 0.89 0.93 0.94 0.91 0.93
Ri 0.94 0.87 0.87 0.96 0.97
F1score 0.91 0.90 0.90 0.93 0.95

Table 3   Feature vectors for different activation layers

Feature Vector Activation Layer Feature

Feat-Alex “fc7” 1 × 1 × 4096
Feat-Vgg16 “fc7” 1 × 1 × 4096
Feat-GoogLe “pool5-7 × 7-s1” 1 × 1 × 1024
Feat-Res50 “avg-pool” 1 × 1 × 2048
Feat-Dense “avg-pool” 1 × 1 × 1920
Feat-Suffle “node-200” 1 × 1 × 544
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was to determine the features that yield better performance 
than the others. We concatenate these superior deep fea-
tures and select the best features for representing our 
application to improve the performance. We employed 
a sparse support vector machine (SSVM) classifier to 
select the best deep features into a Feat-Concat vector. 
Feat-Concat vector has been utilised for training other 
SVM with ECOC classifier. The performance metric of 
the SVM classifier that trained on the Feat-Concat vector 
is given in Table 6, and Fig. 9 illustrates a 5 × 5 confusion 
matrix. It can be seen from Table 6 that the SVM classifier 
achieved the highest accuracy rate of 98.86%. It performed 
the classification with better accuracy than the other clas-
sifiers. The SSVM [41] solves the optimisation problem 
by minimising the following equation:

where  n  i s  t he  number  o f  inpu t  images , 
xi =

(
xi,1, xi,2, xi,3,… , xn,d

)
 is a vector of the ith feature, d is 

(8)SSVM =
1

n

n∑

i=1

[
1 − yi

(
b + zh(xi)

)]
+ �|z|,

the number of feature, and yi is the class label and belonged 
to {+ 1, − 1}, for i = 1,…, n, where yi = + 1 indicates the ith 
sample is in class 1 (e.g. has cancer) and yi = − 1 indicates 
the ith sample is in class 2 (e.g. does not have cancer). z is 
a hyper-plane parameter, 

[
1 − yi

(
b + zh(xi)

)]
 is the convex 

hinge loss function, the scalar b is denoted as the bias, 
�|z| is the L1-norm, and λ > 0 is the tuning parameter con-
trolling the trade-off between minimising the hyper-plane 
coefficients and the classification error.

Fig. 8   Confusion matrices for SVM classifiers trained on different feature vectors

Table 4   Accuracy metrics for 
SVM Classifiers

Trained SVM 
classifier with

Accuracy (%)

Feat-Alex 93.70
Feat-Vgg16 92.86
Feat-GoogLe 94.85
Feat-Res50 96.00
Feat-Dense 97.43
Feat-Shuffle 94.28
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Discussion and Conclusion

In the discussion part, we will provide an analytical com-
parison among the methodologies used in the three experi-
ments as follows:

•	 Fine-tuning ResNet-50 architecture is more suitable for 
our application than the other proposed architectures.

•	 The transferable deep features of DenseNet architecture 
are learned more than the deep features of other proposed 
architectures. Therefore the performance of the SVM 
classifier that is trained on the Feat-Dense vector has 
outperformed the other vectors on our dataset images.

•	 By comparing the time taken to train classifiers, we find 
that extracting and training SVM classifiers are much less 
than fine-tuning the CNN model as a classifier. Therefore, 
off-the-shelf feature extraction methodology is better than 
fine-tuning CNN methodology in terms of performance, 
training time and resources required for training.

•	 Although several studies [14, 16, 28, 35] have com-
pared deep transfer learning methodologies in the 
histopathological field, there is no consensus about 
whether one is better than the other. However, this 
work showed that using off-the-shelf features method-
ology yielded performances slightly superior to using 
fine-tuning methodology but with the advantage of not 
having to re-train the network.

•	 The feature selection approach is proposed in this work 
to improve the performance of the SVM classifier for 
scoring tumour hypoxia markers as it yields optimal per-

Table 5   Standard metrics for 
SVM classifiers

Feature vector Metrics IHC Score

Score0 Score1 Score2 Score3 Score4

Feat-Alex Pi 0.93 0.93 0.96 0.94 0.96
Ri 0.94 0.88 0.96 0.96 0.99
F1score 0.93 0.90 0.96 0.95 0.97

Feat-VGG16 Pi 0.90 0.93 0.93 0.94 0.94
Ri 0.94 0.87 0.93 0.93 0.99
F1score 0.92 0.90 0.93 0.93 0.96

Feat-GoogLe Pi 0.94 0.94 0.96 0.94 0.96
Ri 0.96 0.92 0.93 0.96 0.99
F1score 0.95 0.93 0.94 0.95 0.97

Feat-Res50 Pi 0.94 0.96 0.97 0.96 0.97
Ri 0.96 0.93 0.96 0.96 0.99
F1score 0.95 0.94 0.96 0.96 0.98

Feat-Dense Pi 0.96 0.97 0.99 0.97 0.99
Ri 0.97 0.96 0.99 0.97 0.99
F1score 0.96 0.96 0.99 0.97 0.99

Feat-Shuffle Pi 0.91 0.93 0.94 0.94 0.96
Ri 0.94 0.89 0.92 0.96 0.99
F1score 0.92 0.91 0.93 0.95 0.97

Table 6   Performance metric for SVM classifier with Feat-Concat 
vector

Metrics IHC score

Score-0 Score-1 Score-2 Score-3 Score-4

Pi 0.97 0.99 0.99 1.00 1.00
Ri 0.99 0.97 1.00 0.99 1.00
F1score 0.98 0.98 0.99 0.99 1.00

Fig. 9   Confusion matrix for SVM Classifier with Feat-Concat vector
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formance. Therefore, our contribution is to introduce the 
Feat-Concat vector to train the SVM predictor.

•	 Our study does have some limitations. Firstly, the pro-
posed framework was implemented during COVID-19, 
so the resources were restricted. Secondly, the used data-
set images were prepared in the same laboratory and 
under the same conditions (i.e. dataset images acquired 
with the same digital scanners and staining techniques). 
Finally, choosing the appropriate patches was one of the 
difficulties that we faced in carrying out the experiments.

In conclusion, this paper proposed a deep learning-based 
framework to automatically assess the GLUT1 scoring as 
a biomarker of tumour hypoxia in IHC images. It helps to 
avoid inter-observer disagreement between pathologists and 
improves diagnostic performance. Three experiments were 
carried out using two common deep transfer learning meth-
odologies with six various CNN architectures for classifying 
tumour hypoxia markers scores. From the results obtained 
in our experiments, it is observed that deep transfer learning 
approaches can significantly improve classification accu-
racy. Therefore, it is the best strategy in case of scarcity of 
dataset images, as is the case with histopathological images. 
This may be considered an initial step towards developing 
a reliable computer-assisted diagnosis tool for GLUT-1 
scoring of digitised colorectal cancer histology slides. The 
future indications include the extension of our dataset and 
the inclusion of IHC images of different cancers from vari-
ous laboratories. Also, state-of-the-art pre-trained models 
need to be included in future work. Finally, it will be targeted 
to apply deep transfer learning to develop a comprehensive 
computer-assisted diagnosis tool for GLUT-1 scoring of 
diverse cancerous tissue slides.
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