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Abstract
Histological assessment of skeletal muscle slices is very important for the accurate evaluation of weightless muscle atrophy. 
The accurate identification and segmentation of muscle fiber boundary is an important prerequisite for the evaluation of 
skeletal muscle fiber atrophy. However, there are many challenges to segment muscle fiber from immunofluorescence images, 
including the presence of low contrast in fiber boundaries in immunofluorescence images and the influence of background 
noise. Due to the limitations of traditional convolutional neural network–based segmentation methods in capturing global 
information, they cannot achieve ideal segmentation results. In this paper, we propose a muscle fiber segmentation network 
(MF-Net) method for effective segmentation of macaque muscle fibers in immunofluorescence images. The network adopts 
a dual encoder branch composed of convolutional neural networks and transformer to effectively capture local and global 
feature information in the immunofluorescence image, highlight foreground features, and suppress irrelevant background 
noise. In addition, a low-level feature decoder module is proposed to capture more global context information by combin-
ing different image scales to supplement the missing detail pixels. In this study, a comprehensive experiment was carried 
out on the immunofluorescence datasets of six macaques’ weightlessness models and compared with the state-of-the-art 
deep learning model. It is proved from five segmentation indices that the proposed automatic segmentation method can be 
accurately and effectively applied to muscle fiber segmentation in shank immunofluorescence images.

Keywords Weightless muscle atrophy · Immunofluorescence images · Deep learning · Segmentation · Transformer · Low-
level feature decoder module

Introduction

Due to the lack of gravity load, astronauts’ long-term orbit 
flight can easily lead to weightless muscle atrophy, which 
greatly affects their physical activity. Therefore, it is very 
important to establish an accurate assessment method for 
muscle atrophy to ensure the flight safety of astronauts. Gen-
erally speaking, muscle atrophy is mainly manifested in the 
decrease of muscle volume, decrease of the cross-sectional 
area (CSA) of the muscle fiber, and change in muscle fiber 
types. Figure 1a, b show the normal and atrophied mus-
cle fiber [1–3]. Because of this, immunofluorescence (IF) 
staining images are often used to evaluate this change in the 
field of muscle atrophy, mainly through manually identify-
ing muscle fibers in the images and measuring muscle fiber 
size [4, 5]. However, this manual tracking method of a single 
muscle fiber is relatively subjective and time-consuming, 
which fundamentally makes the accuracy of segmentation 
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impossible to guarantee. Therefore, it is urgent to develop an 
effective automatic muscle fiber segmentation algorithm to 
reduce manual intervention, so as to improve the accuracy 
of the quantitative analysis of muscle fibers. However, due 
to the limitations of IF imaging of muscle fiber tissue, on 
the one hand, the contrast difference between the muscle 
fiber boundary area and background noise is small, which 
increases the difficulty of segmentation. On the other hand, 
due to the low contrast and blurring of the boundary of mus-
cle fibers, they cannot be completely segmented. In order to 
deal with these limitations, many studies have been carried 
out [6–8]. Rahmati and Rashno designed a fully automated 
segmentation method based on the Central Intelligence Set 
algorithm for analyzing the entire skeletal muscle cross-sec-
tion of motion-induced regenerated muscle fibers. However, 
this method is cumbersome and lacks sufficient representa-
tion ability to adjust parameters [9]. Veta et al. proposed 
a marker controlled by watershed technology, which uses 
multiple marker types and a relatively simple but effective 
combination of segmentation generated at different scales 
and multiple markers [10]. Islam et al. used a locally con-
vergent filter with a sliding band filter to deal with unique 
low contrast and noise problems in IF images [11]. Although 
these methods have improved the accuracy of IF image seg-
mentation, the limitations of IF imaging have not been fun-
damentally solved.

In recent years, with the proposal and continuous devel-
opment of deep learning (DL), it can learn the internal laws 
and representation levels of imaging data and effectively 
extract representative features from muscle fiber regions 
and background of the image [12, 13]. Ronneberger et al. 
proposed the U-net network based on a fully convolutional 
network (FCN) [14] in the International Symposium on Bio-
medical Imaging (ISBI) cell tracking challenge in 2015 and 
applied end-to-end training to medical image segmentation, 

which attracted wide attention [15]. However, it is challeng-
ing to directly apply U-net to muscle fiber segmentation. 
The main reasons are as follows: (1) as shown by the yellow 
arrow mark in Fig. 1b, because of the low contrast between 
the muscle fiber boundary area and background noise (ves-
sels or nerves), it is easy to increase the segmentation error 
and reduce segmentation accuracy in the IF image, and (2) 
the muscle fibers in the IF image have the problem of a fuzzy 
boundary (as shown in Fig. 1c). Previous studies mainly 
used the fusion strategy of acquiring edge information and 
multi-stage learning through additional edge constraints. For 
example, Hirohisa et al. proposed the boundary enhance-
ment segmentation network (BESNet), in which the bound-
ary enhancement is based on adaptive weighting of the loss 
of cell boundaries that are not strongly enhanced [16]. In 
addition, Yi et al. proposed a focused instance segmentation 
method to solve the problems of blurring and low structure 
contrast in cell images. It combines a single multiple box 
detector (SSD) and a U-net. In addition, an attention mecha-
nism is used in both detection and segmentation modules to 
make the model pay more attention to useful features [17]. 
However, these methods ignore the characteristic response 
of background noise and the particularity of different tasks. 
As the transformer mechanism was formally put forward in 
2017 [18], it will be combined with U-net for the first time 
in image segmentation in 2021. Its advantages lie in solving 
the inherent limitations of convolutional operations on the 
one hand and addressing the limitations of low-level details 
on localization ability on the other hand [19]. In view of this, 
using the DL model to carry out automatic segmentation 
and recognition of muscle atrophy IF images will undoubt-
edly provide potential opportunity for accurate evaluation 
of weightlessness muscle atrophy. However, there are no 
relevant research reports concerning this topic so far.

Inspired by the above DL segmentation model, we pro-
pose a new dual encoder branch FCN, namely, MF-Net, to 
solve the challenge of muscle fiber boundary segmenta-
tion in IF images. Specifically, MF-Net takes U-net as the 
main network, in which there are two encoder branches, 
low-level feature decoder (LLFD) module and a decoder 
branch. Unlike the previous segmentation network [20, 21], 
the proposed MF-Net implements a dual encoder branch 
that combines convolutional neural networks (CNN) and a 
transformer to capture both local and global feature informa-
tion; its purpose is to focus on learning the features of mus-
cle fibers during the training process, suppress the feature 
response of noisy areas, and thus completely segment the 
muscle fiber boundary areas from intermediate frequency 
images, improving the accuracy of segmentation. To solve 
the problem of the fuzzy boundary of muscle fibers in IF 
images, we propose an LLFD module, which up-samples the 
high-level features in the CNN encoder and skip connects 
them with the corresponding layers in the decoder branch to 

Fig. 1  An example of IF muscle fiber image segmentation. a IF images 
of normal shank muscle tissue and atrophic shank muscle tissue. b An 
example of low contrast between muscle fibers and background noise 
in IF images, and the yellow arrow indicates the background noise area. 
c An example of muscle fiber boundary blurring in an IF image. The 
red arrow indicates the muscle fiber blurring boundary
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mine deeper feature information and make up for lost detail 
pixels. In addition, the combined loss function used in this 
study is composed of Dice loss and cross-entropy loss. Dice 
loss can solve the problem of imbalance between positive 
and negative samples in IF images due to overlap clipping. 
The whole workflow is shown in Fig. 2. The main contribu-
tions of this paper are as follows:

• In this study, the macaque was used as the experimental 
object for the first time. The weightlessness environment 

was simulated through the minus 10 degrees BR experi-
ment. The DL model was applied to the segmentation of 
muscle fibers in the IF images of the macaque shank, and 
its feasibility was verified.

• Combined with the limitations of IF images of muscle 
fibers, this study proposes a dual encoder branch learning 
framework. Compared with a single U-net, with the help 
of the transformer encoder branch CNN, this method can 
capture both local information and global information 
of muscle fiber. In addition, the characteristic response 

Fig. 2  Overall workflow of the muscle fiber segmentation framework
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of the muscle fiber region is highlighted, and the mor-
phological information of each muscle fiber is learned. 
The features of background noise are suppressed, and the 
complete muscle fiber boundary is segmented effectively.

• We propose an LLFD module, which uses the high-level 
features of CNN to conduct up-sampling to fuse the 
features specially extracted by the parallel dual stream 
encoder of the corresponding layer to obtain rich global 
context information and make up for lost details. The net-
work evaluated our method on the weightlessness model 
of three macaques and the IF image datasets of three 
normal macaques. The results showed that this method 
was superior to the most advanced method in muscle 
fiber segmentation.

Related Work

In this section, we introduce two studies related to our work, 
including segmentation of IF images and the application of 
a transformer in segmentation.

IF Image Segmentation

Accurately segmenting muscle fibers from IF images is 
still a challenge, because the contrast difference between 
the muscle fiber boundary area and background noise is 
small, the fluorescence intensity is low, and the muscle 
fiber boundary has low contrast and is fuzzy. Traditional 
methods try to use some prior knowledge or edge detec-
tion–based methods to solve these problems, such as region 
growth and watershed segmentation. For example, in order 
to solve the problem of various noises in IF images, Roy 
and Maji proposed a segmentation algorithm incorporat-
ing neighborhood information into a rough fuzzy clustering 
algorithm for the segmentation task of a human epithelial 
type-2 (HEp-2) cell [22]. Tonti et al. proposed a new image 
processing technology that automatically makes the marker 
selection pipeline conform to the special features of the input 
image to process different fluorescence intensities and col-
oring modes without any prior knowledge [23]. The above 
methods require constant adjustment of hyperparameters to 
obtain better segmentation results. However, because of the 
complex background noise and the large amount of data, the 
traditional segmentation method cannot show the anticipated 
segmentation effect.

With the great breakthrough of deep CNN in the field 
of image segmentation, it is widely used in cell segmenta-
tion. Through local connection and weight sharing, CNN 
reduces the number of weights, making the network easier 
to optimize, and reduces the complexity of the model [24, 
25]. At first, researchers used CNN as a feature extraction 

module and combined it with traditional segmentation meth-
ods to complete segmentation tasks. For example, for the 
complexity of histopathological images, Xing et al. first used 
CNN models to generate probability maps and then used 
region-merging methods to initialize shapes to complete 
kernel segmentation [26]. Jiang et al. proposed a two-stage 
segmentation method based on CNN to segment plant cells. 
First, the watershed algorithm is used to preliminarily seg-
ment plant cells, and then, the CNN-based discrimination 
model is used to retain segmented candidate cells with clear 
boundaries in the original noise cell image [27]. With the 
continuous improvement of CNN in image segmentation, 
researchers gradually paid attention to the fusion of low-
level features and high-level features of IF cell images to 
avoid losing details in training. Kromp et al. used a vari-
ety of DL architectures to segment complex fluorescent 
nuclear images. Compared with traditional algorithms, the 
DL method achieved better results [28]. Liu et al. designed 
a hierarchical feature fusion attention network (HFANet). 
Through the hierarchical feature fusion attention (HFA) 
module, shallow texture features are used to supplement 
deep semantic features to maximize its feature extraction 
capability and information fusion efficiency [29]. The above 
network model is extremely complex and has many param-
eters, rarely considering the impact of the characteristic 
response of unrelated regions on the segmentation results. 
In order to segment muscle fibers accurately and improve the 
efficiency of the model, we propose an MF-Net segmenta-
tion network, which can extract muscle fiber features from 
IF images.

Application of a Transformer in Medical  
Image Segmentation

Since the proposal of a transformer model to solve the 
sequence to sequence problem in 2017 [18], a transformer 
has brought rapid progress to a variety of natural language 
tasks. Inspired by natural language processing (NLP), the 
birth of vision transformer (VIT) has provided a new idea in 
the field of computer vision. This method is used to divide 
images into multiple patches for input and map them into 
a linear embedded sequence and encode with the encoder 
[30]. In recent years, a transformer has been widely used 
in the field of medical image segmentation and has made 
breakthrough progress [31–33]. Chen et al. applied a trans-
former and U-net to medical image segmentation for the 
first time. On the one hand, they solved the inherent limita-
tions of the convolution operation, and on the other hand, 
they solved the problem that the positioning ability may be 
limited due to insufficient low-level details [19]. Wu et al. 
constructed a new feature adaptive transformer network 
(FAT-Net) to segment skin lesions, in which transformer 
branches can effectively capture remote dependency and 
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global context information [34]. In order to enable a trans-
former to better encode the feature mapping of CNN image 
blocks at different stages into input attention sequences, Ma 
et al. used multi-scale modules to obtain richer CT image 

semantic information [35]. In IF image segmentation, it is 
difficult to obtain samples or train the model due to the 
small number of samples. Valanarasu et al. proposed a med-
ical transformer segmentation model to solve this problem. 

Fig. 3  An overview of the proposed MF-Net framework. A Segmentation network architecture of MF-Net. B The modules of the backbone 
network. C The architecture of the LLFD module
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This method shows high performance on the GLAS data-
set [36]. Ji et al. proposed the multi-composite transformer 
(MCTrans), which integrates rich feature learning and 
semantic structure into a unified framework to solve the 
problem of a lack of learning of the cross-scale dependency 
of different pixels. This method has superior performance 
in cell segmentation [37].

Methods

In this section, we describe the proposed MF-Net for 
macaque muscle fiber segmentation. First, we describe the 
overall structure of the proposed network. Then, the key 
components of the network, namely, the transformer encoder 
branch and LLFD module, are described in detail. By inte-
grating CNN and a transformer in the dual encoder branch, 
we can not only capture rich local feature information and 
important global feature information but also suppress the 
impact of background noise on segmentation performance. 
In addition, we also developed an LLFD module and embed-
ded it in the main network framework to obtain rich global 
context information. The proposed segmentation framework 
is shown in Fig. 3A.

The Network Architecture

The proposed MF-Net is an end-to-end muscle fiber seg-
mentation framework, as shown in Fig. 3. MF-Net consists 
of three key components: backbone network, transformer 
encoder branch, and LLFD module. Specifically, (1) back-
bone network is developed based on a U-net network. A 
dual encoder branch structure is adopted on the backbone 
network, which is a five-layer CNN encoder branch and 
a transformer encoder branch, respectively (as shown in 

Fig. 3B). First, 256 × 256 IF muscle fiber images are sent 
to the CNN branch and transformer encoder branch, respec-
tively, and then, the image features of muscle fibers are 
extracted layer by layer in the CNN branch. The transformer 
encoder branch is used to effectively capture the global 
multi-scale information of muscle fibers. (2) The feature 
map after the fusion of CNN and transformer is sampled 
layer by layer and fused with the LLFD module to accu-
rately segment the complete muscle fiber boundary. (3) The 
decoder reconstructs the advanced features to the same size 
as the input image to obtain the final segmentation result. In 
the following section, we will discuss the proposed trans-
former encoder branch and LLFD module in detail.

Transformer Encoder Branch and LLFD Module

Transformer Encoder Branch

It is very important to accurately distinguish the difference 
between the target pixel and the background pixel in the seg-
mentation task. For example, there is low contrast between 
the fibers and background noise in IF muscle fiber images, 
irregular shape changes of atrophied muscle fibers, and 
fuzzy muscle fiber boundaries. Therefore, we implemented 
a transformer encoder branch to capture the local character-
istics and global context information of muscle fibers at the 
same time. Specifically, we will first input image Z with a 
size H ×W , which is reconstructed into one or more patches {
Xi
P
∈ RP2∗C|i = 1, 2, 3,⋯ , N} for input, where the size of 

each patch is P × P. The number of patches in a sequence is 
N =

HW

P2
 . Vectorized patch XP is mapped to a D-dimensional 

embedding space by a trainable linear projection. Then, when 
encoding the spatial information of a patch, in order to pre-
serve its location information, the learned specific location is 
embedded into the patch. The formula is as follows:

Fig. 4  The structure of the LLFD module. LLFD, low-level feature decoder
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where E represents the location information of each patch 
and Epos represents the location embedding information.

The transformer encoder is composed of a multi-head self-
attention (MSA) module and a multilayer perceptron (MLP) 
module. MSA allows the model to learn relevant information 
in different representation subspaces, and MLP is composed 
of two linear layers. The whole process can be expressed as 
follows:

where LN represents the normalization algorithm and Kl rep-
resents the encoded image of each patch. In order to make the 
feature space conform to the input of the decoder path, the 
encoder feature size is changed from H×W

P2
 refactor to H

P
×

W

P
.

LLFD Module

In traditional U-net, the original U-net is transmitted to the 
corresponding decoder layer through the skip connection 
via the multilayer feature map generated by the encoder, so 
that the decoder can obtain more high-resolution information 
when sampling and then recover the details of the original 
image more perfectly. However, due to the fuzzy boundary of 
some muscle fibers, a large amount of detailed information 
will still be lost in down-sampling, which affects the seg-
mentation accuracy and integrity of the muscle fiber bound-
ary. Therefore, we propose an LLFD module. Each layer 
consists of a kernel size of 3 × 3, batch normalization (BN), 
and the rectified linear unit (ReLU). In order to recover the 
detailed spatial information lost in the down-sampling phase 
of the encoder, we conduct the up-sampling operation on 
the fourth layer of the encoder, skip connect with each layer 
of the encoder to obtain a large amount of global context 
information, and then fuse each layer of LLFD with the 
corresponding feature layer extracted by a dual encoder to 
reduce the lost feature information, so as to better identify 
the feature information with fuzzy muscle fiber boundaries. 
The detailed structure of our LLFD is shown in Fig. 4.

Implementation Details

The network is implemented on the Pytorch 1.8.0 platform. 
The experimental environment is GeForce GTX 3090 and 
Intel Core i9-10900 k. The optimizer uses Adam. The initial 
learning rate is set to 0.0001, and batch size and epoch are set 
to 25 and 100, respectively. In addition, the loss function is an 

(1)y =
[
X1

P
E,⋯ ,XN

P
E
]
+ Epos

(2)K�
l
= MSA

(
LN

(
Kl−1

))
+ Kl−1 l = 1, 2, 3 ⋅ ⋅ ⋅ L

(3)Kl = MLP
(
LN

(
K�
l

))
+ K�

l
l = 1, 2, 3,⋯ L

operational function used to measure the difference between 
the predicted value and the real value of the model. In this 
study, because the IF images are cropped by using the over-
lap method, the background pixels in some images will be 
larger than the positive pixels (muscle fibers). This problem 
of sample imbalance may make the training process difficult, 
resulting in over prediction of non-fiber regions. To solve 
this problem, we used a combined loss function composed of 
cross-entropy loss and Dice loss. Dice loss makes the model 
more inclined to mine the foreground region by finding the 
intersection and union between the segmentation results and 
ground-truth, reducing the impact of most negative pixels. 
The formula of the combined loss function is as follows:

where Loss is the combined loss function, Losscross means 
cross-entropy loss, ytrue is the target value, and ypred is the 
predicted value. Lossdice stands for Dice loss, X is the real 
image, and Y is the segmentation result.

Experiments

Modeling and Dataset

Modeling

In this study, we cooperated with the China Astronaut 
Research and Training Center and took 6 normal macaques 
as experimental subjects. The average age was 6 years old, 
and the sex was male. The six macaques were divided into 
a normal ground–based group (n = 3) and BR group (n = 3). 
The BR group was kept in bed for 42 days at minus 10 degrees 
to simulate the weightlessness environment in space, so as 
to establish the model of weightlessness muscle atrophy. On 
the 42nd day, the shank muscle tissues of the normal group 
and the BR group were taken, respectively. All animal experi-
ments were approved by the Institutional Animal Care and Use 
Committee of China Astronaut Research and Training Center 
(ACC-IACUC-2019-002).

Macaque Dataset

In this paper, the IF images of 6 macaques’ shanks were 
used as the experimental data. Fix the frozen sections and 
add LAMININ2 (Abcam, UK) with a dilution ratio of 1:50. 

(4)Loss = Losscross + Lossdice

(5)Losscross = −ytruelog
(
ypred

)
−
(
1 − ytrue

)
log

(
1 − ypred

)

(6)Lossdice = 1 −
2��X

⋂
Y��

�X� + �Y�
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LAMININ2 antibody specifically binds to laminin to make 
the intercellular matrix appear green. Place the slices under 
a fluorescence microscope (NIKON ECLIPSE C1, Sony, 
Japan) to observe and collect images and obtain a total of 6 
muscle tissue IF images, where the size of each IF image was 
1920 × 1017. In order to adapt to the training of the network 
model, 6 IF images were cropped into 1960 small images with 

a size of 256 × 256. The labeling of muscle fibers in all 1960 IF 
images was completed by two experienced pathologists (each 
with more than 2 years of working experience) on the MAT-
LAB Image Labeler App. In this study, 1960 IF images were 
divided into 7:3 datasets, 1372 of which were used for training 
and 588 for validation.

Fig. 5  Visual comparison of segmentation results with different state-of-the-art segmentation methods. The red outline represents other meth-
ods, our method, and ground-truth, respectively

Fig. 6  DSC box diagram and 
IoU box diagram of MedT, 
TransU-net, U-net, ResU-
Net, and MF-Net. DSC, Dice 
similarity coefficient; IoU, 
intersection-over-union
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BBBC007 Datasets

This paper further verifies the segmentation performance 
of MF-Net on the BBBC007 datasets [38]. The BBBC007 
dataset consists of the staining of Drosophila melanogaster 
Kc167 cells with DNA (which marks the nucleus) and actin 
(cytoskeletal proteins, which show the cell body), contain-
ing 32 images and ground-truth. Due to the different image 
sizes in the dataset, data cropping was performed and the 
resolution of each image was adjusted to 256 × 256. The 
training set and the test set are allocated according to 8:2. 
The training set is 410 and test set is 102. To increase the 
size of the dataset, the dataset was amplified (mirrored, 
Gaussian blur, rotated).

Evaluation Metrics

In order to comprehensively evaluate the segmentation per-
formance of MF-Net proposed in this paper, we use the Dice 
similarity coefficient (DSC), intersection-over-union (IoU), 
precision, recall, and F1-score to quantitatively analyze the 
experimental results. DSC and IoU are the most commonly 
used evaluation indicators to verify the segmentation algo-
rithm. The five formulas are as follows:

where A represents the ground-truth and B represents the 
result of the segmentation.

Comparisons on Other State‑of‑the‑Art Methods

Segmentation of Muscle Fibers

In order to compare the segmentation performance of our 
proposed MF-Net with other most advanced network models, 
we first trained nine segmentation models on the training 
datasets of 1372 IF images and manually adjusted all super 
parameters to obtain the best performance, including Dee-
plabv3+ [43], TransU-net [19], U-net [15], U-net++ [42], 
UNeXt [44], Link-Net [40], SegNet [41], Attention U-Net 
[39], and MF-Net. Then, we verified the validation datasets 
and saved the best performance model as the final segmen-
tation model. Figure 5 shows the visualization results of 
muscle fiber segmentation of seven different methods. We 
can see that the performance of TransU-net and U-net is 
relatively low, which is because they cannot recognize the 

(7)DSC =
2 ∗

�
A
⋂

B
�

�A� + �B�

(8)IoU =
A
⋂

B

A
⋃

B

(9)Precision =
A
⋂

B

A

(10)Recall =
A
⋂

B

B

(11)F1 − score =
2 ∗ Precision ∗ Recall

Precision + Recall

Table 1  Performance 
comparison with the most 
state-of-the-art segmentation 
methods on the IF image muscle 
fiber datasets

Values in bold indicate the best experimental results

Network DSC IoU Precision Recall F1-score

Deeplabv3+ [43] 0.601 ± 0.0037 0.435 ± 0.0029 0.565 ± 0.0026 0.649 ± 0.0019 0.604 ± 0.0022
TransU-net [19] 0.731 ± 0.0012 0.579 ± 0.0015 0.737 ± 0.0033 0.729 ± 0.0011 0.733 ± 0.0017
U-net [15] 0.764 ± 0.0002 0.621 ± 0.0003 0.751 ± 0.0008 0.782 ± 0.0003 0.766 ± 0.0004
U-net++ [42] 0.848 ± 0.0031 0.739 ± 0.0046 0.856 ± 0.0151 0.836 ± 0.0202 0.846 ± 0.0173
Link-Net [40] 0.864 ± 0.0002 0.765 ± 0.0003 0.854 ± 0.0009 0.875 ± 0.0005 0.864 ± 0.0006
UNeXt [44] 0.883 ± 0.0011 0.794 ± 0.0017 0.896 ± 0.0025 0.869 ± 0.0021 0.882 ± 0.0023
SegNet [41] 0.889 ± 0.0026 0.805 ± 0.0016 0.888 ± 0.0031 0.891 ± 0.0025 0.889 ± 0.0028
Attention U-Net [39] 0.895 ± 0.0006 0.806 ± 0.0002 0.892 ± 0.0005 0.888 ± 0.0011 0.890 ± 0.0007
MF-Net/patches = 16 0.913 ± 0.0001 0.845 ± 0.0002 0.915 ± 0.0005 0.909 ± 0.0004 0.912 ± 0.0004
MF-Net/patches = 32 0.902 ± 0.0002 0.829 ± 0.0003 0.909 ± 0.0004 0.897 ± 0.0006 0.903 ± 0.0005

Table 2  Performance comparison with the most state-of-the-art seg-
mentation methods on the BBBC007 datasets

Values in bold indicate the best experimental results

Model DSC F1-score

TransU-net [19] 0.5373 0.5672
U-net++ [42] 0.6625 0.6667
UNeXt [44] 0.6871 0.7264
ResU-net [45] 0.7071 0.7596
MF-Net 0.7316 0.7953
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feature information with low contrast at the boundary. The 
performance of U-net++ is better than that of TransU-net 
and U-net, but there are still some limitations in handling 
details. In contrast, the method proposed in this paper is 
closer to ground-truth, and its advantages can be seen from 
the red label area. It can be seen that MF-Net has identified a 
more complete boundary of muscle fibers. Especially for the 
IF image after bed rest (BR), MF-Net is more sensitive and 
accurate to the segmentation of irregular changes in the shape 
of its muscle fiber. In order to better evaluate the performance 
of the proposed method, a box chart of DSC and IoU index 
changes in the validation set is drawn as shown in Fig. 6 
and quantitative evaluation results are provided as shown in 
Table 1. Table 1 quantifies the segmentation performance of 
muscle fibers in IF images by different methods. From the 
five indicators of DSC, IoU, precision, recall, and F1-score, 
we can see that our proposed MF-Net achieves the best per-
formance. Compared with U-net, DSC and IoU are increased 
by 14.9% and 22.4%, respectively. Therefore, the method 
proposed in this paper successfully extracts the boundary of 
muscle fibers from IF images with good integrity.

Segmentation of BBBC007 Datasets

In order to further verify the segmentation ability of the 
proposed model, MF-Net is tested on the BBBC007 datasets. 
The quantitative results are shown in Table 2. We can see 
that MF-Net outperforms other most advanced segmenta-
tion models with 0.7316 and 0.7953 in DSC and F1-score, 
respectively. Because there are few BBBC007 datasets and 
the previous segmentation models are difficult to train on 
small datasets and cannot handle the details well, the pro-
posed method can overcome this problem. In addition, we 
visualize the segmentation results of ResU-Net, UNeXt, 
U-net++ , and our proposed method MF-Net in Fig. 7. As 
can be seen from the red box, the prediction of MF-Net cap-
tures the remote correlation well.

Ablation Experiments

As shown in Table 3, in order to verify the performance of 
the transformer encoder branch and LLFD module, the abla-
tion experiment was conducted in this study, and the effec-
tiveness of the transformer module and LLFD module was 
evaluated using the U-net network as the baseline model.

Ablation Experiments for a Transformer

In order to discuss the performance of the transformer 
encoder branch, we have made an experiment to delete the 
transformer encoder branch. It can be seen from Tables 1 
and 3 that the result of not using the transformer encoder 
branch is still higher than that of U-net, but lower than that 
of using the transformer encoder branch on DSC and IoU. 
In order to directly observe which feature areas the CNN 

Fig. 7  Visual comparison of 
segmentation results with dif-
ferent state-of-the-art segmenta-
tion methods on the BBBC007 
datasets

Table 3  Comparison of quantitative results of ablation experi-
ments of the transformer module and LLFD module on the IF image 
macaque datasets

Values in bold indicate the best experimental results

Network DSC IoU Recall

MF-Net 0.913 ± 0.0001 0.845 ± 0.0002 0.909 ± 0.0004
MF-Net/no trans-

former
0.900 ± 0.0003 0.823 ± 0.0002 0.895 ± 0.0012

MF-Net/no LLFD 0.896 ± 0.0006 0.817 ± 0.0004 0.896 ± 0.0028



2421Journal of Digital Imaging (2023) 36:2411–2426 

1 3

encoder and transformer encoder pay more attention to, we 
conduct visual attention mapping from the output of the last 
layer of the CNN encoder and the output of the transformer 
encoder, as shown in Fig. 8. This shows that the transformer 
has certain advantages in feature extraction. It can combine 
global information to more accurately extract the boundary 
region of muscle fibers. In addition, we also discussed the 
impact of the size of different sequence patches on model 
performance. Table  1 shows that when the number of 
patches is 16, model performance is the best, at 1.1% higher 
than when the number of patches is 32.

Ablation Experiments for LLFD

As shown in Table 3, we compared the quantitative compari-
son results with and without feature LLFD modules. It can be 
seen that the feature LLFD module does improve segmenta-
tion performance. DSC and IoU are improved from 0.896 and 
0.817 to 0.913 and 0.845, respectively. This shows that the 
LLFD module can effectively compensate for the lost feature 
information in the encoder, thus improving the integrity of 
muscle fiber boundary segmentation. In addition, in order 
to verify which layer feature up-sampling process has an 
important impact on segmentation accuracy, we implement 
up-sampling operations from the fifth layer to the second 
layer of the encoder. The quantitative results are shown in 

Table 3. DSC and IoU values obtained from up-sampling 
operations from the fourth layer of the encoder are the best.

Combined with the above analysis of the two modules in 
the MF-Net model, we carried out visualization experiments 
for the challenging problems in IF muscle fiber images, as 
shown in Fig. 9. Compared with TransU-net, U-net, and 
SegNet, MF-Net more effectively solved the problems of a 
small contrast difference between the muscle fiber boundary 
area and background noise and low contrast of the muscle 
fiber boundary.

Effectiveness of Dice Loss

Because the pixels of positive samples in some IF images 
after overlap clipping are smaller than those in the back-
ground area, it is more challenging to develop accurate 
segmentation algorithms. To overcome this problem, we 
introduce Dice loss and combine it with cross-entropy 
loss to improve the performance of the training model. 
In order to verify its effectiveness, this study uses our 
proposed combined loss and traditional cross-entropy 
to carry out comparative experiments. Table 5 reports 
the DSC and IoU values for combined losses and cross-
entropy. Compared with cross-entropy loss, our proposed 
combined loss can significantly improve the performance 
of the training model, and DSC and IoU can improve by 
1.4% and 2.2%, respectively.

Fig. 8  Visual comparison of different attention maps extracted by the CNN encoder and transformer encoder. a Image, b ground-truth, c atten-
tion map of the last layer in the CNN encoder, and d attention map of the last layer in the transformer encoder
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Discussion

Weightless muscle atrophy caused by long-term micrograv-
ity environment will seriously impact the health, safety, and 
working ability of astronauts [46]. Therefore, accurate diag-
nosis of the degree of muscle atrophy is the key to timely 
implementation of muscle atrophy. As the gold standard for 
the diagnosis of weightless muscle atrophy, skeletal mus-
cle slices play a very important role in the evaluation of 
muscle atrophy. For this reason, high requirements are put 
forward for the automatic segmentation of muscle fibers in 
high-resolution IF images. Although a lot of work has been 
done to study the problem of fiber segmentation, due to the 
small contrast difference between the muscle fiber boundary 
area and background noise, the low and blurry contrast of 
muscle fiber boundaries caused by boundary interruption or 
artifacts during muscle tissue staining or sample preparation 
in IF muscle fiber images, the existing research methods 
have some limitations. Therefore, establishing a new and 
effective fiber segmentation method is crucial to accurately 

evaluate muscle atrophy. In this work, we propose a fully 
automatic muscle fiber segmentation using the MF-Net 
method. Compared with U-net, traditional U-net makes up 
for the loss of spatial information in the training process, 
but in terms of details, the shortcomings of low-resolution 
information repetition and low-resolution edge information 
feature extraction still exist. The key of MF-Net is to focus 
on the characteristic response of the boundary area of the 
muscle fiber by combining the global context information. 
The dual encoder branch composed of CNN and transformer 

Fig. 9  Visual comparison of challenges in processing IF images of 
four segmentation models TransU-net, U-net, SegNet, and MF-Net. 
The first two lines of red boxes indicate that the contrast difference 

between the muscle fiber boundary area and background noise is 
small. The last two lines of red boxes indicate the problem of low 
contrast of the muscle fiber boundary

Table 4  Ablation studies of LLFD in MF-Net

Values in bold indicate the best experimental results

Network DSC IoU Precision Recall

LLFD/layer = 2 0.886 0.794 0.893 0.882
LLFD/layer = 3 0.906 0.837 0.913 0.897
LLFD/layer = 4 (MF-Net) 0.913 0.845 0.915 0.909
LLFD/layer = 5 0.898 0.814 0.902 0.896
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is used to effectively capture the local information and 
global context information and stimulate the characteristic 
response of the boundary area of the muscle fiber. At the 
same time, LLFD module is added to the network to com-
pensate for the lost details of the muscle fiber boundary, so 
that the integrity and continuity of muscle fiber segmenta-
tion can be achieved. The segmentation of muscle fibers can 
be applied to clinical applications. We took macaques as the 
experimental objects and simulated the space weightlessness 
environment by using the method of negative 10 degrees BR. 
It was fully proved that the segmentation performance of the 
proposed model is superior to most current state-of-the-art 
methods on the normal and BR groups of macaque shank IF 
image datasets [11, 39–44]. It can be seen from Table 1 that 
MF-Net improves DSC and IoU of automatic muscle fiber 
segmentation results, which are 91.3% and 84.5%, respec-
tively. In addition, in order to further verify the segmentation 
performance of the proposed model, we verified it on the 
BBBC007 datasets. Table 2 shows that compared with the 
UNeXt model proposed by MICCAI in 2021, MF-Net has 
improved the DSC and F1-score by 4.45% and 6.89%. In 
general, the experimental results on the two datasets further 
prove that our proposed method has a good segmentation 
effect and good generalization performance.

However, we found in the experiment that the problems 
such as the small contrast difference between the muscle 
fiber boundary area and background noise in the IF image 
and the low contrast and blurring of the muscle fiber bound-
ary will bring bottlenecks to the training of the DL model. 
In order to better solve these problems, we added the trans-
former encoder branch and LLFD module in MF-Net. In 
medical image segmentation, the structure of the decoder 
and encoder has been widely used, but most network struc-
tures only have one encoder, so local features and global 
context information features cannot be captured at the same 
time. In the case of large-scale distribution images or high-
resolution images, due to the irregular changes in the shape 
of muscle fibers and low contrast between muscle fibers 
and background noise, this has certain limitations extracting 
local features to global long-range dependency at the same 
time. However, the existing methods still cannot accurately 
distinguish the differences between the target and back-
ground. In view of this, we designed a dual encoder branch, 

including a transformer branch and CNN branch, to capture 
both local features and global context information. In the IF 
image, some images will have the characteristic response of 
background noise similar to the characteristic response of 
the target area. If only the characteristics of the local area are 
considered, the target will be wrongly identified, which will 
affect the segmentation results. Therefore, the advantage of 
using dual encoders is that when recognizing the features of 
local areas, the self-attention mechanism in the transformer 
branch can extract rich global context information, so that 
muscle fibers and background noise areas can be accurately 
identified. As shown in Table 3, DSC is used to verify the 
influence of the transformer encoder branch on MF-Net. 
Without adding the transformer encoder branch, segmen-
tation performance of MF-Net decreases by 1.3%, which 
indicates that the segmentation result of adding the trans-
former encoder branch to MF-Net is closer to the ground-
truth. Due to the low contrast and blurring of the muscle 
fiber boundary, a large amount of boundary details will be 
lost in the down-sampling process, resulting in incomplete 
muscle fiber segmentation. Therefore, we propose an LLFD 
module to compensate for the loss of muscle fiber boundary 
details in the encoder. Unlike traditional decoders, which 
perform splicing operations on each layer, we up-sample 
the fourth layer feature map of CNN and fuse it with the 
corresponding encoder layer and fuse each layer feature 
map from LLFD with the corresponding layer feature map 
in the decoder. As shown in Table 3, we verify its impact 
on MF-Net through DSC and IoU. The experimental results 
show that the introduction of the LLFD module enhances 
the segmentation effect. It is worth noting that in the LLFD 
module, it is a key issue which layer of the encoder is used 
for up-sampling to significantly improve the segmentation 
accuracy. With the increase of convolution layers, the size 
of the image will decrease, and the feature information of 
the muscle fiber edge will decrease. This means that much 
information of the image edge position is lost, leading to 
the decline of segmentation accuracy. Therefore, as shown 
in Table 4, using the fourth layer of the encoder for up-
sampling has the best segmentation effect. In addition, we 
noticed that in some IF images, the background pixels are 
larger than the foreground pixels, which will lead to a large 
number of background pixels dominating the loss during 

Table 5  Segmentation results of 
using Dice loss on the IF image 
muscle fiber datasets

Values in bold indicate the best experimental results

Loss Evaluation index

Cross-entropy 
loss

Dice loss Focal loss DSC IoU Precision Recall

√ √ 0.913 0.845 0.915 0.909
√ 0.897 0.819 0.899 0.896

√ 0.892 0.811 0.906 0.881
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the training process of the model, thus greatly reducing the 
accuracy of semantic segmentation [47]. The use of cross-
entropy loss function for this problem has certain limitations 
[48], because it treats the weight of each category as the 
same in the calculation process, so that the model will focus 
on the category with more samples in the training process, 
and Dice loss’ proposal solves the problem of data imbal-
ance [49], so we studied the performance of Dice loss on IF 
unbalanced datasets. We used the joint loss of cross-entropy 
loss combined with Dice loss to compare with a single cross-
entropy loss and a single focal loss. The experimental results 
are shown in Table 5. Among the three loss functions, Dice 
loss can help MF-Net get better segmentation results. This 
advantage shows that Dice loss will be more inclined to min-
ing foreground regions during training, which alleviates the 
problem of sample imbalance and improves segmentation 
performance of MF-Net.

In conclusion, MF-Net architecture can achieve good 
results in muscle fiber segmentation. However, because 
the establishment of the experimental animal model in this 
study is relatively difficult, resulting in a small amount of 
sampling data, this has a certain impact on the training of 
segmentation models. Therefore, collecting more macaque 
IF imaging data in future work will be more conducive to 
improving the segmentation model’s performance and accu-
racy of muscle atrophy evaluation.

Conclusion

In this paper, we proposed an MF-Net segmentation archi-
tecture for muscle fibers in IF images. Unlike the traditional 
encoder-decoder structure, we use the dual encoder branch 
combined with CNN and transformer to segment images, so 
that our method can capture local and global information at 
the same time. In addition, we also adopt a more effective 
LLFD module to compensate for the missing details of mus-
cle fiber boundaries, so that we can segment more complete 
muscle fiber boundaries. In this paper, experiments were 
conducted on the datasets of 3 BR macaques and 3 normal 
macaques to evaluate our proposed muscle fiber segmenta-
tion method. Compared with the most advanced segmenta-
tion model, the effectiveness of MF-Net is proved. The MF-
Net segmentation method will help pathologists improve the 
efficiency of identifying muscle fibers from pathological 
images in the future, providing a preliminary guarantee for 
the subsequent evaluation of muscle atrophy.
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