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Abstract
Large numbers of radiographic images are available in musculoskeletal radiology practices which could be used for train-
ing of deep learning models for diagnosis of knee abnormalities. However, those images do not typically contain readily 
available labels due to limitations of human annotations. The purpose of our study was to develop an automated labeling 
approach that improves the image classification model to distinguish normal knee images from those with abnormalities 
or prior arthroplasty. The automated labeler was trained on a small set of labeled data to automatically label a much larger 
set of unlabeled data, further improving the image classification performance for knee radiographic diagnosis. We used 
BioBERT and EfficientNet as the feature extraction backbone of the labeler and imaging model, respectively. We developed 
our approach using 7382 patients and validated it on a separate set of 637 patients. The final image classification model, 
trained using both manually labeled and pseudo-labeled data, had the higher weighted average AUC (WA-AUC 0.903) value 
and higher AUC values among all classes (normal AUC​ 0.894; abnormal AUC​ 0.896, arthroplasty AUC​ 0.990) compared to 
the baseline model (WA-AUC = 0.857; normal AUC​ 0.842; abnormal AUC​ 0.848, arthroplasty AUC​ 0.987), trained using 
only manually labeled data. Statistical tests show that the improvement is significant on normal (p value < 0.002), abnormal 
(p value < 0.001), and WA-AUC (p value = 0.001). Our findings demonstrated that the proposed automated labeling approach 
significantly improves the performance of image classification for radiographic knee diagnosis, allowing for facilitating 
patient care and curation of large knee datasets.
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Introduction

In modern radiology practices, large numbers of radio-
graphic images are readily available for data-driven research 
in radiology [1–3]. Particularly, musculoskeletal (MSK) 
images are annotated for diagnosis of a wide range of pathol-
ogies and utilized by radiologists, orthopedics, and other 

advanced practitioners toward guiding patient management 
and improving patient care for knee abnormality diagnosis. 
However, structured annotations for a large volume of radio-
graphic images are difficult to obtain because the manual 
annotation process requires tremendous amounts of experts’ 
attention and is very costly.

Deep learning (DL) solutions are typically developed 
using large numbers of labeled data. Specifically, image 
classification is an important supervised DL task to achieve 
various objectives in radiology, including disease detection, 
characterization, and monitoring [4–7]. An important exam-
ple approached in this paper is classification of knee radio-
graphs, which are commonly utilized for clinical evaluation 
of knee abnormalities [8–13] and knee arthroplasty [14–16]. 
Multiple studies incorporated DL-based image classifica-
tion approaches for automating such evaluations [17–25]. 
These studies demonstrated the feasibility of leveraging 
large datasets for DL-based image classification in knee 
radiology, but a significant amount of effort in annotating 
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knee radiographs has already been made to curate annota-
tions for the existing datasets.

Alternatively, a label of a knee radiographic image can 
be directly interpreted and extracted from the corresponding 
radiology report. However, this is challenging for the fol-
lowing reasons. First, precise information extraction from 
unstructured knee radiology reports is difficult due to lack of 
standardization reporting [26]. Second, radiology reports are 
complex given the intricacy of knee pathologies in general, 
and reporting discrepancies or even errors across different 
radiologists [27]. Third, there is a lack of automated systems 
to interpret unstructured reports in knee radiology with high 
accuracy and sufficiency.

To overcome these limitations, this study aims to develop 
a hybrid DL framework, combining image classification and 
natural language processing (NLP) approaches, that lever-
ages a large volume of unlabeled data to improve the per-
formance of a multiclass classification model using only a 
limited number of manually labeled data. We decided on 
three classification labels, namely normal, abnormal, and 
arthroplasty. These labels represent visible conditions in the 
bilateral posterior to anterior standing (BLPA) knee weight-
bearing views, which are commonly utilized to assess radio-
graphic changes in the knee [8, 28, 29].

To the best of our knowledge, our proposed approach is 
the first to simultaneously utilize radiographs and their cor-
responding radiology reports in a DL framework for knee 
radiograph classification. The inherent association between 
a radiograph and its corresponding report ensures the same 
label for these two data sources. Our proposed framework 
consists of two main DL components. First, we developed an 
NLP-based automated labeler on labeled radiology reports 
and applied the labeler to a large volume of unlabeled reports 
to generate pseudo labels. Second, to validate the improve-
ment when trained with additional pseudo-labeled data, we 
developed two pretrained image classification models, one 
with only manually labeled data and the other with addi-
tional pseudo-labeled data, and evaluated their performance 
on a hold-out test set.

Methods

Data Collection

This study was HIPAA-compliant and approved by the insti-
tutional review board (IRB) of the Duke University Health 
System (DUHS). In the initial cohort, we retrospectively 
collected a dataset of 25,657 patients who had knee X-ray 
imaging studies finalized in 2019 within our large institu-
tional health system. For each study, we downloaded radi-
ology reports and knee radiographs in Digital Imaging and 

Communications in Medicine (DICOM) format from our 
electronic medical record (EMR) database.

We identified the initial cohort and obtained the data-
set in two steps. First, we utilized a reporting workbench 
tool to search for radiology reports of knee X-ray imag-
ing studies in our health system. The searching query was 
built based on the 10 most common knee procedure names 
in 2019 across our institution. The main searching results 
included (1) unique patient identifiers, (2) unique imaging 
study accession numbers, and (3) radiology reports. Second, 
we queried our large institutional picture archiving and com-
munication system (PACS) to retrieve the DICOM objects 
for each imaging study by using the study accession numbers 
obtained from the main search.

In the final dataset, we only included patients with 
BLPA X-rays by filtering two DICOM attributes (1) modal-
ity = {CR, DX}, (2) series description = {PA axial, PA 
weight bearing, PA tunnel}. The final dataset consisted of 
8140 patients with 8659 imaging studies. Each imaging study 
contained one radiology report and one BLPA radiograph.

Annotation

BLPA radiographs were annotated with three labels: normal, 
abnormal, and arthroplasty, by using the handcraft rules, 
created by a team including four personnel: a 4-year experi-
ence of MSK sub-specialist and three non-expert research-
ers. The annotation rules consisted of descriptions for one 
category of the presence of arthroplasty, and eleven cate-
gories of knee abnormalities. Eleven abnormal categories 
included degenerative changes, postoperative changes or 
presence of non-arthroplasty orthopedic hardware, fractures, 
lesions, fragmentation, bone lucency, malalignment, osse-
ous abnormalities, soft tissue abnormalities, developmental 
abnormalities, and trauma. The annotation team determined 
categories of images by applying the annotation rules to the 
associated radiology reports of BLPA radiographic images. 
A radiographic image was labeled abnormal if it met with 
at least one abnormal category, arthroplasty if it met with 
the arthroplasty category, and normal if none of abnormal 
or arthroplasty rules were met. The final annotation rule was 
approved by the MSK sub-specialist.

Dataset Split

All patients (N = 8140) who had BLPA radiographs in 2019 
were split into three groups based on the dates of radiology 
studies: (1) January to February, (2) March to November, 
and (3) December (Fig. 1). Patients from January to Febru-
ary, with reports being manually labeled, were randomly 
split into the primary training set (TRAIN_PRI), the vali-
dation set for tuning hyperparameters and saving the best 
checkpoints (VAL_EVAL), and a held-out validation set for 
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determining the final model (VAL_PTEST). Patients from 
March to November served as the secondary training set 
(TRAIN_SEC). Reports in TRAIN_SEC were not manu-
ally labeled, but were pseudo labeled by the NLP model. 
We removed 26 overlapping patients with those in the two 
validation sets to prevent “data leakage” issues when the 
same patient appeared in both training and validation or test 
set. We called the above four dataset as the “development 
set.” Patients from December were served as the test set 
(TEST) with all reports being manually labeled. Likewise, 
to prevent data leakage, we removed 44 overlapping patients 
from January to November, which had already been used in 
training and developing models.

Automated Labeling of Reports Using an NLP model

The NLP model took a preprocessed report as an input and 
returned predictive probabilities of the three labels as an 
output. The final label had the highest predictive probabil-
ity. Reports were preprocessed in two steps: (1) punctua-
tions and numbers were removed and (2) only findings and 
impressions sections of the radiology reports were extracted. 
The model structure consisted of a feature extraction back-
bone and a classification module. An input unstructured 
report was tokenized and fed into the feature extraction 
backbone. We picked Bidirectional Encoder Representations 
from Transformers for Biomedical Text Mining (BioBERT) 

[30] model as the multiclass text classification backbone to 
output feature vectors, which were then fed into a linear layer 
with three output units for classification.

We trained candidate NLP models on TRAIN_PRI. The 
maximum token length of each report input to the model was 
fixed at 512. Batch size was set as 16, which is the optimal 
size for fitting the GPU RAM. Patience was set as 15 for early 
stopping purposes. Models were trained with the ADAM 
optimizer and tuned the following learning rates: {1e−5, 
5e−5}. The model with the best performance on VAL_EVAL 
was used to annotate unlabeled reports in TRAIN_SEC. The 
NLP models were trained with deep learning libraries in 
Python, namely PyTorch and HuggingFace [31].

Image Classification Model

The image classification model took pixel arrays of an image 
as an input and returned predictive probabilities of the three 
labels. The final label had the highest predictive probability. 
We extracted pixel arrays from each corresponding DICOM 
file of an image and normalized them into the [0, 255] range. 
The range of image width was [1309, 3056], and height was 
[1287, 3424]. Similar to the NLP model structure, the imag-
ing model structure consisted of a feature extraction back-
bone and a classification module. In this work, we picked 
EfficientNet-b4 [32] as the multiclass image classification 

Fig. 1   Dataset split plan. TRAIN_PRI: used for training both image/
NLP. VAL_EVAL: used for saving checkpoints/tuning hyperparam-
eters during training. VAL_PTEST: used for last evaluations before 

applying models to TEST. TRAIN_SEC: used for automatic pseudo 
labeling. We called the above 4 datasets as the “development set.” 
TEST: a completely untouched hold-out set for final evaluation
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backbone output feature vectors, which were then fed into a 
linear layer with three output units for classification.

The baseline image classification model used manual 
labels and was trained on TRAIN_PRI. Our proposed 
model leveraged additional pseudo-labeled data in TRAIN_
SEC. The input image size for training was 380 × 380, the 
same as the size used to train a full EfficientNet-b4 model 
in the original paper. Batch size was set as 16, which is 
the optimal size given the GPU RAM. Patience was set as 
10 for early stopping purposes. We trained image classi-
fication models using the ADAM optimizer and tuned the 
following learning rates: {1e−5, 5e−5}. We determined 
the final learning rate configuration by selecting the model 
with the best performance on VAL_EVAL. Using this 
configuration, we evaluated performance of models with 
five random experiments on VAL_PTEST and selected 
the best seed to be tested on TEST. Image classification 
models were trained using PyTorch with the “EfficientNet 
PyTorch” package.

Transfer Learning

Training feature extraction backbones, namely BioBERT and 
EfficientNet-b4, from scratch required significant amount 
of data and computational resources. Thus, to expedite the 
training while maintaining high accuracy, we utilized “trans-
fer learning” approach for training our classification models. 
To do so, we initialized weights of feature extraction back-
bones using pretrained weights and further fine-tuned such 
model on the downstream classification task. Weights of 
BioBERT were initialized using pretrained BioBERT-Base 
v1.1 weights optimized on English Wikipedia, BooksCor-
pus, and PubMed abstracts, and fine-tuned in downstream 
training; weights of EfficientNet-b4 were initialized using 
pretrained EfficientNet weights optimized on ImageNet, a 
large visual database consisting of high-resolution natural 
images with human annotations.

Statistical Analysis

Each model was trained with five different seeds which con-
trol randomness. We collected mean, standard deviation, and 
median of weighted average area under receiver operating 
characteristic (ROC) curve (WA-AUC) based on five experi-
ments of each model. WA-AUC is calculated as following:

where fi and AUCi is the frequency percentage and area 
under ROC curve (AUC) of label i in the dataset, respec-
tively. When we compared two models, the model with 
larger mean WA-AUC was deemed as a better model and 

WAAUC = f
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1
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selected as the representative for further evaluations. Once 
we obtained the final model, we reported the AUC for each 
class and WA-AUC, and plotted ROC curves for each class 
accordingly. The DeLong test [33] was performed on each 
class to evaluate if there was a significant difference in AUC 
when adding pseudo-labeled data in training. For WA-AUC, 
we collected 10,000 paired bootstrap samples in TEST and 
performed a two-sided normal test to evaluate if there was a 
significant difference.

Results

Dataset Analysis

A total of 8019 patients (7382 in the development set that 
includes TRAIN_PRI, VAL_EVAL, VAL_PTEST, TRAIN_
SEC, 637 in the test set) and 8585 images were included in 
the final analysis. In the development set, the mean age was 
53 years old with a standard deviation (SD) of 19 years old. 
The youngest patient was 2 years old, and the oldest patient 
was 96 years old. Two thousand nine hundred eighty-eight 
(40%) patients were male, and 4394 (60%) patients were 
female. Four thousand eight hundred ninety-nine (66%) 
patients were white, 1694 (23%) patients were black, and 
182 (3%) patients were Asian. In the test set, the mean age 
was 54 years old with SD of 19 years old. The youngest 
patient was 6 years old, and the oldest patient was 97 years 
old. Two hundred seventy-six (43%) patients were male, 
and 361 (57%) patients were female. Four hundred twenty-
eight (67%) patients were white, 133 (21%) patients were 
white, and 24 (3%) patients were Asian (Table 1). There was 
no significant difference of age, sex, and race between the 
development and test set.

TRAIN_PRI contained 854 cases, with 198 (23%) nor-
mal cases. VAL_EVAL and VAL_PTEST contained 208 
cases each, with 41 (20%) and 44 (21%) normal cases, 
respectively. TRAIN_SEC contained 6656 cases, with 1867 
(28%) cases being pseudo-labeled normal. TEST contained 
659 cases, with 151 (23%) normal cases (Table 2). The 
ratio of manually labeled data to pseudo-labeled data used 
in the development set was approximately 1:5.2.

We provided typical examples of normal, abnormal, and 
arthroplasty radiographs in Fig. 2. We showed two exam-
ples of abnormal images with clear visibility of degenera-
tive changes (Fig. 2a) and orthopedic hardware (Fig. 2b). 
We also recognized that some of the abnormal categories, 
such as fracture (Fig. 2c) and lucency (Fig. 2d), were visu-
ally closer to normal on radiographs. Figure 2e, f show 
two examples of normal images. Figure 2g, h show two 
examples of arthroplasty images.
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Test Results of BLPA Image Classification

The NLP model had the best performance of WA-
AUC = 0.995 (AUC_normal = 0.993, AUC_abnor-
mal = 0.996, AUC_arthroplasty = 1.000) on VAL_EVAL, 
indicating near-perfect quality of pseudo labels. Table 3 
shows the results on TEST using only manually labeled 
data vs. manually and automatically labeled data. When 
training with additional pseudo-labeled data, all reported 
metrics were higher (normal AUC normal + 0.052, abnormal 
AUC + 0.048, arthroplasty AUC + 0.003, WA-AUC + 0.046) 
than training with only manual-labeled data. The model 
almost perfectly predicted images with evidence of arthro-
plasty hardware in both specifications (manual-labeled 
arthroplasty AUC = 0.987, manual + pseudo-labeled arthro-
plasty AUC = 0.990). For each class, we plotted one class 
versus rest ROC curves in Fig. 3. Statistical tests showed 
that there is significant improvement in normal AUC (p 
value < 0.002), abnormal AUC (p value < 0.001), and WA-
AUC (p value = 0.001).

Discussion

In this study, we proposed a DL framework that improves 
the baseline image classification performance by introduc-
ing a large volume of unlabeled data. A state-of-the-art NLP 
model, trained on a small set of labeled reports, served as 
an automated labeler to provide accurate pseudo-labels of 

unlabeled reports and their corresponding images. By aug-
menting the training size by approximately eight times, 
we trained image classification models with additional 
pseudo-labeled images and achieved significantly better 
classification results on normal (AUC + 0.052, p value_nor-
mal < 0.002) and abnormal (AUC + 0.048, p value_abnor-
mal < 0.001) images, and overall performance was improved 
(WA-AUC + 0.046, p value = 0.001). Although no signifi-
cant improvements were found for arthroplasty images, 
models had already achieved high performance in both 
settings (AUC = 0.987 using only manually labeled cases; 
AUC = 0.990 using additional pseudo-labeled cases) and 
improved only marginally when we added pseudo-labeled 
cases (AUC + 0.003).

An alternative approach to increase the training size for 
better performance is to adopt traditional data augmenta-
tion technique, such as affine augmentation. However, as 
opposed to our proposed NLP approach, using such method 
generates artificial imaging data based on the training sam-
ples, such as rotation or scaling, and thus did not expand 
the breadth of the training data. To improve the classifica-
tion performance, our approach adopted the idea of additive 
augmentation when training with additional pseudo-labeled 
images. Different from online augmentation methods in 
which the transformations were randomly applied to the 
images in the mini-batches during training, we prepared 
the augmented pseudo-labeled images beforehand and then 
curated the expanded dataset for final training. Similarly in 
literature, Fabi et al. has also shown the benefits of additive 

Table 1   Demographic 
characteristics of the patients 
at baseline

a SD standard deviation
b Category “Other” includes American Indian or Alaska Native, Native Hawaiian or other Pacific Islander, 
not reported/unavailable, not Hispanic or Latino

Characteristic Development set (N = 7382) Test set (N = 637) p value

Mean age ± SDa year (range) 53 ± 19 (2 – 96) 54 ± 19 (6 – 97) 0.200
Male no. (%) − female no. (%) 2988 (40%) – 4394 (60%)  276 (43%) – 361 (57%)  0.173
Race or ethnic group no. (%) 0.326
    White 4899 (66%)  428 (67%) 
    Black 1694 (23%)  133 (21%) 
    Asian 182 (3%)  22 (3%) 
    Otherb 607 (8%) 54 (9%)

Table 2   Label distributions of 
images in January to February, 
including TRAIN_PRI, VAL_
EVAL, and VAL_PTEST

a Labels in TRAIN_SEC were pseudo-labeled by the NLP model

Dataset Normal no. (%) Abnormal no. (%) Arthroplasty no. (%) Total no.

TRAIN_PRI 198 (23%)  589 (69%)  67 (8%)  854
VAL_EVAL 41 (20%)  152 (73%)  15 (7%)  208
VAL_PTEST 44 (21%)  142 (68%)  22 (11%)  208
TRAIN_SECa 1867 (28%)  4282 (64%)  507 (8%)  6656
TEST 151 (23%)  457 (69%)  51 (8%)  659
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augmentation in improving the classification of abnormal 
knee radiographs by adding synthetic images to the baseline 
[34]. Therefore, considering a wide range of data augmenta-
tion methods available in literature, we recommend future 
work to thoroughly explore the effects of data augmenta-
tion by integrating various transformation techniques into 
our current experiments and designing appropriate online 
or offline training pipelines.

Our findings demonstrate important practical values. 
First, by applying the DL framework, our approach requires 
only 16% of the development set to be manually annotated. 
Such low percentage of required annotations significantly 
reduced the burden of human annotations and improved the 
inherit limitations of human interpretation, such as observer 
variability, time constraints, cost, and bias. Second, simi-
lar to the literature in which BioBERT and EfficientNet 
models have been proven to be effective feature extraction 

backbones in general radiology text [35, 36] and image clas-
sification [37–39] tasks, our results demonstrated the power 
and potentials of DL tools in knee radiology. When our 
framework is adopted to other datasets in future research, 
the DL backbones can be easily substituted with other tools 
for optimal usage. Third, our dataset split plan reflected a 
real-world scenario where DL developers trained models 
using retrospective data and validated performance on pro-
spective data. Hence, we believe that our approach can be 
adopted to provide reliable assistance in the clinical appli-
cations related to the identification and diagnosis of knee 
abnormalities using knee radiographs.

Pseudo-labeling is an important feature of our framework. 
The idea of pseudo-labeling is fundamental in conventional 
semi-supervised learning (SSL) tasks [40–43]. Such tasks 
have also been proven to be effective in predicting knee 
abnormalities [44, 45]. SSL-based algorithms require a 

Fig. 2   Two examples of “easy abnormal” images. a, b An example of 
degenerative changes in the joint space. c, d The clear evidence of non-
arthroplasty orthopedic hardware (nails) implanted in the knee. Our 
expert labeled the regions of abnormal categories in a–d on the images 

in a red bounding box. e, f Two examples of normal images. g, h Two 
examples of images with clear evidence of arthroplasty hardware

Table 3   Comparison of 
performance on TEST using 
different data based on the 
configuration selection on 
VAL_PTEST. AUC for each 
class versus rest and WA-AUC 
are provided

a Significantly improved when training with manually and pseudo-labeled data compared to manually 
labeled data only

Only manually labeled 
data (TRAIN_PRI)

Manually and pseudo- labeled data 
(TRAIN_PRI + pseudo-labeled TRAIN_
SEC)

p value

AUC normala 0.842 0.894 < 0.002
AUC abnormala 0.848 0.896 < 0.001
AUC arthroplasty 0.987 0.990 0.4006
WA-AUC​a 0.857 0.903 0.001
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small amount of labeled input, train the whole model with a 
joint input of labeled and unlabeled cases with, and learn the 
pseudo labels for unlabeled cases accordingly. Our approach 
shares the same goal with SSL tasks: improve the classifi-
cation performance by utilizing additional pseudo-labeled 
cases generated from a large unlabeled dataset. However, 
unlike SSL tasks, first, we utilized NLP to learn knowledge 
from the manually labeled reports to automatically pseudo-
label the unlabeled reports. Thanks to the inherent asso-
ciation between radiology reports and images, we treated 
report labels as image labels. Second, in a separate model, 
we trained both labeled and pseudo-labeled images for final 
prediction. We acknowledge that such association might 
be vulnerable in practice. Thus, future work can involve 
SSL-based models to learn pseudo-labels on the same input 
source, without considering the inherent link between dif-
ferent types of input sources.

Another important feature of our framework is to exploit 
both radiology reports and images in one workflow for 
image classification using a large volume of unlabeled radi-
ology data. In the literature, multiple studies have shown 
the effectiveness of including this feature for curating large 
datasets of radiographs. For example, Jeremy et al. curated 
the CheXpert dataset and investigated different approaches 
of incorporating uncertainty labels in training to predict 
lung pathologies [46]. Xiaosong et al. curated the ChestX-
ray8 dataset aided by a concept detection tool and proposed 
an image classification model to detect and locate thoracic 
disease [47]. In both studies, curation of large datasets was 
aided by an automated NLP labeler. The curated data were 
then tested feasible for downstream image classification 
tasks. While our proposed framework shared such feature, a 
key difference is that we utilized a state-of-the-art DL-based 
NLP model as the automated labeler to generate high-quality 
pseudo-labels for knee radiology reports. This demonstrates 
great potentials in applications of our framework to curate 
large datasets of knee radiographs. Future work can focus 

on applying our framework to significantly larger datasets of 
unlabeled knee radiographs and further validated for down-
stream tasks.

Limitations

We acknowledge several limitations in this study. First, our 
proposed framework was trained and validated using data in 
one health system without being externally validated. Future 
work could apply our framework to multicenter data and test 
the generalizability of our approach. Second, annotation rules 
were developed based on the experience of a single expert. 
As a result, our defined rules may not comprehensively reflect 
all characteristics on knee radiographs. Third, label noises 
may exist in pseudo-labeled cases that were generated by 
the trained NLP model. However, we believe that the image 
classification model can tolerate such label noise because of 
the high-quality pseudo-labels. Fourth, we determined the 
selection criteria of BLPA view by manually reviewing a 
small number of knee radiographs in the dataset. Future work 
could involve a more rigorous process in consolidating such 
criteria. Fifth, our study has inherent biases in that a signifi-
cantly leading proportion of patients in the study are white. 
While our study design was focused on evaluations of knee 
abnormalities, future work can investigate the biases of algo-
rithms based on race. Lastly, our utilization of BLPA view for 
this study does not account for the differences in joint space 
loss that can be seen with variable flexion of the knee which 
has been shown in other studies [8].

Conclusion

By harnessing DL powers for annotating a large volume of 
unlabeled reports using only a small number of labeled data, we 
have shown the feasibility of our proposed approach to improve 

Fig. 3   ROC plots on TEST of the best specification in each tested 
model using different data: red: only manually labeled data (only 
TRAIN_PRI, WA-AUC = 0.857) and blue: manually and automati-
cally labeled data (TRAIN_PRI + pseudo-labeled TRAIN_SEC, 

WA-AUC = 0.903). DeLong tests provide p values for each class: p 
value_normal < 0.002, p value_abnormal < 0.001, p value_arthro-
plasty = 0.4006
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image classification performance for knee radiographic diagno-
sis, without the labor of interpreting an overwhelming number 
of images. As a result, the proposed approach minimizes the 
inherent limitations of human annotations and can be poten-
tially useful for curating large knee datasets. Our focus on a 
commonly used imaging modality of the knee will allow for 
wide utilization of the application in knee radiology to improve 
patient care for knee abnormality diagnosis.
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