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Abstract
Breast cancer is the second most common cancer among women worldwide, and the diagnosis by pathologists is a time-
consuming procedure and subjective. Computer-aided diagnosis frameworks are utilized to relieve pathologist workload 
by classifying the data automatically, in which deep convolutional neural networks (CNNs) are effective solutions. The 
features extracted from the activation layer of pre-trained CNNs are called deep convolutional activation features (DeCAF). 
In this paper, we have analyzed that all DeCAF features are not necessarily led to higher accuracy in the classification task 
and dimension reduction plays an important role. We have proposed reduced DeCAF (R-DeCAF) for this purpose, and dif-
ferent dimension reduction methods are applied to achieve an effective combination of features by capturing the essence 
of DeCAF features. This framework uses pre-trained CNNs such as AlexNet, VGG-16, and VGG-19 as feature extractors 
in transfer learning mode. The DeCAF features are extracted from the first fully connected layer of the mentioned CNNs, 
and a support vector machine is used for classification. Among linear and nonlinear dimensionality reduction algorithms, 
linear approaches such as principal component analysis (PCA) represent a better combination among deep features and lead 
to higher accuracy in the classification task using a small number of features considering a specific amount of cumulative 
explained variance (CEV) of features. The proposed method is validated using experimental BreakHis and ICIAR datasets. 
Comprehensive results show improvement in the classification accuracy up to 4.3% with a feature vector size (FVS) of 23 
and CEV equal to 0.15.

Keywords Breast cancer · Deep feature extraction · Feature reduction · Histopathology images · Pre-trained convolutional 
neural networks

Introduction

Breast cancer (BC) is one of the leading causes of mortality 
in the world, almost observed in women, but it can occur 
in men too. Diagnosis of BC ordinarily comprises an ini-
tial detection by palpation and regular check-ups by ultra-
sound imaging or mammography and diagnosis of possible 
malignant tissue growth is tested by breast tissue biopsy [1]. 
According to the World Health Organization (WHO), BC 
is affecting a large number of women’s health [2]. Recent 
studies predict around 27 million new cases of BC by 2030 

[3]. Early detection of BC is essential for appropriate treat-
ment and for decreasing the mortality rate. However, BC 
diagnosis may not be accurate enough as pathologists could 
only apply visual inspection of samples under microscopes 
[4, 5]. According to these challenges, computer-aided diag-
nosis and automatic classification using convolutional neural 
networks (CNNs) for image classification are active research 
areas to make a precise diagnosis with less probability of 
misdiagnosis and a fast detection process.

Current state-of-the-art investigations on BC detection 
confirm that CNNs are more reliable and faster than the 
conventional hand-crafted features in the classification task 
[6]. However, the estimated time to train CNNs might be 
longer, and it needs expertise to design such networks [6–8]. 
An applicable solution reported in the literature is referred 
to as a deep convolutional activation feature (DeCAF) also 
known as deep features [6, 8, 9]. These approaches reuse 
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pre-trained CNNs to extract deep features and apply them 
to a classifier for the final decision.

The hand-crafted features in BC histopathological data-
set (737 images) have been studied by Filipczuk et al. [10] 
using circular Hough transform to segment the cell nuclei by 
circles. Their best result reached 98.51% accuracy utilizing 
k-nearest neighbor (KNN) as a classifier [10]. However, the 
region of interest in the virtual slides is not selected automat-
ically and it is a time-consuming process. Additionally, the 
method cannot guarantee a global optimum, and elliptical 
segmentation requires a more accurate model which is com-
putationally more demanding. In another work by Sharma 
and Mehra, hand-crafted features like color, shape, and tex-
ture were extracted from the BreakHis dataset and fed to 
the conventional classifiers such as support vector machine 
(SVM) and random forest (RF). They reported RF with 1000 
trees could achieve 90.33% accuracy for 40 × data [11]. In 
addition, they have compared the hand-crafted features with 
deep ones. The accuracy obtained for the classification of 
the deep features using the VGG-16 network for 40 × data 
is 93.97%. They have reported that the performance of the 
hand-crafted features is not satisfactory since it requires 
deep knowledge about the morphology of cancerous cells 
and deep features are a preferred alternative. Alhindi et al. 
compared the local binary patterns (LBP), and the histogram 
of oriented gradients (HOG) as the hand-crafted features 
with deep features using the pre-trained VGG-19 for KIMIA 
Path960 dataset [12]. The highest accuracy is 90.52% for 
LBP features and the SVM classifier. It is worth mentioning 
that the feature vector size (FVS) of LBP is equal to 1182 
and almost twice the one of the extracted deep features.

To address deep features in histopathological images, 
Spanhole et al. extracted DeCAF from different fully con-
nected (FC) layers of pre-trained AlexNet with logistic 
regression classifier to diagnose BC using the BreakHis 
dataset [6]. The obtained results show that transfer 
learning is a viable alternative with 84.6% accuracy for 
40 × data. Then, Deniz et al. developed a framework to 
take advantage of two pre-trained CNNs for the binary 
classification of the BreakHis dataset. They combined 
DeCAF features from AlexNet and VGG-16 followed 
by the SVM classifier and reached 84.87% accuracy 
[8]. In [13], Kumar et al. proposed a variant of VGG-
16, wherein all FC layers were removed and evaluated by 
different classifiers for CMT and BreakHis datasets. The 
best-reported accuracy is 97.01% for 200 × data from the 
BreakHis dataset, in which the FVS is 1472.

To overcome the lack of a training dataset, dividing the 
histopathological image into non-overlapping or random 
patches and providing them as the input to the pre-trained 
CNNs for feature extraction has been studied [1, 6, 14]. 
However, extracting some patches can lead to uncertainty 
in the classification [15]. To improve the accuracy of the 

classification, some approaches focused on training CNNs 
from scratch or fine-tuning the pre-trained CNNs [15–19]. 
Some of these approaches have reached higher performance 
while experiencing a time-consuming procedure and arrang-
ing hyperparameters precisely. In some cases, training the 
model or fine-tuning all the layers may not achieve a better 
performance compared to the transfer learning technique [7, 
16, 17]. Additionally, transfer learning hits the spot either 
encountering the lack of training dataset to train a deep 
model or adding a few training data to re-train the whole 
model [13, 14, 16].

Dimension reduction or feature selection of deep features 
has attracted the attention of researchers recently. Alin-
saif et al. applied Infinite Latent Feature Selection (ILFS) 
method to select top-ranked features from pre-trained CNNs 
such as ResNet and DenseNet w/wo fine-tuning. The accu-
racy of binary classification for BreakHis dataset with SVM 
classifier is reported at 97.96% where FVS is 1300 [16]. 
Moreover, Gupta et al. proposed extreme gradient boosting 
(XGboost) to reduce the number of features extracted from 
ResNet and used information-theoretic measure (ITS) to 
select the optimal number of layers. The accuracy is reported 
97.07 ± 1.18% for 40 × data where FVS is 500, although the 
accuracy decreased with fewer features [20].

In this study, dimensionality reduction is the main scope 
to investigate the influence of capturing informative features 
with a smaller number of features. We have analyzed that all 
the deep features are not necessarily led to a higher accuracy 
in the classification task and dimension reduction plays an 
important role.

Histopathological Database

In this study, we have used two publicly accessible datasets 
to evaluate the proposed R-DeCAF features. The BreakHis 
database [21] is a histopathologic BC dataset that was devel-
oped in a laboratory (Pathological Anatomy and Cytopa-
thology, Parana, Brazil). This dataset includes microscopic 
histopathology images of BC and consists of 7909 images 
of BC tissue taken from 82 patients which is available in 
40 × , 100 × , 200 × , and 400 × magnification factors. This 
dataset includes 2480 benign and 5429 malignant samples 
with a color image size of 700 × 460. In addition, benign 
and malignant tumors are divided into subgroups. Samples 
of this dataset are collected by surgical open biopsy (SOB) 
method and stained by Hematoxylin and Eosin (H&E) 
methods. Each image filename includes stored information 
about the image such as biopsy procedure method, magni-
fication factor, type of cancer and its subtypes, and patient 
identification. The ICIAR 2018 Grand Challenge dataset is 
the second dataset that includes 400 H&E-stained histopa-
thology images from BC [22]. It has four groups including 
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normal, benign, in situ carcinoma, and invasive carcinoma, 
where each group contains 100 breast microscopic images. 
There is no information about the number of patients for this 
dataset. In Fig. 1, sample images of benign and malignant 
tumors from the BreakHis dataset at different magnification 
factors and sample images from the ICIAR dataset of four 
categories are shown.

Methodology

We have proposed R-DeCAF features to capture the essence 
of the data which causes improvement in the classification 
task while reducing the computational time due to the fewer 
features. We have shown that all the features extracted from 
the pre-trained CNNs cannot be effective in classifying the 
data. Therefore, reducing the FVS of the extracted deep 
features to keep informative features and remove unneces-
sary ones which cause misleading [24] or do not play an 
important role in the classification, is the primary goal of 
this study. Moreover, a high dimensional feature vector can 
dramatically impact the performance of machine learning 
algorithms to fit data, and generally, this can be referred to 
as the “curse of dimensionality” [25].

Deep features are extracted from the first FC layer of the 
pre-trained CNNs (AlexNet, VGG-16, and VGG-19), in 
which the size of the feature vector is high, i.e., FVS = 4096. 
The reason for considering the first FC layer; i.e., FC6 is 
that it provides features more informative for an accurate 
classification [6, 23]. The weight of the pre-trained CNNs 
will be kept frozen in transfer learning mode as pre-trained 
CNNs have been trained by the ImageNet dataset; therefore, 
freezing the weights trained based on the ImageNet data-
set makes the model prepared to use all defined pre-trained 
weights. Since pre-trained CNNs are trained on a large data-
set with a significant number of classes and samples, they 

can provide large networks with an effective combination 
of features to classify the data [6, 13]. The advantage of 
the transfer learning technique is to avoid a time-consuming 
procedure for training a CNN from scratch [6, 13, 16]. In 
other words, training and fine-tuning a CNN require a huge 
amount of data or a medium size of data, respectively. How-
ever, transfer learning involves different structures, and it 
does not need a huge amount of data. Transfer learning is a 
method to transfer the knowledge learned in one domain to a 
defined task for classification or feature extraction. Thus, the 
goal is to transfer the knowledge from natural images to BC 
histopathological images and simplify the diagnosis process.

To reduce the size of the extracted deep features, different 
linear and nonlinear dimension reduction methods such as 
PCA, singular value decomposition (SVD), linear discrimi-
nant analysis (LDA), kernel PCA (kPCA), and t-Distributed 
Stochastic Neighbor Embedding (t-SNE) have been evalu-
ated to generate R-DeCAF features. The architecture of the 
proposed framework is illustrated in Fig. 2.

Pre‑trained CNNs

All three defined pre-trained CNNs which are AlexNet, 
VGG-16, and VGG-19 are studied as the basis of our frame-
work to extract deep features. AlexNet is known to be the 
primary profound CNN model presented by Krizhevsky 
et al. [26]. This network contains five convolutional layers 
and three FC layers where the number of neurons in the 
last layer is based on the number of classes of the data. The 
number of neurons in the first and second FC layers is 4096. 
The VGG-16 and VGG-19 CNNs with more layers are pro-
posed by Simonyan et al. in 2014 [27]. In these two CNNs, 
small filters of 3 × 3 are used for all the layers to capture fine 
details in the images and control the number of parameters. 
VGG-19 has 19 weight layers and VGG-16 has 16 weight 
layers [27]. It should be mentioned that all the input images 

Fig. 1  a Sample images from 
the BreakHis database in dif-
ferent magnification factors. 
The first row belongs to the 
same slide of the benign tumor 
and the second row belongs to 
the same slide of the malig-
nant tumor. b Sample images 
from the ICIAR dataset of four 
categories
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are resized to 224 × 224 for the sake of convenience with 
CNN models in the Pytorch library in this work.

Feature Reduction Algorithms

This study analyzes different dimension reduction meth-
ods on DeCAF features categorized into two groups; linear 
and nonlinear. The former includes PCA, SVD, and LDA, 
whereas the latter contains kPCA and t-SNE [24, 28]. The 
PCA method is a linear and unsupervised algorithm, in 
which new features can be produced by calculating a linear 
transformation. Eigenvectors and eigenvalues can be com-
puted from the covariance matrix of the data to determine 
the principal components (PC) of the data. PCA keeps the 
maximum information of the data in the first PC and con-
tinues in descending order because principal directions, 
and corresponding PCs are considered as the directions of 
the maximum data variance [24, 25]. SVD is another linear 
dimension reduction method that is appropriate for sparse 
data. SVD of a matrix is a factorization of the main matrix 
into three matrices. In this method, the largest singular val-
ues are picked, where the eigenvalues and eigenvectors are 
in descending order same as in the PCA method. Hence, 
the input matrix will rebuild in low dimension [24]. LDA is 
another linear and supervised dimension reduction method 
that focuses on two critical terms called “scatter between 
class” and “scatter within a class.” The main aim is to maxi-
mize the “scatter between classes” or separability of classes. 
Therefore, LDA can pick components that separate the data 
classes in the best way. It should be mentioned that the num-
ber of components/features in a reduced dimension can be 
equal to or smaller than the number of classes-1 [24, 29].

In the group of nonlinear dimension reduction methods, 
kPCA is one of the popular unsupervised techniques. When 
the PCA method does not work well and the structure of the 
data is nonlinear, the kPCA method may perform better. In 
kPCA, the dimension of the original data can be reduced in 
a high dimensional space with the advantage of the “ker-
nel trick.” In high-dimensional space decision boundary 

becomes linear. In this method, the eigenvalues and eigen-
vectors of the kernel matrix are calculated based on the 
reduced dimension set of eigenvectors selected in descend-
ing order. The product of the original matrix and eigenvec-
tors is calculated to rebuild the new reduced data [25, 28]. 
The nonlinear and unsupervised t-SNE method is known as 
a common technique for data exploration and visualization. 
In this method, data is mapped to a low dimension, such 
as 2 or 3 dimensions. t-SNE converts the high dimensional 
Euclidean distances between pairwise data points xi, xj into 
conditional probability pj|i which shows the similarity of the 
pairwise data points and a similar conditional probability in 
low dimensional counterparts yi, yj of the high dimensional 
data points xi, xj defined by qj|i . The conditional probabili-
ties pj|i and qj|i will be equal if the data points yi, yj model 
the similarity between the data points in a high dimensional 
space [24, 30].

Cumulative Explained Variance (CEV) and the Size 
of the Features

To reduce the size of the features, we have used eigenval-
ues and the corresponding cumulative explained variance 
(CEV). Determining the optimal number of PCs is a chal-
lenging and critical key to getting an efficient performance 
and CEV is a way to solve this challenge. CEV is the accu-
mulation of variances to show the summation of variances of 
the new features, i.e., PCs as the percentage of this accumu-
lated variance by the PC numbers [24]. Figure 3 displays the 
CEV of DeCAF features extracted from the first FC layer of 
pre-trained AlexNet, VGG-16, and VGG-19 which is related 
to the whole magnification data of the BreakHis dataset. As 
can be seen, approximately with more than 2560 PCs, the 
CEV has changed insignificantly. In other words, the first 
2560 PCs contain 100% of cumulative variances whereas the 
first 512 PCs cover 67% of the variance of data.

It can be concluded that almost half of the transformed 
features, i.e., PCs, do not have an important role in the clas-
sification as a rule of thumb whereas Zhong et al. [9] took 

Fig. 2  The diagram of the pro-
posed framework
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advantage of this simple rule. The main reason is because 
of the high correlation among extracted deep features. To 
investigate more in detail, we have considered a full range 
of CEV from 5 to 100%, in which 100% means we have used 
all PCs obtained from DeCAF features to examine the clas-
sification accuracy. Here, the statistical analysis performed 
on the accuracy obtained for three pre-trained CNNs in 10 
different splits of feature vectors into train and test datasets, 
and Fig. 4 shows the boxplot of these results for the whole 
magnification data (7909 images) of the BreakHis dataset.

First, the boxplots of these results show that using CEV 
less than 100% but more than 15% not only keeps the same 
performance but also causes improvement in classifying 
deep features. It may be true that all the improvements are 
not significant. The main point is that using CEV less than 
100% but more than 15% does not make the classification 

performance worse. Second, the results of Fig. 4 provide 
more information that we need to feed the classifier with 
more effective and proper features rather than a large 
number of features. Therefore, a better accuracy can be 
achieved with a smaller number of features and the con-
tent of features plays a crucial role in the classification 
task. We have shown by these results that considering 
a large number of features could not necessarily lead to 
a higher performance and all DeCAF features extracted 
from pre-trained AlexNet, VGG-16, and VGG-19 are not 
compelling and informative in the classification. Figure 4 
discloses keeping only 20% to 25% of CEV makes a sig-
nificant improvement compared to 50% of CEV. These 
also reduced FVS significantly from 4096 to 63, 103, 
and 93 for the pre-trained AlexNet, VGG-16, and VGG-
19, respectively. More details of this investigation are 

Fig. 3  CEV of DeCAF features 
using pre-trained CNNs for the 
whole magnification data of the 
BreakHis dataset

Fig. 4  The boxplot of the classification accuracy vs Cumulative Explained Variance (CEV) for the whole magnification data of the BreakHis 
dataset
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presented in Table 1, and a p-value is calculated for each 
case to verify that the improvements are significant.

Classifier

Here, the SVM algorithm has been selected for the clas-
sification as it can handle the high dimensional data and 
nonlinear classification by using a kernel trick [13]. This 
technique is used to evaluate the performance of DeCAF 
and R-DeCAF features in classification tasks to predict 
whether a sample is benign or malignant. The trained SVM 
with RBF kernel is considered as the common kernel based 
on a Grid search among different kernels with the SVM 
parameter C = 5. The defined dataset is divided into a train-
ing set (80%) and a test set (20%). The split method is 
used, and the results are reported by taking an average of 
10 different splits. Comprehensive results are provided by 
Pytorch and Scikitlearn libraries to validate the proposed 
method. Since most machine learning algorithms are sensi-
tive to data scaling, in this manner, we apply the Standard 
Scalar of Scikitlearn library to scale the feature vectors 
that are extracted.

Results and Discussion

The classification accuracy of DeCAF and R-DeCAF fea-
tures is summarized in Table 1 by the value of the mean 
and the standard deviation. The mean differences are 

also assessed by t-test, and the p-values are reported. The 
R-DeCAF features are obtained by three linear dimension 
reduction algorithms, i.e., PCA, SVD, and LDA. First, 
we have investigated the classification performance using 
DeCAF features by the three mentioned CNNs in more 
detail. As you can see in the third column of Table 1, the 
accuracy of VGG-16 and VGG-19 outperform AlexNet for 
40 × , 100 × , and 200 × data of the BreakHis dataset but 
underperform for 400 × . The reason can be found in both 
the number of layers and 3 × 3 filters in VGG-16 and VGG-
19 networks which can extract more details from images. 
However, for 400 × data such details from VGG-16 and 
VGG-19 networks are not necessary as the magnification 
is higher and the images provide such details. Therefore, 
AlexNet is a better choice for high-magnification data. It is 
worth mentioning that the accuracy considering the whole 
magnification is better for VGG-16 and VGG-19 networks 
as expected. In addition, the lowest accuracy is observed 
for 40 × data. This might be because of the region of inter-
est of 40 × data as includes a higher complexity compared 
with other magnification factors and carries more informa-
tion which makes accurate data classification more dif-
ficult. The magnification factor affects the classification 
accuracy depending on the complexity level of BC histo-
pathological images.

Second, the classification performance using R-DeCAF 
features based on different dimension reduction algorithms 
has been explored further. The results from applying PCA 
and SVD to generate R-DeCAF features provided almost 

Table 1  The classification accuracy (%) of DeCAF and R-DeCAF features using different linear dimension reduction methods on the BreakHis 
dataset

Whole mag. stands for whole magnifications where the images of all magnifications are used; the best results are shown in bold
*p-valuet-test < 0.01,**p-valuet-test < 0.001

Framework Magnification DeCAF
FVS = 4096

R-DeCAF (reduced by linear methods)

FVS (CEV) PCA FVS (CEV) SVD LDA

AlexNet (FC6), SVM 40 × 84.38 ± 1.6 67 (0.25) 88.04 ± 2.1** 67 (0.25) 88.02 ± 2.1** 77.62 ± 1.8**

100 × 86.16 ± 1.1 45 (0.20) 89.54 ± 1.0** 45 (0.20) 89.66 ± 0.9** 79.87 ± 2.3**

200 × 87.69 ± 1.4 97 (0.30) 90.60 ± 1.4** 135 (0.35) 90.50 ± 1.3** 83.87 ± 1.4**

400 × 87.91 ± 1.5 23 (0.15) 91.13 ± 1.4** 23 (0.15) 91.15 ± 1.5** 82.58 ± 1.5**

Whole mag 85.95 ± 0.7 63 (0.20) 90.24 ± 0.6** 63 (0.20) 90.19 ± 0.5** 71.73 ± 1.1**

VGG-16 (FC6), SVM 40 × 86.64 ± 2.2 90 (0.30) 89.82 ± 1.7** 90 (0.30) 89.60 ± 1.7* 82.23 ± 0.9**

100 × 89.52 ± 1.2 58 (0.25) 91.01 ± 0.7* 206 (0.45) 91.01 ± 1.2* 84.05 ± 1.8**

200 × 88.71 ± 0.9 84 (0.30) 90.77 ± 1.4* 56 (0.25) 90.82 ± 1.1* 82.68 ± 0.9**

400 × 85.60 ± 1.9 58 (0.25) 88.30 ± 1.3** 58 (0.25) 88.21 ± 1.3* 81.95 ± 1.9**

Whole mag 87.23 ± 0.8 103 (0.25) 90.49 ± 0.9** 103 (0.25) 90.42 ± 0.8** 73.10 ± 1.0**

VGG-19 (FC6), SVM 40 × 85.09 ± 1.8 78 (0.30) 87.34 ± 2.0** 51 (0.25) 87.14 ± 1.6** 79.62 ± 1.9**

100 × 88.06 ± 1.5 118 (0.35) 90.19 ± 1.3** 118 (0.35) 90.05 ± 1.3* 81.10 ± 1.3**

200 × 88.51 ± 1.0 114 (0.35) 89.35 ± 1.2 114 (0.35) 89.60 ± 1.6 82.80 ± 1.3*

400 × 86.73 ± 0.8 59 (0.25) 88.60 ± 0.8** 59 (0.25) 88.76 ± 0.9** 82.03 ± 1.9**

Whole mag 86.67 ± 0.5 93 (0.25) 89.43 ± 0.5** 93 (0.25) 89.37 ± 0.5** 72.03 ± 0.8**
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the same improvement up to 4.3% compared to DeCAF fea-
tures. For example, the observed accuracy considering pre-
trained AlexNet for whole magnification data are 85.95%, 
90.24%, and 90.18 for DeCAF features, R-DeCAF features 
using PCA, and R-DeCAF features using SVD, respectively. 
Again, we can say that AlexNet is still a better choice for 
high magnification data even for R-DeCAF features. The 
results obtained by LDA depict the classification accuracy 
has been decreased, and this method is not able to cap-
ture the essence of data caused by removing informative 
features. The main reason explaining the low accuracy by 
LDA is that the number of features of the original dataset 
is ignored and the obtained dimension (FVS) will be less 
than the number of classes subtract from one. Therefore, we 
will have only one feature for binary classification using the 
LDA technique [24].

To evaluate our proposed method, we have computed the 
confusion matrix of the classification result for DeCAF and 
R-DeCAF features. These matrixes are shown in Fig. 5, in 
which the results were obtained by pre-trained AlexNet for 
400 × data (1820 images, 588 benign and 1232 malignant) 
of the BreakHis dataset. It can be seen that the classification 
result of R-DeCAF features obtained by PCA outperforms 
the one of the DeCAF features. In more detail, correctly 
predicted benign cases increased from 68 to 82%. This 
is a very impressive result as our proposed method could 
increase the accuracy in the benign class although the num-
ber of data in this class is more limited due to an imbalance 
in the BreakHis dataset.

Moreover, we have validated the classification result of 
DeCAF and R-DeCAF features using other metrics as shown 
in Table 2. We have reported R-DeCAF features that are 
reduced by the PCA algorithm as we have observed that the 
accuracy obtained by PCA outperforms other linear dimen-
sion reduction algorithms (see Table 1). Table 2 shows 
that the precision and F1 score of R-DeCAF features has 
been improved compared to the ones of DeCAF features; 

however, recall is different and it has been decreased for 
R-DeCAF features in some cases.

Since the BreakHis dataset is imbalanced in which the 
number of the samples in the malignant class is almost twice 
the one in the benign class and this ratio is almost the same 
for different magnifications, we have addressed this issue 
by reproducing the results of Table 2 based on two more 
strategies. First, we forced the data to be balanced by ran-
domly selected malignant samples to be the same as the 
number of benign samples in each magnification factor and 
SVM is used. Second, we used weighted SVM, and the data 
is divided into train and test datasets with stratified k-fold 
(k = 10). We have not provided the whole results for these 
two strategies here for the sake of saving space. The results 
of the first strategy were lower compared to the result of 
Table 2 as we have decreased the number of data to force 
the dataset to be balanced. The results of the second strategy 
were close to the results of Table 2, and this means that the 
effect of the imbalance data of the BreakHis dataset is not 
crucial as the imbalance ratio of the data is not too high.

In addition, this study evaluates the performance of nonlin-
ear dimension reduction methods, including kPCA and t-SNE 
described in the “Cumulative Explained Variance (CEV) and 
the Size of the Features” section. The classification accu-
racy based on DeCAF and R-DeCAF features is presented in 
Table 3 by the value of the mean and the standard deviation 
in addition to FVS. The mean differences are also assessed 
by t-test, and the p-values are reported. Using the kPCA algo-
rithm, a different number of features has been tested. How-
ever, the classification accuracy based on R-DeCAF features 
is not high enough. So, we have considered the same number 
of features similar to the PCA method. To apply the t-SNE 
algorithm, it is highly recommended to first use the PCA 
method before decreasing the dimension to 2 or 4 features by 
t-SNE. Therefore, we have reduced FVS in the same step as 
applying only the PCA method on the feature vectors. Then, 
t-SNE is implemented to reduce the number of features to 2. 
As it is clearly shown, nonlinear dimension reduction methods 
are not effective to capture informative features from DeCAF 
features and classification accuracy has decreased. However, 
linear approaches such as PCA could represent a better com-
bination of deep features and lead to higher accuracy in the 
classification task. Nonlinear dimensionality reduction tech-
niques might be sensitive to the curse of dimensionality and 
this could be the reason for their improper performance in 
our study. Hence, these methods are not able to guarantee 
better performance than linear ones, such as PCA [24, 28]. 
Moreover, we can consider the presence of more complexity 
in R-DeCAF features obtained by nonlinear dimension reduc-
tion methods which lead to lower classification accuracy.

Based on the analysis that we have done and the results 
reported in Tables 1 and 3, we can conclude that the accu-
racy of binary classification for the BreakHis dataset will 

Fig. 5  Confusion matrix for 400 × data from the BreakHis dataset 
to show the classification result of deep features extracted from pre-
trained AlexNet. a  DeCAF features and b R-DeCAF features using 
the PCA algorithm (FVS = 23, CEV = 0.15). 0: benign, 1: malignant
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be enhanced using R-DeCAF features with linear dimen-
sion reduction algorithms like PCA and SVD up to 4.3% 
in different magnification factors. Less probability of 
overfitting and noise rejection capability of the PCA algo-
rithm and the benefits of sparse data management by the 
SVD algorithm [24, 31] are the reasons which improve our 
R-DeCAF features. This is an important finding in which 
there is a linear combination among deep features which 
could help us to consider it in modifying networks to per-
form better.

To investigate the effect of multi-class performance, 
we have applied DeCAF and R-DeCAF (reduced by PCA) 
features to the ICIAR dataset which has four classes. 
Each class contains 100 images which are low for train-
ing purposes. The same SVM parameters for the BraekHIS 
dataset have been applied to this dataset. The results are 
reported in Table 4; it is worth mentioning that there is 

a significant reduction in the FVS from 4096 to at most 
51 where the classification performance shows a slight 
improvement. The results show that the R-DeCAf features 
outperform the D-CAF features in multi-classification as 
binary classification.

Moreover, we have compared the performance of the proposed 
framework with the state-of-the-art studies which is summarized 
in Table 5. In our method, the results of R-DeCAF features 
obtained by the PCA algorithm have been reported. In the previ-
ous works, deep features are extracted from different pre-trained 
CNNs followed by an SVM classifier as in our case to classify the 
BreakHis dataset. FVS is also mentioned in Table 5 for a com-
prehensive analysis and comparison. As we can see, the results 
obtained from the proposed method have sought to increase the 
accuracy compared to some approaches. As a case in point, in [8] 
and [14], the classification of deep features which are extracted 
from pre-trained CNNs, i.e., AlexNet, VGG-16, and VGG-19 led 

Table 3  The classification 
accuracy (%) of DeCAF and 
R-DeCAF features using 
different nonlinear dimension 
reduction methods on the 
BreakHis dataset

Whole mag. stands for whole magnifications where the images of all magnifications are used; the best 
results are shown in bold
*p-valuet-test < 0.01,**p-valuet-test < 0.001

Framework Magnification DeCAF
FVS = 4096

R-DeCAF (reduced by nonlinear methods)

FVS (CEV) KPCA PCA + t-SNE

AlexNet (FC6), SVM 40 × 84.38 ± 1.6 67 (0.25)** 68.45 ± 2.6** 67.77 ± 3.0**

100 × 86.16 ± 1.1 45 (0.20)** 69.33 ± 1.9** 69.26 ± 1.9**

200 × 87.69 ± 1.4 97 (0.30)** 68.58 ± 1.8** 68.58 ± 1.8**

400 × 87.91 ± 1.5 23 (0.15)** 67.46 ± 2.3** 68.85 ± 2.0**

Whole mag 85.95 ± 0.7 63 (0.20)** 68.15 ± 1.0** 69.41 ± 1.7**

VGG-16 (FC6), SVM 40 × 86.64 ± 2.2 90 (0.30)** 68.77 ± 2.8** 68.75 ± 3.7**

100 × 89.52 ± 1.2 58 (0.25)** 69.11 ± 1.0** 69.66 ± 3.3**

200 × 88.71 ± 0.9 84 (0.30)** 68.67 ± 1.5** 68.66 ± 1.5**

400 × 85.60 ± 1.9 58 (0.25)** 68.21 ± 2.5** 68.21 ± 2.5**

Whole mag 87.23 ± 0.8 103 (0.25)** 68.46 ± 0.7** 68.95 ± 1.0**

VGG-19 (FC6), SVM 40 × 85.09 ± 1.8 78 (0.30)** 68.65 ± 2.2** 69.30 ± 3.9**

100 × 88.06 ± 1.5 118 (0.35)** 69.45 ± 2.0** 68.22 ± 4.2**

200 × 88.51 ± 1.0 114 (0.35)** 69.95 ± 1.4** 69.73 ± 1.6**

400 × 86.73 ± 0 8 59 (0.25)** 68.27 ± 1.9** 67.94 ± 1.6**

Whole mag 86.67 ± 0.5 93 (0.25)** 68.44 ± 0.9** 67.10 ± 2.8**

Table 4  The classification accuracy, precision, recall, and F1 score (%) of DeCAF and R-DeCAF features (reduced by PCA) on the ICIAR data-
set (the best results are shown in bold)

Framework DeCAF (FVS = 4096) R-DeCAF (reduced by PCA)

Accuracy Precision Recall F1 FVS (CEV) Accuracy Precision Recall F1

AlexNet
(FC6), SVM

60.75 ± 3.9 61.52 ± 4.0 60.75 ± 3.9 60.44 ± 3.9 24 (0.25) 61.37 ± 4.4 61.62 ± 4.7 61.37 ± 4.4 61.04 ± 4.6

VGG-16
(FC6), SVM

60.75 ± 7.0 61.70 ± 6.8 60.75 ± 7.0 60.80 ± 6.9 51 (0.40) 65.0 ± 4.2 65.38 ± 4.5 65.01 ± 4.2 64.70 ± 4.5

VGG-19
(FC6), SVM

55.87 ± 2.4 57.34 ± 2.5 55.87 ± 2.4 55.82 ± 2.2 38 (0.35) 59.0 ± 3.4 60.02 ± 3.5 59.0 ± 3.4 59.07 ± 3.3
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to lower accuracy in comparison with this study. The higher accu-
racy obtained by Kumar et al. [13], Gupta et al. [20], and Alinsaif 
et al. [16] while FVS is not comparable to our case which is almost 
less than 120. In [13], a global average pooling is applied to five 
external convolutional layers of all five blocks of VGG-16 and 
makes a feature vector of 1472 after concatenation. This approach 
is different from ours where we have just extracted features from 
one layer (first FC layer). This declares that looking at the fea-
tures from all layers improves the result. The higher accuracy 
was reported in [20] where FVS is equal to 500. Although, the 
accuracy decreased with fewer features. In addition, the authors 
in [16] could only keep the classification accuracy unchanged 
by FVS equal to 1300. On the other hand, since we have only 
analyzed three pre-trained models as feature extractors, we could 
not examine our proposed concept in the mentioned works [13, 
16, 20] in which the CNNs used as feature extractors are different. 
Moreover, we believe that our proposed method can enhance the 
performance of transfer learning. In another study based on fine-
tuning pre-trained CNNs, the classification accuracy is reported 
as 80.80% for the 40 × data of the BreakHis dataset [5]. Reducing 
FVS to less than 120, our proposed method could hit the spot in 
comparison with previous works and classification accuracy has 
increased up to 4.3% simultaneously.

Conclusions

This study proposes R-DeCAF features for BC detection 
using histopathological images and compares them with 
DeCAF features. To extract DeCAF features, three dif-
ferent pre-trained CNNs emerged as unsupervised feature 
extractors. A feature vector from the first FC layer of 
CNNs with an FVS of 4096 has been extracted. The results 
show that keeping all DeCAF features extracted from pre-
trained AlexNet, VGG-16, and VGG-19 is not effective 

in the classification task. Thus, various dimension reduc-
tion methods on DeCAF features are evaluated to capture 
informative feature vectors and decrease the computa-
tional time too. We reduce the FVS of DeCAF features 
which is fixed to 4096 by applying appropriate dimen-
sion reduction algorithms to generate R-DeCAF features, 
in which FVS is less than 120 considering about 15% to 
35% of CEV which is sufficient and could significantly 
improve the accuracy up to 4.3% in the best case. Evalua-
tions show that linear dimensionality reduction algorithms 
could represent an effective combination among deep fea-
tures and lead to higher accuracy in the classification task, 
however, nonlinear approaches fail. This is an important 
finding in which there is a linear combination among deep 
features which could help us to consider it in modifying 
networks to perform better. Moreover, PCA performs bet-
ter among various linear dimension reduction methods. 
The best-achieved result for 400 × data using pre-trained 
AlexNet as the feature extractor is 91.13 ± 1.4. It should 
be noted that data augmentation and particular data pre-
processing are not required in the proposed model which 
is considered a fully automatic model for cancer diagnosis. 
Moreover, the magnification level of the BreakHis dataset 
affects the classification accuracy as it depends on the 
complexity level of histopathological images. The results 
on the ICIAR dataset also show that the R-DeCAf features 
outperform the D-CAF features in multi-classification as 
binary classification. As a future work, modification in 
deep CNN models based on the PCA algorithm to pro-
vide less feature complexity and increase classification 
accuracy with more reliable and informative features may 
break this curse. Additionally, examining other pre-trained 
CNN models to extract deep features and applying this 
proposed method for performance enhancement will be 
considered in future work.

Table 5  Comparison of the classification accuracy obtained from the proposed method and previous methods on the BreakHis dataset

Whole mag. stands for whole magnifications where the images of all magnifications are used

Existing methods CNN FVS Classification accuracy (%)

40 × 100 × 200 × 400 × Whole mag

Bardou et al. [18] new CNN 2000 90.64 89.58 90.23 75.96 –
Deniz et al. [8] AlexNet + VGG-16 4096 + 4096 84.87 ± 1.1 89.21 ± 1.4 88.65 ± 2.4 86.75 ± 4.2 –
Gupta et al. [20] ResNet 500 97.07 ± 1.2 96.10 ± 1.0 94.69 ± 1.2 90.85 ± 2.1 –
Kumar et al. [13] VGG-16 1472 94.11 ± 1.8 95.12 ± 1.1 97.01 ± 1.1 93.40 ± 1.0 –
Saxena et al. [14] AlexNet 1526 84.06 87.54 89.40 85.16 –

VGG-16 3072 86.36 87.77 86.80 84.35 –
VGG-19 3072 86.64 88.17 85.84 81.67 –

Alinsaif et al. [16] DenseNet 1300 – – – – 97.96 ± 0.6
Proposed AlexNet 23–97 88.04 ± 2.1 89.54 ± 1.0 90.60 ± 1.4 91.13 ± 1.4 90.24 ± 0.6

VGG-16 58–103 89.82 ± 1.7 91.01 ± 0.7 90.77 ± 1.4 88.30 ± 1.3 90.49 ± 0.9
VGG-19 59–118 87.34 ± 2.0 90.19 ± 1.3 89.35 ± 1.2 88.60 ± 0.8 89.43 ± 0.5
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