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Abstract
The COVID-19 pandemic has been adversely affecting the patient management systems in hospitals around the world. 
Radiological imaging, especially chest x-ray and lung Computed Tomography (CT) scans, plays a vital role in the severity 
analysis of hospitalized COVID-19 patients. However, with an increasing number of patients and a lack of skilled radiolo-
gists, automated assessment of COVID-19 severity using medical image analysis has become increasingly important. Chest 
x-ray (CXR) imaging plays a significant role in assessing the severity of pneumonia, especially in low-resource hospitals, 
and is the most frequently used diagnostic imaging in the world. Previous methods that automatically predict the severity 
of COVID-19 pneumonia mainly focus on feature pooling from pre-trained CXR models without explicitly considering the 
underlying human anatomical attributes. This paper proposes an anatomy-aware (AA) deep learning model that learns the 
generic features from x-ray images considering the underlying anatomical information. Utilizing a pre-trained model and 
lung segmentation masks, the model generates a feature vector including disease-level features and lung involvement scores. 
We have used four different open-source datasets, along with an in-house annotated test set for training and evaluation of 
the proposed method. The proposed method improves the geographical extent score by 11% in terms of mean squared error 
(MSE) while preserving the benchmark result in lung opacity score. The results demonstrate the effectiveness of the proposed 
AA model in COVID-19 severity prediction from chest X-ray images. The algorithm can be used in low-resource setting 
hospitals for COVID-19 severity prediction, especially where there is a lack of skilled radiologists.

Keywords Chest x-ray analysis · Anatomy-aware modeling · COVID-19 severity prediction

Introduction

The novel Coronavirus (COVID-19) pandemic has become 
a grave public health concern worldwide. According to the 
World Health Organization (WHO) [1], there were more 
than 683 million confirmed COVID-19 cases worldwide 
and 6.8 million deaths as of now in 2023. With the increas-
ing number of patients, the need for streamlined patient 
management has become extremely important. Disease 
severity monitoring can be of significant importance for 
the timely allocation of hospital resources and predicting 
which patients may need intensive care unit (ICU) support. 
Biosensors, Artificial intelligence (AI), and the Internet of 
Medical Things (IoMT) have paved the pathway of modern 
COVID-19 diagnostic methods [2]. Chest x-ray imaging is a 
widely available non-invasive tool used for frequent assess-
ment of COVID-19 severity. Although the High-Resolution 
and Computer-Aided Computed Tomography methods are 
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best suited for COVID-19 severity assessment [3, 4], CXRs 
can also be useful for regular monitoring due to their rela-
tive speed, low cost, availability, and portability, especially 
in low-resource settings. With the advent of portable equip-
ment, CXR imaging is more reasonable for critically ill 
patients who cannot be transported for a CT scan.

During the peak of the pandemic, numerous admitted 
patients endured additional constraints in terms of medical 
image interpretation in the hospitals. In high-income coun-
tries, high patient volumes may result in a higher workload 
on the existing radiologists, whereas in low-income coun-
tries, there may not be a sufficient number of skilled radiolo-
gists to perform the necessary image interpretation. In these 
circumstances, automated analysis of CXRs for the sever-
ity prediction of COVID-19 can be of significant value, as 
the resulting analysis could be potentially used for making 
decisions regarding escalation or de-escalation of care and 
monitoring of treatment efficacy.

In recent times, Artificial intelligence (AI) algorithms, 
particularly deep learning, have demonstrated remarkable 
progress in the automated interpretation of medical images. 
During high workloads and in locations where the number 
of radiologists is limited, automated CXR analysis can play 
a vital role in efficient and effective patient management. 
Previous research already revealed that well-trained AI 
algorithms could perform at or above the level of third-year 
radiology residents when it comes to identifying various 
characteristics on radiographs [5]. Thus, effectively trained 
AI-based algorithms for automated CXR analysis tools can 
significantly benefit low-resource hospital systems.

Automatic assessment of COVID-19 using CXR images 
has been an active area of research since the inception of 
this pandemic [6–12]. Most previous work focuses on the 
detection of COVID-19 pneumonia from CXR images. How-
ever, in hospital settings, automatic detection of the presence 
of COVID-19 is not of significant value as most admitted 
patients are confirmed through RT-PCR tests. Methods for 
automatic assessment of COVID-19 severity can be more 
valuable as they can be used for monitoring treatment effi-
cacy, especially in the ICU. Therefore, in this work, we focus 
on the assessment of COVID-19 severity using an existing 
dataset [13]. In Cohen et al. [13], a COVID-19 pneumonia 
severity prediction dataset was released including two differ-
ent disease severity metrics, (i) the Geographic Extent Score, 
and (ii) the lung Opacity Score. The geographic extent score 
represents the extent of lung involvement, whereas opacity 
score signifies the degree of lung opacity.

The main contributions of this paper are as follows: 

1. We propose a deep learning-based unified model that 
integrates anatomy information with the feature extrac-
tion scheme to increase the performance of the architec-
ture for COVID-19 severity scoring

2. A regression model that uses the extracted features for 
COVID-19 severity scoring assesses lung involvement 
in COVID-19 patients.

3. Experimental evaluation on an available COVID-19 
CXR dataset and validation on an in-house annotated 
CXR dataset proves the efficiency of this method.

4. This model can be incorporated into teleradiology 
platforms to reduce the number of severe COVID-19 
patients by providing early predictive severity scores.

Motivation for Anatomy‑Aware Analysis

COVID-19 pneumonia mainly increases lung density which 
is seen as whiteness in the radiography images depending on 
the severity of the pneumonia. When hazy gray areas par-
tially obscure dark lung markings in CXR, the observation 
is referred to as the ground-glass opacity. A ground-glass 
opacity is a hazy increase in attenuation in interstitial and 
alveolar processes. Linear opacities (Peripheral, coarse, hor-
izontal white lines, bands, or reticular changes) may also be 
seen along with ground-glass opacity. In severe cases, lung 
markings are completely lost because of whiteness, which is 
referred to as consolidation. These changes are more likely 
to be peripheral and lower zones, but the whole lung can 
also be affected. Bilateral lung involvement is most com-
monly observed. The appearance of nodules, pneumotho-
rax, or pleural effusion might be incidental for COVID-19 
cases [14]. Since the infected regions are always associated 
with the lungs, a trained radiologist naturally interprets a 
COVID-19 CXR image by first outlining the anatomical 
structure of the lung. Similarly, an anatomy-informed algo-
rithm can analyze the CXR images for a superior analysis 
and subsequent severity prediction. For example, if the lung 
regions are pre-identified, the deep learning models can be 
trained using higher resolution images only of the relevant 
portion of the images. We refer to this type of method as 
being anatomy-aware.

This paper proposes a novel COVID-19 severity detec-
tion method for chest x-ray images using a lung-annotated 
anatomy-aware deep learning model. The proposed model 
integrates the generic x-ray image features with pre-identified 
anatomical information extracted using an auxiliary segmen-
tation model. The proposed model generates both disease-
level features and lung involvement percentage to estimate 
the severity of pneumonia in COVID-19 patients.

Related Work

Previous work on the automated assessment of CXR 
images for COVID-19 has focused on disease classifica-
tion, segmentation, and severity prediction. Transfer learn-
ing techniques have proven to be effective ways to classify 
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COVID-19 from CXR images. In [15], ResNet50, Incep-
tionV3, and InceptionResNetV2 architectures are used to 
classify COVID-19 disease from CXR images, achieving 
accuracies of about 98.0%, 97.0%, and 87%, respectively. A 
number of deep learning architectures have been explored 
to classify COVID-19 disease from CXR images [6–11, 
16–22]. Generative Adversarial Network (GAN)-based data 
augmentation to detect COVID-19 from CXR images has 
also been studied, and the result surpasses other augmen-
tation methods [23, 24]. A densely attention-based deep 
network with high accuracy was proposed for automatic 
COVID-19 recognition [25]. In [26], a majority voting-
based classifier ensemble of five benchmark algorithms was 
shown to provide promising results in detecting COVID-
19 from CXR images. In [27], a wavelet-based depthwise 
convolution network with Grad-CAM visualization is used 
for the diagnosis of COVID-19. DMFL-Net, a deep learn-
ing framework is proposed ensuring latency, energy usage, 
and privacy of sharing data across hospitals [28]. A reliable 
COVID-19 detection architecture (ReCovNet) was devel-
oped to detect COVID-19 out of 14 different thoracic dis-
eases using CXRs compiling QaTa-COVID-19 dataset of 
their previous study [29, 30]. DarkCovidNet, a deep learning 
model was proposed for both multi and binary classification 
of COVID-19 with an accuracy of 87.02% and 98.08% for 
multi and binary class, respectively [31]. Several approaches 
have been explored to reduce redundant input informa-
tion using different feature extraction approaches [32–39]. 
In [40], pre-trained BiT models were analyzed, where 
DenseNet (using an additional Dense layer with 512 per-
ceptrons) performed best with 92% classification efficiency 
for automatic COVID-19 prediction. However, none of these 
previous methods consider the analysis of lung anatomical 
structure for disease localization or classification. On a 
separate note, although the COVID-19 detection methods 
using CXR have achieved promising results, the detection 
method is not suitable for replacing a traditional RT-PCR 
diagnostic test. Several approaches have been explored to 
develop an architecture for both CXRs and CT scan images 
[41, 42]. In [43], a lightweight CNN-tailored deep neural 
network (DNN) is proposed to detect COVID-19 from both 
CT scans and CXRs using a small number of images. Trans-
fer learning-based feature extraction with a capsule network 
has also been used on both CXRs and CT images to improve 
performance and avoid overfitting [44]. In our experience, 
radiologists and general physicians are capable of detecting 
COVID-19 markers from CXR images, so automatic detec-
tion of its presence may not provide a significant advantage. 
However, disease severity analysis may be more valuable in 
resource-constrained settings.

There has also been a considerable amount of work on 
COVID-19 diseased region segmentation in recent years. In 

[45], a deep neural network-based method is used for the 
detection of COVID-19 symptoms from CXR images, and 
gradient-guided class activation maps (Grad-CAM++) and 
layer-wise relevance propagation (LRP) are used to highlight 
class-discriminating regions. A segmentation-based deep 
fusion network is used to classify 14 thoracic diseases using 
a CXR image, where local lung region images are extracted 
with discriminative features for improved performance [46]. 
Anatomy-XNet, an anatomy-aware attention-based network 
incorporating the spatial features guided by the pre-identified 
anatomy regions proves the efficacy of utilizing the segmen-
tation knowledge to improve the classification of 14 thoracic 
diseases [47]. Unsupervised clustering techniques are also 
used to localize the suspected abnormal regions in the lung 
field of the CXR images [48]. Additionally, integrating an 
attention gate (AG) into a standard convolutional neural 
network (CNN) increases the precision and predictive accu-
racy of automatic segmentation of COVID-19 regions in CT 
images using minimum computation [49].

Previous work on COVID-19 severity prediction from 
CXR images has mainly used variants of deep learning 
architectures for transfer learning [13, 50–53]. However, 
these methods also do not explicitly use anatomical infor-
mation to interpret similar to a radiologist.

Methodology

This work proposes a unified framework in which an anat-
omy-aware (AA) deep learning model performs feature 
extraction while a regression model performs severity pre-
diction. The overview of the entire architecture is illustrated 
in Fig. 1.

The proposed AA model consists of a pre-processing 
model and a backbone model. The pre-processing model, 
named the Anatomy Annotation (ANT) model, infuses the 
anatomy structure information of CXRs, and the backbone 
model is used for dense pooling. Then, the feature map is 
passed through a gating system consisting of two paths. One 
path utilizes the Feature Pyramid Attention (FPA) module 
[54, 55] for improved pixel-level attention and extraction 
of features. This feature map is then pooled to obtain the 
disease-level features (feat 1). The other path uses Proba-
bilistic Class Activation Map (P-CAM) pooling [55], which 
is known to have excellent localization ability. We generate 
disease-wise heatmaps with P-CAM pooling and calculate 
the lung involvement of each disease in decimal form (feat 
2). The disease-level features and the percentage of lungs 
covered by the heatmaps are used as feature vectors and 
concatenated to generate the final feature vector. Finally, a 
linear regression model is applied to this feature vector to 
obtain the COVID-19 severity scores.
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Anatomy Annotation Block

To incorporate the anatomical features in the AA model it is 
important to emphasize on different anatomical structures, 
e.g., lungs, heart, ribs, clavicles, diaphragm, etc. In this 
work, we present a novel pre-processing method termed as 
Anatomy Informed Annotation.

To perform lung segmentation, we employ a Cycle-
GAN-based semi-supervised method that has shown supe-
rior performance compared to current methods for this 
task [56, 57]. The entire architecture is illustrated in Fig. 2. 
The first generator ( GIS ), which corresponds to the seg-
mentation network that we want to obtain, learns a map-
ping from an image to its segmentation labels. The first 
discriminator ( DS ) attempts to differentiate these gener-
ated labels from real segmentation masks. Conversely, the 
second generator ( GSI ) learns to map a segmentation mask 
to its original x-ray image. In our semi-supervised seg-
mentation setting, this generator is only used to improve 
the training procedure. Similarly, the second discriminator 
( DI ) receives an image as input and predicts whether this 
image is real or generated. To enforce cycle consistency, 

the generators are trained such that feeding the labels 
generated by GIS for an image into GSI provides the same 
image, and passing back to GIS the image generated by 
GSI for a segmentation mask gives the same mask. We use 
the SCR dataset segmentation masks and 200 synthetic 
segmentation masks obtained from the Stanford Chexpert 
dataset (generated by a pre-trained U-Net [58]) as labeled 
chest X-rays. In this way, we generate segmentation masks 
for the entire Chexpert dataset in a semi-supervised way, 
using the anatomy-informed annotation.

Let x be a chest X-ray image and y be the generated 
segmentation mask. The output of the neural network, 
which performs anatomy-informed segmentation, can be 
expressed as a function:

where k is the kernel size, s is the stride or subsampling 
factor, and fks is the layers of the neural network which is 
determined by the layer type. The output y is used for merg-
ing anatomy information in the original CXR image, x . We 

(1)yi, j =
∏

i, j

�ks((�(s)i+(�)i, (s)j+(�)j)0≤(�)i, (�)j≤ k)

1×1Convolutional layer
(fc layer)
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Fig. 1  Overview of the proposed Anatomically Aware Network used 
for COVID-19 severity prediction. We use a Cycle-GAN trained 
image to the label generator for lung segmentation. The lung infor-
mation is then incorporated in the original radiographs through the 
anatomy coding block which performs Eq. 2. This is followed by the 
Densenet-121 feature extraction and the gating function. In path I, 
we use Feature Pyramid Attention for improved pixel-level attention 

and in consequence, generating five diseases (Atelectasis, Consolida-
tion, Edema, Pleural Effusion, and consolidation) level features. On 
the other hand, path II is used for class-wise heatmap generation with 
PCAM pooling. The lung involvement score is calculated using the 
generated heatmaps and lung masks. Finally, disease-level features 
and lung involvement scores are used for regression
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can denote the RGB vector image as three separate column 
vectors, like, x = [x0 x1 x2] . These column vectors can be 
denoted as three RGB channel column matrices. We can 
write as, [x0 x1 x2] = [XR XG XB] . Then this data vector 
is infiltrated by a gray-scale segmentation mask, Y = [yij] , 
which is composed of column vectors generated by the neu-
ral network shown in Eq. 1.

We can find the anatomy-informed image using Eq. 2, where 
I is the identity matrix, P is a hyper-parameter matrix for 
controlling the measures of infiltration in a specific RGB 
channel. In order to keep the actual information of the chest 
radiographs as much as possible, only the Blue channel has 
been infiltrated with the anatomical information in a small 
amount, so the hyper-parameter matrix, P can be written 
as P = [1 1 p], 0 < p < 1 . This anatomy-informed image, 
x̃ = [X̃

R
X̃

G
X̃

B
] , is then fed into the backbone model.

Backbone Model

The backbone model is a traditional deep learning classifica-
tion network used in transfer learning. In this case, we use 
Densenet-121 [59] as its dense block has been well-known 
for its feature-reuse capability during feature extraction. 
Training this model using the Anatomy-annotated images, 
x̃ , ensures that the model is aware of the chest radiograph 
anatomy.

(2)X̃ = X + I ⋅ PT
⋅ Y

Feature Pyramid Attention

To produce improved pixel-level attention, we incorporate a 
Feature Pyramid Attention (FPA) module [54] into the system. 
The Pyramid Attention module first fuses features from two 
different branches: three n × n pyramid scales convolution (n 
= 3,5,7) and origin features from CNNs going through a 1 × 1 
convolution. Then, a global average pooling branch feature 
is added with the output features to select the discriminative 
multi-resolution feature representation. When these features 
overlap significantly, final pooling is applied to extract the 
disease-level features (pre-softmax or pre-sigmoid output).

P‑CAM Pooling

We use P-CAM pooling for improved heatmap generation. 
P-CAM pooling explicitly leverages the excellent localization 
ability of CAM [60] during training in a probabilistic fashion. 
The backbone network first processes the input CXR image 
and generates a feature map. Then, for a particular disease 
label, such as “Consolidation,” each feature embedding within 
the feature map goes through a fully connected (FC) layer 
implemented as a 1 × 1 convolutional layer and generates the 
class activation score that monotonically measures the disease 
likelihood of each embedding. It is further bounded with the 
sigmoid function and interpreted as the disease probability of 
each embedding. Finally, the output probability map is normal-
ized to attention weights of each embedding, following the 

Fig. 2  The proposed Cycle-
GAN-based architecture for 
semi-supervised lung segmenta-
tion. G

IS
 and G

SI
 are the two 

generators, where D
I
 and D

S
 

work as discriminators. These 
four networks are trained simul-
taneously
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multiple-instance learning (MIL) framework, which is used 
to pool the original feature map by weighted average pool-
ing. The pooled embedding goes through the same FC layer 
introduced above and generates the image-level disease prob-
ability for training. During inference time, the probability map 
is directly used for localization. Then, we apply simple hyper-
parameter thresholding to obtain disease regions. Finally, for 
the disease d, we define its activation score as follows:

where Li, j is lung segment (right and left both stacked), Rd
i, j

 
is the d region of the disease created from heatmap. The 
summation is across the segment and region’s height and 
width. According to Eq. 3, disease activation will be between 
0 to 1.

Data Sources

We use four different datasets for the training and evaluation of 
the proposed COVID-19 severity detection framework. These 
include chest x-ray image datasets including anatomy segmen-
tation masks and disease labels. The datasets are as follows:

JSRT Dataset

The JSRT dataset [61] consists of 247 images (154 nodule 
and 93 non-nodule images), with a resolution of 2048 × 2048 . 
This dataset also includes patients information such as: age, 
gender, diagnosis (malignant or benign), X and Y coordinates 
of nodule, simple diagram of nodule location.

SCR Dataset

SCR dataset [62] is a database of posterior-anterior chest radi-
ographs where the manual segmentation of lungs, heart, and 
clavicles is provided. This dataset includes chest radiographs 
of 247 subjects where annotations of the anatomical structures 
of the images of the JSRT database, e.g., left lung, right lung, 
heart, left clavicle, and right clavicle, are included.

Stanford Chexpert Dataset

The Chexpert dataset [63] is a large public dataset for chest 
x-ray interpretation. This dataset contains 224, 316 radio-
graphic images of 65, 240 patients labeled with 14 obser-
vations such as the following: Atelectasis, Cardiomegaly, 
Consolidation, Edema, Pleural Effusion, Pneumonia, Pneu-
mothorax, Enlarged Cardiom., Lung Lesion, Lung Opacity, 
Pleural Other, Fracture, Support Devices, No Finding.

(3)Ad =

∑h,w

0, 0
[Li, j

⋂

Rd
i, j
]

∑h,w

0, 0
Li, j

COVID‑19 Pneumonia Severity

The COVID-19 Pneumonia Severity Dataset [13] is a 
small dataset with 94 images, where each corresponding 
image has two severity scores: the geographic extent score 
and the opacity score. The geographic extent score denotes 
the extent of lung involvement by ground-glass opacity or 
consolidation for each lung. Here, 0 = no involvement, 
1 = <25% involvement, 2 = 25–50% involvement, 3 = 
50–75% involvement, and 4 = >75% involvement. The 
total extent score ranges from 0 to 8, including both lungs. 
On the other hand, the opacity score signifies the degree of 
opacity for each lung. Here, 0 = no opacity, 1 = ground-
glass opacity, 2 = consolidation, and 3 = white-out. This 
score ranges from 0 to 6, accumulating both lungs. The 
labeling of the geographical extent and opacity scores is 
shown in Fig. 3.

Dataset Organization

In this work, we only use lung annotations for our experi-
ments. First, a U-Net model is trained on the JSRT data-
set using SCR labels for lung segmentation. This U-Net 
is then applied for initially generating 200 lung masks 
from the Chexpert dataset. Due to dataset mismatch, the 
U-Net performance on CheXpert is inferior compared to 
the JSRT data. However, these particular 200 images and 
their corresponding lung annotations are selected through 
manual examination to provide an adequate lung mask. 
These 200 synthetically labeled images together with SCR 
clinical ground truth annotations are later used for the lung 
annotation of the entire Chexpert dataset using the Cycle-
GAN-based semi-supervised segmentation approached 
discussed in the “Anatomy Annotation Block” section. 
Finally, these lung segments are used for appending ana-
tomical structural information based on Eq. (2) on the 

Fig. 3  Labeling of geographical extent and opacity score
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original CheXpert images. These anatomy-annotated x-ray 
images are then used for training the Densnet121-FPA and 
Densnet121-PCAM models. The datasets utilized in this 
study are summarized in Table 1.

To evaluate the performance of our framework, we use 
the COVID-19 Pneumonia severity dataset [13]. We per-
form prediction tasks on a held-out test set using a 5-fold 
cross-validation scheme. An overall flow diagram describ-
ing the data organization and experimental design of this 
paper is illustrated in Fig. 4.

Experimental Evaluation

Training Phase

In the training phase, we train a U-net model on the 
SCR dataset. We infer this U-net model on the 200 
selected Stanford Chexpert images and generate lung 

segmentation masks. These 200 synthetic labels together 
with SCR ground truth labels are used to train the Cycle-
GAN model. Next, we generate the lung segments for 
the entire Chexpert dataset and incorporate them within 
the x-ray images using Eq. (2). Afterward, we train 
our feature vector generation module using these lung-
annotated radiographs. The Densenet121-FPA/PCAM 
model is trained using the following training protocols. 
Densenet initialization is done by ImageNet weights 
[64], the batch size is set to 24, images are resized to 
256 × 256 , and the binary cross-entropy (BCE) loss is 
used. The training is done for 5 epochs on 3 RTX 2080ti 
graphics processing units (GPUs). We use this model for 
feature vector extraction.

Prediction Phase

In the prediction stage, we use two different types of fea-
tures for the regression analysis. The first type consists of 

Table 1  Datasets required for 
the training and evaluation of 
the proposed framework

Dataset Number of CXRs

JSRT Dataset [61] 247 CXRs with patients information
SCR Dataset [62] 247 CXRs with annotated anatomical information
Stanford Chexpert Dataset [63] 224,316 CXRs with 14 observations
COVID-19 Pneumonia Severity Dataset [13] 94 images with geographic extent score and opacity score
In-house Dataset 12 independent CXRs annotated by experienced radiologist

Fig. 4  Dataset organization and overall flow diagram in the feature extractor training and regression training/testing phases
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Fig. 5  Comparison of predicted (Pred.) and ground truth/actual (Act.) scores of selected x-ray images for geographical extent score (Geo.) and 
lung opacity score (Op.)

Table 2  Performance evaluation 
of the proposed COVID-19 
severity prediction architecture 
compared to existing models. 
In the table: 3 diseases include: 
Atelectasis, Edema and 
Consolidation related features. 
In 4 diseases features Pleural 
Effusion related features are 
added. Also results have been 
generated with the individual 
disease and the best one is 
shown as single class (like in 
case of Densenet-FPA with AA, 
Edema has the best correlation 
with the geographic extent. 
These results also compared 
with the baseline scores from 
Cohen et al. [13])

Task Method Features MSE MAE R2

Geographical 
Extent Score

Densenet-FPA without AA 3 diseases 2.25 ± 0.62 1.22 ± 0.12 0.59 ± 0.10

4 diseases 1.93 ± 0.63 1.16 ± 0.15 0.63 ± 0.11

single disease 3.16 ± 0.72 1.45 ± 0.18 0.41 ± 0.04

Densenet-FPA with AA 3 diseases 1.90 ± 0.45 1.14 ± 0.12 0.64 ± 0.05

4 diseases 1.85 ± 0.29 1.21 ± 0.16 0.63 ± 0.10

single disease 3.45 ± 1.56 1.34 ± 0.20 0.38 ± 0.15

Densenet-FPA with AA 
and Disease Activation 
features

3 diseases 1.87 ± 0.51 1.15 ± 0.09 0.63 ± 0.10

4 diseases 1.90 ± 0.39 1.12 ± 0.11 0.63 ± 0.05

single disease 3.52 ± 1.24 1.34 ± 0.20 0.35 ± 0.10

Cohen et al. [13] lung opacity 2.06 ± 0.34 1.14 ± 0.10 0.60 ± 0.09

Opacity Score Densenet-FPA without AA 3 diseases 1.20 ± 0.14 0.76 ± 0.04 0.57 ± 0.09

4 diseases 1.08 ± 0.22 0.80 ± 0.10 0.61 ± 0.07

single disease 1.37 ± 0.47 0.94 ± 0.16 0.39 ± 0.10

Densenet-FPA with AA 3 diseases 0.94 ± 0.20 0.82 ± 0.04 0.55 ± 0.09

4 diseases 0.97 ± 0.23 0.85 ± 0.11 0.56 ± 0.11

single disease 1.54 ± 0.47 1.10 ± 0.12 0.32 ± 0.08

Densenet-FPA with AA 
and Disease Activation 
features

3 diseases 0.94 ± 0.21 0.81 ± 0.05 0.46 ± 0.20

4 diseases 0.96 ± 0.24 1.15 ± 0.31 0.45 ± 0.20

single disease 1.45 ± 0.50 1.52 ± 0.21 0.20 ± 0.36

Cohen et al. [13] lung opacity 0.86 ± 0.11 0.78 ± 0.05 0.58 ± 0.09
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the outputs from the Densenet121-FPA classifier pipeline 
considering specific lung-related diseases. These diseases 
include Edema, Consolidation, Atelectasis, and Pleural 
Effusion. The second type of feature includes the activation 
values calculated from the disease activation as defined in 
Eq. (3) considering the same lung-related diseases. In total, 
we have a maximum of 8 feature parameters that are avail-
able for disease severity prediction via regression. During 
our experiments, we have selected different combinations 
of these features for linear regression. We report the mean 
squared error (MSE), mean absolute error (MAE), and cor-
relation coefficient as performance metrics comparing the 
predicted COVID-19 severity and the ground truth for the 
geographic extent and opacity scores. The results are sum-
marized in Table 2.

Overall Results

Our baseline model using Densenet121-FPA without the 
proposed anatomy-aware (AA) block provides very simi-
lar results as reported in [13]. In terms of geographical 

extent score, Densenet121-FPA and [13] provide MSE 
scores of 1.93 ± 0.63 and 2.06 ± 0.34 , respectively (p-value 
= 0.001 < 0.01 ). In the case of lung opacity score, 
Densenet121-FPA and [13] provide MSE scores of 
1.08 ± 0.22 and 0.86 ± 0.11 (p-value = 0.0 < 0.01 ), respec-
tively. Thus, we can conclude that the baseline model con-
sisting of the Densenet121-FPA pipeline is equivalent to 
[13] in terms of performance and statistical significance. 
Table 2 also shows that the overall performance improves 
after including the anatomy-aware block.

The best-performing model is Densenet121-FPA, with 
the AA block included in geographic extent and opacity 
scores. In terms of geographical extent score, the MSE 
improves from 1.93 ± 0.63 to 1.85 ± 0.29 after including 
the AA block over the baseline architecture. On the other 
hand, for lung opacity score, the MSE improves from 
1.08 ± 0.22 to 0.97 ± 0.23 after including the AA block 
along with the baseline model. However, Table 2 also 
shows that including the disease activation score does not 
provide the best result for the prediction of lung opacity 
score. Overall, analyzing the results of Table 2 implies that 
including additional anatomical information to the com-
petitive baseline model further increases the ability of the 
system for disease severity prediction. In Fig. 5, we show a 
few example images along with predicted and ground truth 
COVID-19 severity scores. Figure 6 shows the comparison 
between our model’s performance with human annotation 
in a 5-fold cross-validation setup for geographic extent and 
lung opacity scores, respectively. The plots again indicate a 
high correlation between the ground truth disease severity 
and the predicted value.

Evaluation on In‑house Annotated Data

In order to validate the performance of the proposed method 
on an independent test set, we selected a small set of chest 
x-ray images and performed annotation by an experienced 
radiologist. In this study, 12 chest x-ray images were selected 
from a separate COVID-19 dataset. The same severity scor-
ing method used in [13] was followed during the in-house 
annotation by the experienced radiologist. The geographic 
extent and lung opacity scores provided by our radiologist 
and the proposed anatomy-aware model are summarized in 
Table 3 and Fig. 7. We found significant improvement in the 
geographic extent score and opacity score (p-value < 0.01 ) 

Fig. 6  Model’s prediction comparison with ground truth (GT). Here 
different colored Cartesian coordinates represent different folds in 
5-fold cross-validation settings

Table 3  Evaluation of the proposed COVID-19 severity prediction 
model on Selected Chest X-ray images annotated by an In-house 
experienced radiologist

Scoring Method MAE MSE

Geographical Extent Score 1.55±0.98  3.35±3.51
Opacity Score 0.62±0.48 0.59±0.89
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compared with [13] using the selected CXRs. As evident 
from the results, our model shows low MAE values for both 
geographic extent and lung opacity scores. However, the 
MSE is found to be lower for lung opacity score compared 
to that of the geographic extent scores. These results fur-
ther demonstrate the effectiveness of the proposed method. 
However, we acknowledge that this independent validation 
set is small in size. Further evaluation on a larger independ-
ent dataset would provide more convincing evidence of the 
effectiveness of the proposed method.

Discussion

Most of the previous research on chest x-ray image analy-
sis involves traditional deep learning architectures typically 
used for image classification. There are few studies that are 
involved with COVID-19 severity prediction. Basically, 
for severity prediction, these studies are involved with pre-
trained models without anatomical information [13]. Addi-
tionally, there is a need for a case-by-case comparison to 
find out the possible causes of error to improve the image 
analysis architecture [53]. Also, there is a lack of CXRs for 
performing the segmentation tasks, which sometimes makes 
it difficult, and there may be anomalies in the findings. How-
ever, the existing models are not specifically aware of the 
anatomical structure present in typical chest x-ray images. 
In contrast, an experienced radiologist always first identi-
fies the thoracic organs before looking for markers of the 
disease. Therefore, we hypothesized that adding anatomi-
cal information to existing models can help to improve the 
model’s performance in predicting disease severity. Also, 
anatomical information can reduce the computational com-
plexity by introducing disease-specific features, which 

helps the model to learn precisely. The experimental results 
presented in this work demonstrate that including simple 
anatomical information, e.g., coloring the x-ray images by 
lung segmentation masks, can improve the performance 
of the COVID-19 severity prediction model. Our baseline 
architecture performs similarly compared to existing models 
on the COVID-19 pneumonia severity prediction task. We 
have also included a case-by-case comparison study with 
the annotated CXRs to quantify the performance of the pro-
posed algorithm. However, the proposed anatomy-informed 
method yields about 4.1% and 11% relative improvement in 
MSE for the geographic extent and lung opacity scores, 
respectively. For the future perspective of this study, there 
is a need for further clinical validation on a larger-scale 
independent dataset and validation in a clinical workflow 
for effective deployment in low-resource hospital settings.

Conclusion

This paper has proposed a novel anatomy-aware deep 
learning framework for COVID-19 disease severity predic-
tion from chest X-ray images. While traditional methods 
generally do not specifically consider anatomical informa-
tion for medical image analysis, expert radiologists tend to 
always consider their human anatomy knowledge before 
making a diagnostic decision. In this work, we have uti-
lized a semi-supervised model for automatically generat-
ing lung segmentation masks that are subsequently fused 
within the chest X-ray images. Our best-performing model 
has provided a relative improvement of 11% in MSE com-
pared to existing methods when evaluated on a COVID-
19 pneumonia severity prediction dataset. Experimental 
comparisons between systems with and without anatomy 

Fig. 7  a Predicted value and ground truth of geographical extent 
score of selected chest X-ray images annotated by an In-house expe-
rienced radiologist, and b Predicted value and ground truth of opacity 

score of selected chest X-ray images annotated by an In-house experi-
enced radiologist
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information integrated clearly show the effectiveness of 
the proposed method. Our model also shows promising 
results on an unseen in-house clinical evaluation data-
set that an experienced radiologist has annotated. The 
experimental evaluations demonstrate the effectiveness 
of the proposed anatomy-aware architecture for COVID-
19 disease severity prediction. Though the COVID-19 
transmission rate has significantly surged down, the pro-
posed approach can be incorporated into other AI-based 
platforms for the severity prediction of other respiratory 
diseases. In different low-income settings and underprivi-
leged areas, people with comorbid conditions are at risk of 
severe infections and there is a lack of medical facilities. 
Chest radiography is among the major radiological diag-
nostic methods in these regions. Hence, there is a need for 
computer-aided diagnostic methods to provide healthcare 
facilities in underserved communities where the proposed 
method can provide assistance to healthcare professionals. 
Thus, the extensions of the proposed method can be used 
for COVID-19 or other respiratory disease severity predic-
tion in low-resource settings.
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