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Abstract
Low-dose computed tomography (LDCT) is an effective way to reduce radiation exposure for patients. However, it will increase 
the noise of reconstructed CT images and affect the precision of clinical diagnosis. The majority of the current deep learning-
based denoising methods are built on convolutional neural networks (CNNs), which concentrate on local information and have 
little capacity for multiple structures modeling. Transformer structures are capable of computing each pixel’s response on a 
global scale, but their extensive computation requirements prevent them from being widely used in medical image processing. To 
reduce the impact of LDCT scans on patients, this paper aims to develop an image post-processing method by combining CNN 
and Transformer structures. This method can obtain a high-quality images from LDCT. A hybrid CNN-Transformer (HCformer) 
codec network model is proposed for LDCT image denoising. A neighborhood feature enhancement (NEF) module is designed 
to introduce the local information into the Transformer’s operation, and the representation of adjacent pixel information in the 
LDCT image denoising task is increased. The shifting window method is utilized to lower the computational complexity of the 
network model and overcome the problems that come with computing the MSA (Multi-head self-attention) process in a fixed 
window. Meanwhile, W/SW-MSA (Windows/Shifted window Multi-head self-attention) is alternately used in two layers of the 
Transformer to gain the information interaction between various Transformer layers. This approach can successfully decrease 
the Transformer’s overall computational cost. The AAPM 2016 LDCT grand challenge dataset is employed for ablation and 
comparison experiments to demonstrate the viability of the proposed LDCT denoising method. Per the experimental findings, 
HCformer can increase the image quality metrics SSIM, HuRMSE and FSIM from 0.8017, 34.1898, and 0.6885 to 0.8507, 
17.7213, and 0.7247, respectively. Additionally, the proposed HCformer algorithm will preserves image details while it reduces 
noise. In this paper, an HCformer structure is proposed based on deep learning and evaluated by using the AAPM LDCT dataset. 
Both the qualitative and quantitative comparison results confirm that the proposed HCformer outperforms other methods. The 
contribution of each component of the HCformer is also confirmed by the ablation experiments. HCformer can combine the 
advantages of CNN and Transformer, and it has great potential for LDCT image denoising and other tasks.
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Introduction

Due to the ability that Computed Tomography (CT) can rap-
idly obtain a high-resolution images to capture structural 
features and pathological conditions [1], it is widely used 

in medical diagnosis, image-guided surgery, and radiation 
therapy [2–4]. However, the radiation generated during CT 
scanning is harmful to the human body and increases the 
risk of cancers. Research on low-dose computed tomography 
(LDCT) has attracted considerable attention [5]. Radiation 

 *	 Zhitao Guo 
	 mrnow@hebut.edu.cn

	 Jinli Yuan 
	 jinli_yuan@hebut.edu.cn

	 Feng Zhou 
	 1226406144@qq.com

	 Xiaozeng Li 
	 33574624@qq.com

	 Hengyong Yu 
	 hengyong_yu@uml.edu

1	 The School of Electronic and Information Engineering, 
Hebei University of Technology, Tianjin 300401, China

2	 The Department of Electrical and Computer Engineering, 
University of Massachusetts Lowell, Lowell, MA 01854, 
USA

http://orcid.org/0000-0001-5398-2026
http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-023-00842-9&domain=pdf


2291Journal of Digital Imaging (2023) 36:2290–2305	

1 3

dose reduction can be achieved by reducing the number of 
projection attempts and/or lowering the X-ray flux, but the 
reduction of radiation dose may lead to poorer image qual-
ity, which is usually manifested as noises and artifacts in the 
resulting images [6].

There are mainly three types of methods available to 
improve the quality of LDCT images: projection domain 
filtering algorithms, iterative reconstruction algorithms, 
and post-processing methods [7]. Among those three types 
of methods, a more direct approach is to use image post-
processing to suppress noise in LDCT images. However, it 
is still challenging due to the ill-posed nature of the noise. 
Compared with the traditional LDCT image denoising meth-
ods, the convolutional neural network (CNN) has achieved 
better performance in learning generalized prior. Chen et al. 
[8] first applied CNNs to the post-processing of LDCT, 
using a deep CNN structure to map LDCT images to the 
corresponding Normal-Dose CT (NDCT) images. It showed 
certain advantages in terms of visual assessment and quan-
titative metrics compared to conventional methods. Chen 
et al. [9] proposed a RED-CNN network with residual cod-
ing and decoding structure for better denoising results. Wu 
et al. [10] proposed a cascaded CNN denoising algorithm, 
which can obtain a higher quality denoised images com-
pared with conventional CNN algorithms. Wolterink et al. 
[11] applied the Generative Adversarial Network (GAN) to 
LDCT image denoising. Yang et al. [12] used the Wasser-
stein distance in GAN to form a WGAN network for LDCT 
denoising. Yi and Babyn [13] used a sharpness detection 
network to guide the training process of the network and 
obtained a small resolution loss, which improved the LDCT 
image quality. Yin et al. [14] proposed the DP-ResNet for 
LDCT denoising based on an asymptotic 3D residual con-
volutional network. Guo et al. [15] combined edge gradient 
information with a multi-stage network for LDCT image 
denoising and achieved good results.

The aforementioned CNN-based works have obtained 
inspiring results by refining different aspects of the network 
structures. For CNN Networks, feature learning is based on 
convolution operation, which brings local connectivity and 
strong feature learning capability. Although these capaci-
ties provide CNNs with efficiency and versatility, there are 
two main problems. First, the convolution operation is con-
strained by a limited field of perception, resulting in too 
much focus on local features. This disadvantage makes it 
difficult for CNN-based methods to make full use of the 
similarity between the large regions in the image. Hence, 
CNN-based methods are inefficient to model various infor-
mation in CT images [32]. Second, the convolution kernels 
have static weights during the operations, and using the same 
convolution kernel to recover different parts of the image 
may lose details and result in a poorly denoised image. 
Because of the particularity of LDCT images, it is necessary 

to consider the complete characteristics of different tissues 
in the images, which puts forward the higher requirements 
for the long-range correlations of images.

In recent years, Transformer structure with Multi-head 
self-attention (MSA) as the core mechanism has been suc-
cessfully applied [16]. Weighted by other locations to com-
pute the response for a given pixel location [17, 18], the 
MSA mechanism can dynamically calculate the correlation 
of pixels at all locations in an image. This can provide a bet-
ter alternative for LDCT image denoising tasks [19]. Trans-
former has achieved an excellent performance in image pro-
cessing fields such as image classification [20, 21], image 
segmentation [22], and object detection [23, 24]. The MSA 
mechanism in Transformer enables content-based interaction 
between image content and attention weights. This process 
can be interpreted as achieving spatially varying convolution 
[25–27]. It makes the Transformer very effective in captur-
ing the features in different structures, particularly for image 
denoising tasks. Chen et al. [28] proposed a pre-trained 
image denoising model based on Transformer (IPT), and for 
the first time applied it to the field of image denoising. How-
ever, due to the computational limitations of Transformer, 
IPT adopts a method to divide the input image into 48 × 48 
small patches. Too small input patches may lead to informa-
tion loss and the generation of boundary artifacts [29]. In the 
field of medical image processing, Transformer has been 
successfully applied in some tasks, such as medical image 
segmentation and nodule detection [30, 31]. LDCT image 
denoising requires to denoise different information between 
various organizational structures in the images. Transformer 
has also been successfully used in this field. For example, 
Zhang et al. [32] proposed TransCT by using different char-
acteristics of a high frequency and low frequency in LDCT 
images, and Qiao et al. [33] proposed a CTC method by 
combining Transformer with edge enhancement. Luthra 
et al. [34]. proposed an edge enhancement Transformer 
model for medical image denoising, which combines the 
learnable Sobel filter for edge enhancement to improve the 
performance of the overall architecture.

The existing problems can be summarized as follows: 
(1) because CNN is limited by the perceptual field and the 
static weights at the time of operation, it cannot effectively 
use the similarity among large regions in LDCT images. 
This will lead to the destruction of image details after the 
LDCT image denoising, and the information between tis-
sues in LDCT images cannot be effectively recovered. (2) 
Because the standard Transformer structure has high com-
putational complexity, it cannot be effectively applied for 
high-resolution LDCT image denoising. Meanwhile, the 
Transformer structure mainly focuses on extracting global 
spatial information between pixels, ignoring the impor-
tance of pixel neighborhood information for image denois-
ing. (3) The mean square error (MSE loss) of individual 
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pairs is often used as a conventional objective function in 
many LDCT denoising algorithms to achieve higher signal-
to-noise ratios. However, this pixel-by-pixel comparison 
method tends to cause a loss of detailed information and 
thus over-smoothing the recovery results.

For the above problems, we propose a hybrid CNN-Trans-
former codec network, named HCformer. This framework 
can process the features of the input image with full resolu-
tion, avoiding information loss that may be caused by up- 
and down-sampling in traditional U-shaped structures. For 
LDCT image denoising tasks, pixel neighborhood informa-
tion plays an important role [35, 36]. And in medical image 
processing, the expression of neighborhood information is 
also critical. The neighborhood feature enhancement (NFE) 
module proposed in this paper uses a hybrid structure to 
replace the multiple-layer perceptron (MLP) layers in the 
standard Transformer layer. Specifically, by refining the 
convolution in the depth direction and spatial dimension of 
the NEF module, the local information extracted by the con-
volution operation can be introduced into the Transformer 
process. The hybrid CNN-Transformer structure ensures that 
the Transformer is complemented by local information in 
different channels and spatial dimensions when modeling 
the global information relevance of the image.

Furthermore, to reduce the computational burden, we use 
the window/sliding-window MSA (W/SW-MSA) mecha-
nism to connect two consecutive self-attention layers by 
sliding window, which was proved to be more effective than 
using a simple sliding window [37]. By using two consecu-
tive layers of different windows, the information interaction 
between the overall windows of the image can be obtained 
efficiently, and this can avoid the information wastage that 
may result from stationary windows. Using the hybrid codec 
structure of CNN and Transformer with the W/SW-MSA, 
the computational burden can be reduced. The respective 
advantages of CNN and Transformer in extracting features 
can be effectively exploited. These methods effectively ena-
ble the denoising of a high-resolution LDCT images.

Our main contributions are threefold. (1) This paper pro-
poses a hybrid codec network based on CNN-Transformer, 
which adopts Transformer as the main structure to realize the 
mapping from LDCT to NDCT images. Meanwhile, the hybrid 
structure is also reflected in the Transformer layer operation 
level. The NFE module with multidimensional CNN is pro-
posed to replace the MLP layer in the standard Transformer 
layer. Hence, the local information can be introduced into 
global-level operation, making the network more suitable for 
LDCT image denoising. (2) Transformer is used as the main 
structure to implement the mapping from LDCT to NDCT 
images. To avoid excessive computational burden caused by 
the traditional Transformer during computation, during the 
construction of Transformer codec structure in HCformer, the 
information exchange between different windows is realized 

by the W/SW-MSA mechanism. This method can effectively 
reduce the computation of the Transformer and makes the 
network more flexible for LDCT denoising. (3) The loss of 
detailed information caused by the single MSE loss pixel-by-
pixel comparison method may blur the recovery results. A loss 
function, including Edge loss and MSE loss, is used as the final 
loss function to guide the network training.

Method

Denoising Model

The LDCT images have more noise and poor image qual-
ity. In this paper, the deep learning method is used to 
remove noise for high-quality CT images. The problem of 
LDCT image denoising can be mathematically modeled 
as follows. Assuming X ∈ Rm×n is the LDCT image and 
Y ∈ Rm×n is the corresponding NDCT image, we have

where � represents the degrading process with noise. The 
denoising from LDCT image X to NDCT image Y in Eq. (1) 
can be treated as an inverse mapping of � . The goal is to find 
a function F that maps LDCT image X to NDCT image Y, to 
minimize the cost function:

where F is the best approximation of �−1 and represents a 
deep learning neural network based on a learnable Trans-
former. The detailed process is described in the next 
subsection.

Overall Network Structure

The goal of this paper is to design an efficient CNN-Trans-
former hybrid network for LDCT image denoising, which 
can effectively learn the features of a high-resolution 
LDCT images and implement the mapping from LDCT 
to NDCT images. The convolutional layer has a satisfac-
tory effect in early visual processing, which is attractive 
to more stable optimization and better results [38]. The 
Transformer is excellent at extracting global informa-
tion, and as the main decoder-encoder structure, it can 
effectively make up for the problem that the convolution 
operation has insufficient computing capability for remote 
pixel correlation. HCformer is a hybrid codec structure 
composed of CNN and Transformer. It mainly consists 
of four parts, including a feature extraction block (FEB), 
encoder module, decoder module, and image restoration 
module (IRB), as shown in Fig. 1.

(1)X = �(Y),

(2)argmin
F

||F(X) − Y||2
2
,
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The feature extraction block can extract the input image 
features step by step through three layers of convolution 
and use them as the input of the encoder, as shown in 
Fig. 1a. The encoder and decoder modules use symmet-
ric Transformer Blocks to implement the encoding and 
decoding process. The W/SW-MSA mechanism is used to 
reduce computational costs during codec mapping. Mean-
while, the NFE module is used to enhance the expression 
ability of local information in the network structure of 
each Transformer layer. The final IRB is symmetric with 
the feature extraction Block, and three layers of DeConv 
operation are used to achieve mapping from the feature 
domain to the image domain (see Fig. 1b).

Define the input LDCT image as Xi ∈ RM×N×Cin where M, 
N, and Cin are the width, height, and number of input chan-
nels, respectively. Then, after passing through the feature 
extraction module, it can generate the shallow feature XF 
satisfying

where XF ∈ RM×N×C  is the multidimensional feature 
through the feature extraction module, FFE(⋅) denotes 

(3)XF + XS = FFE

(
Xi

)
,

the feature extraction process, C denotes the number 
of feature channels after the shallow feature extrac-
tion module, and XS denotes the shortcut generated by 
the feature extraction. The convolution layer can map 
the input image into a high-dimensional space. Next, 
through the Transformer-based encoding structure, XF 
is used as the input to the encoder, and the process is 
shown in Eq. (4). It is set to 16 in the initial encoding 
block in this paper, and then multiplied successively to 
finally generate 128 channel features. In the decoding 
process, the channels change is symmetrical with the 
encoding process, and the feature is finally denoised to 
the initial channel number.

where FEN(⋅) is a Transformer-based encoder structure con-
taining i layers of Transformer blocks with feature encod-
ing capabilities, and more specifically, intermediate features 
X1,X2...Xi−1 and the residual outputs Xs1,Xs2...XSi−1 , and the 
output depth encoding features XEC and the intermediate 
layer features XES required for feature fusion are extracted 
step-wise in the following manner:

(4)XES + XEC = FEn

(
XF

)
,

Fig. 1   The overall network structure
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where TECTB(⋅) denotes the ith Transformer encoding block. 
Using multidimensional convolution operations in the 
Transformer layer of the encoding block can introduce local 
inductive bias into the Transformer-based network. This 
method can lay a better foundation for fusing partial and 
global features.

The decoder structure is also based on a hybrid structure 
of the Transformer and CNN. To enhance the encoder out-
put, this paper replaces one of the convolutional layers in 
the multidimensional encoding block with a deconvolution 
as the output of the final Transformer block, forming a sym-
metric operation with the convolutional layer in the encoder. 
The process can be described as follows:

where XDO denotes the output feature of the decoder and 
TDETB(⋅) denotes the Transformer decoding block. The output 
features XDO ∈ RM×N×C after codec restoration are finally 
recovered by the image restoration module into a recovered 
image XPredict ∈ RM×N×Cin close to the NDCT image, and the 
final process can be described as:

In Eq. (7), TIRB(⋅) is the restoration module, and the fea-
tures initially extracted by convolution mainly contain local 
features, while the deep features extracted by the Trans-
former block focus on recovering the global features of 
LDCT images. Through the residual connection, HCformer 
can transfer the local information directly to the codec mod-
ule. This helps the deep feature extraction module to focus 
on the global information and stabilize the training process. 
For the implementation of the restoration module, this paper 
uses three layers of deconvolution layers to gradually reduce 
the recovered features from the feature dimension to the 
image domain.

When the network structure is too deep, the feature fusion 
interaction strategy can avoid the interference caused by the 
feature fusion and effectively integrate the features of dif-
ferent stages and levels. At the beginning of the three-layer 
convolutions, the initial early features are mapped to the 
denoised image by adding each pixel to enhance the detail 
information and suppress the noise, making the ratio of 
different abstract feature information more suitable for the 
LDCT denoising and realizing more flexible feature utiliza-
tion, as shown in Fig. 1b.

To effectively transfer shallow features from the encoding 
block to the decoding block, the feature fusion process is 

Xi + Xsi = TECTB
(
Xi−1

)

(5)XES + XEC = TECTB
(
Xi

)

(6)XDO = TDETB
(
XES + XEC

)

(7)XPredict = FIRB

(
XDO + XS

)

adopted to transfer features of different stages between the 
encoder and decoder based on Transformer (see Fig. 1d). 
The input feature Fi of the first layer is spliced together with 
the output Fi−1 of the Transformer Block of the previous 
layer. Then, the blending feature is input before the W/SW-
MSA calculates the projection of K and V.

Feature fusion interaction strategy can consider both 
shallow information and details. It is helpful to consider 
detail units in LDCT images. First, LDCT image denoising 
requires more analysis of small areas to underline features, 
which may lead to too small weight values that cannot be 
effectively expressed in the process of step-by-step transmis-
sion. Second, when the image needs global modeling, more 
attention is paid to broader information in the image, so the 
long-distance pixel response to the image is more dependent 
on the correlation between the advanced features extracted 
after a certain deep network.

Transformer Module Based on Encoder‑decoder 
Structure

Transformer Layer

Figure 2 shows the Transformer layer in the Transformer 
Block, which is implemented by two alternating layers 
between window attention (W-MSA) and shifted window 
attention (SW-MSA), respectively. The standard Trans-
former structure and its adaptation to image classification 
are subject to a global self-attention computation, which 
calculates the relationship between a pixel at that location 
and all other pixels at that location in the input image. The 

Fig. 2   Transformer layer
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global computation leads to a quadratic relationship between 
the computational complexity and the input image size. To 
improve the efficiency of the model computation, this paper 
uses a self-attention computation by dividing non-overlap-
ping windows. The input is adapted from the token to the 
feature map extracted by the feature extraction block. The 
size of the feature map input by the Feature Extraction Block 
is H × W.

The computational complexity of the global MSA mecha-
nism is a quadratic product of the input feature map sizes 
H and W. To perform the MSA efficiently, the W-MSA is 
computed inside a predefined window, which is set to seg-
ment the image in a non-overlapping manner. M is the size 
of each window and the number of windows isN = HW∕M2 . 
The W-MSA can effectively transfer the quadratic relation-
ship to the parameter M. The computational intensity of a 
single parameter M is significantly lower than that of the 
squared relationship of the quadratic product of H, W. The 
main difference in computational complexity between MSA 
and W-MSA can be approximated as:

and it can be simplified as:

For example, if the input feature map size is set as 
128 × 128 and the window size is set to 8, the computational 
complexity of W-MSA can be reduced by about 256 times 
compared to MSA. This operation proves to be effective in 
reducing the computational burden of MSA in Transformer.

In this paper, we use two different window division meth-
ods in successive Transformer layers, as shown in Fig. 3. 

(8)
Ω(MSA)

Ω(W −MSA)
≈

2(HW)2C2

2M2HWC2

(9)
Ω(MSA)

Ω(W −MSA)
≈

HW

M2

Relying only on the non-overlapping and fixed local window 
self-attention mechanism, it will result in no information 
exchange between different windows. To maintain efficient 
computation of non-overlapping windows and introduce the 
cross-window information supplementation, the shifted-
window method is used to implement the window division 
from a to b in Fig. 3. Since the window division in Fig. 3b is 
non-regular, it is too complicated to simply rotate and move 
the window. In this paper, the feature map is shifted by 1/2 
window unit in the direction of the center point and then 
overlapped with a fixed serial port to obtain the window in b. 
This operation also relies on a cyclic displacement operation 
to achieve the filling of the feature area in Fig. 3c with Mask 
on the corresponding position.

To avoid the information interference of unconnected 
regions in the W-MSA process, the Mask-Attention is used 
to calculate the correlations in the same regions. Specifi-
cally, in the process of computing Attention, let Q and K 
be computed with the same label. Then, this operation 
ignores the correlation between unrelated indices, to avoid 
the weights brought by non-related regions. Benefiting from 
the broadcast operation in PyTorch, we can easily get the 
mask feature map of the same dimension, and the weight 
value is retained according to the need when the dimen-
sion is obtained with the same feature region. The attention 
mask and the discriminant function output are used in dif-
ferent windows to separate the information between different 
windows and prevent the information confusion that may 
be caused when calculating MSA during the loop. Mask-
Attention is used to solve the problem of irregular window 
division, and the Attention calculation process in Fig. 3 is 
equivalent to realizing the information interaction among 
different Windows.

NFE Module

In the process of LDCT image denoising, adjacent pix-
els also play an important role in image denoising. To 
enhance the expression of local association information in 
the denoised image, a neighborhood feature enhancement 
module (NFE module) is proposed in the Transformer layer 
to replace the MLP in the standard Transformer layer, as 
shown in Fig. 4. Since the image recovery task focuses more 
on the relationship between input pixels and mapped pixels, 
the corresponding standard MLP layer focuses more on the 
output discriminative information. We use the convolution 
operation in the NFE module to enhance the fine-grained 
nature of the recovered image.

The NFE module uses the Depth-convolution of channel 
direction to provide channel-level pixel aggregation of local 
context information, introducing local information as a sup-
plement to the Transformer layer attention operation. After 

Fig. 3   Schematic diagram of the window division between layer i and 
layer i + 1. a Transformer layer window division for layer i. b Trans-
former layer window division for layer i + l. c Process of window dis-
placement
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the introduction of MSA global weights, the cross-channel 
pixel-level information aggregation of output features is car-
ried out by using super pixel-level convolution. Pixel con-
volution is slightly different in encoding and decoding. In 
decoding, 1 × 1 convolution is used to refine the feature map 
pixel by pixel. The same DeConv was used in the decoding 
block to symmetrically decode the feature pixel by pixel. 
This operation ensures that the Transformer models the 
global information relevance of the image and complements 
it with different levels of local information.

The input features are first mapped into the hidden chan-
nel by a fully connected layer (output dim in Fig. 4), which 
is expressed as C in the subsequent operation. The input 
spreading features are then expanded into a feature map 
of shape $$m\in {{{R}^{h}}^{’}}^{\times h’\times C}$$ 
by an activation function as well as reshaping, where $$h\
text{'}=sqrt\left(HW\right)$$. Next, a 3 × 3 depth convolu-
tion is used to capture the local information, and the convo-
lution is performed in the channel depth direction based on C 
channels. This operation allows the correlation of the image 
channel depth to be extracted while reducing the number of 
parameters based on channel grouping. After obtaining the 
local features by deep convolution, the features are recovered 
to $$h\text{'}=sqrt\left(HW\right)$$ dimensions by linear 
transformation layer and recovery shaping to the extend-
ing features. Then, the attention weights after multi-head 
attention are added to the output pixel by pixel to obtain the 
output that focuses on both global high-dimensional features 
and local low-order information.

The introduction of the NEF module into the self-atten-
tion operation process can make full use of local image 
information. The ith layer Transformer Layer and (i+1)th 
layer operation process are in Eq. (10).

(10)

Fmap =
{
Fmap

1Fmap
2,… ,Fmap

i
}
, i =

HW

M2

Fi
W−MSA

= W − SMA
(
Fi−1
map

W
Q

k
,Fi−1

map
WK

k
,Fi−1

map
WV

k

)
+ Fi−1

map

Fi
NFE

= NFE
(
FC

(
Fi
W−MSA

))

Fi+1
SW−MSA

= SW −MSA
(
Fi
NFE

W
Q

k
,Fi

NFE
WK

k
,Fi

NFE
WV

k

)
+ Fi

NFE

Fi+1
NFE

= NFE
(
FC

(
Fi+1
SW−MSA

))

where Fmap denotes the Feature map input to the ith Trans-
former layer, assuming that the head number is kth and the 
dimension corresponding to each head isdk = C∕k , whereWQ

k

, WK
k

 , WV
k ∈ RC×dk denote the projection matrix of query, 

key, and value of the kth head, respectively.

Loss Function

In this paper, the Loss function adopts a composite form. 
The first part is a mean square error (MSE)

As the traditional objective function in neural network-
based image-denoising tasks, MSE is often used in many 
LDCT image-denoising algorithms to achieve a higher 
signal-to-noise ratio. However, this pixel-by-pixel com-
parison approach is prone to loss of detailed informa-
tion, resulting in blurred results. To avoid over smoothed 
images caused by a single loss function, we also introduce 
an Edge loss function Ledge

where ∆ represents the Laplace operator. The constant � is 
to avoid singularity, and it is empirically set to 103. Hence, 
the composite loss function can be defined as:

where � is to balance the two terms.
By introducing the Laplace operator into the loss func-

tion, the two-dimensional isotropy of the second spatial 
derivative of the image can be introduced into the train-
ing process of the supervised network. Using Laplace 
operation can improve the denoising ability of the net-
work for the abrupt position of response intensity in the 
image. These positions are usually represented by the 
boundaries of different tissues in LDCT images and parts 
with complex and varied structures. The denoising and 

(11)LMSE(XS, Y) =

√
||XS − Y||2

(12)Ledge(Xs, Y) =

√
||Δ

(
Xs

)
− Δ(Y)|| + �2

(13)LCompound = LMSE(Xs, Y) + �Ledge(Xs, Y)

Fig. 4   Neighborhood feature 
enhanced module
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reconstruction effects of these key positions are crucial for 
the denoising task of LDCT images. As shown in Eq. (13), 
the final loss function is a weighted combination of MSE 
loss and Edge loss. The combined loss function is used to 
guide the network learning, which enables the network to 
learn high-order information implicit in the images and 
the details of the edge information with a similar degree 
between the predicted and prior images.

Experiments and Results

Dataset

A clinical dataset from the 2016 NIH AAPM Mayo Clinic Low-
Dose CT Grand Challenge, licensed by Mayo Clinics, is used 
to train and test the network. The dataset consists of projection 
data and reconstructed images with a slice thickness of 3 mm. 
There are 2378 normal dose CT image slices and their cor-
responding low-dose (quarter-dose) CT image slices from 10 
anonymous patients, each of which includes 512 × 512 pixels.

In the training process, a data expansion technology 
is used to extract 128 × 128 image patches from the ran-
dom position and random sequence of each slice. Random 
rotation and flipping operations are also used for these 
image blocks to improve the diversity of input samples 
and reduce the correlation between training samples. 
For a given patient case, although the noises in the same 
position in all the image slices might have correlation, 
it should be a different story for different patches at dif-
ferent positons. For testing, the trained model is directly 
applied to full image slices of the test patient scans. The 
network proposed in this paper is a fully convolutional net-
work, which can use image patches for training and testing 
full-size images (512 × 512). Therefore, the image patches 
strategy can help to reduce the amount of computational 
cost, improve the training speed, and increase the number 
of training samples to avoid overfitting.

Experimental Setup

The experiments are carried out on a 64-bit Windows 
10 system with PyTorch deep learning framework for 

network training and CUDA-Toolkit10.1 for its accel-
eration. The hardware configuration is the Intel Core 
i7-9700 K CPU@3.2 GHz, 16 G of RAM, and NVIDIA 
GeForce RTX series. The weights are iteratively optimized 
using the Adam optimization algorithm during the train-
ing process.

Measurement Metrics

To evaluate the effectiveness of the proposed algorithm, 
structural similarity (SSIM), Hu root mean square error 
(HuRMSE), and feature similarity (FSIM) are used to evalu-
ate image quality. SSIM evaluates the structural differences 
between denoised and real images, and it is typically used to 
characterize the degree of detail similarity between images. 
FSIM represents the similarity of visual feature structures. 
HuRMSE is used as an evaluation indicator for the distance 
between denoised LDCT and NDCT images. The higher the 
values of SSIM and FSIM are, the higher the image quality 
is. The calculation of those metrics are as follows:

(14)SSIM =
(2�z�x + c1)(2�z,x + c2)

(�z
2 + �x

2 + c1)(�z
2 + �x

2 + c2)

(15)HuRMSE =

√(
Ix − IY

)2

N

(16)FSIM=

∑
x∈ΩSL(x)PCm(x)∑

x∈ΩPCm(x)

Table 1   Quantitative 
comparison of different network 
structures

The bold font indicate that these results are optimal

SSIM
(Mean ± STD)

HuRMSE
(Mean ± STD)

FSIM
(Mean ± STD)

LDCT 0.8017 ± 0.0453 34.1898 ± 8.7348 0.6885 ± 0.0284
Full-CNN 0.8275 ± 0.0406 19.1232 ± 4.4397 0.7042 ± 0.0260
With MLP 0.8324 ± 0.4288 18.0542 ± 4.3232 0.7177 ± 0.0259
HCformer(ours) 0.8507 ± 0.0405 17.7213 ± 4.3480 0.7247 ± 0.0255

Table 2   Quantitative comparison of different input patch size

The bold font indicate that these results are optimal

Size SSIM
(Mean ± STD)

HuRMSE
(Mean ± STD)

FSIM
(Mean ± STD)

64 × 64 0.8448 ± 0.0402 17.8578 ± 4.3726 0.7223 ± 0.0261
80 × 80 0.8472 ± 0.0403 17.8427 ± 4.3308 0.7237 ± 0.0253
96 × 96 0.8453 ± 0.4002 17.8101 ± 4.3602 0.7236 ± 0.0257
112 × 112 0.8449 ± 0.0403 17.8215 ± 4.3682 0.7238 ± 0.0259
128 × 128 0.8507 ± 0.0405 17.7213 ± 4.3480 0.7247 ± 0.0255
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where Ix and Iy denote the pixel Hu values of the input LDCT 
image and predicted LDCT image. x and z denote the LDCT 
image and the denoised image, and µx and µz denote the 
mean values of images x andz . �x and �z denote the stand-
ard deviation of the images x, and z and �z,x denotes the 
covariance between x and z. c1 and c2 are two default SSIM 
parameters defined as (0.01 × Imax)

2 and(0.03 × Imax)
2 , where 

Imax is the maximum Hu value. zi and xi denote the Hu values 
of each pixel point of the denoised image and the LDCT 
image, respectively. The similarity between the predicted 
images and NDCT is measured using HuRMSE, and the Hu 
values corresponding to two CT images are directly used 
to determine the similarity between the LDCT and NDCT 
images. In Eq. (16), PC(⋅) is the phase consistency feature 
extracted by an orthogonal filter, and SL(⋅) is the fusion simi-
larity between gradient features and consistency features.

Ablation Experiments

Impact of Different Components of the Network

To investigate the role of different components in improving 
the quality of LDCT images, we validate several key elements 
of the proposed network structure and conduct experiments 
on the AAPM dataset. First, to verify that the introduction 
of the Transformer is effective, the layers in the Transformer 
Block of the proposed network structure are replaced with the 
corresponding convolutional layers, keeping the other parts 
unchanged. We name it as Full-CNN network. The similar-
ity in spatial structure can also be seen by SSIM, with an 

improvement of about two percentage points. Meanwhile, to 
verify the effectiveness of the introduction of the NEF module, 
we also study the effect of using the MLP layer as the output of 
the Transformer layer and HCformer. Compared with using the 
MLP layer as the output, the experimental results of the NEF 
module have improved SSIM and HuRMSE. The results in 
Table 1 confirm that the proposed network can better recover 
LDCT images.

Impact of the Different Input Patch Size

To increase the sample size, we adopt the method of patch 
training and expand the sample data through inversion, rota-
tion, and other methods. To verify the influence of different 
input patch sizes, we gradually increase the patch size of the 
Transformer from the commonly used input patch size of 
64 × 64, and the results are summarized in Table 2.

It can be seen that the increase in patch size does not 
always increase the image quality, and the image qual-
ity changes are not significant. To balance the computa-
tional cost and performance, the default patch size is set as 
128 × 128 in this paper.

The Parameterλ in the Loss Function

To verify the effectiveness of the compound Loss function 
(MSE Loss + Edge Loss), we provide a comparison between 
the effects of single MSE Loss and compound Loss. At the 
same time, we also evaluate the parameter λ to optimize the 
overall performance. As summarized in Table 3, λ = 0.05 is 
empirically selected based on our experiments.

Table 3   Quantitative 
comparison of different λ in loss 
function

The bold font indicate that these results are optimal

λ SSIM
(Mean ± STD)

HuRMSE
(Mean ± STD)

FSIM
(Mean ± STD)

Without ELoss 0.8437 ± 0.0409 17.7327 ± 4.3476 0.7235 ± 0.0256
0.01 0.8449 ± 0.0401 17.7511 ± 4.3372 0.7247 ± 0.0252
0.02 0.8443 ± 0.0408 17.7509 ± 4.3892 0.7210 ± 0.0264
0.03 0.8459 ± 0.0403 17.7503 ± 4.3538 0.7247 ± 0.0255
0.04 0.8454 ± 0.0405 17.7412 ± 4.3489 0.7247 ± 0.0256
0.05 0.8507 ± 0.0405 17.7213 ± 4.3480 0.7247 ± 0.0255
0.06 0.8327 ± 0.0435 17.9795 ± 4.3386 0.7186 ± 0.0261

Table 4   Quantitative 
comparison of HCformer with 
U-shaped codec containing 
upsampling and downsampling

The bold font indicate that these results are optimal

SSIM
(Mean ± STD)

HuRMSE
(Mean ± STD)

FSIM
(Mean ± STD)

LDCT 0.8017 ± 0.0453 34.1898 ± 8.7348 0.6885 ± 0.0284
U-shaped codec 0.8447 ± 0.0404 17.8020 ± 4.3658 0.7234 ± 0.0258
HCformer(ours) 0.8507 ± 0.0405 17.7213 ± 4.3480 0.7247 ± 0.0255
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Comparison Between HCformer and U‑Shaped Structure

In this experiment, a conventional U-shaped network struc-
ture is also constructed with the same number of layers of 
HCformer, containing the corresponding upsampling and 
downsampling operations as well as the feature fusion pro-
cess. Thanks to the fact that the HCformer can effectively 
process full-resolution images and interact with the full-size 
feature maps in the network, it can be seen by the compari-
son in Table 4 that HCformer obtains a superior denoising 

effect. In general, HCformer is more suitable for LDCT 
image denoising, a task that focuses on pixel-by-pixel image 
information.

Experiment Result Analysis

Subjective Comparison

To intuitively compare the performance of the proposed 
algorithm, two representative sample images are selected for 
display. Figure 5 shows samples 1 and 2, where the observa-
tion window level is set to 40 HU and the window width is 
set to 400 HU.

The algorithms selected for comparison include RED-
CNN [9], WGAN-VGG [12], EDCNN [39] network, MPR-
Net [40], and UFormer [41]. The results are evaluated using 
both subjective effects and objective metrics. The visual sub-
jective effect is used to highlight the structural form of the 
image, and then the objective metrics are used to evaluate 
the degree of merit of the algorithms.

Figure 6 shows the overall comparison of Fig. 5a, and 
Fig. 7 shows the noise residual images after denoising by dif-
ferent algorithms. Figure 7 can intuitively show the differ-
ence between the denoised and NDCT images, and we can see 
that the denoising results based on Transformer are generally 

Fig. 5   Low-dose CT image samples

Fig. 6   Overall comparison of Sample 1. a NDCT image. b RED-CNN result. c MPRNet result. d UFormer result. e LDCT image. f EDCNN 
result. g WGAN-VGG result. h The result of the proposed approach
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better than those based on CNN. The noise level in the noise 
image after denoising shown in Fig. 7g is lower than that of 
UFformer, which is the closest one to the NDCT image.

Figure 8 shows the ROI comparison for the red-box area 
in Fig. 6. It can be seen that all the comparison algorithms 
have different degrees of denoising effect. More detailed 

Fig. 7   Noise distribution images 
of sample 1 after de-noising by 
LDCT and different algorithms. 
a LDCT. b RED-CNN. c MPR-
Net. d Uformer. e EDCNN. f 
WGAN-VGG. g Proposed

Fig. 8   The same as Fig. 6 but 
for magnified ROI
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information can be found in Fig. 8. Figures 8d and h are 
denoised results based on the Transformer methods. Com-
pared with other CNN-based denoising algorithms, the 

Transformer algorithms have a better denoising effect on 
LDCT images with complex structures. By comparison, it 
can be found that the HCformer can recover more image 

Fig. 9   Same as Fig. 6 but for 
sample 2

Fig. 10   Same as Fig. 7 but for 
sample 2
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details, and the contour of organs is the clearest. While elim-
inating noise and artifacts, the edge details of the image are 
better retained, and the quality is close to the corresponding 
NDCT ground-truth image.

Based on the magnified ROI in Fig. 8, it can be observed 
that the edge details of the LDCT image with a large amount 
of quantum noise are excessively fuzzy indicated by the red 
arrow, and some sharp edge details are lost. Meanwhile, 
the HCformer has a better visual effect on intuitive noise 
contrast and is closer to the NDCT image than other meth-
ods, as shown in Fig. 6. By comprehensively comparing the 
magnified ROI of several denoising methods in Fig. 8, the 
protection of image edges can be realized. By comparing the 
parts marked by red arrows and blue arrows, the HCformer 
has clearer edge details and more obvious contrast with the 
surrounding background.

Figure 9 shows the overall comparison of another rep-
resentative sample slice in Fig. 5b; Fig. 10 shows the cor-
responding results of different denoising algorithms, and 
Fig. 11 shows the comparison of a magnified ROI in Fig. 9. 
The overall visual comparison in Fig.  9 shows that the 

HCformer has a fine denoising effect on CT images with 
different structures. Compared with the magnified ROIs in 
Fig. 11, we can see that the Transformer-based denoising 
algorithms also have a good denoising effect on the parts 
with similar background structures, and they can effectively 
retain the edge contours of similar parts. The proposed 
HCformer not only retains more edge details but also has 
the closest intuitive denoising effect to the NDCT image, 
and the overall image is cleaner.

The compared results from Figs. 6 to 11 confirm that 
the HCformer achieves the best visual effect. While remov-
ing most of the noise, it can retain the details similar to 
the traditional normal dose images. Therefore, the pro-
posed algorithm has the best performance in terms of visual 
examination.

Objective Comparison

To objectively evaluate the performance of the HCformer, 
the SSIM, HuRMSE, and FSIM are compared with the 
NDCT images serve as ground-truths.

Fig. 11   Same as Fig. 8 but for 
magnified ROI

Table 5   Quantitative comparison of sample 1

The bold font indicate that these results are optimal

SSIM HuRMSE FSIM

LDCT 0.7271 47.4497 0.6858
REDCNN 0.7719 24.7960 0.7161
WGAN 0.7245 28.3132 0.3647
EDCNN 0.7262 27.5753 0.7196
MPR 0.7290 27.7993 0.6912
Uformer 0.7820 24.2618 0.7181
HCformer(Ours) 0.7840 24.2136 0.7172

Table 6   Quantitative comparison of sample 2

The bold font indicate that these results are optimal

SSIM HuRMSE FSIM

LDCT 0.7829 37.7200 0.6973
REDCNN 0.8169 19.9145 0.7247
WGAN 0.7880 26.0794 0.4535
EDCNN 0.7951 25.4540 0.7195
MPR 0.8018 24.5641 0.7015
Uformer 0.8271 19.3647 0.7330
HCformer(Ours) 0.8304 19.3100 0.7341
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Tables 5 and 6 summarize the objective evaluation met-
rics for the representative test samples in Fig. 5, where the 
best metrics are marked in bold. It can be seen that the pro-
posed HCformer achieves the best performance in both of 
the cases.

Table 7 shows the comparison of the overall objective evalu-
ation indicators of different algorithms in the testing set. It 
can be seen that the proposed HCformer has obtained the best 
results, and the Transformer-based method has achieved better 
performance in the testing set compared with the CNN con-
volution network. Compared with the convolutional method, 
the proposed method has improved the SSIM and similarity of 
spatial structures. Compared with the UFformer method, the 
proposed Transformer has achieved the best evaluation index. 
The HCformer mentioned in this paper also has achieved the 
best results in the index HuRMSE, which measures the proxim-
ity between the testing set and the NDCT images.

Because the results of objective evaluation indexes of 
Uformer, MEPNet, and MPR are close to those of HCformer, 
we also performed the independence test for the similar 
mean values. Specifically, t-test is used to test the mean 
independence of the evaluation index data of two groups of 
testing results. The calculation formula is

where 
−

X1 is the mean value of the first group of samples, 
X2 is the mean value of the second group of samples, and 

(17)
t =

X1 − X2√
s2
1

n1
+

s2
2

n2

S1 and S2 are the standard deviations of the first and second 
groups of samples, respectively. The degrees of freedom are

wherev1 = n1 − 1,v2 = n2 − 1 . The testing results are shown 
in Table 8.

The verification results of the HCformer and UFformer 
with the closest mean values show that the improved results 
of HCformer are reliable, and the independence of the 
two groups of data is also tested. The independence test-
ing results between MEPNet and HCformer show that the 
probability of independent validation is further improved. 
Finally, by comparing the experimental results of HCformer 
and MPR, we can see that they are quite different from each 
other. Hence, the proposed HCformer is more effective than 
other algorithms in improving experimental results.

Conclusion

For the LDCT denoising task, a hybrid transformer CNN net-
work (HCformer) is proposed. The network can make use of 
the advantages of convolution operation and Transformer at 
the same time to integrate global information and local infor-
mation. The HCformer network uses the NEF module based 
on a multidimensional convolution to replace the MLP layer 
in the standard structure. The combination of depth convolu-
tion and per-pixel convolution is used to extract channel-level 
and pixel-level features, respectively. While the Transformer 
structure can carry out the wide range correlation of LDCT 
images, it can also enhance the expression of local informa-
tion in the network structure to protect the image details. In 
addition, to avoid the problem that a single MSE loss function 
will cause the image to be too smooth, this paper uses a com-
bined loss function to constrain the network to pay attention to 
the edge details in the LDCT image. The proposed HCformer 

(18)v ≈
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Table 7   Quantitative 
comparison of different 
algorithms in the testing set

The bold font indicate that these results are optimal

SSIM
(Mean ± STD)

HuRMSE
(Mean ± STD)

FSIM
(Mean ± STD)

LDCT 0.8017 ± 0.0453 34.1898 ± 8.7348 0.6885 ± 0.0284
REDCNN 0.8243 ± 0.0437 20.5948 ± 4.5076 0.6959 ± 0.0249
WGAN 0.8021 ± 0.0567 22.4559 ± 5.2379 0.3692 ± 0.0538
EDCNN 0.8393 ± 0.0388 20.8739 ± 4.5729 0.6974 ± 0.0247
MPR 0.8120 ± 0.0390 19.9183 ± 3.6081 0.6692 ± 0.0246
MEPNet 0.8313 ± 0.03798 19.0477 ± 4.4211 0.7098 ± 0.0257
Uformer 0.8441 ± 0.0409 17.7754 ± 4.3471 0.7250 ± 0.0253
HCformer(Ours) 0.8507 ± 0.0405 17.7213 ± 4.3480 0.7247 ± 0.0255

Table 8   Independent probability of objective index of t-test with 
HCformer, unit(%)

Uformer(%) MEPNet(%) MPR(%)

SSIM 82.64 96.11 99.99
HuRMSE 82.80 98.29 99.99
FSIM 87.41 97.89 99.99
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framework is validated and evaluated on the widely used 
AAPM data set, and ablation experiments are carried out. 
The results show that the network can effectively denoise the 
LDCT images by retaining the detailed information of each 
tissue structure more clearly. Through objective comparison, 
it is confirmed that the HCformer outperforms other main-
stream algorithms in terms of SSIM, HuRMSE, and FSIM.

Although our proposed algorithm can effectively imple-
ment the denoising process for low-dose CT images, there are 
still potential rooms for further improvement. In the future, 
we will explore the universal ability of HCformer in multiple 
sample data, train and test the data on different manufactur-
ers' devices, and improve the generalization ability of network 
structure. Based on the excellent results in image quality evalu-
ation indicators, we will seek collaboration with clinical radi-
ologists, further improve the practice of the network in clinical 
applications, and establish a more professional and effective 
task-driven visual evaluation method.

Data Availability  The data that support the findings of this study are 
available from the corresponding author upon reasonable request.
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