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Abstract
Cancerous skin lesions are one of the deadliest diseases that have the ability in spreading across other body parts and organs. 
Conventionally, visual inspection and biopsy methods are widely used to detect skin cancers. However, these methods have 
some drawbacks, and the prediction is not highly accurate. This is where a dependable automatic recognition system for skin 
cancers comes into play. With the extensive usage of deep learning in various aspects of medical health, a novel computer-
aided dermatologist tool has been suggested for the accurate identification and classification of skin lesions by deploying a 
novel deep convolutional neural network (DCNN) model that incorporates global average pooling along with preprocess-
ing to discern the skin lesions. The proposed model is trained and tested on the HAM10000 dataset, which contains seven 
different classes of skin lesions as target classes. The black hat filtering technique has been applied to remove artifacts in 
the preprocessing stage along with the resampling techniques to balance the data. The performance of the proposed model 
is evaluated by comparing it with some of the transfer learning models such as ResNet50, VGG-16, MobileNetV2, and 
DenseNet121. The proposed model provides an accuracy of 97.20%, which is the highest among the previous state-of-art 
models for multi-class skin lesion classification. The efficacy of the proposed model is also validated by visualizing the 
results obtained using a graphical user interface (GUI).
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Introduction

Cancer is one of the deadliest diseases, that happens due 
to uncontrollable growth of the body cells in the affected 
region that will spread and damage other parts of the 
body by replacing the normal cells with cancerous cells. 
According to World Health Organization (WHO), can-
cer is a prime reason for demise around the world, lead-
ing to one in six deaths or reckoning for approximately 
10 million deaths in 2020 [1]. Skin cancer is known as 
one of the most common cancers around the world. The 
epidermis, which is the top layer of skin, is where skin 
cancer begins [2]. The epidermis consists of cells such as 
basal cells, squamous cells, and melanocytes. The type of 
cancer that forms in the squamous cells which are present 
in the skin refers to squamous cell carcinoma (SCC). 
Most of these squamous cell carcinomas of the skin 
occur due to prolonged exposure to ultraviolet radiation. 
Even though it is not life-threatening, if left untreated, 
this squamous cell carcinoma can cause some serious 
complications [3].
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Basal cell carcinoma (BCC) occurs as the mutation 
begins in the basal cells that are present in the base layer 
of the epidermis to grow swiftly and continue increasing. 
This may result in tumor formation, which appears as a 
lesion on the skin and is caused due to indelible subjec-
tion to ultraviolet (UV) radiation coming from sunlight 
[4]. They appear as a slightly transparent bump or sore 
that does not heal, and they may also be visible in other 
forms too such as blue, brown, or black lesions, scaly flat 
patches, and waxy white scar-like lesions. Some of the 
complications of this cancer include an increased risk of 
the formation of other types of cancers, the spreading of 
cancer beyond the skin, and a reoccurrence risk [5].

Melanoma, which is the deadliest type of skin cancer, 
occurs when there is something serious with melanocytes 
which are melanin-producing cells in the skin. Melano-
mas also called black tumors can develop anywhere in 
the body, however commonly develops in areas that are 
frequently exposed to the sun and approximately 30% of 
melanomas begin in moles and typically a delay in the 
treatment may sometimes lead to death. Along with these 
skin cancers, there are also some least common skin can-
cers such as Merkel cell carcinoma, Kaposi sarcoma, 
and Sebaceous gland carcinoma [6]. BCC and SCC are 
the two most common types of skin cancers together the 
non-melanoma type skin cancer. As per the Skin Cancer 
Foundation, every month, around 5400 people die due to 
non-melanoma cancer worldwide. According to an estima-
tion made by this foundation, there are 3.6 million cases 
of basal cell carcinoma and 1.8 million cases of squamous 
cell carcinoma diagnosed yearly in the USA. And it is also 
expected that it is likely an increase of 6.5% in deaths due 
to melanoma. When these cancers are detected early, most 
of them can be cured completely. Even melanoma can have 
a 5-year survival rate of up to 99% on early detection. 
Biopsy and imaging tests are the other two most common 
tests that are used in the diagnosis of skin cancer. Though 
this biopsy method has a success rate comparatively, some 
constraints must be considered during and post-biopsy [7].

With the advancements of computer-aided intelligent 
diagnosis tools, along with the huge amount of labeled 
data, it is easy to understand and interpret various types 
of skin cancers. Many machine learning (ML) and deep 
learning (DL) models can be deployed in extracting the 
features like color, size, shape, and texture to predict can-
cers [8, 9]. To avoid manual hand-crafted feature extrac-
tion, many DL algorithms like CNN, transfer learning 
models, LSTM, and RNN models were employed in skin 
cancer detection. In this work, we consider the application 
of a deep CNN model with global average pooling and 
preprocessing to enable better multi-class classification of 
skin lesions. Our key role aspects of the proposed study 
deal with:

•	 The design of a novel deep convolutional neural network 
(DCNN) model that detects and classifies skin cancer 
more precisely at an early stage.

•	 The comparison of the outcomes of the proposed DCNN 
model with other previous state of art models.

•	 Evaluating the performance of the suggested model in 
comparison with the existing transfer learning models like 
VGG-16, ResNet50, DenseNet121, and MobileNetV2.

•	 Development of a user interface to assess the efficacy of the 
DCNN model in obtaining the best classification accuracy.

Related Works

Over the years, deep learning (DL)–based models have 
proven their efficiency in the medical field, especially in 
predicting and classifying diseases with the help of medi-
cal images using convolutional neural networks (CNN). 
Calderon et al. [10] proposed a bilinear CNN composed of 
ResNet50 and VGG16 architectures deployed to perform 
skin lesion classification on the HAM10000 dataset with 
comparatively highest accuracy and low cost of computa-
tion. This framework comprises several techniques such 
as data augmentation, transfer learning, and fine-tuning to 
increase performance. The results state that the proposed 
work achieved 0.9321 accuracies, 2.7% greater than state-of-
the-art methods and other metrics with good results. In [11], 
the authors developed a light-weighted classification model 
to classify skin cancers to aid medical care. To achieve a 
remote diagnosis, they deployed their model on mobile 
devices as well as cloud platforms. They applied KCGMH 
(Kaohsiung Chang Gung Memorial Hospital) dataset to 
their model and achieved a binary classification accuracy 
of 89.5% and obtained an accuracy of 72.1% for a five-class 
classification, while the same model has given a seven-class 
classification accuracy of 85.8% on the HAM10000 data-
set. A deep CNN model for the classification of benign and 
malignant lesions accurately has been proposed in [12] and 
compared with transfer learning models such as ResNet, 
MobileNet, AlexNet, DenseNet, and VGG16. Some pre-
processing techniques such as noise and artifact removal, 
normalization of input data, feature extraction, and data 
resampling were performed on the HAM10000 dataset. A 
comparatively highest accuracy of 93.16% in training and 
an accuracy of 91.93% in testing were obtained with the 
proposed model.

In [13], the existing state-of-the-art models such as 
MobileNetV2, DenseNet201, GoogleNet, Inception-
ResNetV2, and InceptionV3 were used for the creation of 
plain as well as hierarchical classifiers. The results proved 
that the plain model provided better results than the hierar-
chical model. The concept of CNN was leveraged by hyper-
parameter tuning and a deep comparative analysis between 
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ResNet50 and MobileNet architectures was performed [14]. 
Another CNN architecture was suggested in [15] for the clas-
sification of the HAM10000 dataset and the model provided 
91.51% of classification accuracy. This model was evaluated 
by connecting to an application in two phases which is web-
based and validated by 7 expert dermatologists.

A fully automated computerized aided deep learning 
framework was proposed which included the decorrelation 
formulation for data preprocessing followed by MASK-
RCNN for segmentation, feature extraction by DenseNet 
model and then the resultant vector was then sent to an 
entropy-controlled least square SVM (LS-SVM) [16]. In 
[17], the authors proposed their model in deep learning stu-
dios (DLS), a model-driven architecture tool that provided 
some components related to the modeling of neural networks 
such that we can drag-drop the required neural network mod-
eling components according to our requirements. Here, they 
built their own CNN model in DLS and obtained an accu-
racy of 71.17% in training, and an accuracy of 71.41% dur-
ing validation and this proposed model was compared with 
ResNet, SqueezNet, DenseNet, and InceptionV3.

An automatized computer-aided system has been pro-
posed in [18]. The authors made a comparative analysis of 
the performance of transfer learning models such as Incep-
tionV3, NASNetLarge, Xception, ResNetXt101, and Incep-
tionResNetV2 and they also compared the performance of 
ensemble models such as InceptionV3 + Xception, Incep-
tionResNetV2 + ResNetXt101, InceptionResNetV2 + Xcep-
tion, and InceptionResNetV2 + Xception + ResNetXt101. 
Among these stated ensemble models, Inception-
ResNetV2 + ResNetXt101 have given a maximum classi-
fication accuracy of 92.83%. And ResNetXt101 model in 
the transfer learning models category has given the best 
accuracy among all the compared models, i.e., an accuracy 
of 93.20%.

Rahman et al. [19] proposed a weighted average ensemble 
model, and the models that are used for the weighted average 
ensemble are SeResNetXt, Xception, ResNetXt, DenseNet, 
and ResNet as the base weighted average ensemble. They 
utilized a combined HAM10000 and ISIC 2019 datasets to 
test their models. A multi-CNN approach (MSM-CNN) has 
been proposed in [20] as a fusion scheme of three levels, 
where the authors trained the three state-of-the-art models 
(i.e., EfficentNetB0, EfficentNetB1, and SeReNeXt-50) and 
obtained the final accuracy of 96.3% for the proposed model.

An approach that is fully automated for segmentation, 
as well as the classification of multi-class skin lesions, has 
been proposed [21]. Initially, the input images are enhanced 
using the LCcHIV technique, followed by estimation of sali-
ency using a novel method called Deep Saliency Segmenta-
tion consisting of a 10-layered CNN. Then, the features are 
extracted from segmented color lesions with the help of the 
thresholding function. An IMFO (Improved Mouth Flame 

Optimization) algorithm is used as a dimensionality reduc-
tion technique. And using analysis of multiset maximum 
correlation, resultant features were fused, then these are 
classified with KELM (Kernel Extreme Learning Machine) 
classifier. In the proposed methodology, the segmentation 
performance is evaluated on different datasets, and a seg-
mentation accuracy of 98.70%, 95.79%, 95.38%, and 92.69% 
was obtained on PH2, ISBI2017, ISBI2016, and ISIC2018 
datasets respectively. And finally, a classification accuracy 
of 90.67% is obtained, when the proposed model is evaluated 
on the HAM10000 dataset.

Kassem et  al. [22] utilized a pre-trained GoogleNet 
model and transfer learning on ISIC 2019 dataset to test the 
model’s capacity for classifying eight different skin lesion 
classes, namely, melanocytic nevus, squamous cell carci-
noma, benign keratosis, basal cell carcinoma, dermatofi-
broma, actinic keratosis, and vascular lesion present in 
this dataset. Classification specificity, precision, accuracy, 
and sensitivity percentages of 94.92%, 79.8%, 80.36%, and 
97% were achieved respectively. A boundary segmentation 
technique using a fully resolution Convolution Network 
(FrCN) on skin lesion images has been applied and com-
pared with InceptionV3, Inception-ResNetV2, ResNet50, 
and DenseNet201 models [23].

A CNN-based skin disease identification system named 
Eff2Net has been proposed by Karthick et al. [24] which is 
a combination of EfficientNetV2 and a block called Effi-
cient Channel Attention (ECA). It resulted in a significant 
drop in total parameters and 84.70% accuracy in testing 
was achieved by this model. A DermoExpert (Demoscopic 
Expert) classification architecture which is a combination 
of preprocessing and hybrid CNN has been implemented 
in [25]. This hybrid CNN consists of three different fea-
ture extractor modules, which are fused for achieving bet-
ter feature maps and deployed for a web application. This 
DermoExpert is trained and tested on ISIC2016, ISIC2017, 
and ISIC2018 datasets and has achieved AUC of 0.96, 0.95, 
and 0.97 respectively. Recently, two novel hybrid deep learn-
ing models with SVM classifier (that provided an accuracy 
of 88%) for classifying melanoma and benign lesions have 
been proposed by concatenating the features extracted from 
the two CNN models [26]. Also, the authors proposed a 
deep threshold prediction network that offered an accurate 
estimate of the threshold to learn and predict the threshold 
that separates the lesion from the background [27]. They 
have extended their work by proposing an EfficientNet-based 
modified sigmoid transform to improve the accuracy of seg-
menting the skin lesions [28].

Based on the above-mentioned studies gaining few 
insights, one can declare that many complex models along 
with optimization methods for hyperparameter tuning, fea-
ture selection, etc. have been used for skin lesion classifica-
tion. This led to the proposal of a novel and simple DCNN 
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Table 1   Summary of related recent DL works in skin lesion classification and results

Reference 
number

Published year Dataset used Methods Results obtained

[10] 2021 HAM10000 Bilinear CNN (ResNet50 + VGG16) Accuracy—93.21%
Precision—92.92%
Recall—93.00%
AUC score—98.1%
F1 score—93.21%
Training time-238.6 min

[11] 2020 KCGMH
HAM10000

Light-weighted Convolutional 
Neural Network

KCGMH (binary class classification 
accuracy)—89.5%

KCGMH (five-class classification 
accuracy)—72.1%

HAM10000 (seven-class classification 
accuracy)—85.8%

[12] 2020 HAM10000 Deep Convolutional Neural 
Network

Accuracy—91.93%

[13] 2021 HAM10000 Plain and Hierarchical 
classifiers using DenseNet201, 
MobileNetV2, InceptionV3, 
GoogleNet, Inception-ResNetV2

DenseNet201 plain/hierarchical
Accuracy—94.52%/91.73%
Precision—92.03%/85.30%
Recall—90.50%/84.80%
F score—91.26%/85.05%

[14] 2021 HAM10000 MobileNet and ResNet50 MobileNet accuracy- 72%
ResNet50 accuracy—83%

[15] 2021 HAM10000 Convolutional Neural Network 
model

Accuracy—91.51%

[16] 2020 ISBI2016, ISBI2017, 
HAM10000

Entropy-controlled Least Square 
SVM (LS-SVM)

ISBI2016 accuracy—96.30%
ISBI2017 accuracy—94.80%
HAM10000 accuracy—88.50%

[17] 2020 HAM10000 CNN model developed in Deep 
learning studio (DLS)

Accuracy—71.17%

[18] 2020 HAM10000 ResNetXt101 Accuracy—93.20%
[19] 2021 HAM10000 A weighted average ensemble 

model
Macro average recall—93%
Micro average recall—94%

[20] 2020 HAM10000 Multi-scale multi-CNN 
approach with. EfficentNetB0, 
EfficentNetB1 and SeReNeXt-50

Accuracy—96.3%

[21] 2021 ISBI2016, ISBI2017, 
ISIC2018, PH2, 
HAM10000

Kernel Extreme Learning Machine 
(KELM) classifier

Segmentation accuracy
PH2—98.70%
ISBI2016—95.38%
ISBI2017—95.79%
ISIC2018—92.69%
Classification accuracy
HAM10000—90.67%

[22] 2020 ISIC 2019 GoogleNet Accuracy—94.92%
Precision—97%
Sensitivity—79.8%
Specificity—80.36%

[23] 2020 ISIC2016
ISIC2017
ISIC2018

InceptionV3, Inception-ResNetV2, 
ResNet50 and DenseNet201

ISIC2016/ISIC2017/ISIC2018
InceptionV3—77.04%/81.29%/88.7%
Inception-

ResNetV2—81.79%/81.34%/87.74%
ResNet50—79.95%/81.57%/89.28%
Dense

Net201—81.27%/73.44%/88.05%
[24] 2021 Images of psoriasis, acne, 

actinic keratosis, and 
melanoma

Eff2Net Accuracy—84.70%
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model in this work. The images of the cancerous skin lesions 
include 10,015 samples and seven classes that are identified 
and classified using the recommended model. The perfor-
mance of the model is evaluated and characterized by accu-
racy, training time, trainable parameters, precision, recall, 
and F1 score. A graphical user interface (GUI) is developed 
to confirm the efficacy of the proposed model. Table 1 gives 
a clearer overview of the summary of the literature review 
along with the performance metrics obtained by the exist-
ing models.

Methodology Adopted

Several preprocessing techniques such as black hat filtering, 
histogram equalization, and contrast enhancement followed 
by sharpening and data augmentation have been applied to 
the skin lesion images which help the proposed model to 

understand the information present in the images. But to 
reduce the computational burden, a simple novel model has 
been proposed that consumes less memory, unlike the mod-
els that were discussed in the literature. The authors have 
tried the above preprocessing techniques and have finally 
concluded that image resizing, black hat filtering, and data 
augmentation enhance the performance of the proposed 
simple DCNN model in providing better accuracy. The 
flowchart shown in Fig. 1 provides a clear overview of the 
steps adopted in the methodology. The proposed model is 
compared with a few of the existing transfer learning models 
such as MobileNetV2, VGG16, ResNet50, and DenseNet121 
and the results are captured in the form of various metrics.

Description of Dataset

The available datasets for skin lesion classification 
include HAM10000, ISIC2018, ISIC2019, and ISBI 

Table 1   (continued)

Reference 
number

Published year Dataset used Methods Results obtained

[25] 2022 ISIC2016
ISIC2017
ISIC2018

A Skin lesion classification 
framework called DermoExpert

AUC for ISIC2016—0.96
AUC for ISIC2017—0.95
AUC for ISIC2018—0.97

[26] 2023 ISBI2016 Hybrid CNN models with SVM 
Classifier

Accuracy—88.02%

Fig. 1   Flowchart of the proposed methodology for multi-class skin lesion classification
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datasets. Among them, we found that the Human Against 
Machine with 10,015 training images (HAM10000) data-
set is a reliable dataset consisting of 10,015 skin lesion 
images with high diversity among skin lesion classes 
(available at https://​doi.​org/​10.​7910/​DVN/​DBW86T). 
HAM10000 is a seven-class skin lesion class dataset that 
is acquired from different modalities, and populations, 
with several cleaning and acquisition methods such as 
manual cropping, and histogram corrections for color and 
visual contrast enhancement performed on this dataset. 
Another major reason to use the HAM10000 dataset is 
the collection of the dataset includes all important cat-
egories in pigmented lesions realm and more than half 
of these lesion images are verified by pathologists [29], 
with the remaining lesions were confirmed with follow-
up examination, expert consensus, or by in vivo confocal 
microscopy. Therefore, HAM10000 dataset is considered 
here for skin lesion classification.

In general, skin cancer is classified into two types: mel-
anoma and non-melanoma. And non-melanoma is further 
classified into two main types: BCC (basal cell carcinoma) 
[6] and SCC (squamous cell carcinoma). There are dif-
ferent types of skin cancers such as akiec (actinic kera-
tosis) [30] and bkl (benign keratosis) which come under 
squamous cell carcinoma [31]. And the rest of the skin 
cancer types present in the HAM10000 dataset are vasc 
(vascular skin lesions), nv (melanocytic nevi), and df (der-
matofibroma) which may be tumorous or non-tumorous 
skin lesions [32–35]. The HAM10000 dataset consists of 
these seven different classes of skin lesions, namely nv, 
akiec, mel, bcc, vasc, bkl, and df. The overall and per-class 
data distribution is displayed in Table 2.

 The HAM10000 dataset is available in the Harvard Data-
verse repository as HAM10000 includes 10,015 images in 
two parts with an image size of 600 × 450, and an overall 
HAM10000_ metadata file [29]. The overall metadata file 
consists of features, namely lesion_id, dx, image_id, sex, 
dx_type, localization, and age, where lesion_id aids in the 
identification of lesion, image_id helps in the identification 
of the image, dx tells us to which class the corresponding skin 
lesion image belongs to, and dx_type tells the method applied 
on that particular lesion like histogram, consensus, confocal, 
and follow-up, and localization indicates the area in the body.

Data Preprocessing Techniques

The images present in the HAM10000 dataset are RGB 
images and of size 600 × 450 and the following different 
preprocessing techniques are implemented.

Histogram Equalization

There are different types of histogram equalization such 
as CLAHE (contrast limited adaptive histogram equaliza-
tion), MBOBHE (multipurpose bet optimized bihistogram 
equalization), adaptive histogram equalization, and MPHE 
(multipeak histogram equalization). In this study, CLAHE 
is used; the reason for going with CLAHE technique is, 
compared to other types of histogram equalization, the 
CLAHE technique operates on small portions of the image 
rather than the whole image and it reduces the issue of 
noise amplification [36]. The original image and the image 
after applying histogram equalization are shown in Fig. 2.

Table 2   Distribution of the 
original HAM10000 dataset

HAM10000 
dataset

Total images Classes

akiec bcc bkl df mel nv vasc

Original (before 
augmentation)

10,015 327 514 1099 115 1113 6705 142
3% 5% 11% 1% 11% 67% 2%

Fig. 2   Histogram equalization; 
a before applying and b after 
applying

https://doi.org/10.7910/DVN/DBW86T
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Conventional Contrast Enhancement and Sharpening

The normal contrast enhancement technique offered by the 
pillow (“PIL”) library can produce better results using a 
module called “ImageEnhance” which offers a vast num-
ber of images with enhancing functions that can be used 
for enhancing brightness, contrast, and sharpening and can 
convert black and white images to colored images.

To increase the contrast of an image, we have applied 
the contrast function of the ImageEnhance module with a 
factor of 0.5 on the skin lesions images in the dataset and 
it is found that applying some sharpening techniques to the 
image can give a better result. So, the pillow library offers 
another module called Image and there is a function called 
“filter” which provides numerous different types of filters 
as we are looking for sharpening the image; we have used 
the filter function to sharpen the contrasted image [37]. The 
original image and the image after applying conventional 
contrast enhancement and sharpening are shown in Fig. 3.

Black Hat Filtering

Many of the skin lesion images present in the HAM10000 
dataset consist of black hair present in it and there is a 

chance that this black hair may overlap with the lesion lead-
ing to misdiagnosis. So, it is of utmost importance that arti-
facts such as black hair must be removed. So, we had chosen 
the black hat filtering process to perform this task. Black 
hat filtering is one of the techniques available in morpho-
logical transformations. Usually, these operations are carried 
out upon binary images. It requires two inputs, of which 
one is the original image and the other is called a kernel or 
structuring element that is crucial in deciding the sort of 
operation. Here, the “MORPH_BLACKHAT” function from 
OpenCV library has been chosen to do this task.

In the process of black hat filtering, firstly, we made use 
of a threshold and convert these RGB images into black and 
white images. And this image is then converted into its com-
plement where the skin is black and the hair is white. This 
complemented image acts as a mask to the original image 
and is multiplied with the original image. The resultant 
image undergoes the process of painting, where the space of 
black hair in the image is filled with the image information 
attained from the neighboring pixels. And the final image is 
then converted into a color image. The same process when 
applied to the lesion images as in Fig. 4a gives the resultant 
output of lesion images whose black hair is removed as in 
Fig. 4b [38].

Fig. 3   Contrast enhancement 
and sharpening; a before apply-
ing and b after applying

Fig. 4   Black hat filtering; a 
before applying and b after 
applying
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Data Augmentation

As said earlier, the data present in the HAM10000 dataset is 
uneven among the classes that are present. The HAM10000 
dataset faces an imbalance problem where a particular 
class called “nv” itself consists of 6705 images which are 
more than 50% of the total number of images present in the 
HAM10000 dataset and the remaining six classes together 
consist of only 3310 images. To avoid the biased classifi-
cation by the model towards the majority class, balancing 
the data across all the classes present in the HAM10000 
dataset is a must before training the model. So, resampling 
techniques have been considered regarding balancing the 
data across all the classes. There are so many resampling 
techniques available in Python. ImageDataGenerator is a 
class that belongs to the “preprocessing” module which is 
a part of the minimalist python library called “Keras” from 

the “TensorFlow” python library (https://​www.​tenso​rflow.​
org/​resou​rces/​libra​ries-​exten​sions and https://​keras.​io/). The 
main reason to utilize the ImageDataGenerator is that it can 
offer real-time image augmentation and offers a vast number 
of augmentation techniques like flipping the image, rescaling 
the image, shifting the image by 20% along both height and 
width, and rotating the image with a degree of 0–10. And to 
fill the spaces generated due to augmentation techniques to 
their nearest pixels, a technique called “fill_mode” is also 
used [39]. The parameter values used for augmentation are 
displayed in Table 3.

The original skin lesion image and the augmented images 
are shown in Fig. 5. We have not performed augmentation 
on the test dataset, as we want to test the original dataset 
images on the models. The balanced dataset is shown in 
Table 4 and the data distribution of the original images 
before augmentation and the distribution of training images 

Table 3   The parameter values for data augmentation

Data augmentation parameter Values for 
parameters

Remarks

Width_shift_range 0.2 The image is shifted in the horizontal direction (X-axis by 20%) by 0.2
Height_shift_range 0.2 The image is shifted vertical direction (Y-axis by 20%) by 0.2
Rotation_range 10 Generates images with the rotation from − 10 to 10
Shear_range 0.2 Stretching the image angle slantly in degrees by a factor of 0.2
Horizontal_flip, Vertical_flip True Flips the image in the horizontal and vertical direction for mirror reflection
Fill_mode = “nearest” “Nearest” Filling the space left over after shifting (empty value) with the closest pixel value

Fig. 5   Data augmentation; a before and b after applying

https://www.tensorflow.org/resources/libraries-extensions
https://www.tensorflow.org/resources/libraries-extensions
https://keras.io/
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after augmentation are shown in Figs. 6 and 7 as pie chart 
and barchart.

The preprocessing techniques of three different combi-
nations are shown in Figs. 8, 9, and 10. Those combina-
tions include.

i) Black hat filtering + histogram equalization + data 
augmentation
ii) Black hat filtering + contrast enhancement and 
sharpening + data augmentation
iii) Black hat filtering + data augmentation

To conclude with a better combination technique than 
those mentioned above, we have tested all these three 
combinations on the model variants whose details will be 
discussed in the upcoming section.

Transfer Learning Models and the Proposed Model

CNN works very well for image/object classification and 
recognition. They provide an advantage of feature extrac-
tion through filters and convolution of the image, and this 
process continues from layer to layer. Transfer learning 

Table 4   The balanced dataset 
after augmentation

Class Number 
of training 
images

akiec 6213
bcc 6682
mel 6678
vasc 6674
nv 6705
df 6210
bkl 6594
Total 45,756

Fig. 6   The distribution of the 
dataset; a before augmentation 
and b after augmentation

Fig. 7   Data distribution among classes; a original data and b after augmentation
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is a process of transferring knowledge of learned features 
of a pre-trained network of neurons and adapting the net-
work to a different and new dataset to perform a similar 
task. The transfer learning models deployed in this study 
are VGG16, MobileNetV2, ResNet50, and DenseNet121. 
Regarding the hyperparameters, such as learning rate, we 

have tried three different learning rates, i.e., 0.01, 0.001, 
and 0.0001, and we found the learning rate of 0.001 
worked fine for all the models. The Adam optimizer helps 
the model to converge faster. And as we have multiple 
classes in the dataset, the Softmax classifier and categori-
cal cross-entropy loss function have been chosen.

Fig. 8   Black hat filtering + his-
togram equalization + data 
augmentation; a before and b 
after preprocessing

Fig. 9   Black hat filtering + con-
trast enhancement and sharpen-
ing + data augmentation; a 
before and b after preprocessing

Fig. 10   Black hat filter-
ing + data augmentation; a 
before and b after preprocessing
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The Proposed DCNN Model

The proposed DCNN model is developed by taking inspi-
ration from the VGG16 architecture and from the basic 
CNN architecture, which is a convolution layer succeeded 
by Maxpool layer. The convolution layer accompanied by a 

Maxpool layer together is taken as a block. Further, the num-
ber of these blocks in the network is finalized by executing 
the training procedure with different combinations of these 
blocks and changing the filter sizes.

A combination of five convolution layers followed by 
Maxpool layers has been implemented. And then these 

Fig. 11   Architecture of the proposed DCNN model and parameters set

Fig. 12   Visual representation of 
the proposed DCNN model
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blocks are followed up by one layer of global average pool-
ing before going to the dense layer as well as the output 
layer. The advantages offered by Global Average Pool are 
that it minimizes the problem of overfitting by reducing the 
number of parameters and Global Average Pool layer is bet-
ter than the flattening layer, by providing a better representa-
tion of the vector, whereas the flattened layer can only covert 

the multi-dimensional object to one-dimensional object. And 
Global Average Pool layer also works better in correlating 
feature maps and categories over dense layers. Finally, a 
dense layer of filter size 64 to reduce the computational cost 
of the network with the ReLU activation function is used. 
Rectified linear unit (ReLU) is a simple and fast piecewise 
function that is linear and that outputs the positive inputs 

Table 5   Summary of proposed DCNN model

Layers Description of the layer Type of the layer Image size

1 input_layer
(100 × 100 × 3 images)

Input layer 100 × 100 × 3

2 convolution1
(“16”—3 × 3 × 1 convolution with stride value “1” and padding as “same”)

Convolution layer 1 98 × 98 × 16

3 ma × pool_layer1
(2 × 2 ma × pooling with stride value “2”)

Max pooling layer 1 49 × 49 × 16

4 convolution2
(“16”—3 × 3 × 1 convolution with stride value “1” and padding as “same”)

Convolution layer 2 47 × 47 × 16

5 ma × pool_layer2
(2 × 2 ma × pooling with stride value “2”)

Max pooling layer 2 23 × 23 × 16

6 Convolution3
(“32”—3 × 3 × 1 convolution with stride value “1” and padding as “same”)

Convolution layer 3 21 × 21 × 32

7 ma × pool_layer3
(2 × 2 ma × pooling with stride value “2”)

Max pooling layer 3 10 × 10 × 32

8 convolution4
(“64”—3 × 3 × 1 convolution with stride value “1” and padding as “same”)

Convolution layer 4 8 × 8 × 64

9 ma × pool_layer4
(2 × 2 ma × pooling with stride value “2”)

Max pooling layer 4 4 × 4 × 64

10 convolution5
(“128”—3 × 3 × 1 convolution with stride value “1” value and padding as “same”)

Convolution layer 5 2 × 2 × 128

11 ma × pool_layer5
(2 × 2 ma × pooling with stride value “2”)

Max pooling layer 5 1 × 1 × 128

12 avgPool
(2 × 2 global average pooling that gives arrays of shape (none, 128) with stride value “2” 

and padding as “valid”)

Global Average Pooling 
layer

128

13 Dense_layer
(Gives arrays of shape (none, 64) with “relu” as activation function)

Dense layer 64

14 Output_layer
(a dense layer that classifies arrays of shape (none, 7) with “softmax” activation 

function)

Output layer 7

Table 6   Comparison of 
preprocessing combinations on 
VGG16

Preprocessing combinations Training accuracy Testing accuracy

Black hat filtering + histogram equalization + data augmentation 96% 42.66%
Black hat filtering + contrast enhancement and sharpening + data augmentation 97.9% 53.28%
Black hat filtering + data augmentation 97.75% 91.762%

Table 7   Comparison of 
preprocessing combinations on 
the proposed DCNN model

Preprocessing combinations Training accuracy Testing accuracy

Black hat filtering + histogram equalization + data 
augmentation

93.87% 47.382%

Black hat filtering + contrast enhancement and 
sharpening + data augmentation

85.59% 55.062%

Black hat filtering + data augmentation 99.96% 97.204%
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Fig. 13   Training accuracy and 
loss curves for different DNNs. 
a VGG16, b MobileNetV2, c 
ResNet50, d DenseNet121, and 
e proposed model

(a)

Training accuracy: 97.75%

Training loss: 0.0336

Validation accuracy: 95.68%

Validation loss: 0.0630

(b)

Training accuracy: 97.48%

Training loss: 0.0771

Validation accuracy: 96.99%

Validation loss: 0.1099

(c)

Training accuracy: 93.34%

Training loss: 0.1718

Validation accuracy: 96.75%

Validation loss: 0.1035

(d)

Training accuracy: 87.23%

Training loss: 0.3534

Validation accuracy: 93.92%

Validation loss: 0.2019

(e)

Training accuracy: 99.96.0%

Training loss: 0.0008

Validation accuracy: 98.03%

Validation loss: 0.0857
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directly and the negative inputs will be nullified to zero and 
would not be processed further. And this layer is followed 
by another dense layer with seven nodes as an output layer 
which consists of a softmax activation function, which is 
recommended activation function when categorical cross-
entropy is used as a loss function for multi-class classifica-
tions. And the overall proposed architecture is shown elabo-
ratively in Fig. 11.

The visual representation in another way for our proposed 
model is shown in Fig. 12. And the model summary is men-
tioned in Table 5.

Experimental Results and Discussion

The proposed DCNN model and all the mentioned mod-
els have been trained using Python programming and exe-
cuted in Jupyter Notebook on a system with an Intel Core 
i5-8250U CPU processor, 8 GB of RAM, and NVIDIA 
GeForce MX130 GPU card. The input image has been 
resized to 100 × 100 pixels from 600 × 400 pixels to avoid 
high computational costs. The data has been split as 80% 
for training (8012 images that were augmented to 45,756 

images) and the rest 20% for testing purposes (2003 images). 
And for finalizing the preprocessing combinations, we tested 
all three combinations on VGG16, and the results are shown 
in Table 6.

The third combination which is the black hat filtering 
and data augmentation preprocessing technique provides 
good results compared to others as shown in Table 6. As 
the HAM10000 dataset has already undergone some pre-
processing techniques including color and contrast enhance-
ments in its preparation stage, there may not be any neces-
sity for another contrast enhancement technique and in turn, 
adding these techniques may result in additional noise. The 
same techniques are applied to our proposed model dis-
played in Table 7.

Therefore, it is concluded that the combination of black 
hat filtering and data augmentation works well in improv-
ing accuracy. The black hat filtering and augmentation 
have been performed only on the dataset used for training 
before revealing it to the model and the number of train-
ing images has been increased to 45,756 images. To avoid 
the overfitting problem, we used some callbacks such as 
reducing the learning rate on the plateau and early stop-
ping. All models have been trained for 50 epochs along 
with a batch of size 64.

Training Accuracy and Training Loss

The performance metrics were obtained for all the models 
and the results have shown that the proposed model has got 
better training accuracy and less loss compared to mentioned 
state-of-the-art models as shown in Fig. 13a–e.

Testing Results

Some models can perform well in the training stage, but 
cannot give good testing accuracy, which means that 
those models cannot generalize well. So, testing accu-
racy plays a very crucial role in deciding a model, as a 
generalization is all that is needed from a good model. 

Table 8   Performance metrics 
for each class

P precision, R recall, F1 F1 score

Class VGG16 MobileNetV2 ResNet50 DenseNet121 Proposed 
model

P R F1 P R F1 P R F1 P R F1 P R F1
nv 1.00 0.89 0.94 1.00 0.93 0.96 1.00 0.91 0.95 0.99 0.77 0.87 1.00 0.96 0.98
mel 0.73 0.98 0.83 0.83 0.99 0.90 0.72 0.98 0.83 0.55 0.94 0.70 0.88 0.99 0.93
bkl 0.82 0.94 0.88 0.84 1.00 0.91 0.86 0.98 0.92 0.63 0.89 0.73 0.94 1.00 0.97
bcc 0.82 1.00 0.90 0.90 1.00 0.95 0.90 1.00 0.94 0.71 1.00 0.83 0.95 1.00 0.97
akiec 0.85 1.00 0.92 0.98 1.00 0.99 1.00 1.00 1.00 0.92 1.00 0.96 0.98 1.00 0.99
vasc 0.9 1.00 0.97 0.97 1.00 0.98 1.00 1.00 1.00 0.97 1.00 0.98 0.93 1.00 0.97
df 0,83 1.00 0.91 1.00 1.00 1.00 0.87 1.00 0.93 0.56 1.00 0.71 0.91 1.00 0.95

Fig. 14   Confusion matrix of the proposed DCNN model
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Fig. 15   ROC curves for a VGG16, b MobileNetV2, c ResNet50, d DenseNet121, and e proposed model
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Fig. 16   Class-wise ROC curves; a nv, b mel, c bkl, d bcc, e akiec, f vasc, and g df
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Equations (1)–(4) provide the formulae for the perfor-
mance metrics.

Accuracy: Accuracy gives us a ratio of correctly pre-
dicted count to the total count of cases.

Sensitivity/Recall: It is a metric that gives the ratio of 
correct predictions for positive cases to the total number of 
positive cases.

Precision: It is a metric that gives the ratio of positives 
predicted correctly to the total number of positives predicted.

F1 score: It is a metric that states the relation between 
precision and recall.

The below-mentioned Table 8 shows the achieved statis-
tics for testing accuracy, precision, recall, and F1 score for 
the test data for the previously mentioned models for every 
class respectively. Table 8 also shows the results for the pro-
posed model and Fig. 14 displays the confusion matrix of 
the proposed model.

ROC Curves

The receiver-operating characteristic (ROC) curve for 
the other models and the proposed model are shown in 
Fig. 15a–e.

(1)Formula for Accuracy =
True positives (TP) + True negatives (TN)

True positives (TP) + True negatives (TN) + False negatives (FN) + False positives (FP)

(2)

Formula for Recall =
True positives (TP)

True positives (TP) + False negatives (FN)

(3)

Formula for Precision =
True positives (TP)

True positives (TP) + False positives (FP)

(4)Formula for F1 score =
2 x Precision x Recall

Precision + Recall

Class‑wise ROC Curves for Each Model

On observing the ROC curves for all the models, individu-
ally with respect to the classes, we can say that for all the 

classes, the AUC for the proposed model is almost near to 
1 performing well for all the classes, especially nv, mel, 
and bkl. The graphs corresponding to the classes except 
for nv, mel, and bkl have all the curves merged, which 
states that all the models are performing well for those 
classes and the difference between their performances can 
be observed from nv, mel, and bkl classes more signifi-
cantly. And the proposed model is superior to all the other 
models for all the classes. This analysis can be drawn from 
Fig. 16 and the comparison of class-wise AUC-ROC scores 
is displayed in Table 9.

Graphical User Interface

For our proposed model, we also built a graphical user inter-
face (GUI) with the support of an application programming 
interface (API) called Gradio.

It is one of the easiest APIs to work with and can be 
embedded in any Python-related notebooks as well as 
webpages through the link generated automatically. We 
have used this interface to review the functioning of our 
model proposed and the corresponding results can be seen 
in Fig. 17a–e. This can be an aiding tool in evaluating and 
visualizing the lesions and the output classes predicted from 
the DCNNs.

Comparing Results of All the Metrics for All Models

The statistics shown in Table 10 indicate the superiority 
of the proposed model performance in comparison with 

Table 9   Class-wise AUC-ROC 
score metrics for all models

Class VGG16 MobileNetV2 ResNet50 DenseNet121 Proposed model

nv 0.96 0.97 0.97 0.95 0.99
mel 0.97 0.99 0.98 0.96 0.99
bkl 0.98 0.99 0.99 0.95 1.00
bcc 1.00 0.99 0.99 0.98 1.00
akiec 0.99 1.00 1.00 1.00 1.00
vasc 1.00 1.00 1.00 1.00 1.00
df 1.00 1.00 1.00 1.00 1.00
Avg 0.985 0.9932 0.9926 0.9734 0.9969
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(a)

(b)

(c)

(d)

Fig. 17   Gardio prediction for a nv, b mel, c bkl, d bcc, e akiec, f vasc, g df shown in the GUI
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(e)

(f)

(g)

Fig. 17   (continued)

Table 10   Comparison results of different metrics for various DL models

Model name Training 
accuracy

Testing accuracy Recall (weighted 
average)

Precision 
(weighted average)

F1 score (weighted 
average)

ROC-AUC 
Score

Total number of 
parameters

Training time 
per epoch in sec

DenseNet121 87.23% 82.676% 0.83 0.89 0.84 0.9734 86,21,639 676 s
VGG16 97.75% 91.762% 0.92 0.93 0.92 0.9850 1,47,46,951 1060 s
ResNet50 93.34% 93.51% 0.94 0.95 0.94 0.9926 4,06,31,687 634 s
MobileNetV2 97.48% 95.057% 0.95 0.96 0.95 0.9932 2,32,37,703 710 s
Proposed model 99.96% 97.204% 0.97 0.97 0.97 0.9969 1,08,471 112 s
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other state-of-the-art DL models VGG16, DenseNet121, 
ResNet50, and MobileNetV2 through evaluation metrics 
such as training and testing accuracies, recall, precision, 
F1 score, ROC-AUC scores, total trainable parameters, and 
the total time for training. The training and testing accura-
cies, for the proposed model, are 99.96% and 97.204%, 
while recall, precision, and F1 score are 0.97, 0.97, and 
0.97 respectively, while the ROC-AUC score is 0.9969 
which is higher than the other mentioned state-of-the-art 
DL models. The number of trainable parameters for our 
proposed model is less than 5% of the parameters of any 
other models compared and the training time per epoch 
is 112 s which is notably less than the above-mentioned 
models. This plays a major role in reducing the computa-
tional complexity of the model. Thus, the above statistical 
results prove that our proposed model is more efficient, 
reliable, and less complex than the compared state-of-the-
art models.

Conclusion and Future Scope

Thus, the research objective of designing a novel and 
simple DCNN model with a less computational burden 
to predict skin cancers using skin lesions at the earliest 
stages has been accomplished. The main motivation to 
work in this domain is that predicting skin cancer at an 
early stage can help in completely curing it. The proposed 
model utilizes the global average pooling to avoid over-
fitting issues associated with regular deep CNN models 
and careful consideration of preprocessing and data aug-
mentation further helps to improve the overall accuracy 
compared with other current state-of-the-art deep learning 
models in the skin lesion domain. The results show that 
the proposed model has performed well in every metric 
especially obtaining a 97.2% testing accuracy and in all 
the performance-measuring entities namely Precision 
(0.97), Recall (0.97), F1 score (0.97), and ROC-AUC 
score (0.997) when compared to the other transfer learn-
ing–based deep learning models and other complex mod-
els that were discussed in the literature. The graphics user 
interface was built on the proposed model which can lead 
to the development of a clinical decision support system 
for the experts. There are some limitations to the proposed 
study. Although we have used data augmentation, the data 
is still not sufficient. The proposed model has been trained 
with only the HAM10000 dataset. To make it more robust, 
the model requires training with other skin lesion datasets 
too. For real-time application, this work can be further 
developed by practicing the evaluation process on medical 
field images that are difficult to acquire from experienced 
physicians. The performance of the model can be further 

improved with optimized hyperparameters and attention 
mechanisms to become even more versatile to classify the 
different types of datasets and real-time medical datasets 
by making the network deeper. The experimental results 
and the user interface tool can be used for healthcare assis-
tance to get an early prediction and to make some early 
decisions to diagnose skin cancer reliably.
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