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  Non-routine manual operations of a plant require appropriate judgment according to the

operating state, and significantly depend on the knowledge and skill of the operator. Deep
reinforcement learning can recognize a state and learn a series of operations based on an
evaluation index for that state. It is expected as a method that leads to the clarification of
operational guidelines, which have been considered tacit knowledge thus far. However, due to the
problems such as the difficulty in designing the evaluation indexes required for learning, the 
explainability of the learning results, etc., its application to plant operations, which requires safety
and reliability, has not progressed. This report presents the acquisition of expert operations using
inverse reinforcement learning technology developed in collaboration with Chiba University and
the technology to surmise the know-how of experts through visualization of the learning results. 

  |1. Introduction 
Non-routine manual operations such as starting and stopping of a plant require changing the 

timing and amount of operation according to the plant state, which significantly depends on the
knowledge and skill of the operator. In the past, in order it was common to describe the operation 
procedures of experts in the if-then rule form depending on each plant state and establish an
operating system to assist automation and inexperienced operators to reduce the influence of the
operator on the plant. However, it is not easy to describe the operation procedures of experts in a 
rule form because such operations often contain tacit knowledge. 

In recent years, with the improvement of computer speed, deep learning for situational
awareness, has been developed. Deep reinforcement learning, a combination of this deep learning
and reinforcement learning, which is responsible for acquiring operations (action) in response to 
the situation, is expected as a method of acquiring appropriate action by maximizing the evaluation 
index (reward) of a series of operations, for example, beginning to completion of startup. In the 
field of competitive games, AlphaZero(1), a leading computer program, has proved that deep 
reinforcement learning can achieve performance superior to that of humans, and it is expected that
deep reinforcement learning be also applied (2) to the field of plant operation. 

On the other hand, there are problems that it is not easy to design a reward for acquiring the
operation of experts and that the obtained learning result needs to be explainable, as well as 
problems with acquisition of robust operating guidelines that can be applied to a wider range of
operating conditions. 

In order to solve these problems, we developed inverse reinforcement learning technology that
can estimate the reward from the training data of expert operations and acquire the operation of the 
experts, and conducted verification through the simulation using a warming operation of piping with
steam as an example. As a result, we were able to acquire the operation procedure of experts, and
surmised the know-how of experts by visualizing the obtained reward. This report presents our efforts.
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Thereafter, chapter 2 provides an overview of inverse reinforcement learning, chapter 3
describes the learning and visualization results from the steam pipe warming operation, and chapter 
4 provides a conclusion. 

|2. Inverse reinforcement learning technology 
2.1 Reinforcement learning and inverse reinforcement learning 

Reinforcement learning, which is one of the machine learning methods, is to learn operation
procedures that maximize the reward (evaluation index) obtained from the environment through
trial and error, maximizing not the reward for each operation, but the cumulative reward in a series 
of operations. Applying reinforcement learning to plant operations entails problems such as that the 
reward design for a problem to be solved is not easy, that new operation procedures that cannot be
expected by plant designers and operators may have new risks that are not found by the calculation,
and that the explainability for the obtained learning results and operation procedures is required. 

Inverse reinforcement learning is a technology that enables estimation of rewards as well as 
acquisition of operation procedures with use of the operating data of experts to deal with these
problems. There have long been technologies that simply imitate the operation of experts, such as
imitation learning. On the other hand, inverse reinforcement learning can undertake learning even 
under operating conditions where no reward is designed and there is no operation data of experts,
by transferring the estimated reward to operating conditions different from those at the time of
learning, and performing new reinforcement learning using it. As a result, it may be possible to
learn operation procedures that can be applied to a wide range of operating conditions with a small
amount of data and the number of trials. 
2.2 Developed inverse reinforcement learning technology 

In the efforts presented in this report, we used adversarial inverse reinforcement learning 
(AIRL)(3), a method of inverse reinforcement learning incorporating a generative adversarial
network, which is one of the deep learning technologies. It is said that this method can learn more
complicated action compared to conventional inverse reinforcement learning. Figure 1 shows the 
configuration of AIRL. 

 

 

 Figure 1  Configuration of AIRL 
Configuration of learner of AIRL, adversarial inverse reinforcement 
learning 

  
The adversarial inverse reinforcement learning consists of two neural networks, i.e.,

generator and discriminator. The generator learns the operation procedures by reinforcement
learning, inputs the procedures to the plant, and generates operation data (state transition history). 
The discriminator discriminates between the generated-by-learning operation data (false data) and 
the expert operation data (true data). The generator learns operation procedures that imitate experts
more in an attempt to deceive the discriminator, while the discriminator learns to discriminate the
authenticity more so as not to be deceived by the generator. When the generator has learned expert
operation, the discriminator cannot discriminate between the generator's operation and experts'
operation. This means that the generator has completed the learning to imitate the action of experts.

The AIRL discriminator learns the evaluation index of operation procedures by dividing it
into two functions: reward function and state value function. The reward function represents the
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relative goodness of the operation in each state. The state value function represents the cumulative
reward from the initial state and indicates the final goal. By visualizing these functions, the
know-how of experts can be surmised, which leads to explanation of the learning results. 

On the other hand, the operation procedures that can be obtained by inverse reinforcement
learning are limited to an operation neighborhood of expert given as training data. Applying the 
operation procedures to a wider range of operating conditions requires re-learning under the new 
conditions. In the work presented in this report, we extended the functionality of AIRL and 
developed a simultaneous learning method to learn multiple operating conditions alternately
(simultaneously). Figure 2 shows the configuration diagram. 

 

 Figure 2  Configuration of developed inverse 
reinforcement learner 

The conventional AIRL function was extended to learn multiple 
operating conditions alternately. 

  

|3. Verification of developed technology with plant simulator 
3.1 Overview of target operation 

Figure 3 shows the steam pipe warming operation. This operation uses vent valves and inlet 
valves to increase the temperature and pressure in the piping from atmospheric conditions to a state
close to the source pressure and temperature with a smaller consumption amount of 
high-temperature and high-pressure steam supplied from the upstream plant. After the warming is
completed, the steam is supplied to turbines and other equipment. For this operation, the steam in
the piping must be kept superheated so that it does not contain droplets such as mist in order to
prevent problems such as turbine blade damage and hammering in the piping. Therefore, experts
manually perform the operation in steps: (1) slightly opening the inlet valve with the vent valve 
fully open (to rise the temperature), (2) closing the vent valve to a slight opening and then fully
opening the inlet valve (to rise the pressure), and (3) opening the vent valve to an intermediate
opening with the inlet valve kept fully open (to re-rise the temperature). 

 

 

 Figure 3  Outline of target operation 
Configuration and procedures of steam pipe warming operation, which is learning target

  
In addition, experts perform the temperature and pressure rising operations with less steam 

consumption by changing the valve operation amount and operation timing in consideration of the
difference in heat loss amount due to the atmospheric temperature. 
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3.2 Learning result 
We set up the reference expert operation data that satisfied the constraint conditions 

regarding the steam state in the pipe under two different operating conditions with different
atmospheric temperatures (summer and winter), gave beta distribution to the data to generate the
operating data considering the variation, and used these as training data. 

In order to enable the operation procedures to be applied to a wider range of operating
conditions, we performed inverse reinforcement learning while alternating the summer and winter
conditions of the atmospheric temperature and training data. 

Figure 4 shows the trajectories of the state quantity (temperature and pressure) and operation
amount (vent valve opening and inlet valve opening) when the operation is applied to winter
operating conditions. The temperature and pressure could be risen to the target values while 
maintaining the superheated state of steam in the piping, and the obtained trajectories of the
operation of vent valve and inlet valve were close to the stepwise operation of experts. In this way, 
it was confirmed that the operation ability of experts could be acquired. 

 

 

 Figure 4  Comparison of trajectories between inverse reinforcement learning
result and expert operation 

It was confirmed that the inverse reinforcement learning could imitate the expert operation. 
  
3.3 Application to multiple operating conditions 

Figure 5 shows the trajectory of the state quantity and operation amount when the operation
procedures obtained in 3.2 are applied to 10 cases in which the atmospheric temperature conditions
in summer and winter are interpolated. The constraint conditions were satisfied in all cases, so it 
was confirmed that the operation procedures can be applied to operating conditions different from
those in learning. 

 

 

 Figure 5  Results of applying learned operation procedures to multiple operating
conditions 

Result of evaluating applicability to operating conditions different from those in learning
  

On the other hand, when the operation procedures obtained by inverse reinforcement learning
using only the summer conditions and training data were applied to the above 10 cases, it was not 
possible to rise the pressure and temperature to the target value under low atmospheric temperature
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conditions. 
It was confirmed that a learning method using expert data under different operating

conditions (simultaneous learning) is effective for acquisition of operation procedures that can be
applied to a wide range of operating conditions from inverse reinforcement learning. 
3.4 Visualization of reward 

We visualized the evaluation values with respect to the openings of the vent valve and the 
inlet valve resulted from the evaluation index (reward function and state value function) obtained
by inverse reinforcement learning. The observed quantities other than the two valve openings, such
as in-pipe pressure, temperature, and flow rate, were given set values determined by the two valve 
openings. 

Figure 6 shows the visualization results under the summer and winter conditions from the
function obtained from the simultaneous learning of summer and winter conditions, as well as the
visualization results under each of the summer and winter conditions from the function obtained
from the single learning of that operating condition. 

The state value function has learned that the state value is high when the inlet valve is nearly
full-open, that is, when the operation is near the end where rising the pressure has been completed 
and the temperature is re-risen in each case. On the other hand, under summer operating condition 
alone, the change in state value during the pressure rising process in which the vent valve is closed 
and then the inlet valve is fully opened is smaller than in other cases. The operating point in the 
fully open operation of the inlet valve performed in the latter half of the pressure rising operation
approaches the saturated vapor pressure curve and the margin of superheat degree becomes small.
In order to recover the margin of superheat, it is important to switch to re-rising the temperature 
after increasing the pressure is completed. In summer, this operation is easier than in winter 
because the temperature is higher and the drop in superheat is smaller than that in winter, which is 
considered to be one of the reasons why the learning results with the operating condition in summer
alone could not be applied to winter conditions, as shown in section 3.3. 

Regarding the reward function, the evaluation values in the state in line with the trajectory of
expert valve operation were relatively higher than those in other states in all cases. In particular, the 
operation, in which the inlet valve is gradually opened from fully closed with the vent valve fully
opened, shows a tendency for the evaluation value to be even higher and is considered to be the 
contribution to the acquisition of the operation to create superheated conditions in the initial stage.

It was confirmed that AIRL, which can learn the state value function and the reward function
separately, is effective for the visualization of learning results and leads to the estimation of expert
know-how. 

 

 

 Figure 6  Visualization of evaluation indexes 
Maps of evaluation index output values with regard to changing valve opening
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|4. Conclusion 
This report explained that it is possible to acquire expert operation procedures that can be

applied to a wide range of operating conditions, and to obtain evaluation indexes that lead to the 
estimation of know-how of experts by performing inverse reinforcement learning while giving 
expert operation data of multiple operating conditions alternately (simultaneously). 

Combining this technology with our plant simulation technology makes it possible to
generate quantitative operation guidelines and to develop them to operation support and automation 
of plants and equipment that require manual operation. 

Moving forward, we plan to develop inverse reinforcement learning technology that uses
multimodal information such as camera images and operator's line-of-sight information in addition 
to instrument information in order to deal with more complicated requirements of actual machines.
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