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Abstract (max 250 words) 14 

One of the largest sources of uncertainty in estimates of global temperature change is that 15 

associated with the correction of systematic errors in sea-surface temperature (SST) 16 

measurements. Despite recent work to quantify and reduce these errors throughout the historical 17 

record, differences between analyses remain larger than can be explained by the estimated 18 

uncertainties. 19 

We revisited the method used to estimate systematic errors and their uncertainties in version 3 of 20 

the Met Office Hadley Centre SST data set, HadSST. Using comparisons with oceanographic 21 

temperature-profiles, we make estimates of biases associated with engine-room measurements 22 

and insulated buckets and constrain the ranges of two of the more uncertain parameters in the 23 

bias estimation: the timing of the transition from uninsulated to insulated buckets in the mid-20th 24 

century and the estimated fractions of different measurement methods used. 25 

Here, we present HadSST.4.0.0.0, based on release 3.0.0 and 3.0.1 of the International 26 

Comprehensive Ocean-Atmosphere Data Set supplemented by drifting buoy measurements from 27 

the Copernicus Marine Environmental Monitoring Service. HadSST.4.0.0.0 comprises a 200-28 

member “ensemble” in which uncertain parameters in the SST bias scheme are varied to generate 29 

a range of adjustments. The evolution of global average SST in the new data set is similar to that 30 

in other SST data sets and the difference between data sets is reduced during the mid-20
th

 31 

century. However, the changes also highlight a discrepancy in the global-average difference 32 

between adjusted SST and marine air temperature in the early 1990s and hence between 33 

HadSST.4.0.0.0 and, the NOAA SST data set, ERSSTv5. 34 

 35 
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1 Introduction 36 

Sea-surface temperature (SST) has been designated an essential climate variable (ECV, Bojinksi 37 

et al. 2014) that “critically contributes to the characterization of Earth’s climate” (WMO 38 

https://public.wmo.int/en/programmes/global-climate-observing-system/essential-climate-39 

variables). The Global Observing Systems Information Centre (GOSIC) website states, 40 

“Together with air temperature over land, sea-surface temperature is the most important 41 

variable for determining the state of the climate system”. It is a key variable for detection of 42 

climate change and assessing the relative importance of anthropogenic and natural influences on 43 

global climate (http://www.gosic.org/content/gcos-oceanic-surface-ecv-sea-surface-temperature). 44 

Atmospheric and oceanic reanalyses (e.g. Kalnay et al. 1996, Hersbach et al. 2015, Carton and 45 

Geise 2008, Compo et al. 2011), which are some of the most widely used and cited tools in 46 

weather and climate science, typically use SST data sets to provide a lower (or upper) boundary 47 

condition. Consequently, there is some value in understanding the long-term evolution of SST 48 

and its uncertainties. 49 

 50 

Historical SST measurements are to be found, digitized, in great numbers in the International 51 

Comprehensive Ocean-Atmosphere Data Set (ICOADS) alongside many other marine 52 

meteorological variables. The two most recent major releases of ICOADS are release 2.5 53 

(Woodruff et al. 2010), which contains 261 million records and covers 1662-2007 and release 54 

3.0 (Freeman et al. 2016), which contains over 455 million individual marine reports and covers 55 

1662-2014. Although SST measurements are few in the very early record, they become much 56 

more numerous in the latter half of the nineteenth century. Thus far, only ERSSTv5 (currently 57 

1880-2018, Huang et al. 2017) has made use of the far greater number of measurements 58 

https://public.wmo.int/en/programmes/global-climate-observing-system/essential-climate-variables
https://public.wmo.int/en/programmes/global-climate-observing-system/essential-climate-variables
http://www.gosic.org/content/gcos-oceanic-surface-ecv-sea-surface-temperature
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available in ICOADS release 3.0. Other major historical gridded SST data sets, which run from 59 

the latter half of the 19
th

 century, such as COBE-SST-2 (1880-2010, Hirahara et al. 2014), 60 

ERSSTv4 (currently 1880-2018, Huang et al. 2015, Liu et al. 2015), and HadSST.3.1.1.0 61 

(currently 1850-2018, Kennedy et al. 2011a; Kennedy et al. 2011b) use ICOADS release 2.5.  62 

 63 

One particular difficulty associated with making long data sets based on SST measurements for 64 

use in climate analyses is that the technology used to measure SST has changed so much over the 65 

past one and a half centuries (Kent et al. 2010, Kent et al. 2017). Even subtle changes in the way 66 

that measurements are carried out can lead to systematic errors in the measured trends and the 67 

historical changes have not been especially subtle. The magnitude of the estimated errors are of 68 

order 0.1-1.0°C, similar to climatic variations over the same period (Hartmann et al. 2013). It is 69 

therefore necessary to correct these systematic errors and quantify the residual uncertainties to 70 

better understand what actually happened. Each of the previously mentioned data sets – COBE-71 

SST-2, ERSSTv4/v5, and HadSST.3.1.1.0 - applies adjustments to correct systematic errors in 72 

the data and provides some estimate of the uncertainty. 73 

 74 

Kennedy et al. (2011b) generated an ensemble of one hundred members which comprise the 75 

HadSST.3.1.1.0 data set. They calculated a range of corrections by varying poorly-constrained 76 

parameters in their bias-adjustment scheme. They used metadata from a number of sources (for 77 

example, instructions to marine observers) to assign a measurement method to each observation 78 

and took estimates of the systematic errors associated with each measurement method from the 79 

literature. The residual uncertainty was combined with uncertainties from other sources of error 80 

such as sampling and local measurement errors (Kennedy et al. 2011a and b). An ensemble 81 
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approach to quantifying uncertainties was also used for the ERSSTv4 data set (Liu et al. 2015, 82 

Huang et al. 2016). The parameters they varied to generate the ensemble were associated with all 83 

steps in the data-set creation process and only a subset relates directly to the correction of 84 

systematic errors. The ERSST SST adjustments are based on comparisons with gridded Night 85 

Marine Air Temperature (NMAT) data from the HadNMAT2 data set (Kent et al. 2013) and on 86 

estimated differences between SSTs measured by ships and buoys. Hirahara et al. (2014) did not 87 

use an ensemble approach, but did provide statistical estimates of the uncertainties in the 88 

adjustments applied to the COBE-SST-2 data set. In addition, they used the data to improve the 89 

estimates of some of the uncertain parameters identified in Kennedy et al. (2011b). 90 

 91 

Despite the efforts of these researchers, significant differences remain between the data sets even 92 

at a global scale. The most notable differences (Kent et al. 2017) are between HadSST.3.1.1.0 93 

and ERSSTv5 in the period around the Second World War and since the late 1990s. Larger 94 

differences earlier in the record are within the joint uncertainty range. 95 

 96 

The period around the Second World War is a period marked by profound uncertainty in the SST 97 

record. The war years saw a prolonged El Niño (from late 1939 to 1942, Brönnimann 2005) 98 

bringing a peak in global temperatures. The end of the war coincided with a shift in the phase of 99 

the Pacific Decadal Oscillation (Newman et al. 2016) with an ensuing period of relatively stable 100 

or declining global temperature. A change in both the pattern of international shipping and the 101 

composition of data sources available in ICOADS (Thompson et al. 2008) occurs at the same 102 

time, confounding a straightforward understanding of the events. The following decades, from 103 

1950 to 1970, witnessed large and poorly documented changes in the way that measurements 104 



Confidential manuscript submitted to Journal of Geophysical Research Atmospheres 

6 

 

were made with the development of high-tech insulated buckets and a long-term shift towards 105 

measurements being made in the engine rooms of ships: also known as ERI measurements. The 106 

“I” has been variously taken to mean intake, inlet and injection. 107 

 108 

Even prior to the Second World War, when buckets were the primary means of sampling 109 

seawater to measure SST on ships, there are geographical and seasonal differences between the 110 

adjustments in ERSSTv5 and HadSST.3.1.1.0. The differences arise from the assumed 111 

dependence of the biases on weather conditions. Pre war, ERSST uses adjustments that depend 112 

on the air-sea temperature difference alone. The adjustments used in HadSST.3.1.1.0 and COBE-113 

SST-2 (Folland and Parker 1995, Rayner et al. 2006), which assume evaporative cooling from 114 

the wet surfaces of the bucket, depend not only on the air-sea temperature difference, but also on 115 

solar radiation and, critically, the wet-bulb depression (Carella et al. 2017b). The Folland and 116 

Parker (1995) model has recently been assessed in the laboratory by Carella et al. (2017b) who 117 

found that the model performed well when conditions were known and controlled, but noted that 118 

measurement conditions on board ship were typically neither of these things. 119 

 120 

Differences between data sets in the modern period, marked by a slow dwindling of the 121 

Voluntary Observing Ship (VOS) fleet and the widespread deployment of drifting buoys, are 122 

largely within the joint uncertainties of the various SST data sets. However, the period from 123 

2000 to 2013, during which global temperatures increased at a lower rate than some expected, 124 

has been intensively studied (Medhaug et al. 2017) and high demands for accuracy have been 125 

made of the SST data sets. It would be advantageous to have a more reliable estimate of SSTs 126 
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during this well-observed period (Karl et al. 2015, Hausfather et al. 2017) the better to establish 127 

exactly what happened. 128 

 129 

No part of the SST record is simple to understand or without some little mystery of its own. 130 

Therefore, the aims of this paper are to revisit and improve the adjustments applied to 131 

HadSST.3.1.1.0 and explore the residual uncertainties, paying particular attention to how the 132 

measurements were made. We start by describing the data sources used in the analysis in Section 133 

2. Section 3 explains how the data are aggregated onto a regular grid and how uncertainties 134 

associated with the uncorrelated measurement errors and under-sampling are estimated. The bias 135 

adjustments, which deal with other, correlated measurement errors and the creation of the 136 

ensemble, are the focus of Section 4 with some of the technical details included in the Appendix.  137 

Results are in Section 5 before we finish up in Section 6 with the presentation of the new 138 

HadSST.4.0.0.0 data set, some discussion and general conclusions. 139 

 140 

Throughout this paper, we frequently cite Kennedy et al. (2011a, 2011b and 2011c) as well as 141 

Rayner et al. 2006 as this data set builds directly on these papers. We refer to these as K11a, 142 

K11b, K11c and R06 for brevity. Also frequently cited are Folland and Parker (1995), hereafter 143 

FP95, and Smith and Reynolds (2002), which we shorten to SR02. 144 

2 Data 145 

We use various data sets in the analysis and for comparison and validation; they are described in 146 

the following subsections. The main analysis is based on the International Comprehensive 147 

Ocean-Atmosphere Data Set (ICOADS, Freeman et al. 2017) and water temperatures from 148 

HadIOD.1.2.0.0, the Met Office Hadley Centre Integrated Ocean Database (Atkinson et al. 149 
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2014). For inter comparison, we use ERSSTv4 (Huang et al. 2015), ERSSTv5 (Huang et al. 150 

2017) and COBE-SST-2 (Hirahara et al. 2014) which have already been introduced. We also use 151 

HadNMAT.2.0.1.0 (Kent et al. 2013). For validation we use independent satellite SST retrievals 152 

from the ATSR (Along Track Scanning Radiometer) Reprocessing for Climate (ARC) data set 153 

(Merchant et al. 2012) as well as some instrumentally homogeneous (Hausfather et al. 2017) 154 

subsets of the HadIOD and ICOADS data sets. First, however, it is useful to determine exactly 155 

what it is we mean by sea-surface temperature. 156 

2.1 Which sea-surface temperature? 157 

Traditionally, long-term in situ SST data sets have been considered to be representative of a 158 

loosely defined “bulk” SST, which covers a range of measurements made in the upper 10m or so 159 

of the water column. However, the daily formation and erosion of a stably-stratified near-surface 160 

warm layer in the oceans, particularly during calm, sunny conditions, can lead to strong 161 

temperature gradients in the upper 10m (Kawai and Wada 2007) and make it harder to reconcile 162 

measurements of water temperature made at different depths. Satellite retrievals of SST are 163 

especially prone to this as they are sensitive to temperatures in a very shallow layer where 164 

diurnal warming is most pronounced. For instruments measuring in the infra red, this layer is 165 

measured in micrometres and its temperature is referred to as the “skin” temperature. 166 

Uncertainties associated with modern measurement systems are now sufficiently small that 167 

temperature variations with depth are readily detectable in the aggregate and need to be 168 

accounted for where detailed comparisons are made (see e.g. Merchant et al. 2012). 169 

 170 

Donlon et al. (2007) recommend that all SST measurements be accompanied by an estimate of 171 

the depth at which the measurement was made. However, this information is rarely available for 172 
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historical observations and, where it is available, it does not usually take into account changes 173 

due to variable loading of the ship. Even drifting buoys from a single manufacturer, where the 174 

design and materials are identical, will measure at a varying depth owing to continual movement 175 

of the water and the potential loss of the drogue. 176 

 177 

In this paper, rather than specify that SSTs are estimated for a particular depth, we will instead 178 

use SST measurements from drifting buoys as our reference. This is conventionally reckoned 179 

equivalent to an SST measurement at an approximate depth of 20cm. We make use of near-180 

surface water temperatures measured at a range of depths, as described in the following 181 

subsections, but the aim throughout is to adjust these measurements so that they would closely 182 

match coincident observations from drifting buoys even if they occurred long before drifting 183 

buoys were first dreamed of. 184 

 185 

A final note on nomenclature. Throughout this paper we use the words “error” and “uncertainty” 186 

as they are defined in Annex B of the Guide to the Expression of Uncertainty in Measurement 187 

(JCGM 2008).  188 

 189 

uncertainty (of measurement): parameter, associated with the result of a measurement, that 190 

characterizes the dispersion of the values that could reasonably be attributed to the measurand. 191 

 192 

error (of measurement): result of a measurement minus a true value of the measurand. 193 

 194 

A measurand is a “particular quantity subject to measurement”. 195 
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 196 

2.2 Surface meteorological data 197 

The data and metadata used in this analysis are from Release 3.0 of the International 198 

Comprehensive Ocean-Atmosphere Data Set (ICOADS) for the period 1850-2014 (Freeman et 199 

al. 2017; downloaded version Research Data Archive 2016). An update to 2017 uses the near-200 

real time data from ICOADS release 3.0.1. We will use ICOADS release 3.0.1 as the basis for 201 

monthly updates of the data set. 202 

 203 

Due to a drop off in drifting buoy observations in ICOADS release 3.0.1 which followed the 204 

switch of data transmission codes from TAC (Traditional Alphanumeric Codes) to BUFR 205 

(Binary Universal Form for the Representation of meteorological data) in November 2016, we 206 

supplement the ICOADS data from January 2016 onwards with near-real-time drifting buoy 207 

observations downloaded from CMEMS (Copernicus Marine Environmental Monitoring 208 

Service, ftp://nrt.cmems-209 

du.eu/Core/INSITU_GLO_NRT_OBSERVATIONS_013_030/monthly/drifter/). The initial 210 

download was made on 5 April 2018 and then regular downloads are made each month to gather 211 

data for the preceding month. The drifting buoys from this near-real-time source completely 212 

replace the drifting buoys from ICOADS release 3.0.1 in our analysis in the overlapping months. 213 

This increases the data volume and observational coverage significantly from November 2016. 214 

 215 

We filtered the data to remove coastal stations, non-standard moored buoys (principally around 216 

the coast of the US) and other non-standard platforms like oil rigs and research stations. These 217 

sources cover a relatively small area and vary widely in design making the biases heterogeneous 218 

ftp://nrt.cmems-du.eu/Core/INSITU_GLO_NRT_OBSERVATIONS_013_030/monthly/drifter/
ftp://nrt.cmems-du.eu/Core/INSITU_GLO_NRT_OBSERVATIONS_013_030/monthly/drifter/
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and difficult to assess. C-MAN and many US Coastal moored buoys were excluded because, as 219 

well as being of diverse type, they are often found in estuaries and lagoons that are not 220 

representative of a wider area and certainly not of the areas typically sampled during the 221 

climatological base period 1961 to 1990. Many coastal moored buoys also produce very high 222 

data volumes – sometimes making several measurements an hour – and can potentially skew the 223 

processing. A list of the excluded ICOADS platform IDs is available along with the 224 

HadSST.4.0.0.0 data set. 225 

 226 

Oceanographic measurements from the World Ocean Database (WOD) were also removed by 227 

excluding ICOADS deck 780 (1850-2014). Excluding WOD measurements from the processing 228 

means that we can use sub-surface measurements as an independent data set for assessing biases 229 

and for validation (e.g. Gouretski et al. 2012, Huang et al. 2018). The remaining data were 230 

quality controlled (QC’d) to remove outliers and low-quality measurements (an update of R06, 231 

https://github.com/ET-NCMP/MarineQC). Figure 1 shows the number of observations passing 232 

QC for each month from January 1850 to December 2018. 233 

 234 

R06 describes the creation of the climatology we use to calculate the gridded anomalies. It is 235 

based on in situ measurements made between 1961 and 1990. The climatology has a resolution 236 

of 1° of latitude, 1° of longitude and 5 days. A standard 5-day period is a pentad. The first pentad 237 

of each year is 1-5 January. The calendar is divided into pseudo months. Each pseudo-month has 238 

six pentads except August, which has seven (hence the annual peaks in Figure 1). Leap days are 239 

accommodated by extending the pentad in which they fall. 240 

https://github.com/ET-NCMP/MarineQC
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2.2.1 Initial metadata assignment 241 

We assign a measurement method to each observation in ICOADS. Any particular report could 242 

be either a buoy measurement, a bucket measurement, an ERI measurement, a measurement 243 

made with a hull sensor or else unknown. Where we could not definitively assign a single 244 

method, a fractional assignment was attempted based on the fraction of the recruiting country's 245 

fleet that used each method (see also K11b). Fractions were estimated based on ships recorded in 246 

WMO Publication 47 (WMO Pub. 47, Kent et al. 2007) for that year. An assignment from the 247 

ICOADS metadata (SI or SIM indicating bucket, ERI or hull sensor) was preferred. Fractional 248 

assignments are always incorrect at the level of individual reports, but should give representative 249 

averages when aggregating large numbers of observations. The assignments are uncertain, even 250 

where there is a definitive assignment, and we refine the estimates using comparisons between 251 

the ship data and oceanographic profile data in Section 4.1.4. 252 

 253 

The procedure for assigning metadata to a particular ICOADS report is as follows. The 254 

procedure terminates as soon as an assignment is made (abbreviations in brackets refer to the 255 

variable names in the IMMA, International Maritime Meteorological Archive format, 256 

documentation for ICOADS release 3.0.0 http://icoads.noaa.gov/e-doc/imma/R3.0-imma1.pdf): 257 

 258 

1. If the ICOADS platform type (PT) was 6 or 7, we assign the observation to be a moored 259 

or drifting buoy measurement respectively. 260 

2. We assigned US ships (C1 = 2) from Deck (DCK) 128 to be ERI in 1968, 1969, 1972 and 261 

1973. 262 

http://icoads.noaa.gov/e-doc/imma/R3.0-imma1.pdf
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3. UK Royal Navy data, Deck 245, and Russian data from Deck 732 (following Carella et 263 

al. 2018) were assigned to be ERI. 264 

4. If an SST measurement method (SI) was present in ICOADS and indicated a bucket, ERI 265 

or hull measurement, we used it. 266 

5. If an SST measurement method (SIM) was present in the ICOADS metadata attachment 267 

and indicated a bucket, ERI or hull measurement, we used it. 268 

6. Between 1939 and 1945, we set all reports that had not been assigned a measurement 269 

method in steps 1-5 to unknown. 270 

7. Before 1939, all reports that had not been assigned a measurement method in steps 1-6 271 

were set to bucket. 272 

8. If a recruiting country (C1) was present in the ICOADS attachment, we used it to assign 273 

weights to each report for bucket, ERI, hull and unknown according to the fraction of 274 

ships that took each type of measurement in WMO Pub. 47 for that country and year. We 275 

assumed that US ships with unknown measurement method were ERI. If WMO Pub. 47 276 

was not available for that year, we used the next available year after the year of interest. 277 

9. If the deck (DCK) could be linked to reports from a particular country (see K11b for 278 

details) between 1956 and 1996, then we used it to assign weights to each report of 279 

bucket, ERI, hull and unknown according to the fraction of ships that took each type of 280 

measurement in WMO Pub. 47 for that country and year. We assumed that US ships with 281 

unknown measurement method were ERI. If WMO Pub. 47 was not available for that 282 

year, the next available year was used. 283 

10. Any report not assigned a measurement method in steps 1-9 we set to unknown. 284 
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At the end of this process, each SST measurement has an assigned measurement method, or 285 

fractional assignment. The assignments are provisional and uncertain. In some cases, 286 

observations from a ship will be listed as being made with a bucket, when they were in fact ERI 287 

measurements. In section 4.1.4, we attempt to estimate what fraction of bucket measurements are 288 

mis-identified in this way. 289 

2.3 Near-surface sub-surface measurements from HadIOD 290 

HadIOD.1.2.0.0 (Atkinson et al. 2014) is an integrated database of temperature and salinity 291 

measurements from oceanographic sources at various depths (from the EN version 4.2.0 data set; 292 

Good et al. 2013) combined with surface observations from ICOADS release 2.5.1 (Woodruff et 293 

al. 2011). Oceanographic measurements in HadIOD were made with a variety of instruments 294 

including Conductivity-Temperature-Depth (CTD), eXpendable BathyThermograph (XBT), 295 

Mechanical BathyThermograph (MBT) and Argo devices. For a review of the characteristics of 296 

these devices, see Abraham et al. (2013). Each observation has an overall quality flag, an 297 

estimated uncertainty and a bias adjustment or bias adjustments. We only use the oceanographic 298 

profile measurements from HadIOD between 1930 and 2018 and of these we use only those that 299 

were made in the upper 10m of the water column. Measurements in the upper 10m can provide a 300 

reasonable approximation for the sea-surface temperature (see Section 2.1). We set aside 301 

measurements from Argo floats so that we can use them for independent validation (see Section 302 

5.2 and Appendix 3.1). 303 

 304 

A number of XBT and MBT adjustments are included in the HadIOD database. The adjustments 305 

are required to correct for known biases in these measurements independent of the SST biases 306 

we explore in this paper. We used MBT and XBT adjustments from four analyses (Gouretski and 307 
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Reseghetti 2010, Gouretski 2012, Cowley et al. 2013 and Levitus et al. 2009). Two of the 308 

analyses provide estimates of both MBT and XBT adjustments (Levitus et al. 2009 and 309 

Gouretski and Reseghetti 2010) and we use these as given. Two analyses provide only XBT 310 

adjustments (Gouretski 2012 and Cowley et al. 2013). We combined the two XBT-only analyses 311 

with each of the two MBT adjustments from the combined analyses to provide four new XBT-312 

MBT combinations, bringing the total number of sets of corrections to six. The six sets of 313 

adjusted XBT-MBT data together with measurements from Conductivity-Temperature-Depth 314 

(CTD) instruments and bottles are gridded as for the SSTs (Section 3) to make six near-surface 315 

reference data sets that we use to provide a set of baselines – albeit uncertain baselines – for the 316 

SST bias assessment. We assume that, once corrected, the oceanographic data are less biased 317 

than the SST measurements are. However, we note that the adjustment of oceanographic data is 318 

also an area of ongoing research with uncertainties all of its own (Abraham et al. 2013, Cheng et 319 

al. 2016). 320 

 321 

2.4 Marine air temperature 322 

The air temperature above the oceans is physically related to the underlying sea-surface 323 

temperature. Consequently, sea-surface temperature changes are often used as a proxy for marine 324 

air temperature (MAT) changes, for example, in the calculation of global average temperature 325 

anomalies (e.g. Morice et al. 2012). Huang et al. (2015) argued, based on the behavior of a 326 

particular climate model (the GFDL coupled model, CM2.1), that the difference between MAT 327 

and SST anomalies at a global scale was more or less constant, changing by less than 0.1°C in a 328 

century. However, other authors have noted that trends in MAT and SST anomalies can diverge, 329 

albeit by a relatively small amount on multidecadal time scales (Cowtan et al. 2015). At smaller 330 
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scales, MAT and SST anomalies can diverge by tens of degrees particularly close to land and sea 331 

ice. 332 

 333 

Nonetheless, over longer periods and at larger scales, changes in MAT and SST are closely 334 

related. Indeed, SR02, FP95 and other related papers used this relationship to adjust for biases in 335 

the SST record. However, MAT measurements are not without problems of their own. The 336 

principal problem is solar heating of the ship, which biases MAT measurements during the day 337 

(Berry et al. 2004) and is typically solved by restricting the use of MAT measurements to those 338 

made at night: so called night marine air temperature (NMAT) measurements. The increasing 339 

size of ships and the height of temperature sensors above the sea-surface has led to a creeping 340 

cold bias in MAT measurements. Warm biases have also been detected during the 19
th

 century 341 

and the Second World War, and are thought to be caused by non-standard sensor exposure; for 342 

example, reading the thermometer inside rather than on deck. In the creation of the HadNMAT2 343 

data set (1880-2010), Kent et al. (2013) adjusted the data, or excluded certain periods, regions, 344 

and data subsets, to account for these biases. 345 

 346 

2.5 Instrumentally homogeneous data sets 347 

Hausfather et al. (2017) used the term “instrumentally homogeneous” data sets to describe SST 348 

data sets that are based on a single type of instrument or group of closely-related instruments, 349 

which they considered to be more homogeneous than the general in situ SST record. They used 350 

these data sets to assess the stability of global-average SST records over the period 1995-2016. 351 

 352 



Confidential manuscript submitted to Journal of Geophysical Research Atmospheres 

17 

 

Records that consist of a single type of instrument minimize artificial drifts, shifts or jumps 353 

caused by changes in instrumentation. Ideally, measurements from the instruments should also 354 

be of high quality, with demonstrably good accuracy and stability. Finally, the measurements 355 

should be as independent as possible from the record they are being used to assess. We use three 356 

instrumentally homogeneous records based on: Argo floats, Along-Track Scanning Radiometer 357 

SST retrievals and buoys. We describe each of these in turn. 358 

 359 

2.5.1 Argo 360 

Argo floats are autonomous profiling floats, which move with the prevailing currents at a typical 361 

“parking depth” of 1000m descending at regular intervals – usually on a ten-day cycle – to a 362 

depth of 2000m and then ascending to the surface taking temperature and salinity measurements. 363 

Since around 2007, Argo floats have provided quasi-global sampling of the oceans. The 364 

temperature sensors are calibrated before the float is released and the manufacturer’s stated 365 

accuracy is 0.002°C with a stability of 0.0002°C/year (Abraham et al. 2013). Whether this 366 

accuracy is realized in the field is difficult to assess, but floats that have been recovered 367 

remained within the manufacturer’s stated limits (ibid). 368 

 369 

The good coverage of Argo floats, combined with the accuracy of the measurements they make 370 

presents a dilemma for the data set creator. On the one hand, it would seem sensible to use high 371 

quality measurements like these in the analysis (e.g. Huang et al. 2017). On the other hand, there 372 

is much to be gained from using the Argo measurements as independent validation. The latter 373 

approach is common in the satellite SST community (see e.g. Merchant et al. 2012, Berry et al. 374 

2018), where drifting buoy data are often used for calibration and thus cannot be used for 375 
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validation. We adopt the same approach and reserve Argo for validation of the final product. The 376 

relatively infrequent sampling provided by Argo – one profile every ten days – when compared 377 

to say drifting buoys, which provide one measurement every hour, or even ships, which usually 378 

measure once every six hours, means that including Argo in our analysis would have a relatively 379 

small impact on the gridded anomalies. However, including Argo leads to a reduction of 380 

measurement and sampling uncertainty of up to 30%. 381 

 382 

2.5.2 ATSR 383 

The ATSR (Along Track Scanning Radiometer) Reprocessing for Climate (ARC) data set 384 

(Merchant et al. 2012) is a “climate-quality” analysis of SST retrievals from the ATSR satellite-385 

based instruments. The ATSR instruments were designed to make climate quality measurements 386 

of SST and had a number of features to help achieve this. First, each instrument had a blackbody 387 

onboard that allowed for continual calibration checks. Second, the satellites had a dual view 388 

configuration, with observations made directly downwards (Nadir) and forwards (55° off 389 

vertical) relative to the satellite’s motion. The two views allow the satellite to observe the same 390 

area of the surface via two different paths through the atmosphere. By comparing the two, it is 391 

easier to identify contamination arising from dust in the air or sulfurous volcanic particles. The 392 

instruments also had three infrared channels, which allow more sensitive SST retrievals than is 393 

possible using the two-channels available on the Advanced Very High Resolution Radiometer 394 

(AVHRR) instruments (Merchant et al. 2014). 395 

 396 

The ARC project reprocessed SST retrievals from the ATSR instruments. The SSTs we use here 397 

are representative of a nominal measurement depth of 20cm (see Section 2.1) and an observation 398 
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time of 10:30 am and pm local time. Comparisons with Argo and drifting buoys show that there 399 

is a minimal residual bias at a global scale (although locally there are deviations of order 0.1°C), 400 

and that the uncertainty estimates provided with the data set are reliable. Three-way comparisons 401 

with other satellites and buoys show that the individual ATSR retrievals have a typical 402 

uncertainty of around 0.15°C (O’Carroll et al, 2008, Lean and Saunders 2013). The stability of 403 

the ARC record has been demonstrated in the Tropical Pacific by comparison to moored buoys 404 

in the Tropical Atmosphere-Ocean (TAO) array to be of order 0.01°C/decade (Merchant et al. 405 

2012). 406 

 407 

The production of the ARC data set is almost entirely independent of SST measurements made 408 

in situ. There is an indirect dependence as ARC uses reanalysis profiles to estimate the optimal 409 

retrieval coefficients and the reanalysis used is driven using SST data sets that incorporate in situ 410 

measurements.  411 

 412 

We use the more reliable dual-view three-channel retrievals of SST from Version 1.1.1 of the 413 

ARC data set, which span the entire period of the ATSR record 1991-2012. However, the period 414 

from 1991 to 1995 is only intermittently covered due to the failure of one of the infrared 415 

channels on the ATSR1 instrument shortly after launch. 416 

 417 

2.5.3 Buoys 418 

Although drifting and moored buoys are not independent of the data set that we develop in this 419 

paper, they do consist of a single type of instrument or closely-related instruments and they are 420 

of demonstrably higher quality than ship data (Kennedy 2014). There have been changes to 421 
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drifting buoy design over the years, but the largest changes had occurred by the early 1990s. 422 

There is still some diversity in the design of drifting buoys and they are produced by a number of 423 

different manufacturers. The nominal measurement depth varies, but is typically in the range 20-424 

50cm. Most sensors are of a nominal 0.1°C accuracy (Sybrandy et al. 2008), but estimates of 425 

measurement uncertainty made in the field vary somewhat. Nevertheless, the buoy record is 426 

considerably more homogeneous and stable than the unadjusted ship record over the period 1991 427 

to present. 428 

 429 

Moored buoys come in a variety of forms. The measurement depth is typically around 1m. 430 

Sensor accuracy is also variable. Representative uncertainty values are given in Table 1. Some 431 

moored buoys perform better than the average. In particular, measurements from the moored 432 

buoys in the tropical Pacific from the TAO/TRITON array are of generally higher quality than 433 

the US coastal arrays (K11c). 434 

 435 

3 Gridding and basic data preparation 436 

We averaged the SST measurements from the individual reports onto a 5° latitude by 5° 437 

longitude monthly grid in a two-step process (R06). First, we sorted the observations into 1° 438 

latitude by 1° longitude by pentad bins. Each SST observation was then converted into an 439 

anomaly by subtracting the climatological average (for the period 1961-1990) for that 1° latitude 440 

by 1° longitude pentad bin. We rejected anomalies with magnitude exceeding 8°C and calculated 441 

the Winsorised (a form of trimmed mean, see Wilcox 2001) average of the remaining anomalies. 442 

We then sorted the 1° latitude by 1° longitude pentad “super observations” into 5° latitude by 5° 443 

longitude pseudo-month bins and took the Winsorised averages of the super-observations in each 444 
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of the larger bins. Figure 1(b, d, f) shows the number of “super observations” available per 445 

month. 446 

 447 

The contribution of each observation to the grid-box average has a weight, w, equal to 448 

𝑤 =
1

𝑎𝑏
 

Equation 3.1 

 where a is the number of observations in the same super observation and b is the number of 449 

super observations in the larger 5° pseudo-month bin. The sum of the weights of all observations 450 

in a 5° grid box equals one. Using these weights, we calculated the fractional contributions of 451 

different measurement methods to the grid-box average and used these to estimate the fractional 452 

contribution of each measurement method to the global and hemispheric averages (Figure 2). 453 

Before 1915, bucket measurements have a weight of one in the global average. The weighting 454 

does not perfectly reflect the influence of a single observation on the average because of the 455 

Winsorisation process. 456 

 457 

There are interesting changes in the influence of different measurement methods on the global 458 

and hemispheric averages on all time scales. The Second World War stands out because of the 459 

abrupt changes at the start and end, but there are rapid changes at other times such as the early 460 

1960s (note that measurements of unknown type were assumed to be from ships). From around 461 

1980 to 2005, the number and influence of buoys increases steadily after a brief peak in the late 462 

1970s arising from a mass deployment of buoys during the First GARP (Global Atmospheric 463 

Research Project) Global Experiment (FGGE, Garrett 1980). Despite the large numbers of 464 

observations made by buoys since then, amounting to around 90% of all observations in the past 465 

ten years (see e.g. Woodruff et al. 2011), the influence on the global average (i.e. the area 466 
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average of w for buoys as shown in Figure 2) in HadSST.4.0.0.0 has not consistently exceeded 467 

50%. Although buoys make large numbers of observations, they typically do so in a limited area. 468 

Observations from ships tend to be fewer, but more widely spread so the effective sampling-per-469 

observation is higher for a ship than it is for a buoy, particularly a moored buoy. This can also be 470 

seen in the count of super-observations (Figure 1) which is largest in the 1970-1990 period when 471 

the VOS fleet was at its peak. 472 

 473 

In addition to the main gridded data set, we also gridded a number of subsets of the data which 474 

we used to estimate biases for different measurement methods: 475 

1. moored and drifting buoy observations; 476 

2. all ship measurements; 477 

3. measurements likely to have been ERI measurements (observations identified as an 478 

engine room measurement, or taken by a ship from a country where more than 90% of 479 

the fleet used engine room measurements at that time); 480 

4. measurements likely to have been bucket measurements using a similar criterion; 481 

5. hull sensor measurements; and 482 

6. observations to which we could not attach a near-definitive measurement method. 483 

3.1 Uncertainty estimation for gridded averages 484 

Consider an SST measurement Oij taken by agent i (either a ship or buoy) at space-time point j to 485 

be the combination of the true SST, Tij, together with a set of error components. The three error 486 

components are: Uij associated with uncorrelated errors, Bij associated with “micro-bias” errors 487 

that were correlated for all measurements made by the same agent, but uncorrelated between 488 
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agents, and Gij a “macro-bias” error common to and correlated across all agents of a particular 489 

kind e.g. all ships taking ERI measurements. 490 

𝑂𝑖𝑗 = 𝑇𝑖𝑗 + 𝑈𝑖𝑗 + 𝐵𝑖𝑗 + 𝐺𝑖𝑗 Equation 3.2 

We calculate uncertainties in the gridded averages, σgridbox, using a variation of the formula from 491 

K11a, 492 

𝝈𝒈𝒓𝒊𝒅𝒃𝒐𝒙
𝟐 = ∑ ∑ 𝒘𝒊𝒋

𝟐 𝝈𝒖𝒊
𝟐

𝒏𝒊

𝒋=𝟏

𝒎

𝒊=𝟏

+ ∑ 𝒘𝒊
𝟐𝝈𝒃𝒊

𝟐

𝒎

𝒊=𝟏

+ ∑ 𝒘𝒉
𝟐𝝈𝑮𝒉

𝟐

𝒐

𝒉=𝟏

+ 𝝈𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈
𝟐  Equation 3.3 

where wij is the weight (as defined in Equation 3.1) in the grid-box average of the observation at 493 

point j made by agent i in that grid box. There are a total of m agents taking ni measurements in 494 

the grid box. 𝜎𝑢𝑖
 is the uncertainty associated with uncorrelated measurement errors and 𝜎𝑏𝑖

 is 495 

the uncertainty associated with correlated “micro-bias” measurement errors for agent i.  𝜎𝐺ℎ
 is 496 

the uncertainty associated with large-scale correlated errors from a particular measurement 497 

method, h, of which there are o different types and wh is the weight assigned to measurements 498 

made using method h in that grid box. The values used for σu and σb are given in Table 1 and 499 

come from K11c. wi is the sum 500 

𝒘𝒊 = ∑ 𝒘𝒊𝒋
𝒏𝒊
𝒋=𝟏   and  ∑ 𝒘𝒊 = 𝟏𝒎

𝒊=𝟏  Equation 3.4 

 501 

The sampling uncertainty, σsampling is given by: 502 

𝝈𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈
𝟐 =

𝟏

𝒏𝒔
𝝈𝒔

𝟐[𝟏 − 𝒓̅] Equation 3.5 

Where ns is the number of super observations in the 5° pseudo-month grid box. σs is the variance 503 

at a space-time point within the grid cell (here assumed not to vary across the grid cell) and 𝑟̅ is 504 

the average correlation of space-time points within the grid cell (for details of the calculation see 505 
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K11a). We use the number of super observations rather than the number of observations as some 506 

agents such as moored buoys make many hundreds of observations in a single location and it is 507 

clear that the sampling uncertainty cannot be endlessly reduced by making more observations in 508 

the same place. A count of super observations gives a better idea of the number of independent 509 

space-time points sampled, though it remains less than perfect. The sampling uncertainty 510 

parameters were estimated as in K11a but using the 5° gridded ICOADS release 3.0 data 511 

between 1961 and 2016. 512 

3.2 Correlated errors 513 

The covariance, R(p,q), associated with correlated “micro bias” errors from the same ships 514 

visiting grid boxes p and q was  515 

𝑹(𝒑, 𝒒) = ∑ 𝒘(𝒑)𝒊𝒘(𝒒)𝒊𝝈𝒃𝒊

𝟐

𝒊

 Equation 3.6 

where i sums over all the ships that visited grid boxes p and q.  516 

 517 

Correlated errors between grid-box averages can also occur when two different ships using the 518 

same measurement method visit different grid cells. In estimating the biases and uncertainties for 519 

ERI data (see Appendices A1 and A2) we assumed that Gij (Equation 3.2) was non-zero and 520 

equal for all ships making ERI measurements. The covariance is calculated in a similar way to 521 

that of the micro-bias errors above. 522 

𝑹(𝒑, 𝒒) = ∑ 𝒘(𝒑)𝒉𝒘(𝒒)𝒉𝝈𝑮𝒉
(𝒑)𝝈𝑮𝒉

(𝒒)

𝒉

 Equation 3.7 

where 𝜎𝐺ℎ
(𝑝) is an estimate of the uncertainty in the large-scale bias associated with 523 

measurement method h at location p. For ERI measurements, 𝜎𝐺ℎ
(𝑝), was assumed to be 524 
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constant, but for bucket measurements, 𝜎𝐺ℎ
(𝑝) was assumed to be equal to the bucket adjustment 525 

field at that location. In other words, we assume that the shape of the bucket adjustments is 526 

known but not the exact magnitude. In effect, the biases are estimated by regression (Appendices 527 

A1 and A2), with the covariances defined in Equation 3.6 and 3.7 specifying both the shape of 528 

the predictor and its prior variance. 529 

3.3 Use of the error model 530 

We use the error model in two distinct ways in this paper. First, it is used to estimate some of the 531 

error terms described in Equation 3.2, that is to determine the actual sizes of biases such as 𝐺𝑖𝑗. 532 

The details of this are given in Appendix A1 and A2. Second, the error model is used to estimate 533 

uncertainties in derived quantities such as grid box averages (Equation 3.3) as well as regional 534 

and global averages. In order to calculate regional and global averages, Equation 3.3 and 535 

Equation 3.6 are combined to produce a total error covariance matrix and the uncertainties are 536 

propagated using the propagation of uncertainties formula for a weighted average where the 537 

weights are the grid-cell areas. The specific form is described in Section 3.3 of K11a. 538 

3.4 Example fields 539 

Figure 3 shows example fields for June 2003. The number of observations exceeds 100/month in 540 

many grid boxes and is somewhat homogeneous thanks to the widespread use of drifting buoys. 541 

In contrast, the number of super observations varies greatly, with the highest numbers in the 542 

northern hemisphere shipping lanes, demonstrating again the more efficient sampling per 543 

observation afforded by ships. The very localized sampling of moored buoys is also clear. 544 

 545 
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The uncorrelated error component of the uncertainty is relatively small except for at the edges of 546 

the observational coverage, where there are very small numbers of observations contributing to 547 

each grid-box average. Uncertainties associated with micro-bias errors are typically larger as 548 

they are related to the number of platforms contributing to the average. They are lowest over the 549 

north Pacific and North Atlantic where there is a great diversity of measurement platforms. 550 

 551 

The greater weight given to ship observations, which are generally less reliable, is potentially a 552 

weakness in the simple approach adopted here. A more sophisticated method such as an optimal 553 

interpolation scheme (Karspeck et al. 2012) might give a greater weight to the more reliable 554 

buoy observations. However, the current method uses Winsorisation, which minimize the effect 555 

of outliers and makes it much easier to keep track of the correlation structure of the errors 556 

through the full uncertainty calculation. 557 

 558 

4 Bias Adjustments 559 

The estimation of biases has two basic steps. First, we create grids of the fractional contribution 560 

of each measurement type to the gridded averages. Second, we assign biases to each 561 

measurement method and calculate an overall bias in each grid cell. The bias B in a grid cell is 562 

equal to 563 

𝑩 = 𝒇𝒆𝑬 + 𝒇𝒄𝑩𝒕𝒄 + 𝒇𝒘𝑩𝒕𝒘 + 𝒇𝒓𝑩𝒕𝒓 + 𝒇𝒅𝑫 Equation 4.1 

Where fe is the fractional contribution of ERI and hull sensor measurements, fc is the fractional 564 

contribution of measurements made with canvas, or otherwise-uninsulated, buckets; fw is the 565 

fractional contribution from wooden buckets; fr is the fractional contribution of measurements 566 

made with rubber, or otherwise-insulated modern buckets; and fd is the fractional contribution of 567 
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measurement from buoys. E, Btc, Btw, Btr and D are the biases associated with each of these 568 

measurement methods respectively. 569 

 570 

In practice, we do not have estimates of the true historical bucket biases, Btc and Btw (the t in the 571 

subscript stands for “true”). What we do have are the corrections Bc and Bw (from FP95) which 572 

adjust a bucket measurement to be consistent with the average bias in the period 1961 to 1990 573 

(rather than adjusting a bucket measurement to the true SST). To convert Bc to Btc, it is necessary 574 

to calculate: 575 

𝑩𝒕𝒄 =
𝑩𝒄 + 𝒇𝒓𝑩𝒕𝒓 + 𝒇𝒆𝑬

(𝟏 − 𝒇𝒄)
 Equation 4.2 

where an overbar denotes the average for that value over the period 1961-1990. The derivation, 576 

which is a modified from of that in K11b, can be found in Appendix A4. Unlike in K11b, we will 577 

make a direct estimate of Btr from the data (Section 4.1.3) so the formula shown here is 578 

somewhat different. 579 

 580 

Another difference from K11b is that we assume D is zero. In other words, we believe that buoys 581 

provide both an accurate measurement of SST and a benchmark (as noted in Section 2.1) for 582 

estimating the biases associated with other measurement methods. A similar approach, using 583 

drifting buoys as a baseline, is taken in ERSSTv5 (Huang et al. 2017) and drifting buoys are 584 

widely used as “ground truth” in the satellite SST community (e.g. Lean and Saunders 2013 and 585 

Embury et al. 2012). In contrast, in K11b it was assumed that the time series E was known and 586 

the adjusted ERI measurements were used as the baseline. A similar approach was taken for 587 

ERSSTv4. Note that the choice of whether to use ships or drifters as a baseline, in so far as this 588 

constitutes a constant offset, does not affect the estimation of trends or anomalies. It can, 589 
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however, affect the estimation of actual SSTs, which are important for some applications. It also 590 

contributes to a more intuitive presentation of the time series, with smaller uncertainties in the 591 

drifter-rich period (Figure 8). 592 

 593 

In practice, when we come to estimate the biases in the data where we do not know the 594 

assignments perfectly, the bias in an average of a group of observations will be some linear 595 

combination of biases from both bucket and ERI measurements. For example, if we compare a 596 

collection of observations labeled as buckets to a set of unbiased drifting buoy data then the 597 

empirical bias B* seen in the bucket-labelled data (in this case assuming that all the buckets are 598 

rubber) would be: 599 

𝑩∗ = 𝒇𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝑩𝒕𝒓 + (𝟏 − 𝒇𝒄𝒐𝒓𝒓𝒆𝒄𝒕)𝑬 Equation 4.3 

where fcorrect is the fraction of correctly-labeled bucket observations. 600 

4.1 Implementation 601 

In order to calculate biases in the data using Equation 4.1 described above, we need to assign 602 

values to each of the components. In the following subsections, we describe how the biases are 603 

estimated and how we refine some of the metadata assignments. Due to uncertainty in many of 604 

those values and the complicated interactions and correlations between them, we take an 605 

ensemble approach and generate many different sets of possible biases that span some part of the 606 

overall uncertainty in the adjustments. The process of estimating the biases is broken down into a 607 

number of steps: 608 

1. Generate a set of correction fields for canvas and wooden buckets (Bc and Bw) using a 609 

modified version of R06 (see Section 4.1.1) and SR02. These will form the basis for the 610 

bucket adjustments in the early part of the record. 611 
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2. Generate an ensemble of estimates of E(t), the time-and-space-varying biases associated 612 

with ERI measurements, and B* (Equation 4.3), the bias associated with observations 613 

labeled as buckets (see Section 4.1.2). Note that the observations labeled as buckets will 614 

contain some unknown fraction of mislabeled ERI measurements. These are dealt with in 615 

step 4. 616 

3. Estimate the spatially- and seasonally-varying biases for modern insulated buckets and 617 

generate an ensemble of bucket biases (Btr) (see Section 4.1.3). 618 

4. Using the values generated in steps 1-3, generate an ensemble of start and end dates for 619 

the transition from canvas to insulated buckets and estimates of the fraction of 620 

observations that are correctly identified as bucket measurements, fcorrect (see Section 621 

4.1.4). The ensemble of estimates of fcorrect gives a measure of the uncertainty in the 622 

metadata assignments. 623 

5. Generate an ensemble of estimates of how unknown measurement types are to be 624 

assigned (Section 4.1.5) and a separate ensemble of parameters for the Second World 625 

War, which reflects the fact that shipping and behaviors changed during the war and are 626 

somewhat independent from and more uncertain than the periods before and after (see 627 

Section 4.1.6). 628 

We describe these steps in the following subsections and a schematic representation is shown in 629 

Figure 4. Comparisons with sub-surface profile data were used to inform or constrain some of 630 

the parameter ranges. In order to minimize the effect of over-fitting, particularly when data were 631 

few, the constrained parameters were not tied too closely to each other and were chosen to 632 

represent a reasonable range of uncertainty. 633 
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4.1.1 Generating wooden and canvas bucket correction fields, 1850-1941 634 

The method described in K11b (in turn a modified version of R06) was the basis for generating 635 

an ensemble of 200 bucket correction fields for the data prior to 1942. A number of changes 636 

were made to the processing where uncertainties were likely to have been underestimated in the 637 

previous version. 638 

 639 

First, we treated errors in the monthly correction fields as correlated: a single number was drawn 640 

from a standard normal distribution, multiplied by the uncertainty from R06 and applied to all 641 

monthly fields for a particular ensemble member. In K11b, a separate draw was made for each of 642 

the twelve months, effectively treating the errors as uncorrelated. However, in the original 643 

version of the method (R06) although they were independent draws and hence uncorrelated, the 644 

95% uncertainty ranges were calculated separately for each month and then combined. This step 645 

effectively treated them as if the errors were fully correlated. This change brings the two 646 

methods back into line and increases the uncertainty in the bucket biases at annual and longer 647 

time scales relative to K11b. 648 

 649 

Second, in the calculation of the difference in annual tropical average SST and NMAT – used to 650 

fix the fractions of wooden and canvas buckets from 1850 to 1920 – the estimated uncertainties 651 

arising from measurement errors were increased to account for the correlated micro-bias errors. 652 

We calculated the uncertainties assuming the errors were uncorrelated and then multiplied the 653 

resulting uncertainties by 5.08 (using the conversion factor for the tropics from K11a which 654 

accounts for the spatial correlation of the errors (= 2.2) multiplied by the square root of 12/2.25 655 

for the temporal correlations). This again has the effect of increasing the uncertainty in the 656 
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estimated bucket biases prior to 1920 relative to K11b and R06 where these errors were treated 657 

as if they were uncorrelated. 658 

 659 

Third, we generated half of the 200-member ensemble as in R06, by assuming a linear transition 660 

from wooden to canvas buckets. The other 100 ensemble members were generated by assuming 661 

a step-change with different constant fractions of wooden and canvas buckets before 1906 and 662 

after 1910, with a linear change between these states from 1906 to 1910. The step change 663 

provides a qualitatively better fit to the noisy tropical SST-NMAT temperature differences used 664 

to estimate the transition (not shown). Rather than being a consequence of a step change in the 665 

fractions of canvas and wooden buckets, the step change in the SST-NMAT difference might 666 

instead be due to an increase in ship speeds around this time (Carella et al. 2017a). The change 667 

that we apply would be about the same in either case because an increase in the speed of the ship 668 

would also increase the necessary correction. 669 

 670 

Fourth, every even ensemble member (2, 4 … 198, 200) was a blended average of R06 style 671 

adjustments and SR02 style adjustments (Equation 4.4). SR02 use patterns of SST-NMAT 672 

differences to estimate their adjustments. For our SR02-style adjustments, we estimated fields of 673 

adjustments associated with canvas buckets by taking the SR02 corrections for 1941. Wooden 674 

bucket corrections were calculated by assuming that the 1850 SR02 corrections were 80% 675 

wooden buckets and 20% canvas buckets. We estimated an uncertainty of 10% for the SR02-676 

style bucket corrections i.e. the bucket corrections were multiplied by a number (A0) drawn from 677 

a normal distribution with mean 1 and standard deviation of 0.1. For every even ensemble 678 

member, a weighted average of the R06 and SR02 adjustments was taken with the weight of the 679 
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R06-style correction, A1 drawn from a uniform distribution in the interval [0,1] and the weight of 680 

the SR02-style correction equal to 1-A1. In the extreme cases, the corrections look either entirely 681 

like R06, or entirely like SR02. For odd ensemble members, A1 was set to 1. For each ensemble 682 

member a new value for BcR06 was drawn and combined like so: 683 

𝑩𝒄 = 𝑨𝟏𝑩𝒄𝑹𝟎𝟔 + (𝟏 − 𝑨𝟏)𝑨𝟎𝑩𝒄𝑺𝑹𝟎𝟐 Equation 4.4 

The use of SR02 adjustments in addition to R06-style adjustments means it is possible to use a 684 

parametric framework to explore some of the structural uncertainties (Thorne et al. 2005) that 685 

would ordinarily only be accessible by comparing different data sets. The SR02 adjustments tend 686 

to follow the climatological pattern of sensible heat fluxes, whereas the R06 adjustments more 687 

closely follow latent heat fluxes. By using a weighted average of the two for half of the ensemble 688 

members, we explore different combinations of the two very different approaches and hence a 689 

wider spectrum of adjustments with different relationships to specific and latent heat fluxes. 690 

Time series of the resulting corrections are shown in Figure 5.  691 

 692 

4.1.2 Estimating biases for individual measurement methods, 1940 onwards 693 

We generated a subset of the data after 1930 using only measurements that we identified as ERI 694 

or that had a fractional assignment to ERI greater than or equal to 0.9. Error covariances were 695 

estimated as described in Section 3, Equation 3.6. The uncertainty associated with the large-scale 696 

correlated errors arising from using ERI  measurements, 𝜎𝐺, was set to be 0.2°C (the estimated 697 

mean bias from K11b). Monthly ERI biases were then estimated by comparison with drifting 698 

buoys and six different versions of the near-surface profile data for 1930-2014, from 699 

HadIOD.1.2.0.0, using the method described in the Appendix (Section A2). Figure 6 shows the 700 
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global average of the combined large-scale systematic errors and micro-bias errors estimated in 701 

this way. 702 

 703 

The left hand column of Figure 6 shows ERI biases estimated from comparisons with the six 704 

different data sets created from near-surface profile data for the globe, southern hemisphere and 705 

northern hemisphere. 706 

 707 

ERI biases are generally positive apart from in the very earliest years when uncertainties are 708 

large. The largest reliably-estimated ERI biases occur between 1955 and 1970 when they range 709 

from 0.2 to 0.6°C. After 1970, ERI biases drop to a local minimum in the mid 1990s. They then 710 

rise again to a peak in the early 2000s before dropping again, approaching 0°C around 2018. The 711 

reasons for the variations in ERI bias with time are not clear, but the fleet of ships making ERI 712 

measurements was not designed to make climate quality measurements so the instability itself is 713 

unsurprising. 714 

 715 

Measurements labeled as buckets and hull sensors were analysed in the same way. For buckets 716 

𝜎𝐺(𝑝) was set to the value of the bucket correction field at location p. The bias estimation is 717 

effectively a Bayesian regression using the bucket correction field as a predictor. For hull 718 

sensors, 𝜎𝐺 was set to 0.2°C as it was for ERI measurements. Bucket biases (see left-hand 719 

column of Figure 6) are rather variable but less so than in the ERI set. The bias is often positive, 720 

which is contrary to the general expectation that, on average, buckets lose heat (Kent et al. 2017). 721 

However, buckets can exhibit a warm bias during the day if the sun shines on the bucket and 722 

warms the water sample, and that might offset heat losses at other times (although in FP95, the 723 

solar effects in the correction fields were rather small). It is also likely that there is some 724 
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contamination of the bucket subset by mislabeled ERI measurements. These issues are dealt with 725 

further in Section 4.1.3 and 4.1.4. Hull sensors show biases very similar to those of ERI 726 

measurements from 1990 onwards, so we combined these two data sources in the bias 727 

adjustments. 728 

 729 

The ERI biases in each grid box were smoothed in time, but not in space. We generated an 730 

ensemble of 200 sets of adjustments. For each ensemble member, we randomly selected one of 731 

the six bias-adjusted sub-surface data sets to use as a basis, drew samples from the posterior 732 

covariance of the estimated ERI biases and added these to the mean biases (see section A2). The 733 

samples for each grid box were then smoothed in time using a LOWESS (LOcally WEighted 734 

Scatterplot Smoother) filter (http://flux.aos.wisc.edu/data/code/idl-lib/util/bueilib/lowess.pro) 735 

with a width of 121 months (±5 years). Because the ERI biases can only be estimated where 736 

there are known ERI measurements, there can be long temporal gaps in individual grid-box 737 

series. Where fewer than 30 months of data were available for a particular grid box in a 121-738 

month period centred on a particular month, the grid box value for that month was set to the 739 

global average ERI bias. This procedure preserves the spatial structure seen in the ERI biases and 740 

their spatial covariances at the expense of some loss in temporal resolution. Spatial structure 741 

could arise for a number of reasons; for example, the biases of ships travelling along a common 742 

shipping lane could be quite different to the biases of ships travelling in the same region but not 743 

following the same routes. 744 

4.1.3 Estimating parameters for modern bucket biases, 1970s onwards 745 

Carella et al. (2018) used ICOADS flags SI (SST measurement method) and SIM (SST 746 

measurement method from WMO Pub. 47) to identify bucket measurements. They found that 747 

http://flux.aos.wisc.edu/data/code/idl-lib/util/bueilib/lowess.pro
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their compound flag, SI(M), was confirmed in 90% of cases from 1970 onwards. We selected 748 

bucket observations using SI, or SIM where SI was missing or ambiguous, and gridded these 749 

separately. This is similar to the assignment made in the previous section, but does not include 750 

fractional assignments. Biases were estimated for this data set relative to the sub-surface data 751 

from 1970-2005 using the method described in the Appendix (Section A2). For each calendar 752 

month, we computed fields of the mean bias and its standard deviation and the fields were filled 753 

using simple Kriging (Clark 1979) with a fixed angular length scale of 15° in latitude and 754 

longitude. 200 different versions of the adjustments were calculated by drawing samples from 755 

the posterior distribution of the Kriged solution. 756 

 757 

The resulting fields show a small overall warm bias (Figure 5d) and there is a strong seasonal 758 

cycle in the northern hemisphere, which peaks in the summer months (not shown). This suggests 759 

that there is a solar heating bias in modern bucket measurements that exceeds the small heat 760 

losses found at night under moderate wind conditions by Kent and Kaplan (2006). The warm 761 

bias primarily affects the high latitude oceans (poleward of 40°N and S) and there is a small cold 762 

bias throughout the tropics. This pattern is similar to that seen by Carella et al. (2018) in which 763 

bucket measurements were biased warm relative to ERI measurements at high latitudes from the 764 

late 1980s onwards. The pattern identified by Carella et al. (2018) peaked towards local noon, 765 

but it is not clear whether the warm bias is due to the bucket sampling a shallow surface layer, or 766 

due to direct solar heating of the bucket itself. In either case it is distinct from buoy 767 

measurements which are the target for our analysis (Section 2.1) 768 
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4.1.4 Generating start and end dates for the transition from canvas to modern buckets and 769 

estimating the fraction of measurements misidentified as buckets 770 

In the middle to late twentieth century there was a transition from the use of canvas buckets to 771 

the use of rubber buckets. This transition occurred at the same time as large numbers of ships 772 

adopted the ERI method. Neither transition is well documented and metadata, particularly that 773 

implied by deck and country information (Section 2.2.1), is not completely reliable. We can use 774 

the estimated biases from the previous sections (Section 4.1.1 to 4.1.3) together with proposed 775 

start and end dates for the canvas to rubber bucket transition to infer the fraction of incorrect 776 

metadata. Where this fraction takes an impossible value – outside the range [0,1] – we can reject 777 

that combination of start and end dates and thus narrow the uncertainty range for these 778 

parameters. Once we have narrowed down the range of start and end dates in this way, we can 779 

generate a best estimate of the time series of the fraction of correct metadata and a plausible 780 

range within which it can be varied to generate an ensemble. 781 

 782 

We started with a wide range of dates for the transition from canvas to insulated buckets. Start 783 

dates were initially in the interval 1930 to 1960 and end dates between one year after the start 784 

date and 1980. The transition from canvas to insulated buckets was assumed to be linear between 785 

the start and end dates and the same everywhere. 786 

 787 

Similarly to Equation 4.3, if we assume that B*, the bias estimated from observations labelled 788 

(perhaps incorrectly) as buckets, is a combination of biases associated with buckets, B, and 789 

biases associated with ERI, E, then we can write B* as 790 

𝐵∗ = 𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝐵 + (1 − 𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡)𝐸 Equation 4.5 
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𝐵 = 𝑓𝑐𝑎𝑛𝑣𝑎𝑠𝐵𝑡𝑐 + (1 − 𝑓𝑐𝑎𝑛𝑣𝑎𝑠)𝐵𝑡𝑟 Equation 4.6 

where fcorrect is the unknown fraction of measurements labeled as bucket measurements that were 791 

correctly identified, 𝑓𝑐𝑎𝑛𝑣𝑎𝑠  is the fraction of canvas buckets changing linearly from one to zero 792 

between the start and end date of the transition. Rearranging, we get 793 

𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡 =
𝐵∗ − 𝐸

𝐵 − 𝐸
 

Equation 4.7 

With an estimate of B, B* and E it is therefore possible to get an estimate of fcorrect.  𝐵𝑡𝑐 was 794 

estimated by subtracting the climatological-average ship bias from the mean bucket correction 𝐵𝑐 795 

(Section 4.1.1) with the ship bias being calculated relative to each of the six different sub-surface 796 

data sets (Section 2.3) and then averaged across them. 𝐵𝑡𝑟 was calculated as in Section 4.1.3. 797 

 798 

For each pair of start and end dates the estimates of B*, E and B, for each month were used to 799 

derive an estimate of fcorrect for each month. Note that values of fcorrect slightly in excess of one 800 

are possible due to measurement errors in B*, E or B. A simple uncertainty range on fcorrect was 801 

estimated by increasing and decreasing the bias of rubber buckets by 0.05°C (a lower bound on 802 

the uncertainty of the method, see Appendix A3.3). If the uncertainty range in annual average 803 

fcorrect did not overlap the range [0.5, 1.0] during the transition period from 1955 to 1962, the start 804 

and end dates were rejected. In practice, no combination was consistent with a value less than 805 

0.5. The period 1955 to 1962 was found to be particularly sensitive to the choice of start and end 806 

points (the spread in Figure 7a and b is particularly wide during this period) while also having 807 

reliable sub-surface data for estimating the biases. Prior to 1955, data coverage of the sub-surface 808 

data is much more sparse and therefore the uncertainties are larger and provide a much less 809 

useful constraint. After 1962, the spread is already well-constrained and nothing is gained by 810 

extending the constraint period beyond this point. 811 
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 812 

Figure 7 shows the accepted and rejected start and end dates for the transition and the associated 813 

time series of fcorrect. Few start dates were rejected by this method, but end dates for the transition 814 

before 1961 were inconsistent with the data. This still gives a wide range of possible start and 815 

end dates, including those which describe a relatively rapid transition starting in the late 1950s. 816 

 817 

The time series of fcorrect is broadly consistent with an independent assessment of the metadata 818 

made in Carella et al. (2018). Metadata are largely reliable from the early 1980s to the early 819 

1990s. Another period of higher reliability is seen from around 1955 to 1962. Between 1965 and 820 

1980, there is a period of less reliable metadata. Carella et al. (2018) argue for a relatively rapid 821 

transition from uninsulated to insulated buckets between the mid 1950s and mid 1960s, which is 822 

consistent with the results shown (Figure 7c). For example, such a transition starting in 1955 and 823 

ending in 1965 is accepted. 824 

 825 

As with the ERI adjustments, a set of perturbed realisations of fcorrect were calculated that were 826 

similar to, but not tightly constrained by the best estimate. We calculated a time series of central 827 

values for fcorrect by averaging the time series of fcorrect across all allowed pairs of start and end 828 

dates (Figure 7d). Before 1952, the best estimate for fcorrect was set to 0.5 and after 1978 it was 829 

set to 0.95. This gives a continuous series that was then smoothed with a LOWESS filter with a 830 

width of 4 years. The one-sigma uncertainty was set to: 0.15 before 1952; 0.1 from 1952 to 1978; 831 

and 0.05 from 1978 onwards. This uncertainty range encompasses the majority of annual 832 

averages except in the post 1978 period. After 1978, there are some sharp variations, but these 833 
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occur during a period when bucket measurements made a smaller and smaller contribution to the 834 

global average. 835 

 836 

200 random time series with a lag-1 correlation of 0.99 and values in the range [-1,1] were 837 

generated, scaled by the estimated uncertainty in fcorrect and added to the best estimate. Values 838 

were capped at one with generated values above one set to one. Several example series are 839 

shown in Figure 7d. 840 

 841 

4.1.5 Measurements with unknown method 842 

Some measurements cannot be assigned a measurement method (Figure 2). A fraction of these 843 

unknown measurements was randomly reassigned to be either bucket or engine room 844 

measurements. A monthly time series was created which varied randomly between zero and one 845 

with an autocorrelation of 0.99 as in K11b. For a given month, the contribution of unknown 846 

measurements in each grid box was multiplied by this number and added to the contribution 847 

from ERI measurements. The remainder was added to the contribution from bucket 848 

measurements. 849 

 850 

4.1.6 Parameters for the Second World War, 1941-1945 851 

During the Second World War, there was widespread disruption to shipping. There are also 852 

discontinuities in ICOADS data sources and rapid changes in bias at the start of the war (R06, 853 

Huang et al. 2017) and at the end (Thompson et al. 2008). FP95 suggested that the Second World 854 

War saw the hasty (and even permanent) adoption of ERI measurements, as they were safer to 855 
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make. The rapid changes seen in Figure 2 during this period are also partly due to our choices for 856 

the initial metadata assignment. In order to reflect the greater uncertainty during the war years, 857 

we generated a separate set of parameters with increased uncertainty for the period between 858 

January 1941 and August 1945. 859 

 860 

The fraction of measurements that were labeled as buckets, but which were really ERI, was set to 861 

a value selected from a uniform distribution in the range [0, 1] to reflect the possibility that ERI 862 

measurements were temporarily taken in preference to bucket measurements across a large 863 

fraction of the fleet (Figure 7d). The ERI bias was chosen from a uniform distribution in the 864 

range [0, 0.5] and the fraction of unknown measurements set to buckets was drawn from a 865 

uniform distribution in the range [0, 0.25]. These values were chosen to give a broad range of 866 

possibilities – and hence large uncertainty in the adjustment – and reflect the likely prevalence of 867 

ERI measurements. 868 

5 Results 869 

Figure 8 shows the estimated biases in global and hemispheric averages for all data sources 870 

including ships and buoys. The biases shown in (Figure 8 a,c,and e) are relative to our reference 871 

buoy SST at a nominal depth of 20cm (Section 2.1). The bias relative to the average bias in the 872 

climatology period, 1961-1990, is also shown (Figure 8 b,d,and f). The difference between the 873 

two can be sizeable because of the large absolute biases in the climatology period when the vast 874 

majority of measurements were made by ships, which were affected by warm biases associated 875 

with ERI measurements. 876 

 877 
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From 1850 to 1939, the bias becomes increasingly negative (Figure 8 a,c,and e) reflecting the 878 

transition from wooden to canvas buckets. This is accompanied by an increase in the seasonal 879 

cycle of the biases, which is particularly clear in the Northern Hemisphere and arises from the 880 

seasonal drivers of the bucket biases: sensible, latent and solar heat fluxes (FP95). Between 1935 881 

and 1939, the bias becomes slightly less negative as ERI measurements start to appear in 882 

ICOADS. Between 1939 and 1941, the bias becomes rapidly more positive as ERI 883 

measurements, principally from US sources, enter the record in large numbers (see Figure 6 of 884 

R06). From 1941 to 1945, during the Second World War, uncertainties are larger and there is a 885 

net positive bias that reflects the assumed increase in the prevalence of ERI measurements. The 886 

bias falls briefly in the post war years, reflecting a partial reversion to bucket measurements. 887 

However, the change is not so marked as it was in HadSST.3.1.1.0 because the ERI biases are 888 

here estimated to be larger than was previously assumed and the reliability of the initial method 889 

assignments (Section 2.2.1) is estimated, at times, to be worse than was assumed in 890 

HadSST.3.1.1.0. The bias increases to around 0.2 to 0.3°C between 1955 and 1970. During this 891 

period, ERI biases remain high and, towards the end, many observations that were initially 892 

flagged as buckets were reassigned to be ERI measurements. In HadSST.3.1.1.0, a constant 893 

fraction (30±10%) of measurements initially labelled as buckets were reassigned to be ERI with 894 

a different fraction in each ensemble member. In HadSST.4.0.0.0, as well as being different for 895 

each ensemble member, the reassignment is time-varying and is constrained based on the biases 896 

estimated from comparisons with the sub-surface oceanographic profiles (Figure 7, Section 897 

4.1.4). 898 

 899 
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From 1970 to 1980, the average bias drops reflecting a reduction in ERI bias (see also Figure 6). 900 

From around 1990, buoys start to have a significant effect on the record. This reduces both the 901 

bias in the combined data set and the uncertainty in the bias. Despite the increasing prevalence of 902 

buoys, changes in bias from 1990 to the present continue to reflect changes in the bias of the ERI 903 

and hull sensor measurements, which are the predominant means by which SST measurements 904 

were made from ships in this period and which still have a weight of around 50% in the global 905 

average (Figure 2). 906 

 907 

The fall in bias in the ship data since the early 2000s is not confined to ERI measurements and is 908 

consistent with the change in bias estimated by Huang et al. (2015, 2017) using comparisons 909 

with NMAT and buoy data. It is seen in VOSClim ships (http://sot.jcommops.org/vos/vos.html), 910 

which are a select subset of the full VOS fleet for which better quality metadata are available. It 911 

is also seen in measurements from ships that are not part of VOSClim, and in both bucket 912 

measurements and hull sensor measurements, which suggests that this is a pervasive reduction in 913 

the overall bias in the ship data from the early 2000s to present. 914 

 915 

The bias relative to 1961-1990 has a similar evolution (Figure 8 b,d,and f). However, there are 916 

two things to note. First, as the absolute bias shows, there is a large warm bias in the data from 917 

1961-1990 and the uncertainty is larger than it is for the later data. When biases in the buoy-rich 918 

period from 1990 onwards are expressed relative to the 1961-1990 average, their uncertainty 919 

increases. This happens because we are comparing an accurate measurement to an inaccurate 920 

baseline and the overall uncertainty in the difference is therefore high. Second, the continued use 921 

of buckets in the climatology period means that there is a residual seasonal cycle in the absolute 922 

http://sot.jcommops.org/vos/vos.html
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biases. When those biases are expressed relative to 1961-1990, the seasonal cycle is reduced 923 

during the climatology period and in the pre-Second World War period, but increased outside of 924 

it. 925 

 926 

Figure 9 shows series of global and regional average SST anomalies for HadSST.4.0.0.0 and for 927 

the unadjusted gridded measurements. The adjustments have the largest effect prior to the 928 

Second World War. However, even after the war, the biases affect the long-term changes in the 929 

data. The apparent step change in the mid-1970s is slightly larger in the adjusted data, with the 930 

adjustments cooling the series in the late 1960s and warming it in the late 1970s. The difference 931 

between the 2010s and the 1961-1990 period is also increased. This is caused by the overall 932 

decrease in the bias over the past 50 years, which is principally due to the decreasing ERI bias 933 

and the increasing influence of unbiased drifting buoys. There is a strong annual cycle in the 934 

northern hemisphere average from around 2005 onwards. The origin of this is not clear, but may 935 

be due in part to reduced sea-ice extent during summer months. 936 

 937 

In the following subsections, we compare the new HadSST.4.0.0.0 data set and bias adjustments 938 

with other marine temperature (SST and MAT) data sets to identify points of similarity and 939 

difference. In Section 5.1 we compare subsets of data made using buckets and engine room 940 

measurements and show that the adjustments reduce the relative bias between them. Section 5.2 941 

details comparisons with instrumentally homogeneous data records from 1991 to 2018, 942 

demonstrating the stability of the HadSST.4.0.0.0 record in the modern era. Comparisons with 943 

longer MAT and near-surface oceanographic profile measurements series are described in 944 

Section 5.3 and highlight an interesting discrepancy with HadNMAT.2.0.1.0. In Section 5.4 we 945 
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compare HadSST.4.0.0.0 to HadSST.3.1.1.0 and in Section 5.5 we extend the comparison to 946 

other SST data sets showing good long term agreement between them.  947 

5.1 Internal consistency 948 

Two data sets were created. One contained only observations identified as likely bucket 949 

measurements. The other contained only observations identified as likely ERI measurements. 950 

The two data sets were gridded separately and their measurement and sampling uncertainties 951 

estimated. Each of the two subsets of the data was bias adjusted using the relevant estimated 952 

biases. Figure 10 shows the global average anomaly for the two collocated data sets before and 953 

after adjustment. 954 

 955 

Prior to adjustment, there is a clear time-varying offset between the two data sets between 1940, 956 

the first year in which ERI measurements are present in significant numbers, and 2014. This is 957 

consistent with various estimates (see K11b) of the relative biases between the two measurement 958 

methods. There is similar inter-annual variability in the two data sets. The drop in the combined, 959 

unadjusted SST anomalies in 1945 (Figure 8 and Figure 9) is not evident in either of the two 960 

subsets. This suggests that the abrupt drop in estimated global temperature highlighted by 961 

Thompson et al. (2008) is largely a result of a rapid change in the relative proportions of ERI and 962 

bucket measurements in ICOADS at that point. On the other hand, the two subsets are each 963 

noisier than the combined series and the discontinuity occurs at the point at which the estimated 964 

uncertainty changes markedly so further analysis is warranted. 965 

 966 

The adjustments improve the agreement between the two data sets. This indicates that the bias 967 

adjustments are functioning as expected at a hemispheric scale. The agreement is expected 968 
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because adjustments to both strands of data and the parameter choices are set to ensure loose 969 

consistency with the same reference data sets. The divergence post-2005 is likely due to the 970 

scarcity of bucket data after this point, which is also reflected in the much larger estimated 971 

uncertainties. The uncertainties in the adjusted data are also broader than in the unadjusted data. 972 

This may seem counterintuitive and arises because bias errors are not included in the uncertainty 973 

range for the unadjusted data. If they were, they might amount to a few tenths of a degree 974 

reflecting the large differences between ERI and bucket data. 975 

5.2 Comparison with instrumentally homogeneous data sets 976 

In the modern period, the data set can be compared to three instrumentally homogeneous data 977 

sets (Argo, ARC and buoys, see Section 2.2) that combine higher accuracy with good global 978 

coverage.  Hausfather et al. (2017) used similar instrumentally homogeneous data sets to assess 979 

the effect of bias adjustments on trends in the modern period and detect drifts in the global 980 

averages of combined series such as HadSST3 and ERSSTv3/v4 that were smaller than 981 

0.05K/decade. Our comparison builds upon the Hausfather et al. (2017) analysis in two ways. 982 

First, all the data sets are gridded using a common procedure (Section 3), which minimizes the 983 

possibility of differences due to processing. Second, the same 1961-1990 climatology is used to 984 

calculate anomalies for all of the data sets. Using a common climatology, rather than force each 985 

series to average to zero across the recent period of overlap, means that any absolute differences 986 

in SST will also be highlighted along with any trend differences. 987 

 988 

We constructed gridded data sets of the three comparison data sources using the method 989 

described in Section 3. Figure 11 shows global averages of the three data sets compared to 990 
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HadSST.4.0.0.0 at the locations where there is common data coverage. The agreement between 991 

these data sets is very good with differences largely falling within the uncertainty ranges. 992 

 993 

The least interesting comparison is between HadSST.4.0.0.0 and the buoys (Section 2.5.3) as 994 

they are used in the construction of the HadSST.4.0.0.0 data set. Nevertheless, it is useful to 995 

compare the two to ensure that we have not introduced a bias by the addition of the ship data. It 996 

is clear that the adjustments greatly reduce the difference between the combined data set and the 997 

buoys alone. There is, however, a period in 1992/1993 where the two diverge by much more than 998 

the estimated uncertainty. The early 1990s are rather sparsely observed by drifting buoys and, in 999 

this case, the buoy record is likely to be erroneous with local large deviations associated with 1000 

poor-quality drifting buoy data. Spatially (Figure 12(a)), we generally see small average 1001 

differences (within ±0.1°C for most areas) except in coastal regions around the US and in the 1002 

northern hemisphere western boundary currents. 1003 

 1004 

A more stringent test is to compare the HadSST.4.0.0.0 data set with the independent ARC 1005 

satellite retrievals (Section 2.5.2). The adjustments bring the in situ SSTs more closely in to line 1006 

with the ARC SSTs. There are some discrepancies here, most notably in the early 1990s. During 1007 

this period, the ARC SSTs are based on data from the ATSR1 instrument (1991-1995), which is 1008 

less well understood than its successors, ATSR2 (1995-2003) and AATSR (2002-2012). 1009 

Differences are larger at an individual ocean basin level and locally (Figure 12(b)). 1010 

HadSST.4.0.0.0 is warmer than ARC south of 40°S and along the climatological ice edge in the 1011 

Arctic. HadSST.4.0.0.0 is cooler than ARC through much of the tropics, particularly in the 1012 

Indian Ocean and Maritime Continent, but differences are typically less than 0.2°C and very 1013 
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widely less than 0.1°C. Future versions of HadSST may benefit from using more highly-resolved 1014 

adjustments. Not shown in Figure 11 is the notional 0.1°C uncertainty associated with the large-1015 

scale correlated errors in the ATSR series that arise from uncertainty in the retrieval process. It 1016 

should also be noted that local differences of order 0.1-0.2°C remain between ATSR and 1017 

collocated buoy measurements (Merchant et al. 2012), so differences seen here are likely to be a 1018 

combination of errors in ARC and errors in HadSST.4.0.0.0. 1019 

 1020 

The comparison with Argo shows that the adjustments continue to be effective from 2012 1021 

through 2017 after the failure of AATSR (Figure 11). Indeed, agreement with the independent 1022 

Argo data is excellent back to 2007 when the Argo array reached its design coverage. Even 1023 

before this, when coverage was less than global, the agreement remains good, suggesting that the 1024 

bias adjustments are reliable at smaller scales. The map of differences between Argo and 1025 

HadSST.4.0.0.0 is noisier than for the comparison with ARC due to the sparser sampling of Argo 1026 

(Figure 12(c)). Some patterns are perhaps common to the two – the cooler Indian Ocean, for 1027 

example – but  the large differences at high latitudes are not seen in the comparison with Argo 1028 

suggesting that this is due either to problems with the ARC data or is related to sampling errors 1029 

of some kind. 1030 

 1031 

Although agreement with the instrumentally homogeneous series is good overall, there are some 1032 

months when the discrepancies exceed the estimated uncertainties. This is to be expected from 1033 

time to time as the uncertainty range represents a 95% confidence interval. The discrepancies in 1034 

the comparisons suggest an overall 1-sigma uncertainty in SST changes seen through this period 1035 

of around 0.05°C, which corresponds to a stability of a few hundredths of a degree per decade. In 1036 
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contrast, the difference between the instrumentally homogeneous series and the unadjusted data 1037 

approaches a maximum of 0.2°C (Figure 11(c)) in the global average (and locally more Figure 1038 

12(d)) over the same period highlighting the importance and effectiveness of the adjustments in 1039 

the modern period. The average difference between HadSST.4.0.0.0 and the instrumentally 1040 

homogeneous data sets is much smaller than the applied adjustments. 1041 

 1042 

5.3 Comparison with other long time series 1043 

Over longer periods, it is necessary to use other data sets for comparison. We use two data sets 1044 

here. The first is HadNMAT.2.0.1.0 (Kent et al. 2013) which is a data set of Nighttime Marine 1045 

Air Temperatures (NMAT). Anomalies in NMAT are thought to closely track anomalies in SST 1046 

over long periods and large scales (see Huang et al. 2015 for an example using climate models). 1047 

The second is based on oceanographic profiles from HadIOD.1.2.0.0, excluding Argo (Atkinson 1048 

et al. 2014) and adjusted using the Levitus et al. (2009) adjustments for MBTs and XBTs. 1049 

 1050 

In order to make a direct comparison between HadSST.4.0.0.0 and HadIOD.1.2.0.0, anomalies 1051 

from HadSST.4.0.0.0 were adjusted using the absolute bias rather than the relative bias so that 1052 

the SSTs could be directly compared. Anomalies were then calculated for both data sets using an 1053 

unadjusted climatology. However, HadSST.4.0.0.0 is not then directly comparable to 1054 

HadNMAT.2.0.1.0 as HadNMAT.2.0.1.0 is provided as actuals or relative to its own adjusted 1055 

1961-1990 climatology and not relative to a biased SST climatology. This will lead to a constant 1056 

annual offset between the SST and NMAT series, which is approximately the size of the average 1057 

climatological bias in the SST. Consequently, we shifted HadNMAT.2.0.1.0 by 0.15°C in Figure 1058 
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13. The offset was chosen by eye to approximately align the two series; none of the conclusions 1059 

depend on the choice of offset. 1060 

 1061 

Except for a period in the late 1940s and early 1950s, differences between HadNMAT.2.0.1.0 1062 

and HadSST.4.0.0.0 anomalies (Figure 13b) on a decadal time scale are constant between 1920 1063 

and 1990. Outside this period, the differences exceed the estimated uncertainties in the 1064 

HadSST.4.0.0.0 data set. One notable difference occurs around 1991-1993, when 1065 

HadNMAT.2.0.1.0 apparently cools relative to HadSST.4.0.0.0 (or HadSST.4.0.0.0 warms). 1066 

Further investigation shows that the cooling occurs in the tropics, partly offset by warming in the 1067 

northern extratropical Pacific. 1068 

 1069 

Christy et al. (2001) previously remarked on the cooling of air temperature relative to SST in the 1070 

tropics. The cause of these differential rates of warming is unknown. They hypothesized that a 1071 

large scale change in circulation might have caused a persistent change in air-sea temperature 1072 

differences but could not rule out the effects of biases in either the SST or NMAT data sets 1073 

which, at the time, had not been studied in detail. Both HadNMAT.2.0.1.0 and HadSST.4.0.0.0 1074 

are now bias adjusted and are independent of one another in the relevant period. This suggests 1075 

that the differences represent a real change in the air-sea temperature difference across this 1076 

transition. 1077 

 1078 

However, other hypotheses could explain the change. There could still be an undetected bias in 1079 

either the SST data, the NMAT data or both. For example, automation during the early 1990s 1080 

might have allowed air temperature sensors to be placed in better-exposed locations with a 1081 
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consequent drop in the measured air temperature. This change would likely have been 1082 

accompanied by a move to electric sensors. It could also be that the near-surface oceanographic 1083 

profile data that we use as a basis for estimating the biases in ERI and modern bucket 1084 

measurements change in the early 1990s in a way that is not captured by the corrections to the 1085 

data.  Huang et al. (2018) found a change in the average depth of profile measurements in the 1086 

near-surface layer, but their criteria for selecting the profiles were different from those used here 1087 

and the step change in the NMAT-SST difference is there even when unadjusted SSTs are used. 1088 

 1089 

5.4 Comparison with HadSST.3.1.1.0 1090 

Figure 14 shows a comparison between HadSST.4.0.0.0 and HadSST.3.1.1.0. The overall 1091 

evolution of these is similar, although differences at some times are larger than the estimated 1092 

uncertainties. HadSST4 runs colder than HadSST3 in the period following the Second World 1093 

War to 1970. From the late 1970s to the early 2000s, HadSST4 is warmer. This change from 1094 

cooler to warmer, leads to a slight sharpening of an apparent step change in global average SST 1095 

around 1975. This is most distinct in the Northern Hemisphere with the transition being 1096 

somewhat smoother in the Southern Hemisphere. The differences between the data sets in this 1097 

period are due to two factors. First, the ERI biases are now estimated from the data (Section 1098 

4.1.2) and they are larger in the 1960s in HadSST4 than they were assumed to be in HadSST3. 1099 

The ERI biases are also outside the uncertainty range for ERI biases (0.2±0.1°C) used in 1100 

HadSST3. Second, the fraction of cooler bucket measurements is lower overall in HadSST4 than 1101 

in HadSST3. This is largely due to the new method of inferring the fraction of incorrectly 1102 

assigned metadata (Section 4.1.4). 1103 

 1104 
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The estimated uncertainties in the global and hemispheric averages are for the most part larger in 1105 

HadSST4 than HadSST3 prior to around 1970. This is due to the wider range allowed for ERI 1106 

biases (Section 4.1.2) and to changes made to the bucket corrections (Section 4.1.1).  1107 

5.5 Comparison with other SST data sets 1108 

The latest versions of ERSST, COBE-SST and HadSST all now apply adjustments to the whole 1109 

SST record. Figure 15 and Figure 16 show global and regional averages from HadSST.4.0.0.0, 1110 

COBE-SST-2 and ERSSTv5 (with the ensemble from ERSSTv4) calculated where the data sets 1111 

have common coverage. The overall evolution of the three data sets and the interannual 1112 

variability in each are very similar. 1113 

 1114 

The adjustments applied in each of the three data sets decrease the overall temperature change 1115 

seen from the nineteenth century (and especially since 1900) relative to the unadjusted data. Of 1116 

the three data sets, HadSST4 has a marginally higher trend from 1900 (estimated using ordinary 1117 

least squares) but the difference between the trends in the three data sets is not larger than the 1118 

estimated uncertainty (estimated using the ensemble with each ensemble member additionally 1119 

perturbed by a sample from the measurement and sampling errors). ERSST and COBE-SST 1120 

warm at a similar rate to the unadjusted data from the 1940s, 50s and 60s, but HadSST4 warms 1121 

somewhat faster than the other data sets due to the adjustments applied to account for the general 1122 

decline in ERI biases over that period (Figure 6). From start dates in 1970, 1980 and 1990, 1123 

COBE-SST-2 warms faster than the unadjusted data and, from 1980 and 1990, faster than either 1124 

HadSST4 or ERSSTv4 by a significant margin. 1125 

 1126 
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From 2000-2012, the rates of warming in all three data sets are very similar and consistent within 1127 

their uncertainty ranges. All three warm faster than the unadjusted data, which has a trend close 1128 

to zero. During this period, there are two important factors. First, there is a large increase in the 1129 

relatively cooler drifting buoy measurements and, second, there is a decrease in the average ship 1130 

bias. The analysis of HadSST4 supports ERSSTv4 and ERSSTv5 in this period (Karl et al. 2015) 1131 

and is consistent with instrumentally homogeneous reference series, supporting the analysis of 1132 

Hausfather et al. (2017). 1133 

 1134 

Kent et al. (2017) showed that there were significant differences between HadSST.3.1.1.0 and 1135 

ERSSTv4 at other times. The period of the largest global differences was found to be during 1136 

1945-1970 when HadSST3 was warmer than ERSSTv4. HadSST4 is much closer to ERSSTv4 1137 

during this period. This change is due to the new ERI bias estimates being larger than assumed in 1138 

HadSST3 during this period. However, from 1960 or 1970, HadSST4 warms faster than 1139 

ERSSTv4. The long-term bias adjustments in ERSSTv4 are derived from assuming a constant 1140 

relationship with HadNMAT2 that, as we have already shown in Section 5.3, warms less than 1141 

HadSST4 over this period with much of the difference arising from a step-like change of 1142 

unknown origin in the early 1990s. 1143 

 1144 

6 Summary 1145 

In this paper, we have estimated biases associated with different methods for making SST 1146 

measurements by comparison to near-surface oceanographic measurements and buoys. The 1147 

estimated biases were combined with other metadata to bias adjust a composite SST data set. 1148 

Because many of the parameters in the bias adjustment scheme are uncertain and give rise to 1149 
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complicated covariance structures, we present the data set as an ensemble in which we vary 1150 

uncertain parameters to understand their impact on the indicators that can be derived from the 1151 

data, such as the global average, or changes in temperatures. 1152 

 1153 

The method builds on that used to create HadSST.3.1.1.0. We now have improved estimates of 1154 

the biases associated with different measurement methods – including engine room 1155 

measurements and insulated buckets – and we are better able to constrain poorly known 1156 

parameters such as the timing of the transition from canvas to rubber buckets and the fraction of 1157 

incorrect metadata on measurement method. Some of the newly constrained parameters, 1158 

particularly biases associated with engine room measurements, were outside the previously 1159 

estimated ranges at some times. This highlights the difficulties, expounded at greater length in 1160 

Kent et al. (2017), of working with historical meteorological data, particularly when trying to 1161 

make data sets that are useful for climate research. Nonetheless, by paying careful attention to 1162 

the data, quantifying the biases and estimating the uncertainties, we can produced a climate data 1163 

record of SST back to 1850 that is consistent with independent information. 1164 

 1165 

The method relies on comparisons with sub-surface data. This raises two possible difficulties. 1166 

First, the depth of near-surface subsurface measurements is usually slightly greater than the 1167 

depth at which drifting buoys make measurements and may have changed systematically over 1168 

time (Huang et al. 2018). This could lead to a cool bias in the earlier data where sub-surface 1169 

measurements are used to estimate biases. On the other hand, there is no clear signal that this is 1170 

the case where we can compare ship measurements to both buoys and sub-surface measurements. 1171 

Second, sub-surface temperature measurements also exhibit biases. While these biases are 1172 
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expected to be smaller than those in SST measurements from ships, they are nonetheless 1173 

significant on longer time- and space- scales. Adjustments for these biases are themselves 1174 

uncertain and an active area of research (Abraham et al. 2013, Cheng et al. 2016). 1175 

 1176 

The small adjustments that Huang et al (2015, 2017) applied to ERSSTv4/v5 in the post war 1177 

years were somewhat puzzling because they suggested a small net bias during a period that saw a 1178 

transition from canvas to insulated buckets and from widespread bucket use to widespread ERI 1179 

use, factors that led to the larger adjustments applied to HadSST.3.1.1.0. The work we present 1180 

here is in closer agreement with ERSST and suggests that the smaller net corrections are due to a 1181 

greater prevalence of ERI measurements – supporting the conclusions of Carella et al. (2018) – 1182 

partly offsetting larger biases associated with uninsulated buckets and an earlier change to 1183 

insulated bucket use. 1184 

 1185 

Important uncertainties likely remain. In the unadjusted data, a rapid drop in global average SST 1186 

marks the end of the Second World War (Thompson et al. 2008). The drop is seen in both 1187 

ERSSTv5 and HadSST.3.1.1.0, though it is less marked in the latter. It coincides with a large 1188 

change in the areas sampled by the global fleet, which likely explains some of the fall. The 1189 

question of how much of the remainder is artificial is still open. The separated bucket and engine 1190 

room data sets considered in Section 5.1 suggest that some of the drop arises from a change in 1191 

the mix of the two rather than a globally coordinated drop in actual SST. However, it is 1192 

important to note that the sampling of both these data sets changes at this point. The drop is most 1193 

pronounced in ERSSTv5 and coincides with a similar rapid drop seen in HadNMAT.2.0.1 at that 1194 

point. However, comparisons between HadNMAT.2.0.1.0 and CRUTEM4 at common coastal 1195 
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grid cells (Cowtan et al. 2018) suggests that the NMAT, and hence ERSST, is artificially warm 1196 

during the war years despite the adjustments that have been applied for non-standard exposure 1197 

(Kent et al. 2013). These lines of evidence suggest that at least some of the drop is artificial, but 1198 

they do not help to understand which of the data sets provides a better estimate. Consequently, 1199 

considerable uncertainty remains regarding SST during the Second World War. This uncertainty 1200 

is partly reflected in the wide uncertainty ranges given in HadSST.4.0.0.0, but a more 1201 

satisfactory solution is needed. Users of the data set should be wary of drawing strong 1202 

conclusions based on trends that start or end during the war years until this is resolved. 1203 

 1204 

From 2000 to 2012, the period studied in detail here, ERSSTv5 and HadSST.4.0.0.0 have trends 1205 

that are consistent with each other and with COBE-SST-2. In addition, both HadSST.4.0.0.0 and 1206 

ERSSTv5 compare well with independent and instrumentally homogeneous data over the period 1207 

1991 to 2017 (see also Hausfather et al. 2017). We highlight the importance of changing ship 1208 

biases as well as the shifting balance of ship and buoy measurements for understanding this 1209 

period. 1210 

 1211 

Although HadSST.4.0.0.0 and ERSSTv5 show reasonable agreement in the overall evolution of 1212 

global average SST, there are some interesting differences between the trends estimate from 1213 

these data sets. In particular, warming since the 1950-1970 period is higher in HadSST.4.0.0.0. 1214 

This is associated with a cooling of ERSSTv5 relative to HadSST.4.0.0.0 in the early 1990s. This 1215 

discrepancy is also seen in a comparison with HadNMAT.2.0.1.0, the data set used to adjust 1216 

ERSSTv5. The discrepancy between HadNMAT.2.0.1.0 and HadSST.4.0.0.0 suggests that there 1217 

is either a large-scale change in atmospheric circulation in the early 1990s that modified the air-1218 
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sea temperature difference throughout the tropics or that undetected biases remain in one or the 1219 

other of the marine temperature (SST or NMAT) data sets considered here.  1220 

 1221 

Huang et al. (2015) showed that NMAT-SST differences exhibited little variability at annual 1222 

time scales in a climate model between 60°S and 60°N, although there was a long-term warming 1223 

of MAT relative to SST of around 0.1°C. Hawkins et al. (2015) likewise found that MAT 1224 

warmed faster globally than SST in a range of climate models. Neither paper shows specific 1225 

step-change behaviour, but both show spikes in the mean model response of SST-MAT 1226 

following large tropical volcanic eruptions such as Mount Pinatubo in 1991. While the step 1227 

change is in the same direction as this model response, the subsequent recovery and long-term 1228 

warming of MAT is not apparent in Figure 13. Hawkins et al. (2015) note that the size of the 1229 

SST-MAT differences are comparable to the uncertainties in the SST and MAT data sets used, 1230 

HadSST3 and HadNMAT2 in their case, but it is also true for HadSST.4.0.0.0. 1231 

 1232 

Because of the strong links between SST and MAT and between systematic errors in SST and 1233 

MAT, a fuller understanding of marine temperatures in general can only be achieved by studying 1234 

both in greater detail along with metadata and other relevant marine variables such as humidity 1235 

(Willett et al. 2008) and winds. While measurements of SST are now more numerous than ever 1236 

thanks to the wealth of satellite data and autonomous platforms such as drifting buoys, there has 1237 

been a marked continuing decline in the MAT observing system which relies on ship-borne 1238 

instruments and is currently far below the level of adequacy as judged by a number of criteria 1239 

(Berry and Kent 2017). 1240 

 1241 
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Recently attention has been drawn to spatial as well as temporal heterogeneity in SST biases and 1242 

how these affect the interpretation of climate variability (Huang et al. 2013). Although the 1243 

methods we describe account for the spatial heterogeneity that arises from geographically-1244 

varying ERI biases and changing numbers of buckets and ERI measurements, some of the factors 1245 

in the adjustments – for example, the scaling for the patterns of bucket biases and how 1246 

measurements without a method are assigned – are only specified at a global level and thus 1247 

might not be as effective at a basin scale. 1248 

 1249 

One factor that might vary locally is the type of bucket used for measurement. Buckets issued by 1250 

different countries are of varied design and the design can affect the rate of heat loss (Carella et 1251 

al. 2017b) as well as other properties of the measurements (Kent and Taylor 2006). This might 1252 

be of particular importance during the early and middle decades of the 20
th

 century when bucket 1253 

use was widespread. The period 1900-1940 saw an overall increase in shipping, large changes in 1254 

ship routes allowed by the opening of the Panama Canal, two World Wars, and large biases 1255 

associated with uninsulated buckets deployed from fast ships. The results for modern bucket 1256 

biases (Section 4.1.3) suggest a potentially important role for solar heating of the bucket and 1257 

water sample. In contrast, Kent and Kaplan (2006) and Carella et al. (2017b) focused on 1258 

situations in which solar heating was negligible. Recently, Chan and Huybers (2019) showed that 1259 

there are relative biases between bucket measurements made by ships from different countries 1260 

and between bucket measurements found in different decks in ICOADS. They argue that 1261 

correcting for biases between decks and nations should improve estimated SSTs. 1262 

 1263 
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After a long analysis and discussion of the problems with the data, it can be easy to forget the 1264 

enormous value that the voluntary observing ships (VOS) provide. This would be a mistake. For 1265 

much of the historical record, reports from ships are all we have and, although it is the outliers of 1266 

the distribution which often draw our attention, most ships have provided useful, reliable 1267 

measurements. At those times where we have used other sources to correct the ship data 1268 

(oceanographic profile measurements from the 1950s to present and drifting buoy measurements 1269 

from the early 1990s) the ship data provide vital spatial detail in the large areas not covered by 1270 

these measurements (Figure 18 and Section A2). Even in the modern period, when the coverage 1271 

of drifting and moored buoy data is quasi-global, the density of shipping, particularly in the 1272 

northern hemisphere, adds additional useful information (see e.g. Figure 2 and Figure 3). As 1273 

researchers extend climate data records of SST derived from satellites further back in time, they 1274 

will need to rely on ships to provide a “ground truth” against which their products can be tested. 1275 

Last of all, ships also measure variables other than SST – air temperature (Kent et al. 2013, Berry 1276 

et al. 2004), humidity (Willett et al. 2008), cloud, pressure and wind (Berry and Kent 2011) – 1277 

that are essential for understanding the continual fluxes of heat and water between the 1278 

atmosphere and oceans. 1279 

 1280 

Challenges remain for building models – be they statistical or physical – which can adequately 1281 

describe and constrain the spectrum or hierarchy, of errors that exist in in situ marine 1282 

measurements of sea-surface temperature and air temperature. The methods detailed here – 1283 

which can in some cases extract useful information about the error characteristics of individual 1284 

ships – could be extended to include more detailed error models which track weather-dependent 1285 

biases associated with ships from a particular country or which use a certain kind of bucket. 1286 
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 1287 

Finally, we reiterate the recommendations made in Kent et al. (2017), “A Call for New 1288 

Approaches to Quantifying Biases in Observations of Sea Surface Temperature”, in particular 1289 

the need to:  1290 

 add more data and metadata to ICOADS;  1291 

 reprocess existing ICOADS records;  1292 

 improve information on observational methods;  1293 

 improve physical and statistical models of SST bias;  1294 

 maintain and extend the range of different estimates of SST bias; and  1295 

 expand data sources for validation and extend the use of measures of internal consistency 1296 

in validation. 1297 

Data availability 1298 

The HadSST.4.0.0.0 data set, and supporting information, is available from 1299 

http://www.metoffice.gov.uk/hadobs/hadsst4. The following listed data sets were used in this 1300 

analysis. Links to the data sets are provided where applicable. 1301 

 1302 

International Comprehensive Ocean-Atmosphere Data Set (ICOADS) Release 3, Individual 1303 

Observations. Research Data Archive at the National Center for Atmospheric Research, 1304 

Computational and Information Systems Laboratory. https://doi.org/10.5065/D6ZS2TR3. 1305 

(Research Data Archive et al. 2016) 1306 

Drifting buoy data were collected and made freely available by the Copernicus project and the 1307 

programs that contribute to it. Data downloaded (6 April 2018) from 1308 

http://marine.copernicus.eu/services-portfolio/access-to-1309 

http://www.metoffice.gov.uk/hadobs/hadsst4
https://doi.org/10.5065/D6ZS2TR3
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=INSITU_GLO_NRT_OBSERVATIONS_013_030
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products/?option=com_csw&view=details&product_id=INSITU_GLO_NRT_OBSERVATION1310 

S_013_030  1311 

HadNMAT.2.0.1.0 was downloaded from https://www.metoffice.gov.uk/hadnmat2  1312 

HadIOD is available from the corresponding author of Atkinson et al. (2014) 1313 

The operational version of ERSSTv4 was downloaded from 1314 

http://www1.ncdc.noaa.gov/pub/data/cmb/ersst/v4/netcdf/    1315 

The ERSSVTv4 ensemble was downloaded (16 June 2015) from 1316 

https://www1.ncdc.noaa.gov/pub/data/cmb/ersst/v4/ensemble/  1317 

The operational version of ERSSTv5 was downloaded (9 February 2018) from 1318 

https://www1.ncdc.noaa.gov/pub/data/cmb/ersst/v5/netcdf/  1319 

COBE SST 2 was provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from 1320 

their Web site at https://www.esrl.noaa.gov/psd/  1321 

(https://www.esrl.noaa.gov/psd/data/gridded/data.cobe2.html, accessed 23 October 2014) 1322 

ARC data were downloaded (5 July 2017) from  1323 

http://catalogue.ceda.ac.uk/uuid/e6497acddf9cd8345ffbd0643c0d9729 1324 
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Appendices 1333 

A1 Interpolation 1334 

In order to estimate biases for different measurement types during the modern period, we used a 1335 

simple statistical interpolation scheme based on Gaussian Processes (Rasmussen and William, 1336 

2006). The scheme is described in this section. It requires as input the error covariances 1337 

calculated in Section 3.2. In addition, an estimate of the covariance matrix of the actual SST 1338 

fields is needed. The method for estimating this matrix is described in Section A1.1. The method 1339 

is applied in Section A2 and we present some tests of the method in Section A3. 1340 

 1341 

The variability of gridded SST anomalies was modelled as a multivariate normal distribution 1342 

with mean zero and covariance matrix C. For a vector of observations y with error covariance R 1343 

(see Section 3.1 and 3.2), a globally complete reconstruction of the SST anomaly field, µ, can be 1344 

obtained using 1345 

𝜇 = 𝐶𝐻𝑇(𝐻𝐶𝐻𝑇 + 𝑅)−1𝑦 Equation A1 

where H is a matrix consisting of zeroes and ones that selects points from C at the measured 1346 

locations in y. The posterior distribution for the reconstruction is a multivariate normal 1347 

distribution with mean, µ, and covariance P 1348 

𝑃 = 𝐶 − 𝐶𝐻𝑇(𝐻𝐶𝐻𝑇 + 𝑅)−1𝐻𝐶 Equation A2 

 1349 

Equations A1 and A2 are equivalent to Equations 2.23 and 2.24 from Rasmussen and Williams 1350 

(2006) but with a non-diagonal error covariance. As well as producing a reconstruction of the 1351 

SST field, this framework can also be used to get an improved estimate of the errors in the data. 1352 
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For example, considering R as the sum of several error components R1, R2 … Rn then an 1353 

improved estimate of the component R1 is given by 1354 

𝜇𝑅1
= 𝑅1(𝐻𝐶𝐻𝑇 + 𝑅)−1𝑦 Equation A3 

 1355 

with posterior covariance 1356 

𝑃𝑅1
= 𝑅1 − 𝑅1(𝐻𝐶𝐻𝑇 + 𝑅)−1𝑅1 Equation A4 

This breakdown of the estimated errors into individual components is used in Section A3 to test 1357 

that the interpolation method is working as expected. 1358 

 1359 

A1.1 Estimating the prior covariance 1360 

In order to get a reasonable interpolation, a good estimate of C is needed. Here we used a time-1361 

invariant estimate of C calculated from monthly data. C was built from a set of local covariance 1362 

kernels, in which the covariance at each point was modeled as a simple local covariance kernel. 1363 

The method is based on that used in Karspeck et al. (2012), assuming an exponential kernel and 1364 

that the length scales are strictly zonal and meridional. The covariance between two points is 1365 

equal to 1366 

𝐶(𝑥, 𝑥′) = 𝜎𝜎′
|Σ|

1
4|Σ′|

1
4

|Σ|
1
2

𝑒𝑥𝑝(−𝜏) 

Equation A5 

Where unprimed and primed variables indicate the values at the two different points and τ, the 1367 

Mahalanobis distance, can be written as: 1368 

𝜏̅(𝑥, 𝑥′) = √(𝑥 − 𝑥′)𝑇Σ̅−1(𝑥 − 𝑥′) Equation A6 

and,  1369 
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Σ = [
𝐿𝑥

2 0

0 𝐿𝑦
2 ] ;  Σ̅ =  

1

2
(Σ + Σ′) 

Equation A7 

Here x and y are the angular separations in longitude and latitude, Lx and Ly are the length scales. 1370 

The length scales and variance of the process can vary from point to point. The primes indicate 1371 

the values of Σ and σ at location x’ and the unprimed variables indicate the values at x. 1372 

 1373 

The variance was estimated first using ARC data for each grid cell by assuming that the 1374 

anomalies in a grid cell were normally distributed with mean zero and variance equal to the sum 1375 

of the variance of the process and the error variance (provided with the ARC data). The value of 1376 

σ
2
 that maximized the likelihood of the data given the parameters was found using a simple line 1377 

search with increments of 0.005 K
2
. Values of the standard deviation above 1.2°C were set to 1378 

1.2°C. 1379 

 1380 

The length scales were then estimated for each grid box separately. x and y distances were 1381 

measured as angular distances in latitude and longitude multiplied by 6400km with the implicit 1382 

assumption that the Earth is a cylinder. This is more numerically stable than assuming a spherical 1383 

Earth and the geographically-varying length scales allow for the geometrical fact that one degree 1384 

of longitude corresponds to different lengths at different latitudes as well as changes in the 1385 

physical length scale. Time series of anomaly differences were calculated between the target grid 1386 

box and all neighbors within 10 000km and detrended using a 5
th

 order polynomial. The true SST 1387 

anomalies at the two locations were assumed to be normally distributed (mean zero and standard 1388 

deviations 𝜎 and 𝜎′) and correlated with each other with a correlation of exp (−𝜏). The 1389 

uncertainty on the anomalies were 𝜎𝑒𝑟𝑟𝑜𝑟 and 𝜎′𝑒𝑟𝑟𝑜𝑟. The differences between the two series are 1390 

then normally distributed with mean zero and variance σdiff given by 1391 



Confidential manuscript submitted to Journal of Geophysical Research Atmospheres 

64 

 

 1392 

𝜎𝑑𝑖𝑓𝑓
2 = 𝜎𝑒𝑟𝑟𝑜𝑟

2 + 𝜎′𝑒𝑟𝑟𝑜𝑟
2 + 𝜎2 + 𝜎′2 − 2𝜎𝜎′exp (−𝜏) Equation A8 

 1393 

The values of Lx and Ly, which maximized the likelihood of the data given the parameters were 1394 

found using the using the downhill simplex method of Nelder and Mead (1965) (as implemented 1395 

in the IDL 8.2 AMOEBA function). All other values – the error variances (σerror) and the 1396 

variance of the process (σ and σ’) – were fixed from earlier calculations. Missing values of Lx
 
 1397 

were set to 2500km. Missing values of Ly  were set to 1000 km. The resulting fields of σ, Lx and 1398 

Ly (Figure 17) were then stitched together to produce a single covariance matrix using equation 1399 

A5. 1400 

 1401 

The covariances vary in character from place to place (see Figure 17). In the Tropical Pacific, 1402 

zonal length scales are long and meridional scales are limited. Variances are also higher in the 1403 

tropical Pacific associated with ENSO variability. In the North Pacific, length scales are shorter 1404 

in general. In the North Atlantic and Indian Ocean, the covariances are more isotropic with 1405 

similar zonal and meridional length scales. Over the western boundary currents, the length scales 1406 

are short and variability is high. 1407 

A2 Estimating biases 1408 

Engine Room biases and other measurement method biases were estimated using the simple 1409 

interpolation scheme in two or three steps. In the first step, gridded (see Section 3) drifting buoy 1410 

observations (if they were available) were interpolated using the formulas (Equations A9 and 1411 

A10) below to get an improved estimate of the global SST field. The mean and covariance of the 1412 

posterior distribution were used as the prior for the second step, in which near-surface sub-1413 
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surface measurements (when these were available) were interpolated using the output from the 1414 

drifting-buoy interpolation as input (Equations A11 and A12). In the third step, gridded Engine 1415 

Room measurements (a similar thing can be done for other measurement types) were 1416 

interpolated using the output from the previous interpolation (Equations A13 and A14). In 1417 

contrast to the first and second, the aim in the third step was to estimate the correlated errors in 1418 

the gridded ERI measurements rather than to get an improved estimate of the SST field (although 1419 

this can be obtained as well). 1420 

 1421 

First the buoy data are assimilated. 1422 

𝜇𝑏𝑢𝑜𝑦 = 𝐶𝐴𝑅𝐶𝐻𝑇(𝐻𝐶𝐴𝑅𝐶𝐻𝑇 + 𝑅𝑏𝑢𝑜𝑦)
−1

𝑦𝑏𝑢𝑜𝑦 Equation A9 

𝐶𝑏𝑢𝑜𝑦 = 𝐶𝐴𝑅𝐶 − 𝐶𝐴𝑅𝐶𝐻𝑇(𝐻𝐶𝐴𝑅𝐶𝐻𝑇 + 𝑅𝑏𝑢𝑜𝑦)
−1

𝐻𝐶𝐴𝑅𝐶 Equation A10 

Where CARC is the prior covariance calculated in A1.1 using the ARC data. Then the sub-surface 1423 

data 1424 

𝜇𝑠𝑢𝑏 = 𝐶𝑏𝑢𝑜𝑦𝐻𝑇(𝐻𝐶𝑏𝑢𝑜𝑦𝐻𝑇 + 𝑅𝑠𝑢𝑏)
−1

(𝑦𝑠𝑢𝑏 − 𝜇𝑏𝑢𝑜𝑦) + 𝜇𝑏𝑢𝑜𝑦 Equation A11 

𝐶𝑠𝑢𝑏 = 𝐶𝑏𝑢𝑜𝑦 − 𝐶𝑏𝑢𝑜𝑦𝐻𝑇(𝐻𝐶𝑏𝑢𝑜𝑦𝐻𝑇 + 𝑅𝑠𝑢𝑏)
−1

𝐻𝐶𝑏𝑢𝑜𝑦 Equation A12 

Finally, the bias in the ERI measurements and its uncertainty are estimated. 1425 

𝜇𝐸𝑅𝐼𝑏𝑖𝑎𝑠 = 𝑅𝐸𝑅𝐼(𝐻𝐶𝑠𝑢𝑏𝐻𝑇 + 𝑅𝐸𝑅𝐼)−1(𝑦𝐸𝑅𝐼 − 𝜇𝑠𝑢𝑏) + 𝜇𝑠𝑢𝑏 Equation A13 

𝑅𝐸𝑅𝐼𝑏𝑖𝑎𝑠 = 𝑅𝐸𝑅𝐼 − 𝑅𝐸𝑅𝐼(𝐻𝐶𝑠𝑢𝑏𝐻𝑇 + 𝑅𝐸𝑅𝐼)−1𝑅𝐸𝑅𝐼 Equation A14 

 1426 

The estimated ERI bias and its uncertainty was calculated for each month using a value of 𝜎𝐺 of 1427 

0.2°C (the mean ERI bias used in Kllb). The resulting time series along with similar series for 1428 

buckets are shown in Figure 6. Example input and outputs for the interpolation are shown in 1429 

Figure 18a-d. Common patterns can be seen between the anomaly fields estimated using ship 1430 
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data (a) and buoy data (b), but there are also some differences. For example, there are features in 1431 

the ship data that follow common shipping routes which could correspond to measurement 1432 

errors, particularly micro biases. In the analyzed anomaly field (c), the patterns that are common 1433 

to both ship and buoy data have been picked out and some of the errors that can be identified by 1434 

eye in the ship data have been successfully separated (d). The largest estimated errors are in the 1435 

tropics and Southern Hemisphere where ship traffic is less frequent and individual ships can have 1436 

a larger effect. However, in the North Pacific and Atlantic, the ship data provide vital detail 1437 

where there is no buoy coverage and the aggregate biases are less pronounced. 1438 

 1439 

In the bias-adjustment algorithm (Section 4.1.2), a time-varying, temporally-smoothed field of 1440 

µERI was used. This ensures that the ERI measurements are unbiased relative to the drifting 1441 

buoys and oceanographic data, on longer space- and time-scales, but preserves individual ship 1442 

biases, which are described by the error covariances. 1443 

A3 Tests of the interpolation method 1444 

We tested the interpolation method in three different ways, which probe different aspects of the 1445 

reconstruction. 1446 

 1447 

First, we looked at its ability to reconstruct data that had been deliberately withheld (Section 1448 

A3.1). Data were withheld in three different ways: at random locations, by reducing coverage in 1449 

a well-observed period to match that of the 19
th

 century and at the locations of Argo floats. These 1450 

probe different aspects of the reconstruction such as the ability to fill small gaps, to reconstruct 1451 

large missing areas, and to estimate SST anomalies from an independent validation system. 1452 

 1453 
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Second, we looked at the method’s skill in estimating biases for individual ships (Section A3.2). 1454 

We compared our estimates to those calculated by comparing ships to a satellite-based analysis. 1455 

Although we do not use the biases calculated for individual ships in HadSST.4.0.0.0, estimating 1456 

them tests the method’s ability to reconstruct biases locally. 1457 

 1458 

Third, we generated realistic synthetic data for which the uncorrelated, micro bias and macro 1459 

bias errors were known (Section A3.3). We then interpolated the data and reconstructed the 1460 

micro and macro biases. This test ensures that the method can estimate the large-scale biases in 1461 

different data sources under a different set of circumstances. 1462 

A3.1 Testing the reconstruction using withheld data 1463 

In order to test the reconstruction method, fields from 2000 to 2014 were reduced in coverage. 1464 

The coverage was reduced in three ways. First, coverage in the period 2000-2014 was reduced to 1465 

that of 1850-1864. In the second test, half of the grid boxes were removed randomly. In the third 1466 

test a quarter of grid cells for which Argo measurements were available were removed. The 1467 

reduced-coverage SST fields were then reconstructed and the reconstruction was compared to the 1468 

data that had been withheld, and in the third case also to Argo data in those grid cells that had 1469 

been withheld. Two tests were then made. 1470 

 1471 

In the first test the chi-squared statistic was calculated using,  1472 

𝜒2 = (𝜇 − 𝑤)𝑇(𝑃 + 𝑅)−1(𝜇 − 𝑤) Equation A15 

where µ is a vector containing the reconstructed SSTs at the locations of the withheld data, w. P 1473 

is the posterior covariance of the reconstruction and R is the error covariance of the withheld 1474 

data. For a good reconstruction – one for which the estimated fields and uncertainties are 1475 
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consistent – the statistic should follow a chi-squared distribution for which the number of 1476 

degrees of freedom is equal to the rank of the covariance matrix, in this case equal to the number 1477 

of withheld grid boxes (Povey et al. 2015). 1478 

 1479 

The second test compared the withheld data to samples from the posterior distribution of the 1480 

reconstruction, P, which were combined with samples drawn from the estimated error covariance 1481 

of the withheld data, R. The combined samples give a set of fields that should resemble the 1482 

withheld data – in both true SST variability and in the spectrum of observational error. The 1483 

residual differences between the samples and the reconstruction were divided by the estimated 1484 

uncertainty (scaled samples) as were the differences between the withheld data and the 1485 

reconstruction (scaled observations). For a good reconstruction with well-specified observational 1486 

uncertainties, the normalization step would, in the long run, yield distributions that are close to 1487 

Normal with unit variance. However, for individual months, the spatial autocorrelation 1488 

represented in P and R leads to distributions that do not look Normal. 1489 

 1490 

The overall goodness of fit was assessed by examining how the distribution of scaled 1491 

observations diverged from a distribution calculated from the scaled samples. A histogram of the 1492 

scaled observations was calculated (with 0.1 unit bins) for all withheld data between 2000 and 1493 

2014. An equivalent histogram of the scaled samples was calculated for the same period and then 1494 

repeated 500 times with different samples. If the histogram of scaled observations falls within 1495 

the range of the 500 histrograms calculated from the scaled samples then the fit is considered a 1496 

good one. 1497 

 1498 
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Figure 19(a) shows the distribution of the probability of the calculated chi-squared for each 1499 

month between 2000 and 2016 and for each of the three different data-reduction schemes. For a 1500 

good reconstruction, the probability ought to be approximately uniformly distributed. However, 1501 

in this case there is a predominance of probabilities clustered towards one and zero, which 1502 

suggests that the uncertainties are often underestimated and sometimes overestimated, or that the 1503 

distribution of errors is not normal. 1504 

 1505 

Figure 19 (b-d) compares the observed and theoretical distributions using the sampling method. 1506 

For the case where data are “missing at random”, the observed discrepancies are most likely to 1507 

fall above the range defined by the samples where deviations are small - within 0.5 standard 1508 

deviations – or where deviations are very large – in excess of 3 standard deviations. To 1509 

compensate, the observed discrepancies are below the expectation in most other places. Such 1510 

sharp-peaked, long-tailed distributions are characteristic of observational errors in ship and buoy 1511 

data (K11c) and the shape would explain the poor chi-squared distribution. Considering the 1512 

simplicity of the model, the agreement between the modeled and observed distributions is rather 1513 

good. In the more challenging case where the coverage is reduced to that of the 19th century, the 1514 

distribution is slightly broader than the theoretical case, suggesting a slight underestimate of the 1515 

uncertainty. 1516 

 1517 

The Argo test is also encouraging. The bias in the reconstruction relative to the higher accuracy 1518 

Argo measurements that arises when using the warm-biased unadjusted SST data is removed 1519 

when using the bias-adjusted SSTs (Figure 19d). The distribution falls below the expected range 1520 

between ±2 standard deviations. There is a small excess at higher deviations which is associated 1521 
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with measurements made in the western boundary currents, marginal sea ice areas and other 1522 

areas where sampling uncertainty is typically higher (assessed from maps of mean absolute 1523 

residuals and root-mean-squared residuals, not shown). This suggests that either the sampling 1524 

uncertainty is underestimated in these regions, or that the reconstruction technique cannot 1525 

resolve the small scale variability in these regions. 1526 

 1527 

An additional test was done based on the Argo data. Data were removed at the locations of the 1528 

selected Argo data, but instead of comparing the reconstruction to the Argo data, it was 1529 

compared to the withheld SST data. The shape of the distribution is somewhere between that 1530 

seen in the missing-at-random case and that seen in the 19th Century coverage case. Given the 1531 

good agreement between Argo and the reconstruction, the implication is that the narrow-peak, 1532 

long-tail shape of the distribution of differences between SST and reconstruction arises purely 1533 

from the distribution of observational errors in the SST data. 1534 

 1535 

K11c investigated the effect of errors that are not normally distributed and which vary from 1536 

agent to agent. They derived representative uncertainties that provide a good overall fit to the 1537 

spectrum of errors seen in real data and it is these that we use in our analysis. Some care is 1538 

needed when interpreting the standard deviations obtained from the data in terms of an actual 1539 

distribution of errors because they cannot be assumed to be Normal. However, these tests 1540 

indicate that there are no severe biases in the method. 1541 

 1542 
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A3.2 Testing the reconstruction by estimating individual ship biases 1543 

It is possible to extract a posterior distribution for the error characteristics of each identifiable 1544 

ship, which can then be compared to other estimates as a way of checking the reliability of the 1545 

reconstruction method. This is done by noting that the error covariance, R, in the above equations 1546 

is a simple sum of contributions from individual ships. Each of these individual contributions can 1547 

be used to get an improved mean and covariance for the error characteristics of individual ships 1548 

and buoys. Of particular interest are the micro biases, which are an important component of the 1549 

measurement uncertainty at a global level. 1550 

 1551 

It is worth pausing here momentarily to remind ourselves of the discussion and definitions of 1552 

“error” and “uncertainty” from Section 2.1 and Section 3 because the nomenclature can get 1553 

horribly confusing at this point. What we are attempting to estimate are the values of Bij from 1554 

Equation 3.0. Bij is that part of the error (defined as the difference between the true SST and the 1555 

measured SST) that is a persistent offset associated with a particular ship and for simplicity’s 1556 

sake we shall assume that Bij is constant for a particular ship, i, so we can write Bi. To start with 1557 

we assume that Bi is zero for all ships, with a large uncertainty, 𝜎𝑏𝑖
. Using the method described 1558 

below, we can make an improved estimate of the size of the error, 𝐵𝑖
′, and its uncertainty  1559 

𝜎𝑏𝑖

′ < 𝜎𝑏𝑖
. 1560 

 1561 

For each ship, i, the individual contribution, Ri to the overall error covariance (individual terms 1562 

in the summation in Equation 3.4) was estimated and then the posterior mean and covariance of 1563 

the errors for that ship were estimated using. 1564 

𝜇𝑖 = 𝑅𝑖(𝐻𝐶𝐻𝑇 + 𝑅)−1𝑦 Equation A16 
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𝑅𝑖
′ = 𝑅𝑖 − 𝑅𝑖(𝐻𝐶𝐻𝑇 + 𝑅)−1𝑅𝑖 Equation A17 

The mean, µi, found in this way is the weighted contribution of a particular error to the gridded 1565 

averages, so it needs to be divided by the appropriate weight (wi, Equation 3.2) to obtain an 1566 

updated estimate of the bias, 𝐵𝑖
′,  1567 

𝐵𝑖
′ =

𝜇𝑖

𝑤𝑖
 

Likewise the covariance 𝑅𝑖
′ can be processed to obtain an updated estimate of 𝜎𝑏𝑖

′ . 1568 

 1569 

We applied Equations A16 and A17 for every month from 2000 to 2012 with: y being the 1570 

median adjusted HadSST.4.0.0.0 for that month; the large-scale bias covariances in R set to zero; 1571 

and C as derived in Section A1.1. We then extracted an estimate of Bi for every uniquely 1572 

identifiable ship. 1573 

 1574 

For ships in well-travelled regions, the resulting micro biases, 𝐵𝑖
′, remain close to the prior: the 1575 

mean is zero and the uncertainty almost equal to 𝜎𝑏𝑖
. This is expected because many ships are 1576 

averaged together in well-travelled grid boxes making the individual contributions impossible to 1577 

separate. However, if a ship visits several, poorly-populated grid cells, the estimated micro bias 1578 

will take some more-definite value and the posterior variance will be small. 1579 

 1580 

Figure 20 shows the monthly estimated ship micro biases for those ships where the estimated 1581 

uncertainty in the micro bias was less than 0.25°C compared to estimated micro biases taken 1582 

from the IQUAM (in situ QUAlity Monitoring, Xu and Ignatov 2010) tool. In the IQUAM 1583 

analysis, in situ data were compared to a daily background SST field derived from a combination 1584 

of satellite and in in situ data. The correlation between the estimates from IQUAM and the 1585 
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HadSST.4.0.0.0 analysis is around 0.7 where the uncertainty in the HadSST.4.0.0.0-estimated 1586 

bias is less than 0.25°C. Differences are expected as IQUAM uses a different QC system and 1587 

therefore the micro biases are not estimated from exactly the same observations. The figure 1588 

shows the regression of the IQUAM estimates on HadSST.4.0.0.0 estimates and vice versa 1589 

(diagonal blue lines). The two regression lines encompass a line that is parallel to y=x (the red 1590 

line) and passes through 0.19°C, which can be interpreted as the approximate average bias 1591 

between the two analyses during this period: the HadSST.4.0.0.0 estimate is adjusted to remove 1592 

large-scale biases, but this is not done for the IQUAM data. A rough estimate of the large-scale 1593 

average ship bias in HadSST.4.0.0.0 for this period can be calculated from the combined ship 1594 

and buoy biases in the three regions shown in Figure 8 by dividing the bias by the fractional 1595 

contribution of ships to the average. This gives a range of values from 0.14 (in the Northern 1596 

Hemisphere) to 0.20°C (in the Southern Hemisphere) which encompasses 0.19°C. The analysis 1597 

suggests that the magnitudes of the systematic errors for individual ships have not been 1598 

systematically underestimated and that the reconstruction can reliably estimate the size of 1599 

systematic errors in the data even for the challenging case of individual ship micro biases. 1600 

 1601 

A3.3 Testing the reconstruction using synthetic data 1602 

In the final test, a set of synthetic observations were generated from a globally-complete high-1603 

resolution (1/20° grid resolution) daily SST data set, called OSTIA (Operational Sea Surface 1604 

Temperature and Sea Ice Analysis, Donlon et al. 2012). The idea is to create a synthetic, but 1605 

realistic data set with known SSTs and known measurement errors. The techniques developed in 1606 

this paper can then be applied to estimate the errors and compare them to the prescribed values. 1607 

 1608 
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The OSTIA SST fields were sampled at the locations of ICOADS observations and synthetic 1609 

measurement errors were added to the data. If no OSTIA SST was available, no synthetic 1610 

observation was produced. The errors were drawn from the error model described in Section 3.1. 1611 

Each synthetic observation had an uncorrelated measurement error added to it which was drawn 1612 

from a normal distribution with a standard deviation equal to the estimated uncorrelated error 1613 

uncertainty for that platform (ship, drifting buoy or moored buoy, see Table 1). In addition, each 1614 

individual agent, identified by its ID in ICOADS, was assigned a micro-bias error that was added 1615 

to every observation made by the agent. The micro-bias errors were drawn from a normal 1616 

distribution with a standard deviation equal to the estimated micro-bias error uncertainty for that 1617 

platform (Table 1). Finally, characteristic biases were added to all observations made using a 1618 

particular measurement method. The characteristic biases were drawn from a normal distribution 1619 

with standard deviation of 0.2°C. New error values were drawn for each month for all 1620 

components. 1621 

 1622 

The synthetic observations were processed in the same way as the actual observations. The 1623 

synthetic observations were gridded and the uncertainties in the gridded data were calculated 1624 

(Section 3). The large-scale biases (Section A2) and micro-biases for individual ships were 1625 

estimated (Section A3.2) for each month. 1626 

 1627 

Figure 21 shows the difference between the estimated and prescribed synthetic biases for each 1628 

measurement type and the estimated uncertainty envelope. The uncertainties in the biases are 1629 

reasonably well estimated for the bucket and hull sensor measurements. However, there is some 1630 

evidence of a slight bias in the estimation of the ERI biases, which appears to be consistently 1631 

“warm” prior to 2009. This is odd, because the input biases have a mean of zero and are 1632 



Confidential manuscript submitted to Journal of Geophysical Research Atmospheres 

75 

 

symmetrically distributed, and suggests that residual errors of around 0.05°C cannot be reliably 1633 

eliminated using this method. Consequently, a lower limit on uncertainties estimated in this way 1634 

is set at 0.05°C. 1635 

 1636 

Figure 22 shows the comparison of the assigned and estimated micro-biases for ships. For the 1637 

majority of ships, the estimated micro-biases are close to zero (Figure 22(a)), which is the mean 1638 

of the prior estimate for the micro-biases. This happens because the estimates are based on 1639 

coarsely gridded data and there is insufficient information to estimate the micro-biases if many 1640 

ships contribute to the same grid-box average. This is reflected in the uncertainties attached to 1641 

each estimate of the micro-bias. Selecting only those ships where the uncertainty is significantly 1642 

lower than the prior value (Figure 22(b)-(d)) shows a closer correlation between the estimated 1643 

and assigned micro-biases. This further demonstrates the ability of the method to extract 1644 

individual ship biases. 1645 

A4 Derivation of bucket biases 1646 

The bias for a grid cell can be written (Equation 4.1) as  1647 

𝑩 = 𝒇𝒆𝑬 + 𝒇𝒄𝑩𝒕𝒄 + 𝒇𝒘𝑩𝒕𝒘 + 𝒇𝒓𝑩𝒕𝒓 + 𝒇𝒅𝑫 Equation A18 

The bucket correction for a canvas bucket, Bc, which adjusts the grid-box average bias to be 1648 

consistent with the climatological average, can be written as  1649 

𝑩𝒄 = 𝑩𝒕𝒄 − 𝑩̅ Equation A19 

Where the overbar denotes the 1961-1990 average. Expanding this out:  1650 

𝑩𝒄 = 𝑩𝒕𝒄 − 𝒇𝒆𝑬̅̅ ̅̅ ̅ − 𝒇𝒄
̅̅ ̅𝑩𝒕𝒄 − 𝒇𝒘

̅̅̅̅ 𝑩𝒕𝒘 − 𝒇𝒓
̅̅ ̅𝑩𝒕𝒓 − 𝒇𝒅

̅̅ ̅𝑫 Equation A20 
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The overbars cover only those terms of the equation that are time-varying. In addition, fw is zero 1651 

during the climatology period (there are considered to be no wooden buckets) and D, the drifter 1652 

bias, is zero at all times, so 1653 

𝑩𝒄 = 𝑩𝒕𝒄 − 𝒇𝒆𝑬̅̅ ̅̅ ̅ − 𝒇𝒄
̅̅ ̅𝑩𝒕𝒄 − 𝒇𝒓

̅̅ ̅𝑩𝒕𝒓 Equation A21 

And, rearranging:  1654 

𝑩𝒕𝒄 =
𝑩𝒄 + 𝒇𝒆𝑬̅̅ ̅̅ ̅ + 𝒇𝒓

̅̅ ̅𝑩𝒕𝒓

(𝟏 − 𝒇𝒄
̅̅ ̅)

 Equation A22 

We get the formula for calculating the true bias of a canvas bucket given the bucket correction 1655 

for a canvas bucket and the true biases for ERI and rubber bucket measurements. 1656 

A5 Comparison to AR5 1657 

The IPCC AR5 (Hartman et al. 2013) showed trends over particular periods for a number of 1658 

different SST data sets: HadISST1.1 (Rayner et al. 2003), HadSST2 (R06), COBE-SST (Ishii et 1659 

al. 2005) and ERSSTv3 (Smith et al. 2008). Figure 23 shows the HadSST.4.0.0.0 and ERSSTv4 1660 

ensemble estimates of the trends over the same periods (1880-2012, 1901-2012, 1951-2012 and 1661 

1979-2012). Also shown are trends over the period 1998-2012 (used in Karl et al. 2015) and 1662 

2002-2012. 1663 

 1664 

There are a number of interesting things to note. First, the spread from the HadSST.4.0.0.0 1665 

ensemble, which incorporates uncertainty in the bias adjustments only, is a major part of the 1666 

uncertainty at long time scales (>30 years, Figure 23 (a)-(d)). At shorter time scales, however, 1667 

the ensemble spread contributes only a small part to the overall uncertainty, the remainder 1668 

coming from measurement and sampling errors, particularly the effect of micro-biases. This is 1669 

particularly clear for the periods 1998-2012 and 2002-2012 where this component dominates 1670 
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(Figure 23 (e) and (f)). Second, the ERSSTv4 and HadSST.4.0.0.0 ensembles overlap at all 1671 

times, implying that the two estimates are consistent for this measure. Third, over the largest 1672 

time periods (Figure 23(a) and (b)) the net effect of the adjustments is to reduce the trend relative 1673 

to the unadjusted observations. 1674 

 1675 

In the period 1998-2012, the unadjusted data have a trend close to zero. In the period 2002-2012, 1676 

the unadjusted trend is negative. In contrast, all the adjusted data sets indicate more warming (or 1677 

less cooling) than in the unadjusted data. This is consistent across the three data sets. For other 1678 

periods, 1979-2012, for example, the sign of the correction is not clear with some adjustments 1679 

increasing the trend and others reducing it even within one ensemble.  1680 

 1681 

Finally, the estimates from the three current, fully-adjusted, data sets all tend to sit at the upper 1682 

end of the range from the data sets employed in IPCC AR5. 1683 
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Table 1: Values used for uncertainties arising from uncorrelated random effects (σu) and from 2031 

random effects which are correlated for a particular agent (σb)  for ships, drifting buoys and 2032 

moored buoys from K11c. 2033 

 σu σb 

Ships 0.74°C 0.71°C 

Drifting buoys 0.26°C 0.29°C 

Moored buoys 0.30°C 0.20°C 

 2034 

Figure Captions 2035 

Figure 1: numbers of observations passing QC (a, c, e) and super-observations (b, d, f, see 2036 

Section 3 for the definition) per month for the globe (black), Southern Hemisphere (orange) and 2037 

Northern Hemisphere (blue) for (a,b) 1850-1880, (c, d) 1880-2000 and (e, f) 2000-2018. Note 2038 

the very different scales for the y-axes. 2039 

 2040 

Figure 2: Fractional contribution of different SST observation methods, 1915-2018, to (a) the 2041 

Global average, (b) the Southern Hemisphere average and (c) the Northern Hemisphere average. 2042 

The brown/orange/tan areas indicate ship observations as labeled in panel (a) and the blue areas 2043 

indicate buoy observations. The pale lilac area represents unknown measurement method 2044 

(assumed to be from ships). These are the initial assignments (Section 2.2.1) and are not the 2045 

assignments finally used to calculate the adjustments. 2046 

Figure 3: Example fields from the gridding procedure for the 5° by 5° by pentad grid boxes: (a) 2047 

SST anomalies (°C) for June 2003 relative to the 1961-1990 average; (b) number of observations 2048 
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contributing to each grid-box average; (c) number of super observations in each grid box; (d) 2049 

fractional contribution to the grid-box average by ERI measurements; (e) fractional contribution 2050 

to the grid-box average by drifting buoys (drifters); (f) fractional contribution to the grid-box 2051 

average by moored buoys (moorings); (g) estimated uncertainty associated with uncorrelated 2052 

errors; (h) estimated uncertainty (ºC) associated with under sampling; and (i) estimated 2053 

uncertainty (°C) associated with micro-bias errors. 2054 

Figure 4: Schematic diagram showing the flow of information in the parameter and bias 2055 

estimation and the corresponding sections in the paper. Blue boxes are input data sets and 2056 

analyses. Pink boxes correspond to steps described in Section 2 and 3. Orange boxes correspond 2057 

to processing described in Section 4. 2058 

Figure 5: Annual global averages of the 200 realizations of the bucket corrections (a) R06-style 2059 

corrections (b) SR02-style corrections, (c) combined R06 and SR02 corrections. Blue lines in 2060 

(a)-(c) show ensemble members with a linear transition from wooden to canvas buckets and 2061 

orange lines show ensemble members generated assuming a step change in the fraction of 2062 

wooden and canvas buckets. (d) Estimated seasonal cycle of insulated bucket biases. 2063 

Figure 6: (left column) Estimated seasonal-average ERI biases (orange) and bucket biases (blue) 2064 

(°C) 1940-2018 for (a) the globe, (c) the southern hemisphere and (e) the northern hemisphere. 2065 

(right column) Smoothed estimated monthly ERI biases (°C) for (b) the globe, (d) the southern 2066 

hemisphere and (f) the northern hemisphere. The smoothed estimate is shown in orange with the 2067 

seasonal-averages from the left column shown in grey. 2068 

Figure 7:  Smoothed time series of the estimated fraction fcorrect of measurements labeled as 2069 

buckets that were correctly identified as buckets for (a) rejected start and end dates and (b) 2070 
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accepted start and end dates. (c) accepted (blue) and rejected (red) start and end date 2071 

combinations. (d) The black line is the annual average inferred fraction of correct bucket 2072 

assignments which is the average of the unsmoothed blue lines in (b). The red lines indicate the 2073 

mean and ranges used to draw samples. The mean values are held constant at 0.5 between 1945 2074 

and 1952 and at 0.95 after 1978. The blue lines show 10 samples of the full 200 member 2075 

ensemble from 1945 on. Before 1945 the mean is set to 0.5, but the uncertainty is larger. 2076 

 2077 

Figure 8: (a) Estimated monthly bias (°C, orange) in global average SST 1850-2018 for the full 2078 

gridded dataset, including ships and buoys and (b) estimated bias in global average SST anomaly 2079 

(°C, blue) relative to a 1961-1990 period, again for all data. (c and d) as for (a and b) except for 2080 

the Southern Hemisphere. (e and f) as for (a and b) except for the Northern Hemisphere. The 2081 

black line is the median bias and the shaded area represents the 95% range of the estimated 2082 

biases. 2083 

Figure 9: Monthly global average SST anomalies (°C) 1850-2018 (a) relative to the unadjusted 2084 

1961-1990 climatology and (b) relative to the bias-adjusted 1961-1990 climatology. (c and d) as 2085 

for (a and b) except for the Southern Hemisphere. (e and f) as for (a and b) except for the 2086 

Northern Hemisphere. The grey line shows the unadjusted data, the black line is the median of 2087 

the adjusted data. The blue and orange shading represents the 95% range of the ensemble. 2088 

Figure 10: (a) Annual global average unadjusted SST anomalies 1940-2014 (°C relative to 2089 

unadjusted 1961-1990 climatology) for collocated bucket (blue) and ERI (orange) 2090 

measurements. The solid line is the best estimate and the shaded area is the 95% uncertainty 2091 

range (accounting for measurement and sampling errors). (b) Adjusted anomalies with expanded 2092 
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uncertainty range including bias adjustment uncertainty. The dotted line indicates the best 2093 

estimate of the unadjusted series from (a). (c) and (d) as for (a) and (b) but for the Southern 2094 

Hemisphere. (e) and (f) as for (a) and (b) but for the Northern Hemisphere. 2095 

Figure 11:  Comparisons between sea-surface temperature data sets from different sources 1990- 2096 

July 2018, different comparison data sets cover different periods. (a) Global average SST 2097 

anomalies (°C), relative to the 1961-1990 HadSST2 climatology, from Argo floats (purple and 2098 

purple shading) and HadSST.4.0.0.0 (black solid line and grey shading) each reduced to their 2099 

common coverage. Shading indicates the 95% uncertainty range. The unadjusted SST data are 2100 

shown as a black dotted line. (b) Indicator of the number of 5° grid boxes in HadSST.4.0.0.0 2101 

(pale grey) and in the Argo data set (purple) Data are plotted only for the overlap. (c) as for (a), 2102 

but with ARC (in red, no uncertainty range shown) substituted for Argo. (d) as for (b) but with 2103 

ARC substituted for Argo. (e) as for (a) but with buoys (in blue and blue shading) substituted for 2104 

Argo. (f) as for (b) but with buoys substituted for Argo. 2105 

Figure 12: Average SST difference (°C) between HadSST.4.0.0.0 and the three instrumentally 2106 

homogeneous data sets (a) buoys 1995-2018, (b) ARC 1995-2012, and (c) Argo 2000-2017. (d) 2107 

Shows the difference between HadSST.4.0.0.0 and the unadjusted gridded SSTs, 1995-2018. 2108 

Figure 13: (a) Collocated global annual average NMAT anomalies (°C) 1900-2010 offset by 2109 

0.15°C (blue, relative to 1961-1990) and global annual average SST anomalies from 2110 

HadSST.4.0.0.0 (black is central estimate and grey shading indicates 95% uncertainty range). (b) 2111 

Offset NMAT anomalies minus SST anomalies with combined 95% uncertainty range (taking 2112 

into account the bias errors from the HadSST.4.0.0.0 ensemble, and measurement and sampling 2113 

errors in the SST). The dashed line indicates zero difference. (c) Collocated global annual 2114 
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average offset NMAT anomalies (blue), global annual average near-surface water temperature 2115 

from HadIOD excluding Argo (orange) and SST (black is central estimate and grey shading 2116 

again indicates 95% uncertainty range). (d) Difference between HadIOD and HadSST.4.0.0.0 2117 

(orange) and NMAT and HadSST.4.0.0.0 (blue). The shaded area indicates the 95% uncertainty 2118 

range. 2119 

Figure 14: (a and b) Global, (c and d) Southern Hemisphere and (e and f) Northern Hemisphere 2120 

annual average SST anomalies (°C) 1850-2018 relative to 1961-1990 for HadSST.4.0.0.0 (black 2121 

line is the median in the left column and the grey shading in the right column represents the 95% 2122 

uncertainty range) and HadSST.3.1.1.0 (blue line is the median and the blue shading represents 2123 

the 95% uncertainty range). Uncertainty estimates combine the bias-adjustment uncertainties 2124 

from the ensemble with measurement and sampling uncertainties. 2125 

Figure 15: (a) Global average SST anomaly 1850-2012 (°C relative to 1961-1990) series from 2126 

HadSST.4.0.0.0 (black), ERSSTv5 (blue, thick line is operational version and thin-thick dashed 2127 

lines are ensemble range from the 1000-member ERSSTv4 ensemble), COBE-SST-2 (orange), 2128 

HadSST.3.1.1.0 (green) and unadjusted SSTs (red). All data sets are averaged on to a 5° grid and 2129 

reduced to HadSST.4.0.0.0 coverage before comparison. (b) Global-average difference for each 2130 

data set from HadSST.4.0.0.0. The grey shading shows the 95% uncertainty range from 2131 

HadSST.4.0.0.0 including effects from measurement, sampling and bias-adjustment errors. The 2132 

bias-adjustment uncertainty range is shown in darker grey. (c) and (d) as for (a) and (b) but for 2133 

the Southern Hemisphere. (e) and (f) as for (a) and (b) but for the Northern Hemisphere. 2134 

Figure 16: Global and regional average SST anomaly trends to 2012. Median trends from 2135 

HadSST.4.0.0.0 are indicated by a black horizontal line and the grey shading indicates median 2136 
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and 95% uncertainty range including effects from measurement, sampling and bias-adjustment 2137 

errors. The bias-adjustment uncertainty range is shown in darker grey; ERSSTv5 (blue), the 2138 

lozenge is the operational version and the vertical line is the 95% ensemble range from the 1000-2139 

member ERSSTv4 ensemble); COBE-SST-2 (orange); HadSST.3.1.1.0 (green); and unadjusted 2140 

SSTs (red). 2141 

Figure 17: (a)  Standard deviation of SST anomalies (°C), (b) Zonal length scale Lx (km) and (c) 2142 

meridional length scale Ly (km) used in the interpolation scheme.. 2143 

 2144 

Figure 18: Example of the inputs and outputs of the interpolation for July 2003. (a) gridded SST 2145 

anomalies (°C) from ships. (b) gridded SST anomalies from buoys. (c) interpolated SST 2146 

anomalies. (d) estimated ERI biases (°C). Note that the ERI data are a subset of the ship data so 2147 

the coverage is not identical. 2148 

Figure 19: Tests of effectiveness of the reconstruction method from 2000-2014. Blue lines show 2149 

results for the 19th century coverage tests, red lines show the results of the missing-at-random 2150 

tests and the purple lines show the test where data were removed at selected locations of Argo 2151 

observations. (a) probability distribution for chi-squared statistics calculated from the withheld 2152 

data. (b) average of histograms from all scaled, withheld observations in the 19th century 2153 

coverage test (blue line) compared to the samples drawn from the posterior of the reconstruction 2154 

(black line and grey shading). (c) as for (b) but for the missing-at-random test (red). (d) as for (b) 2155 

but for the test where data were removed at the locations of Argo observations (purple). In (d) 2156 

the dashed purple line shows the offset that occurs when doing the reconstruction based on 2157 
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unadjusted data and the thin blue line shows the scaled residuals of the adjusted SSTs at the 2158 

locations of the Argo observations. 2159 

Figure 20: Density map of estimated biases for ships from the HadSST.4.0.0.0 analysis (where 2160 

the estimated uncertainty on the bias was less than 0.25°C) and from the IQUAM analysis 2161 

between 2000 and 2012. The blue lines show the regression of the IQUAM estimate on 2162 

HadSST.4.0.0.0 and vice versa. The red line is the y=x line offset by 0.19°C. A small white cross 2163 

marks [0,0]. White lines show the boundaries of the bins, separated by 0.1K. 2164 

Figure 21: Tests of bias estimation using synthetic data. (a) histograms of differences between 2165 

prescribed and estimated characteristic biases for each month for each measurement type in the 2166 

synthetic data set including buckets (blue), ERI (orange) and hull sensors (hot pink). (b) time 2167 

series of difference between assigned and estimated biases for bucket measurements (blue) and 2168 

the 95% uncertainty range (grey lines). (c) as for (b) but for ERI measurements in orange. (d) as 2169 

for (b) but for hull sensors in hot pink. 2170 

Figure 22 (a) Density map of prescribed vs estimated micro-biases for all ships in the synthetic 2171 

data set. Darker colours indicate higher densities. (b) as for (a) except it shows only those ships 2172 

for which the uncertainty in the estimated micro-bias is less than 0.5°C. (c) as for (b) but with an 2173 

uncertainty less than 0.15°C. (d) as for (b) but for uncertainties less than 0.05°C. The black 2174 

diagonal line is y=x. White lines show the boundaries of the bins, separated by 0.1K. 2175 

Figure 23: Histograms for trend estimates in global average temperatures (°C/decade) for 2176 

different periods (indicated in the individual plot titles) and different data sets. HadSST.4.0.0.0 is 2177 

shown in grey (generated from the 200-member ensemble of bias adjustments only) and black 2178 

(generated from the 200-member ensemble of bias adjustments combined with samples from the 2179 
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measurement and sampling uncertainties). The ERSSTv4 ensemble is shown in blue, with the 2180 

operational ERSSTv5 point shown as a blue lozenge. COBE-SST-2 is shown in orange. The 2181 

unadjusted data are shown in red. In addition, the trends from the IPCC AR5 SST data sets are 2182 

shown as green lozenges numbered as follows: 1 is HadSST3, 2 is HadSST2, 3 is HadISST1.1, 4 2183 

is COBE SST, and 5 is ERSSTv3. They do not appear in panels (e) and (f) as these periods were 2184 

not considered in Chapter 2. 2185 

 2186 
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