Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,165)

Search Parameters:
Keywords = Aβ1-42

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1096 KiB  
Review
Immunotherapy for Parkinson’s Disease and Alzheimer’s Disease: A Promising Disease-Modifying Therapy
by Anns Mahboob, Hasan Ali, AlJazi AlNaimi, Mahmoud Yousef, Mlaak Rob, Nawaf Ahmad Al-Muhannadi, Degiri Kalana Lasanga Senevirathne and Ali Chaari
Cells 2024, 13(18), 1527; https://doi.org/10.3390/cells13181527 - 12 Sep 2024
Abstract
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are two neurodegenerative diseases posing a significant disease burden due to their increasing prevalence and socio-economic cost. Traditional therapeutic approaches for these diseases exist but provide limited symptomatic relief without addressing the underlying pathologies. This review [...] Read more.
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are two neurodegenerative diseases posing a significant disease burden due to their increasing prevalence and socio-economic cost. Traditional therapeutic approaches for these diseases exist but provide limited symptomatic relief without addressing the underlying pathologies. This review examines the potential of immunotherapy, specifically monoclonal antibodies (mAbs), as disease-modifying treatments for AD and PD. We analyze the pathological mechanisms of AD and PD, focusing on the roles of amyloid-beta (Aβ), tau (τ), and alpha-synuclein (α-syn) proteins. We discuss the latest advancements in mAb therapies targeting these proteins, evaluating their efficacy in clinical trials and preclinical studies. We also explore the challenges faced in translating these therapies from bench to bedside, including issues related to safety, specificity, and clinical trial design. Additionally, we highlight future directions for research, emphasizing the need for combination therapies, improved biomarkers, and personalized treatment strategies. This review aims to provide insights into the current state and future potential of antibody-based immunotherapy in modifying the course of AD and PD, ultimately improving patient outcomes and quality of life. Full article
Show Figures

Figure 1

18 pages, 1722 KiB  
Article
Zeaxanthin and Lutein Ameliorate Alzheimer’s Disease-like Pathology: Modulation of Insulin Resistance, Neuroinflammation, and Acetylcholinesterase Activity in an Amyloid-β Rat Model
by Da-Sol Kim, Suna Kang, Na-Rang Moon, Bae-Keun Shin and Sunmin Park
Int. J. Mol. Sci. 2024, 25(18), 9828; https://doi.org/10.3390/ijms25189828 - 11 Sep 2024
Viewed by 195
Abstract
Alzheimer’s disease (AD) is characterized by impaired insulin/insulin-like growth factor-1 signaling in the hippocampus. Zeaxanthin and lutein, known for their antioxidant and anti-inflammatory properties, have been reported to protect against brain damage and cognitive decline. However, their mechanisms related to insulin signaling in [...] Read more.
Alzheimer’s disease (AD) is characterized by impaired insulin/insulin-like growth factor-1 signaling in the hippocampus. Zeaxanthin and lutein, known for their antioxidant and anti-inflammatory properties, have been reported to protect against brain damage and cognitive decline. However, their mechanisms related to insulin signaling in AD remain unclear. This study investigated the efficacy and mechanisms of zeaxanthin, lutein, and resveratrol in modulating an AD-like pathology in an amyloid-β rat model. Rats were administered hippocampal infusions of 3.6 nmol/day amyloid-β (Aβ)(25-35) for 14 days to induce AD-like memory deficits (AD-CON). Normal control rats received Aβ(35-25) (Normal-CON). All rats had a high-fat diet. Daily, AD rats consumed 200 mg/kg body weight of zeaxanthin (AD-ZXT), lutein (AD-LTN), and resveratrol (AD-RVT; positive-control) or resistant dextrin as a placebo (AD-CON) for eight weeks. The AD-CON rats exhibited a higher Aβ deposition, attenuated hippocampal insulin signaling (reduced phosphorylation of protein kinase B [pAkt] and glycogen synthase kinase-3β [pGSK-3β]), increased neuroinflammation, elevated acetylcholinesterase activity, and memory deficits compared to the Normal-CON group. They also showed systemic insulin resistance and high hepatic glucose output. Zeaxanthin and lutein prevented memory impairment more effectively than the positive-control resveratrol by suppressing acetylcholinesterase activity, lipid peroxidation, and pro-inflammatory cytokines (TNF-α, IL-1β). They also potentiated hippocampal insulin signaling and increased brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CTNF) mRNA expression to levels comparable to the Normal-CON rats. Additionally, zeaxanthin and lutein improved glucose disposal, reduced hepatic glucose output, and normalized insulin secretion patterns. In conclusion, zeaxanthin and lutein supplementation at doses equivalent to 1.5–2.0 g daily in humans may have practical implications for preventing or slowing human AD progression by reducing neuroinflammation and maintaining systemic and central glucose homeostasis, showing promise even when compared to the established neuroprotective compound resveratrol. However, further clinical trials are needed to evaluate their efficacy and safety in human populations. Full article
Show Figures

Figure 1

9 pages, 5825 KiB  
Hypothesis
Alzheimer’s Disease as a Membrane Dysfunction Tauopathy? New Insights into the Amyloid Cascade Hypothesis
by Tomas Olejar, Nikol Jankovska and Radoslav Matej
Int. J. Mol. Sci. 2024, 25(17), 9689; https://doi.org/10.3390/ijms25179689 - 7 Sep 2024
Viewed by 242
Abstract
The amyloid cascade hypothesis postulates that extracellular deposits of amyloid β (Aβ) are the primary and initial cause leading to the full development of Alzheimer’s disease (AD) with intracellular neurofibrillary tangles; however, the details of this mechanism have not been fully described until [...] Read more.
The amyloid cascade hypothesis postulates that extracellular deposits of amyloid β (Aβ) are the primary and initial cause leading to the full development of Alzheimer’s disease (AD) with intracellular neurofibrillary tangles; however, the details of this mechanism have not been fully described until now. Our preliminary data, coming from our day-to-day neuropathology practice, show that the primary location of the hyperphosphorylated tau protein is in the vicinity of the cell membrane of dystrophic neurites. This observation inspired us to formulate a hypothesis that presumes an interaction between low-density lipoprotein receptor-related protein 1 (LRP1) and fibrillar aggregates of, particularly, Aβ42 anchored at the periphery of neuritic plaques, making internalization of the LRP1-Aβ42 complex infeasible and, thus, causing membrane dysfunction, leading to the tauopathy characterized by intracellular accumulation and hyperphosphorylation of the tau protein. Understanding AD as a membrane dysfunction tauopathy may draw attention to new treatment approaches not only targeting Aβ42 production but also, perhaps paradoxically, preventing the formation of LRP1-Aβ42. Full article
Show Figures

Figure 1

18 pages, 3225 KiB  
Article
A Novel Rare PSEN2 Val226Ala in PSEN2 in a Korean Patient with Atypical Alzheimer’s Disease, and the Importance of PSEN2 5th Transmembrane Domain (TM5) in AD Pathogenesis
by YoungSoon Yang, Eva Bagyinszky and Seong Soo A. An
Int. J. Mol. Sci. 2024, 25(17), 9678; https://doi.org/10.3390/ijms25179678 - 6 Sep 2024
Viewed by 353
Abstract
In this manuscript, a novel presenilin-2 (PSEN2) mutation, Val226Ala, was found in a 59-year-old Korean patient who exhibited rapid progressive memory dysfunction and hallucinations six months prior to her first visit to the hospital. Her Magnetic Resonance Imaging (MRI) showed brain atrophy, and [...] Read more.
In this manuscript, a novel presenilin-2 (PSEN2) mutation, Val226Ala, was found in a 59-year-old Korean patient who exhibited rapid progressive memory dysfunction and hallucinations six months prior to her first visit to the hospital. Her Magnetic Resonance Imaging (MRI) showed brain atrophy, and both amyloid positron emission tomography (PET) and multimer detection system-oligomeric amyloid-beta (Aβ) results were positive. The patient was diagnosed with early onset Alzheimer’s disease. The whole-exome analysis revealed a new PSEN2 Val226Ala mutation with heterozygosity in the 5th transmembrane domain of the PSEN2 protein near the lumen region. Analyses of the structural prediction suggested structural changes in the helix, specifically a loss of a hydrogen bond between Val226 and Gln229, which may lead to elevated helix motion. Multiple PSEN2 mutations were reported in PSEN2 transmembrane-5 (TM5), such as Tyr231Cys, Ile235Phe, Ala237Val, Leu238Phe, Leu238Pro, and Met239Thr, highlighting the dynamic importance of the 5th transmembrane domain of PSEN2. Mutations in TM5 may alter the access tunnel of the Aβ substrate in the membrane to the gamma-secretase active site, indicating a possible influence on enzyme function that increases Aβ production. Interestingly, the current patient with the Val226Ala mutation presented with a combination of hallucinations and memory dysfunction. Although the causal mechanisms of hallucinations in AD remain unclear, it is possible that PSEN2 interacts with other disease risk factors, including Notch Receptor 3 (NOTCH3) or Glucosylceramidase Beta-1 (GBA) variants, enhancing the occurrence of hallucinations. In conclusion, the direct or indirect role of PSEN2 Val226Ala in AD onset cannot be ruled out. Full article
(This article belongs to the Special Issue Genetic Research in Neurological Diseases)
Show Figures

Figure 1

11 pages, 1871 KiB  
Communication
A Computational Approach in the Systematic Search of the Interaction Partners of Alternatively Spliced TREM2 Isoforms
by Junyi Liang, Aditya Menon, Taylor Tomco, Nisha Bhattarai, Iris Nira Smith, Maria Khrestian, Shane V. Formica, Charis Eng, Matthias Buck and Lynn M. Bekris
Int. J. Mol. Sci. 2024, 25(17), 9667; https://doi.org/10.3390/ijms25179667 - 6 Sep 2024
Viewed by 271
Abstract
Alzheimer’s disease is the most common form of dementia, characterized by the pathological accumulation of amyloid-beta (Aβ) plaques and tau neurofibrillary tangles. Triggering receptor expressed on myeloid cells 2 (TREM2) is increasingly recognized as playing a central role in Aβ clearance and microglia [...] Read more.
Alzheimer’s disease is the most common form of dementia, characterized by the pathological accumulation of amyloid-beta (Aβ) plaques and tau neurofibrillary tangles. Triggering receptor expressed on myeloid cells 2 (TREM2) is increasingly recognized as playing a central role in Aβ clearance and microglia activation in AD. The TREM2 gene transcriptional product is alternatively spliced to produce three different protein isoforms. The canonical TREM2 isoform binds to DAP12 to activate downstream pathways. However, little is known about the function or interaction partners of the alternative TREM2 isoforms. The present study utilized a computational approach in a systematic search for new interaction partners of the TREM2 isoforms by integrating several state-of-the-art structural bioinformatics tools from initial large-scale screening to one-on-one corroborative modeling and eventual all-atom visualization. CD9, a cell surface glycoprotein involved in cell–cell adhesion and migration, was identified as a new interaction partner for two TREM2 isoforms, and CALM, a calcium-binding protein involved in calcium signaling, was identified as an interaction partner for a third TREM2 isoform, highlighting the potential role of cell adhesion and calcium regulation in AD. Full article
(This article belongs to the Special Issue Molecular Informatics and Genomics of Alzheimer’s Disease)
Show Figures

Figure 1

21 pages, 5355 KiB  
Article
Protein Kinase C-Delta Mediates Cell Cycle Reentry and Apoptosis Induced by Amyloid-Beta Peptide in Post-Mitotic Cortical Neurons
by Ming-Hsuan Wu, A-Ching Chao, Yi-Heng Hsieh, You Lien, Yi-Chun Lin and Ding-I Yang
Int. J. Mol. Sci. 2024, 25(17), 9626; https://doi.org/10.3390/ijms25179626 - 5 Sep 2024
Viewed by 240
Abstract
Amyloid-beta peptide (Aβ) is a neurotoxic constituent of senile plaques in the brains of Alzheimer’s disease (AD) patients. The detailed mechanisms by which protein kinase C-delta (PKCδ) contributes to Aβ toxicity is not yet entirely understood. Using fully differentiated primary rat cortical neurons, [...] Read more.
Amyloid-beta peptide (Aβ) is a neurotoxic constituent of senile plaques in the brains of Alzheimer’s disease (AD) patients. The detailed mechanisms by which protein kinase C-delta (PKCδ) contributes to Aβ toxicity is not yet entirely understood. Using fully differentiated primary rat cortical neurons, we found that inhibition of Aβ25-35-induced PKCδ increased cell viability with restoration of neuronal morphology. Using cyclin D1, proliferating cell nuclear antigen (PCNA), and histone H3 phosphorylated at Ser-10 (p-Histone H3) as the respective markers for the G1-, S-, and G2/M-phases, PKCδ inhibition mitigated cell cycle reentry (CCR) and subsequent caspase-3 cleavage induced by both Aβ25-35 and Aβ1-42 in the post-mitotic cortical neurons. Upstream of PKCδ, signal transducers and activators of transcription (STAT)-3 mediated PKCδ induction, CCR, and caspase-3 cleavage upon Aβ exposure. Downstream of PKCδ, aberrant neuronal CCR was triggered by overactivating cyclin-dependent kinase-5 (CDK5) via calpain2-dependent p35 cleavage into p25. Finally, PKCδ and CDK5 also contributed to Aβ25-35 induction of p53-upregulated modulator of apoptosis (PUMA) in cortical neurons. Together, we demonstrated that, in the post-mitotic neurons exposed to Aβs, STAT3-dependent PKCδ expression triggers calpain2-mediated p35 cleavage into p25 to overactivate CDK5, thus leading to aberrant CCR, PUMA induction, caspase-3 cleavage, and ultimately apoptosis. Full article
(This article belongs to the Special Issue Cell Division: A Focus on Molecular Mechanisms)
Show Figures

Figure 1

12 pages, 3060 KiB  
Article
Sulfated Polysaccharides Isolated from Nacre Extract Suppress Chronic Scopolamine Administration-Induced Amyloid-Beta Deposition
by Mayumi Wako, Kanae Ohara and Yasushi Hasegawa
Appl. Sci. 2024, 14(17), 7830; https://doi.org/10.3390/app14177830 - 4 Sep 2024
Viewed by 347
Abstract
Pearl oyster shells are composed of a double layer of calcium carbonate polymorphs: prismatic and nacreous. The nacreous layer is used in functional foods and cosmetics. In an earlier work, we reported that sulfated polysaccharides in nacre extract ameliorated memory impairment induced by [...] Read more.
Pearl oyster shells are composed of a double layer of calcium carbonate polymorphs: prismatic and nacreous. The nacreous layer is used in functional foods and cosmetics. In an earlier work, we reported that sulfated polysaccharides in nacre extract ameliorated memory impairment induced by a single dose of scopolamine. Here, we investigated whether sulfated polysaccharides suppress amyloid-beta (Aβ) deposition in an Alzheimer’s disease model induced by prolonged administration of scopolamine. Chronic scopolamine administration induces Aβ deposition; however, sulfated polysaccharides suppressed this effect. Additionally, sulfated polysaccharides ameliorated the accumulation of phosphorylated tau, neuroinflammation, and neuronal cell death in the brain, which are common features of patients with Alzheimer’s disease. To further determine the inhibitory mechanisms of Aβ deposition, we assessed the amount of the Aβ-degrading enzyme insulin-degrading enzyme (IDE). In animal experiments, sulfated polysaccharides increased IDE levels in scopolamine-treated mice. To study the effect of sulfated polysaccharides on insulin signaling, which regulates IDE expression, we evaluated the expression levels of phosphorylated Akt and nuclear factor-kB. Sulfated polysaccharides restored the levels of phosphorylated Akt and nuclear factor-kB, which were decreased and increased, respectively, using scopolamine treatment. Overall, our findings suggest that sulfated polysaccharides suppress Aβ deposition by regulating IDE expression. Full article
Show Figures

Figure 1

17 pages, 2126 KiB  
Article
The Impact of High-Dose Fish Oil Supplementation on Mfsd2a, Aqp4, and Amyloid-β Expression in Retinal Blood Vessels of 5xFAD Alzheimer’s Mouse Model
by Irena Jovanovic Macura, Desanka Milanovic, Vesna Tesic, Tamara Major, Milka Perovic, Miroslav Adzic and Sanja Ivkovic
Int. J. Mol. Sci. 2024, 25(17), 9400; https://doi.org/10.3390/ijms25179400 - 29 Aug 2024
Viewed by 287
Abstract
In patients with Alzheimer’s disease (AD) and in animal models, the increased accumulation of amyloid β (Aβ) in retinal blood vessels strongly correlates with brain amyloid deposits and cognitive decline. The accumulation of Aβ in blood vessels may result from impaired transcytosis and [...] Read more.
In patients with Alzheimer’s disease (AD) and in animal models, the increased accumulation of amyloid β (Aβ) in retinal blood vessels strongly correlates with brain amyloid deposits and cognitive decline. The accumulation of Aβ in blood vessels may result from impaired transcytosis and a dysfunctional ocular glymphatic system in AD. High-dose fish oil (FO) supplementation has been shown to significantly change the expression of major facilitator superfamily domain-containing protein 2a (Mfsd2a), a key regulator of transcytosis, and Aquaporin 4 (Aqp4), an essential component of the glymphatic system in the retinas of WT mice. We examined the expression of Mfsd2a and Aqp4 in the retinas of 4-month-old 5xFAD female mice supplemented with high-dose FO for three weeks. There was a significant increase in Mfsd2a expression in 5xFAD retinas supplemented with FO compared to control 5xFAD mice. Additionally, the increase in Aqp4 expression observed in 4-month-old 5xFAD retinas, indicative of an impaired glymphatic system, was significantly decreased. Simultaneously, Aβ accumulation in 5xFAD retinal blood vessels was reduced following FO supplementation. These findings suggest that high-dose FO supplementation could serve as an adjunct in developing new treatments aimed at improving the regulation of transcytosis or the function of the glymphatic system in the AD retina. Full article
Show Figures

Figure 1

32 pages, 8935 KiB  
Article
Cognitive Effects of Simulated Galactic Cosmic Radiation Are Mediated by ApoE Status, Sex, and Environment in APP Knock-In Mice
by Laura Wieg, Jason C. Ciola, Caroline C. Wasén, Fidelia Gaba, Brianna R. Colletti, Maren K. Schroeder, Robert G. Hinshaw, Millicent N. Ekwudo, David M. Holtzman, Takashi Saito, Hiroki Sasaguri, Takaomi C. Saido, Laura M. Cox and Cynthia A. Lemere
Int. J. Mol. Sci. 2024, 25(17), 9379; https://doi.org/10.3390/ijms25179379 - 29 Aug 2024
Viewed by 398
Abstract
Cosmic radiation experienced during space travel may increase the risk of cognitive impairment. While simulated galactic cosmic radiation (GCRsim) has led to memory deficits in wildtype (WT) mice, it has not been investigated whether GCRsim in combination with genetic risk factors for Alzheimer’s [...] Read more.
Cosmic radiation experienced during space travel may increase the risk of cognitive impairment. While simulated galactic cosmic radiation (GCRsim) has led to memory deficits in wildtype (WT) mice, it has not been investigated whether GCRsim in combination with genetic risk factors for Alzheimer’s disease (AD) worsens memory further in aging mice. Here, we investigated the central nervous system (CNS) effects of 0 Gy (sham) or 0.75 Gy five-ion GCRsim or 2 Gy gamma radiation (IRR) in 14-month-old female and male APPNL-F/NL-F knock-in (KI) mice bearing humanized ApoE3 or ApoE4 (APP;E3F and APP;E4F). As travel to a specialized facility was required for irradiation, both traveled sham-irradiated C57BL/6J WT and KI mice and non-traveled (NT) KI mice acted as controls for potential effects of travel. Mice underwent four behavioral tests at 20 months of age and were euthanized for pathological and biochemical analyses 1 month later. Fecal samples were collected pre- and post-irradiation at four different time points. GCRsim seemed to impair memory in male APP;E3F mice compared to their sham counterparts. Travel tended to improve cognition in male APP;E3F mice and lowered total Aβ in female and male APP;E3F mice compared to their non-traveled counterparts. Sham-irradiated male APP;E4F mice accumulated more fibrillar amyloid than their APP;E3F counterparts. Radiation exposure had only modest effects on behavior and brain changes, but travel-, sex-, and genotype-specific effects were seen. Irradiated mice had immediate and long-term differences in their gut bacterial composition that correlated to Alzheimer’s disease phenotypes. Full article
(This article belongs to the Special Issue Advanced Science in Alzheimer’s Disease)
Show Figures

Figure 1

13 pages, 519 KiB  
Review
Alzheimer’s Disease-Related Cerebrospinal Fluid Biomarkers in Progressive Supranuclear Palsy
by Takanobu Ishiguro and Kensaku Kasuga
Brain Sci. 2024, 14(9), 859; https://doi.org/10.3390/brainsci14090859 - 26 Aug 2024
Viewed by 625
Abstract
Progressive Supranuclear Palsy (PSP) is the most common four-repeat tauopathy. PSP cases are typically characterized by vertical gaze palsy and postural instability; however, various phenotypes have been reported, making antemortem diagnosis based on clinical symptoms challenging. The development of biomarkers reflecting brain pathology [...] Read more.
Progressive Supranuclear Palsy (PSP) is the most common four-repeat tauopathy. PSP cases are typically characterized by vertical gaze palsy and postural instability; however, various phenotypes have been reported, making antemortem diagnosis based on clinical symptoms challenging. The development of biomarkers reflecting brain pathology and the ability to diagnose patients based on these biomarkers are essential for developing future intervention strategies, including disease-modifying therapies. However, despite many dedicated efforts, no highly specific fluid biomarker for PSP has yet been established. Conversely, several cerebrospinal fluid (CSF) biomarkers of Alzheimer’s Disease (AD) have been established, and an AT(N) classification system has been proposed. Typically, among patients with AD, CSF amyloid β42 (Aβ42), but not Aβ40, is decreased, resulting in a reduction in the Aβ42/Aβ40 ratio, while tau phosphorylated at threonine 181 (p-tau181) and total tau (t-tau) are increased. Interestingly, the core CSF AD biomarkers show unique patterns in patients with PSP. Furthermore, reports have indicated that the CSF levels of both Aβ42 and Aβ40 are decreased independently of Aβ accumulation in PSP. Therefore, the Aβ42/Aβ40 ratio could potentially be used to differentiate PSP from AD. Additionally, studies have reported that CSF p-tau and t-tau are reduced in PSP, and that the neurofilament light chain is remarkably increased compared to healthy controls and patients with AD, even though PSP is a neurodegenerative disease associated with tau accumulation. These PSP-specific changes in AD-related core biomarkers may reflect the pathology of PSP and contribute to its diagnosis. As such, elucidating the mechanisms underlying the observed decreases in Aβ and tau levels could facilitate a better understanding of the pathogenesis of PSP. Full article
Show Figures

Figure 1

19 pages, 6079 KiB  
Article
Inhibition of Calcineurin with FK506 Reduces Tau Levels and Attenuates Synaptic Impairment Driven by Tau Oligomers in the Hippocampus of Male Mouse Models
by Michela Marcatti, Batbayar Tumurbaatar, Michela Borghi, Jutatip Guptarak, Wen-Ru Zhang, Balaji Krishnan, Rakez Kayed, Anna Fracassi and Giulio Taglialatela
Int. J. Mol. Sci. 2024, 25(16), 9092; https://doi.org/10.3390/ijms25169092 - 22 Aug 2024
Viewed by 539
Abstract
Alzheimer’s disease (AD) is the most common age-associated neurodegenerative disorder, characterized by progressive cognitive decline, memory impairment, and structural brain changes, primarily involving Aβ plaques and neurofibrillary tangles of hyperphosphorylated tau protein. Recent research highlights the significance of smaller Aβ and Tau oligomeric [...] Read more.
Alzheimer’s disease (AD) is the most common age-associated neurodegenerative disorder, characterized by progressive cognitive decline, memory impairment, and structural brain changes, primarily involving Aβ plaques and neurofibrillary tangles of hyperphosphorylated tau protein. Recent research highlights the significance of smaller Aβ and Tau oligomeric aggregates (AβO and TauO, respectively) in synaptic dysfunction and disease progression. Calcineurin (CaN), a key calcium/calmodulin-dependent player in regulating synaptic function in the central nervous system (CNS) is implicated in mediating detrimental effects of AβO on synapses and memory function in AD. This study aims to investigate the specific impact of CaN on both exogenous and endogenous TauO through the acute and chronic inhibition of CaN. We previously demonstrated the protective effect against AD of the immunosuppressant CaN inhibitor, FK506, but its influence on TauO remains unclear. In this study, we explored the short-term effects of acute CaN inhibition on TauO phosphorylation and TauO-induced memory deficits and synaptic dysfunction. Mice received FK506 post-TauO intracerebroventricular injection and TauO levels and phosphorylation were assessed, examining their impact on CaN and GSK-3β. The study investigated FK506 preventive/reversal effects on TauO-induced clustering of CaN and GSK-3β. Memory and synaptic function in TauO-injected mice were evaluated with/without FK506. Chronic FK506 treatment in 3xTgAD mice explored its influence on CaN, Aβ, and Tau levels. This study underscores the significant influence of CaN inhibition on TauO and associated AD pathology, suggesting therapeutic potential in targeting CaN for addressing various aspects of AD onset and progression. These findings provide valuable insights for potential interventions in AD, emphasizing the need for further exploration of CaN-targeted strategies. Full article
Show Figures

Figure 1

9 pages, 3651 KiB  
Communication
Oxysterol Induces Expression of 60 kDa Chaperone Protein on Cell Surface of Microglia
by Koanhoi Kim, Hyok-rae Cho, Bo-young Kim, Jaesung Kim, Dongha Park, Ryuk Jun Kwon and Yonghae Son
Int. J. Mol. Sci. 2024, 25(16), 9073; https://doi.org/10.3390/ijms25169073 - 21 Aug 2024
Viewed by 463
Abstract
Microglia, essential immune cells in the brain, play crucial roles in neuroinflammation by performing various functions such as neurogenesis, synaptic pruning, and pathogen defense. These cells are activated by inflammatory factors like β-amyloid (Aβ) and oxysterols, leading to morphological and functional changes, including [...] Read more.
Microglia, essential immune cells in the brain, play crucial roles in neuroinflammation by performing various functions such as neurogenesis, synaptic pruning, and pathogen defense. These cells are activated by inflammatory factors like β-amyloid (Aβ) and oxysterols, leading to morphological and functional changes, including the secretion of inflammatory cytokines and the upregulation of MHC class II molecules. This study focused on identifying specific markers for microglial activation, with a particular emphasis on the roles of oxysterols in this process. We used the HMC3 human microglial cell line to investigate the induction of heat shock protein 60 (HSP60), a chaperonin protein by oxysterols, specifically in the presence of 25-hydroxycholesterol (25OHChol) and 27-hydroxycholesterol (27OHChol). Our findings obtained by the proteomics approach revealed that these oxysterols significantly increased HSP60 expression on microglial cells. This induction was further confirmed using Western blot analysis and immunofluorescence microscopy. Additionally, Aβ1–42 also promoted HSP60 expression, indicating its role as a microglial activator. HSP60 involved in protein folding and immune modulation was identified as a potential marker for microglial activation. This study underscores the importance of HSP60 in the inflammatory response of microglia, suggesting its utility as a target for new therapeutic approaches in neuroinflammatory diseases such as Alzheimer’s disease (AD). Full article
Show Figures

Figure 1

12 pages, 1539 KiB  
Article
In Vivo Prevalence of Beta-Amyloid Pathology and Alzheimer’s Disease Co-Pathology in Idiopathic Normal-Pressure Hydrocephalus—Association with Neuropsychological Features
by Efstratios-Stylianos Pyrgelis, George P. Paraskevas, Vasilios C. Constantinides, Fotini Boufidou, Leonidas Stefanis and Elisabeth Kapaki
Biomedicines 2024, 12(8), 1898; https://doi.org/10.3390/biomedicines12081898 - 20 Aug 2024
Viewed by 727
Abstract
Idiopathic normal-pressure hydrocephalus (iNPH) is a clinic-radiological neurological syndrome presenting with cognitive deficits, gait disturbances and urinary incontinence. It often coexists with Alzheimer’s disease (AD). Due to the reversible nature of iNPH when promptly treated, a lot of studies have focused on possible [...] Read more.
Idiopathic normal-pressure hydrocephalus (iNPH) is a clinic-radiological neurological syndrome presenting with cognitive deficits, gait disturbances and urinary incontinence. It often coexists with Alzheimer’s disease (AD). Due to the reversible nature of iNPH when promptly treated, a lot of studies have focused on possible biomarkers, among which are cerebrospinal fluid (CSF) biomarkers. The aim of the present study was to determine the rate of beta-amyloid pathology and AD co-pathology by measuring AD CSF biomarkers, namely, amyloid beta with 42 and 40 amino acids (Aβ42), the Aβ42/Aβ40 ratio, total Tau protein (t-Tau) and phosphorylated Tau protein at threonine 181 (p-Tau), in a cohort of iNPH patients, as well as to investigate the possible associations among CSF biomarkers and iNPH neuropsychological profiles. Fifty-three patients with iNPH were included in the present study. CSF Aβ42, Aβ40, t-Tau and p-Tau were measured in duplicate with double-sandwich ELISA assays. The neuropsychological evaluation consisted of the Mini-Mental State Examination, Frontal Assessment Battery, Five-Word Test and CLOX drawing tests 1 and 2. After statistical analysis, we found that amyloid pathology and AD co-pathology are rather common in iNPH patients and that higher values of t-Tau and p-Tau CSF levels, as well as the existence of the AD CSF profile, are associated with more severe memory impairment in the study patients. In conclusion, our study has confirmed that amyloid pathology and AD-co-pathology are rather common in iNPH patients and that CSF markers of AD pathology and t-Tau are associated with a worse memory decline in these patients. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Graphical abstract

16 pages, 13739 KiB  
Article
A Cationic Zn-Phthalocyanine Turns Alzheimer’s Amyloid β Aggregates into Non-Toxic Oligomers and Inhibits Neurotoxicity in Culture
by Abdullah Md. Sheikh, Shatera Tabassum, Shozo Yano, Fatema Binte Abdullah, Ruochen Wang, Takahisa Ikeue and Atsushi Nagai
Int. J. Mol. Sci. 2024, 25(16), 8931; https://doi.org/10.3390/ijms25168931 - 16 Aug 2024
Viewed by 390
Abstract
Amyloid β peptide (Aβ) aggregation and deposition are considered the main causes of Alzheimer’s disease. In a previous study, we demonstrated that anionic Zn-phthalocyanine (ZnPc) can interact with the Aβ peptide and inhibit the fibril-formation process. However, due to the inability of anionic [...] Read more.
Amyloid β peptide (Aβ) aggregation and deposition are considered the main causes of Alzheimer’s disease. In a previous study, we demonstrated that anionic Zn-phthalocyanine (ZnPc) can interact with the Aβ peptide and inhibit the fibril-formation process. However, due to the inability of anionic ZnPc to cross the intact blood–brain barrier, we decided to explore the interaction of cationic methylated Zn-phthalocyanine (cZnPc) with the peptide. Using a ThT fluorescence assay, we observed that cZnPc dose-dependently and time-dependently inhibited Aβ1-42 fibril levels under in vitro fibril-formation conditions. Electron microscopy revealed that it caused Aβ1-42 peptides to form small aggregates. Western blotting and dot immunoblot oligomer experiments demonstrated that cZnPc increased rather than decreased the levels of oligomers from the very early stages of incubation. A binding assay confirmed that cZnPc could bind with the peptide. Docking simulations indicated that the oligomer species of Aβ1-42 had a higher ability to interact with cZnPc. ANS fluorescence assay results indicated that cZnPc did not affect the hydrophobicity of the peptide. However, cZnPc significantly increased intrinsic tyrosine fluorescence of the peptide after 8 h of incubation in fibril-formation conditions. Importantly, cell culture experiments demonstrated that cZnPc did not exhibit any toxicity up to a concentration of 10 µM. Instead, it protected a neuronal cell line from Aβ1-42-induced toxicity. Thus, our results suggest that cZnPc can affect the aggregation process of Aβ1-42, rendering it non-toxic, which could be crucial for the therapy of Alzheimer’s disease. Full article
(This article belongs to the Special Issue Neurodegenerative Diseases and Protein Quality Control System)
Show Figures

Figure 1

14 pages, 6193 KiB  
Article
Indole-3 Carbinol and Diindolylmethane Mitigated β-Amyloid-Induced Neurotoxicity and Acetylcholinesterase Enzyme Activity: In Silico, In Vitro, and Network Pharmacology Study
by Kakarla Ramakrishna, Praditha Karuturi, Queen Siakabinga, Gajendra T.A., Sairam Krishnamurthy, Shreya Singh, Sonia Kumari, G. Siva Kumar, M. Elizabeth Sobhia and Sachchida Nand Rai
Diseases 2024, 12(8), 184; https://doi.org/10.3390/diseases12080184 - 16 Aug 2024
Viewed by 595
Abstract
Background: Alzheimer’s disease (AD) is a neurodegenerative disease characterized by beta-amyloid (Aβ) deposition and increased acetylcholinesterase (AchE) enzyme activities. Indole 3 carbinol (I3C) and diindolylmethane (DIM) are reported to have neuroprotective activities against various neurological diseases, including ischemic stroke, Parkinson’s disease, neonatal asphyxia, [...] Read more.
Background: Alzheimer’s disease (AD) is a neurodegenerative disease characterized by beta-amyloid (Aβ) deposition and increased acetylcholinesterase (AchE) enzyme activities. Indole 3 carbinol (I3C) and diindolylmethane (DIM) are reported to have neuroprotective activities against various neurological diseases, including ischemic stroke, Parkinson’s disease, neonatal asphyxia, depression, stress, neuroinflammation, and excitotoxicity, except for AD. In the present study, we have investigated the anti-AD effects of I3C and DIM. Methods: Docking and molecular dynamic studies against AchE enzyme and network pharmacological studies were conducted for I3C and DIM. I3C and DIM’s neuroprotective effects against self and AchE-induced Aβ aggregation were investigated. The neuroprotective effects of I3C and DIM against Aβ-induced neurotoxicity were assessed in SH-S5Y5 cells by observing cell viability and ROS. Results: Docking studies against AchE enzyme with I3C and DIM show binding efficiency of −7.0 and −10.3, respectively, and molecular dynamics studies revealed a better interaction and stability between I3C and AchE and DIM and AchE. Network pharmacological studies indicated that I3C and DIM interacted with several proteins involved in the pathophysiology of AD. Further, I3C and DIM significantly inhibited the AchE (IC50: I3C (18.98 µM) and DIM (11.84 µM)) and self-induced Aβ aggregation. Both compounds enhanced the viability of SH-S5Y5 cells that are exposed to Aβ and reduced ROS. Further, I3C and DIM show equipotential neuroprotection when compared to donepezil. Conclusions: Our findings indicate that both I3C and DIM show anti-AD effects by inhibiting the Aβ induced neurotoxicity and AchE activities. Full article
Show Figures

Figure 1

Back to TopTop