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Abstract: This paper examined the accuracy of six installed LiDAR sensors at six different signalized
intersections in Trois-Rivières City, Quebec, Canada. At each intersection, the crucial leading and
following movements that cause vehicle–vehicle (V2V) and vehicle–pedestrian (V2P) conflicts were
identified, and the LiDAR results were compared to crash reports recorded by police, insurance
companies, and other reliable resources. Furthermore, the intersection crash rates were calculated
based on the daily entering vehicle traffic and the frequency of crashes at each intersection. Convo-
lutional Neural Networks (CNNs) were utilized over 970,000 V2V and V2P conflicts based on the
post encroachment time (PET) and time-to-collision (TTC) safety assessment measures. Bayesian
models were used to assess the relationships between different intersection characteristics and the
occurrence of conflicts, providing insights into the factors influencing V2V and V2P conflict occur-
rences. Additionally, a developed image-processing algorithm was utilized to examine the conflicts’
trajectories. The intersections’ crash rates indicated that safety considerations should be implemented
at intersections #3, #6, #4, #1, #5, and #2, respectively. Additionally, intersections #6, #4, and #3
were the intersections with the highest rates of vehicle–pedestrian conflicts. Analysis revealed the
intricate nature of vehicle and pedestrian interactions, demonstrating the potential of LiDAR sensors
in discerning conflict-prone areas at intersections.

Keywords: LiDAR sensor technology; V2V and V2P conflict; post encroachment time (PET); time-to-
collision (TTC); signalized intersections; traffic safety

1. Introduction

Traffic crashes and conflicts at signalized intersections are pervasive global concerns
that have substantial societal, economic, and public health implications [1–3]. While
signalized intersections aim to facilitate the orderly flow of traffic and enhance safety,
they remain hotspots for collisions and near-miss crashes, with the potential for severe
consequences. Understanding and mitigating the factors contributing to crashes and
conflicts at signalized intersections are paramount for enhancing overall traffic safety [2,4,5].
Traditional approaches to this problem have heavily relied on post-crash data, such as
police reports and insurance claims, which often lack detailed information about near-miss
incidents or the contributing factors leading to crashes [6]. Moreover, the reliance on
post-crash data can be problematic, as it may lead to a delayed response in implementing
effective safety measures [7].

The advent of new technologies, particularly Light Detection and Ranging (LiDAR),
offers a promising avenue for addressing these challenges [4,8]. LiDAR technology employs
laser pulses to rapidly measure distances to surrounding objects and create high-resolution,
three-dimensional point cloud maps of the environment. LiDAR technology is increasingly
being harnessed to enhance our understanding of traffic dynamics and improve safety at
signalized intersections by efficiently analyzing the trajectory of objects and recording the
near-crash vehicle–vehicle, vehicle–bicyclist, and vehicle–pedestrian conflicts occurring [2].
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By leveraging LiDAR technology, it is possible to capture real-time, high-fidelity data on
vehicle trajectories, pedestrian movements, and the surrounding infrastructure. These data
can be used to identify conflict points, near-miss crashes, and potential collision scenarios
with unprecedented accuracy and detail [9]. Furthermore, LiDAR records data continuously,
allowing for an analysis of long-term trends and an evaluation of the effectiveness of safety
interventions over time [10]. In order to provide a comprehensive and accurate V2V and
V2P conflict study at signalized intersections, explore the significance of leveraging LiDAR
technology to record conflict data at signalized intersections, and compare the results
with traditional crash reports, this paper aims to address the following key points for six
signalized intersections in Trois-Rivières City, Quebec, Canada.

1. The real-time monitoring and analysis of V2V and V2P conflicts from January 2022 to
June 2023 by collecting data from six installed LiDAR sensors at six different intersections.

2. An evaluation of safety interventions at six signalized intersections by highlighting
the critical movements based on the frequency and severity of conflicts.

3. Providing PET and TTC surrogate safety assessment measures to investigate the
recorded V2V and V2P conflicts.

4. Providing an intersection crash rate for each intersection based on the crash data
analysis over a five-year period of investigation.

5. Comparing the results of the conflicts recorded by LiDAR and the crash reports
analysis to specify the accuracy of critical movements obtained from both ways.

By bridging the gap between traditional crash reports and the real-world dynamics of
signalized intersections, this research aims to contribute to a comprehensive traffic safety
analysis. The integration of traditional crash reports with collected V2V and V2P conflict
data obtained from LiDAR sensors at signalized intersections offers a comprehensive ap-
proach to improving safety for both vehicles and pedestrians. Traditional crash reports,
often retrospective in nature, provide valuable insights into past collision occurrences.
By combining these historical data with real-time, high-resolution V2V and V2P conflict
information obtained through LiDAR sensors, a more proactive and comprehensive under-
standing of intersection safety dynamics emerges. This integrated approach allows for the
identification of potential conflict areas before severe incidents occur, facilitating the design
and implementation of targeted safety interventions. Leveraging this combined dataset
provides a deeper understanding of near-miss events, which often precede actual crashes,
enabling the early identification of hazardous scenarios and the development of proactive
measures to mitigate risks. Ultimately, the utilization of LiDAR technology in this research
in order to study traffic crashes and conflicts represents a paradigm shift in the field of
traffic safety research, offering the potential to save lives, reduce injuries, and minimize the
economic losses associated with intersection-related incidents. The remainder of this article
is structured as follows: Section 2: Literature Review, Section 3: Materials and Methods,
Section 4: Results, Section 5: Discussion, Section 6: Conclusions. Additional data analysis
regarding the six signalized intersections can be found in Appendix A.

2. Literature Review

The analysis of conflicts at signalized intersections is a well-explored area in traffic
safety research [1,2,4,8,11,12]. Various studies have utilized different methods and tech-
nologies to understand and mitigate conflicts between vehicles (V2V) and between vehicles
and pedestrians [13,14]. Previous studies have concentrated on “conflict analysis at in-
tersections” [15], “real-time conflict detection” [16], and “collaborative perceptions and
advanced techniques” [17].

Several researchers have focused on conflict analysis at intersections to enhance traffic
safety. A study by Yuan et al. in 2022 [18] utilized a microscopic traffic simulation to
analyze the conflict patterns at urban intersections. This study provided insights into
conflict scenarios, but relied heavily on simulated data, which might not capture the
complexity of real-world interactions. Similarly, Essa and Sayed in 2018 [12] conducted
an analysis of the conflict points at intersections using traditional crash data, which lack
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the granularity required to understand near-miss events and real-time dynamics. Another
study by Huang et al. in 2020 [10] applied statistical models to examine the frequency of
conflicts at signalized intersections. While this approach highlighted significant factors
contributing to conflicts, it did not leverage advanced sensing technologies for real-time
conflict detection.

The integration of advanced sensing technologies such as LiDAR has shown promise
in overcoming the limitations of traditional approaches. However, most existing studies
have not fully utilized the potential of LiDAR for the continuous, real-time monitoring
of conflicts. Studies by Xu et al. in 2018 [19], Sohail et al. in 2023 [20], Ansariyar et al. in
2023a, 2023b [2,4], and Bhattarai et al. 2024 [21] demonstrated the effectiveness of LiDAR in
real-time traffic monitoring and conflict detection. These works highlighted the potential of
LiDAR to provide accurate and timely data on vehicle and pedestrian movements, which
are crucial for proactive traffic management. However, these studies did not fully explore
the integration of LiDAR data with long-term crash statistics to comprehensively validate
the technology’s effectiveness.

Recent studies have proposed collaborative perceptions and advanced techniques to
enhance conflict detection and resolution. The study by Anisha et al. in 2023 [1] introduced
a framework for real-time conflict detection using V2V communication and by camera and
LiDAR sensor fusion, which improved the accuracy of conflict prediction, but was limited
by the need for high penetration rates. Similarly, studies by Olugbade et al. in 2022 [22],
and Li et al. in 2023 [23] employed machine learning algorithms for conflict detection,
showing potential in predictive analytics, but lacking integration with infrastructure-based
sensing technologies like LiDAR.

The current study aims to address several key gaps in the literature. First, while
previous studies have primarily relied on simulated or historical crash data, this research
leverages real-time LiDAR data to capture the near-miss events and dynamic interactions
at intersections. Second, the integration of CNN and Bayesian models provides a novel
approach to assessing the relationship between intersection characteristics and conflict
occurrences, offering deeper insights into the factors influencing V2V and V2P conflicts.
Third, by comparing LiDAR-based conflict detection with traditional crash reports, this
study validates the accuracy and effectiveness of LiDAR technology in real-world scenarios.
Finally, the continuous monitoring capability of LiDAR enables long-term analysis, facili-
tating the evaluation of safety interventions and the identification of high-risk intersections
over time.

3. Materials and Methods

PET is a critical parameter used in traffic engineering and safety analysis to assess
potential conflicts and collisions at intersections [24]. PET refers to the period between the
time when the first vehicle last occupied a position and the time when the second vehicle
subsequently occupied that same position [2,4]. A PET equal to 0 indicates a collision and
non-zero values indicate crash proximity. Higher PET values indicate a less severe crash,
while lower PET values indicate a more severe crash [2,4].

TTC refers to the time it takes for a vehicle or object to collide with another vehicle,
object, or obstacle in its path [25]. In other words, TTC is defined as the time remaining until
two objects (e.g., vehicles) would collide if they continued on their current trajectories [26,27].
Understanding TTC is crucial, since it provides valuable insights into the potential for
crashes and allows for timely preventive actions to be taken by drivers or automated safety
systems. TTC can be estimated by the following:

1. Visual Estimation: Drivers estimate TTC based on visual cues such as the rate of
approach of a nearby vehicle [26,28].

2. Sensor-Based Estimation: Sensors such as LiDAR, radar, and cameras are used in
vehicles to estimate TTC [29,30].
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3. Mathematical Models: Mathematical models, such as the time-to-collision equation,
are utilized to estimate TTC based on the relative velocities and distances between
objects [31,32].

LiDAR sensors capture precise spatial information, including vehicle positions, veloci-
ties, and orientations, enabling the extraction of detailed vehicle and pedestrian trajectories.
LiDAR’s ability to produce dense point cloud data assists in delineating vehicle and pedes-
trian movements, which form the basis for calculating PET and TTC values. By accurately
measuring the distances between vehicles and pedestrians and capturing their movement
dynamics, LiDAR sensors offer a comprehensive depiction of the spatial and temporal
parameters necessary for determining potential conflicts. The rich and detailed data ob-
tained from LiDAR technology enable the precise computation of PET and TTC values,
considering factors such as relative speeds, distances, and the interactions of vehicles within
the intersection space.

To predict vehicle and pedestrian trajectories, a CNN model was employed. The
Algorithm 1 is detailed as follows:

Algorithm 1 CNN model to predict vehicle and pedestrian trajectories

Input: LiDAR data frames capturing vehicle and pedestrian movements
1. Pre-process LiDAR data:

a. Filter data frames to remove background objects.
b. Convert 3D point clouds into spherical coordinates.
c. Cluster moving points to distinguish from background.

2. Extract and segment trajectories:
a. Identify individual vehicle paths.
b. Classify road users (vehicles, cyclists, pedestrians).

3. Prepare data for CNN:
a. Represent vehicle states as input sequences (speed, direction, acceleration, proximity).
b. Convert sequences into structured input matrices.

4. Define CNN architecture:
a. Input layer to receive structured matrices.
b. Convolutional layers to extract spatial and temporal features.
c. Pooling layers to reduce dimensionality.
d. Fully connected layers to interpret features and predict trajectories.

5. Train CNN model:
a. Split data into training and validation sets.
b. Train the CNN using training data.
c. Validate the model using validation data and fine-tune hyperparameters.

6. Predict trajectories:
a. Input current vehicle states into the trained CNN model.
b. Estimate PET and TTC values for future time steps.

7. Evaluate and refine predictions:
a. Compare predicted PET and TTC with actual values.
b. Adjust model parameters to improve prediction accuracy.

Output: Predicted trajectories, PET, and TTC values

Extracting PET and TTC values from LiDAR sensor trajectories requires a detailed
technical process. Initially, the trajectory data, capturing the movements of vehicles within
the intersections, were pre-processed to identify individual vehicle paths. Subsequently,
the PET and TTC values were computed based on the kinematic properties of each vehicle
trajectory. PET was derived by evaluating the temporal and spatial gaps between vehicles
along their paths. TTC was determined by assessing the time remaining before the projected
intersection of vehicle paths occurred. Applying a CNN model, the trajectories were
converted into structured input matrices or sequences. This involved representing the
temporal evolution of vehicle states including speed, direction, acceleration, and proximity
as a series of inputs. By training the CNN on these sequences, the network could recognize
the complex patterns and relationships between the variables to estimate the PET and
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TTC values. In other words, the network’s convolutional layers employed learnable filters
to extract spatial and temporal features. Through convolution and pooling operations,
the network captured significant patterns, such as sudden changes in velocity, diverging
directions, accelerating rates, and decreasing inter-vehicle distances. In terms of the vehicle
trajectories obtained from the LiDAR sensors, subsequent data pre-processing was used
encompasses trajectory extraction, segmentation, and classification, distinguishing vehicles,
cyclists, and pedestrians to facilitate a nuanced analysis. The trajectory analysis provided
in this paper focuses on several key metrics, including speed differentials, proximity
events, and traffic density, to identify potential conflict areas for vehicle–vehicle and
vehicle–pedestrian interactions. The following steps were taken into account to recognize
the trajectories of vehicles and pedestrians:

1. In time intervals when no traffic passed from different approaches to the intersection,
no traffic data frames were collected.

2. The LiDAR data frames were filtered to remove background objects identified from
multiple no-traffic data frames.

3. The 3D point clouds were converted into spherical coordinates in order to create
the elevation–azimuth matrix. A new data structure was created to store the range,
azimuth, and intensity information from the raw LIDAR data.

4. Based on the reflectivity of the object and the wavelength of the LiDAR, a position
packet and a data packet were created. GPS packets contain position information,
while data packets contain distance and intensity information.

5. Moving points were clustered to make them easy to distinguish from the foreground
and background. Azimuth–height tables were developed using azimuth–height
background filtering. In different data frames, the height of each point was compared
with the heights of the backgrounds to recognize and then classify road users and
non-road users.

It is worth mentioning that PET and TTC values serve as valuable metrics for assessing
collision risks at signalized intersections. However, integrating these metrics into traffic
management and vehicle safety systems comes with inherent considerations. One of
these significant considerations involves the reliance on predictive models, which may
not encapsulate all real-world collision scenarios due to their basis on historical data and
certain assumptions. Variability in driver behavior, unexpected events, and environmental
conditions often challenge the accuracy of predictions based solely on PET and TTC values.
Moreover, these metrics might overlook the context of individual driving styles, limitations
in sensor accuracy, and uncertainties in vehicle movement predictions, leading to potential
inaccuracies in collision risk assessment. To address these limitations, a multifaceted
approach was utilized. This involved integrating the PET and TTC data with real-time
information from multiple camera systems to capture a more comprehensive view of the
surroundings. Hereupon, each intersection was monitored by closed-circuit television
(CCTV) to capture a more comprehensive view of the surroundings. By utilizing advanced
machine learning algorithms that consider real-time inputs, predictive capabilities were
improved. The pseudocode for finding the PET and TTC values is explained in Appendix A.

Additionally, the models were validated with real-world collision data (crash data
from 2018 to 2022) to improve their reliability and applicability within traffic management
and vehicle safety systems. In order to investigate the accuracy of LiDAR sensor technology
in recording V2V and V2P conflicts at signalized intersections, six different intersections in
Trois-Rivières City, Quebec, Canada, were assessed. The LiDAR sensors were installed at
all intersections simultaneously in January 2022 to record real-time traffic data, including
vehicle and pedestrian counts, speeds, and vehicle–vehicle conflicts. The location of each
intersection and the LiDAR sensors (the red circles) are shown in Figures 1–3, respectively.
The red circles indicate the location of the LiDAR sensor’s installation at each intersection.
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The vehicle counts (including cars, trucks, and buses) and pedestrians over eighteen
months were analyzed to determine the daily entering vehicle and pedestrian volumes
at each intersection. These variables are utilized in the intersection crash rate equation.
Additionally, the vehicle–vehicle conflicts based on leading and following vehicles, the di-
rection of conflicts based on vehicles’ trajectories, and the frequency and severity (=1/PET)
of conflicts were analyzed. For the purpose of identifying the critical movements at each
intersection based on the frequency and severity of conflicts, the conflicts with PET < 1 s [33]
were analyzed. From 2018 to 2022, crash reports were analyzed to determine the exact
locations of crashes at each intersection, the time of the day, the reason for the crash, and
the severity of the crash (fatal, injury, and road/material damage) [34]. To determine the
safety risk for each intersection, an intersection crash rate, as shown in Equation (1), was
developed to describe the crashes per million entering vehicles to the intersection.

R =
1, 000, 000 ∗ C

365 ∗ N ∗ V
(1)

where,

R = Crash rate for the intersection expressed as crashes per million entering vehicles;
C = Total number of intersection crashes in the study period;
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N = Number of years of data;
V = Traffic volumes entering the intersection daily.

The value of C was obtained from crash reports collected over the study period. It
represents the total number of crashes that occurred at the intersection. The parameter
N indicates the duration of the study period in years. This value ensures that the crash
rate accounts for long-term trends and variations in crash occurrences. The parameter
V represents the average daily traffic volume entering the intersection. These data are
typically obtained from traffic counts or transportation models. To determine the crash
rate, R, all other values were first extracted from crash reports and traffic volume data.
Once these values were known, the crash rate was calculated using Equation (1). This
calculated rate reflects the likelihood of crashes occurring per million vehicles entering
the intersection, providing a clear and comparable measure of intersection safety. The
threshold for setting crashes per million entering vehicles is based on safety performance
standards and comparative analyses with similar intersections. By evaluating the crash
rates across multiple intersections, thresholds can be established to identify intersections
with significantly higher crash rates, warranting further investigation or intervention.

To determine the accuracy of LiDAR sensor technology, the critical movements de-
tected by the LiDAR data analysis were compared with those identified in the crash reports.
Critical movements refer to the leading or following movements that have a high frequency
and severity of near-miss crashes or conflicts. This paper analyzed LiDAR data covering an
18-month period and compared them to a five-year investigation of intersection crash rates.
Despite the discrepancy in data duration, the shorter LiDAR data collection did not result
in an incomplete representation of intersection safety. Historical crash trends and patterns
were examined to estimate and predict longer-term trends consistent with the five-year
investigation period. This method ensures that the analysis provides a comprehensive
and accurate assessment of intersection safety over both short- and long-term periods, by
integrating real-time data with extensive historical records. LiDAR identified near-miss
events and conflict points not captured in the crash data. Historical crash data offer context
and a broader temporal perspective, helping to identify persistent safety issues and validate
short-term observations. This combined approach enables a robust evaluation of safety
measures and the development of effective intervention strategies, ensuring that findings
are both current and historically grounded.

The historical crash trends and patterns were investigated to estimate and predict
longer-term trends that aligned with the five-year investigation period. Furthermore,
synthetic data were generated based on the patterns observed within the 18-month LiDAR
dataset. Machine learning algorithms were employed to simulate the characteristics and
trends observed in the original LiDAR dataset. By merging and cross-referencing multiple
datasets (LiDAR and the historical crash data), a more comprehensive understanding of
long-term intersection safety trends was achieved, so that the limitation of the shorter
LiDAR data duration could be mitigated. To ensure the reliability and validity of the
synthetic data, these synthetic data were compared against historical crash data to validate
their accuracy, ensuring consistency in key metrics such as traffic volumes and conflict rates.
Statistical analyses were performed to compare the distributions between the synthetic and
original datasets, maintaining their statistical properties. Traffic simulations were run using
the synthetic data, and the results were validated against real-world observations. These
rigorous validation steps ensured that the synthetic data accurately represented long-term
intersection safety trends, mitigating the limitations of the shorter LiDAR data duration
and providing a robust foundation for comprehensive analysis.

The image-processing algorithm developed in MATLAB included the following steps:
identifying vehicle boundaries in the LiDAR-generated point cloud data, identifying key
features such as the corners and edges of vehicles, following the movements of identified
vehicles across successive frames, and connecting the tracked positions over time to result
in continuous paths representing the vehicles’ movements. It is worth mentioning that the
previous image-processing algorithm developed in MATLAB R2021b [2] was utilized to
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analyze the vehicles’ trajectories at six intersections. The MATLAB R2021b version was
chosen for its advanced image-processing toolbox and computational efficiency, which were
crucial for handling the large volume of LiDAR-generated data. The algorithm tailored for
trajectory analysis utilized various image-processing techniques such as edge detection,
feature extraction, and object tracking to interpret the LiDAR-generated point cloud data.
This facilitated the extraction of vehicle trajectories by identifying and tracking individual
vehicles’ movements within the complex intersection environments. Leveraging MATLAB
R2021b’s capabilities allowed for efficient data processing, trajectory reconstruction, and
subsequent analyses of key variables, including the speed, direction, and spatial interactions
among vehicles. Although newer versions of MATLAB are available, R2021b was chosen
to maintain consistency with previous work and because it had already been extensively
tested and validated for similar tasks.

The research emphasizes the integration of intelligent transportation systems, par-
ticularly V2V and V2P communication technologies, to enhance safety measures. The
methodology included field observations, traffic flow modeling, and scenario simulations
to identify potential conflict points. Targeted interventions such as adaptive traffic signal
control, enhanced crosswalk designs, and V2V communication protocols were developed
based on the findings. This study underscores the role of sustainable transportation prac-
tices in increasing safety, optimizing traffic flow, and minimizing conflicts, aligning with
the principles of sustainable transportation systems.

The identification of these conflict points can inform the development of targeted
interventions, including adaptive traffic signal control, enhanced crosswalk designs, and
the integration of V2V communication protocols. Furthermore, this study emphasizes the
role of sustainable transportation practices in increasing the safety impact of vehicular
travel. By optimizing traffic flow and minimizing conflicts, the proposed interventions
align with the principles of sustainable transportation systems and promoting efficient
resource use.

4. Results

Different conflict analyses were provided, including the monthly frequency, hourly
frequency, hourly severity (sum 1/PET), and hourly average of the PETs. Figure 4 shows
the monthly frequency, Figure 5 shows the hourly frequency, Figure 6 shows the hourly
severity, and Figure 7 shows the hourly average of these PETs, respectively.

Figure 4 illustrates the monthly frequency of conflicts recorded at each of the six sig-
nalized intersections from January 2022 to June 2023. These conflicts, defined as potential
near-misses between two vehicles, were identified and recorded using the LiDAR sensors
installed at each intersection. The data collected by these sensors were accessible via a
dedicated dashboard, allowing for detailed monitoring and analysis. The primary objective
of presenting Figure 4 is to highlight the variations in conflict frequency over the specified
period and across different intersections. This visualization is crucial for understanding the
temporal patterns and potential factors contributing to traffic conflicts at these locations.
The figure allows for the identification of trends, such as whether certain months or seasons
exhibit higher conflict rates, which could be indicative of factors like changes in traffic
volume, weather conditions, or the effectiveness of implemented traffic safety measures.
By thoroughly analyzing the data presented in Figure 4, this study aims to inform traffic
management strategies and enhance intersection safety.

As shown in Figure 5, the highest frequency of conflicts occurred in the interval
20:00–21:00 PM at intersections #1, #2, #5, and #6. The interval 12:00–13:00 PM (=13,941) at
intersection #3 and the interval 18:00–19:00 PM (=10,453) at intersection #4 were specified as
critical hourly intervals. The designation of the interval 18:00–19:00 PM as a critical hourly
interval at intersection #4 was based on a comprehensive analysis of conflict frequency and
traffic patterns. This interval recorded a significantly higher number of conflicts, totaling
10,453, compared to other times at the same intersection. Factors contributing to this des-
ignation included the high traffic volume and congestion during the evening rush hour,
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increased pedestrian activity, and reduced visibility due to dusk or early evening darkness,
especially in the winter months. Additionally, the specific geometric or operational charac-
teristics of intersection #4, such as complex turning movements or inadequate signaling,
may exacerbate conflict risks during this period. Historical data further validated this
finding, showing a consistent pattern of increased incidents during the 18:00–19:00 PM
interval over several years.
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Figure 5. Hourly frequency of conflicts.
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Figure 6. Hourly severity of conflicts.
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Figure 7. Hourly average PETs of the conflicts.

As shown in Figure 6, the interval 20:00–21:00 PM was specified as the interval with
the most severe conflicts at intersections #2, #3, #5, and #6. Furthermore, the interval
14:00–15:00 PM at intersection #1 and 18:00–19:00 PM at intersection #4 were specified the
hourly intervals with the most severe vehicle–vehicle conflicts, respectively. The averages
of the PETs for each hourly interval are shown in Figure 7.

The frequency and severity of conflicts based on leading and following movements
were analyzed for each intersection. At intersection #1, the movement WN (EBL—left
turn from Boulevard Jean-XX||| to Bd Saint-Jean) was specified as a frequent and severe
leading movement. Additionally, the results of the following movements highlighted that
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WN and EW (westbound through—WBT) were the movements with a greater frequency
and severity of vehicle–vehicle conflicts. At intersection #2, the leading movement WN
(EBL—left turn from RTE 138 to Rue Nicolas Parrot) and the following movement EW
(WBT—through movement at RTE 138) were the movements with the highest frequency
and severity of conflicts. At intersection #3, the leading movement NE (SBL—left turn from
Rue BELLEFEUILLE to Rue St-Roch St) and the following movement SN (NBT—through
movement at Rue BELLEFEUILLE) were frequent and severe vehicle–vehicle conflict
movements. At intersection #4, the leading movement WN (EBL—left turn from Rue
BARKOFF to Rue des Ormeaux St) and the following movement EW (WBT—through
movement at Rue BARKOFF) were the movements with the highest frequency and severity
of vehicle–vehicle conflicts. At intersection #5, the leading movement NE (SBL—left
turn from the parking to Boulevard du St Maurice) and the following movement SN
(NBT—through movement from Rue Ste Angele to parking) were the critical leading and
following movements. Finally, at intersection #6, the leading and following movement EW
(WBT—through movement at Boulevard du St Maurice) was the critical movement of the
intersection #6.

To explore the vehicle–vehicle conflicts with the greatest potential for crashes (PET < 1 s) [33],
movements including the origin and destination, frequency, severity (1/∑PET), and average
of TTC were analyzed. Table 1 demonstrates the critical near-crash movements observed at
the six examined intersections.

Table 1. Near-crash conflicts analysis.

Intersection Leading Following Frequency Severity (1/PET) Average TTC (s) Total Conflicts (PET < 1 s)

Intersection #1 WN EW 340 397.1 1.17 687
Intersection #2 WN EW 87 97.3 0.78 316
Intersection #3 NE SN 413 455.8 2.26 708
Intersection #4 WN EW 72 79.6 1.36 628
Intersection #5 WN EW 185 208.1 0.54 976
Intersection #6 EW NA 560 690.9 1.52 1106

The tables presented in this section serve a critical role in analyzing the data un-
derpinning our study, focusing on specific movements and traffic dynamics at various
intersections. This analysis is essential for identifying high-risk movements, which is
fundamental for devising targeted safety interventions. By summarizing and interpreting
the data, the following tables highlight critical trends, validate findings with the crash
data, and offer practical insights for improving traffic safety. The detailed examination
provided here ensures that the research findings are robust and the implications for traffic
management are clear and actionable. Moreover, Table 1 and Table 3 are directly related to
the detailed tables in Appendix A, which offer in-depth details of the underlying data.

The results demonstrated in Table 1 are consistent with the results of Tables A1–A6
in the Appendix. According to Table A5, the leading movement NE and the following
movement SN were identified as critical movements at intersection #5. The near-crash
analysis demonstrated that movements WN and EW were more likely to lead to serious
crashes. As specified in Table A5, the leading movement WN (=27,862 frequency) and the
following movement EW (=29,837 frequency) were among the most frequent and severe
movements in vehicle–vehicle conflicts.

To compare the accuracy of the data collected from the LiDAR sensors and the recorded
crashes at each intersection over five years of investigation from police, insurance compa-
nies, and other reliable resources reports, the crash data of each intersection were down-
loaded [34] and analyzed accurately. The crash analysis results are demonstrated in Table 2.
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Table 2. Crash reports analysis results.

Intersection #
Total

Frequency of
Crashes *

Type of Crash Hourly Interval with the
Highest Frequency

of Crashes

Intersection Crash Rate
(Equation (1)) **Fatal Injury Material/Road

Damage

#1 14 0 9 5 23:00–24:00 PM
(3 crashes) 11.75

#2 4 0 3 1 08:00–09:00 AM
(2 crashes) 7.02

#3 38 0 4 34
07:00–08:00 AM &

15:00–16:00 PM
(5 crashes)

29.04

#4 34 2 9 23 16:00–17:00 PM
(8 crashes) 17.91

#5 7 0 4 3
14:00–15:00 PM &
15:00–16:00 PM

(2 crashes)
7.04

#6 34 0 12 22 16:00–17:00 PM
(5 crashes) 28.88

* The frequency of recorded crashes by police, insurance companies, and other reliable resources. ** The values of
this column show the number of crashes per million entering vehicles to the intersection.

Considering 653 veh/day, 312 veh/day, 717 veh/day, 1040 veh/day, 545 veh/day,
and 645 veh/day entering intersections #1 to #6, respectively, the results highlighted that
11.75, 7.02, 29.04, 17.91, 7.04, and 28.88 crashes occurred per million entering vehicles to
these six intersections. The trajectory of each crash at each intersection was analyzed, and
the results revealed that 9 crashes at intersection #1 occurred with “WN-EW” leading and
following movements, 3 crashes at intersection #2 occurred with “WN-EW” leading and
following movements, 26 crashes at intersection #3 occurred with “NE-SN” leading and
following movements, 24 crashes at intersection #4 occurred with “WN-EW” leading and
following movements, 4 crashes at intersection #5 occurred with “WN-EW” leading and
following movements, and 32 crashes at intersection #6 occurred with “EW” leading and
following movements. Accordingly, the crash reports analysis yielded the same critical
leading and following movements as shown in Table 2 based on the LiDAR sensor data.
To assess the safety of pedestrians at the six intersections, the passing daily pedestrians
were analyzed from the approaches where they interacted with these critical leading and
following movements. Table 3 shows the normalized pedestrians who were at risk of being
hit by critical leading and following movements. Considering the frequency of passing
pedestrians at the critical approaches of each intersection, the highest calculated normalized
pedestrian rates at risk of vehicle collisions were calculated for intersections #6, #4, and #3,
respectively. Hereupon, safety considerations for the vehicles and pedestrians’ movements
should be implemented at these intersections.

Table 3. Normalized pedestrians who were at risk of being hit by vehicles.

Intersection #
Leading Vehicle
Daily Volume

(PCU/Day)

Following Vehicle
Daily Volume

(PCU/Day)

Critical Leading and
Following Vehicle

Movements

Total Daily Frequency of
Pedestrians Who Are

Interact with the Critical
Leading and Following

Vehicle Movements (People)

Normalized
Pedestrian Rates at

Risk of Vehicle
Collisions

#1 100 112 WN-EW 22 0.103
#2 22 90 WN-EW 25 0.223
#3 72 109 NE-SN 92 0.508
#4 94 105 WN-EW 109 0.548
#5 63 95 WN-EW 34 0.215
#6 106 EW 116 1.094
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The trajectory of each conflict at each intersection, the leading and following move-
ments at each conflict, the intersections’ gradients based on these leading and following
movements, and the sight triangle at each conflict were analyzed. Considering our pro-
posed vehicle–pedestrian conflict classification, including serious, general, slight, and
potential conflicts [11], the lower and upper levels of each category were revised based on
the physical characteristics of each intersection, the frequency and severity of conflicts, and
the PET values. Hereupon, the new lower and upper levels are presented in Table 4.

Based on the findings presented in Table 4 and the conclusions drawn from this study,
the following intervals are recommended for categorizing serious, general, slight, and
potential conflicts at signalized intersections. These categories can be applied to other
signalized intersections with similar physical and geometrical characteristics.

Serious Conflicts: PET < 0.9
General Conflicts: 0.9 ≤ PET <1.5
Slight Conflicts: 1.5 ≤ PET < 2.45
Potential Conflicts: 2.45 ≤ PET < 5

Table 4. PET Intervals for serious, general, slight, and potential conflicts.

Intersection # Serious Conflicts General Conflicts Slight Conflicts Potential Conflicts

#1 PET < 1.08 1.08 ≤ PET < 1.69 1.69 ≤ PET < 2.63 2.63 ≤ PET < 5
#2 PET < 0.99 0.99 ≤ PET < 1.6 1.6 ≤ PET < 2.54 2.54 ≤ PET < 5
#3 PET < 0.8 0.8 ≤ PET < 1.41 1.41 ≤ PET < 2.35 2.35 ≤ PET < 5
#4 PET < 0.78 0.78 ≤ PET < 1.39 1.39 ≤ PET < 2.33 2.33 ≤ PET < 5
#5 PET < 0.73 0.73 ≤ PET < 1.34 1.34 ≤ PET < 2.28 2.28 ≤ PET < 5
#6 PET < 1.02 1.02 ≤ PET < 1.63 1.63 ≤ PET < 2.57 2.57 ≤ PET < 5

Serious conflicts at signalized intersections represent scenarios with the highest risk of
severe crashes and injuries. The recommended interval of PET < 0.9 for serious conflicts
is justified by the critical nature of events falling within this range. These situations
typically involve extremely short time gaps between conflicting movements, leaving little
margin for error or evasive action by drivers. Such conditions are particularly prevalent in
congested urban areas or at intersections with complex geometries, where traffic volumes
and conflicting movements are high. By setting a threshold of PET < 0.9, it is possible
to identify and prioritize interventions aimed at reducing the likelihood of catastrophic
collisions. Potential measures may include signal phasing adjustments, geometric redesigns,
or enhanced enforcement strategies to improve compliance with traffic regulations and
enhance intersection safety.

General conflicts encompass scenarios where the risk of crashes at signalized intersec-
tions is elevated compared to normal operating conditions, but falls short of the severity
observed in serious conflict situations. The interval of 0.9 ≤ PET < 1.5 for general conflicts
strikes a balance between safety considerations and operational efficiency. Events falling
within this range signify instances where the time gaps between conflicting movements are
slightly longer, yet still pose a notable risk to traffic safety. Drivers may have limited time
to react to changing traffic conditions, increasing the likelihood of rear-end or side-impact
collisions. By identifying conflicts within this interval, it is possible to implement targeted
measures such as signal timing adjustments, lane reconfigurations, or enhanced signage to
mitigate risks and enhance intersection safety.

Slight conflicts denote situations where the risk of crashes at signalized intersections
is moderate, with relatively longer time gaps between conflicting movements compared to
serious and general conflict scenarios. The interval of 1.5 ≤ PET < 2.45 for slight conflicts
reflects a nuanced understanding of intersection dynamics and the varying degrees of
risk associated with different traffic scenarios. Events falling within this range indicate
potential hazards that require attention but are less urgent compared to serious or general
conflicts. Nonetheless, addressing conflicts within this interval is crucial for maintaining
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overall intersection safety and preventing the escalation of minor to more severe crashes.
Mitigation strategies may include targeted enforcement efforts, improved signal visibility,
or enhanced driver education programs to promote safe driving behaviors and reduce the
likelihood of collisions.

Potential conflicts represent situations where the risk of crashes at signalized intersec-
tions is relatively low, yet still warrants proactive monitoring and intervention. The interval
of 2.45 ≤ PET < 5 for potential conflicts signifies scenarios with longer time gaps between
conflicting movements, indicating a lower probability of immediate collisions. However,
these events may still contribute to congestion, delays, or near-miss incidents, highlighting
the need for ongoing surveillance and risk mitigation measures. It is possible to utilize
data-driven approaches such as predictive modeling, intersection performance evaluations,
or traffic simulation techniques to identify and address potential conflicts within this range.
By implementing targeted interventions aimed at reducing minor incidents and optimizing
traffic flow, agencies can enhance overall intersection safety and promote smoother traffic
operations for all road users.

Considering the new lower and upper levels at each intersection, the frequency and
severity of serious, general, slight, and potential conflicts were specified. Based on the new
categories at each intersection, Table 5 shows the frequencies of serious, general, slight, and
potential conflicts.

Table 5. The frequency results for serious, general, slight, and potential conflicts.

Intersection # Serious
Conflicts

General
Conflicts

Slight
Conflicts

Potential
Conflicts SUM

#1 1210 7509 20,158 245,102 273,979
#2 262 1008 2890 25,624 29,784
#3 42 3493 8087 147,500 159,122
#4 5 1776 6432 96,585 104,798
#5 1 3340 17,224 268,065 288,630
#6 1391 4666 13,744 94,411 114,212

Table 5 presents a comprehensive breakdown of the conflicts observed at different
signalized intersections, categorized into four distinct levels: serious, general, slight, and
potential conflicts. Each intersection is assigned a unique identifier, facilitating a compar-
ison and analysis of conflict patterns across multiple locations. The table highlights the
variability in conflict severity across different intersections, as evidenced by the varying
distributions of conflicts in each category. For instance, intersections #1 and #5 exhibited a
notably higher prevalence of potential conflicts compared to other categories, indicating a
greater proportion of low-risk incidents relative to serious or general conflicts. In contrast,
intersections #3 and #4 demonstrated a relatively higher incidence of slight and general
conflicts, suggesting a moderate level of risk associated with these locations. This variability
underscores the importance of context-specific analyses and targeted interventions tailored
to address the unique challenges posed by each intersection. By quantifying the frequency
of conflicts at each intersection, the hotspots with high concentrations of serious or potential
conflicts, warranting immediate attention, were identified. Moreover, the distribution of
conflicts across different severity levels enables a nuanced approach to resource allocation,
ensuring that interventions are tailored to address the specific safety concerns at each
location. For instance, intersections with a predominance of serious conflicts may require
targeted engineering solutions such as geometric redesigns or signal phasing adjustments
to mitigate risks effectively. Conversely, intersections with a higher incidence of general or
slight conflicts may benefit from enforcement measures, signage enhancements, or driver
education programs to promote safer behaviors and reduce the likelihood of crashes.
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5. Discussion

This paper aimed to investigate how accurate LiDAR sensors are at detecting
vehicle–vehicle conflicts at signalized intersections. Based on the PET values recorded
by six LiDAR sensors at six different intersections of Trois-Rivières City, Quebec, Canada,
the critical leading and following movements at each intersection were determined. To
improve the accuracy of the analysis and compare it with recorded crash reports, data
from 2018 to 2022 were analyzed. Table 2 shows that the critical movements from the crash
reports aligned with those identified by LiDAR, confirming its effectiveness in recording
near-crash vehicle–vehicle conflicts. The risk to pedestrians was assessed by examining
the frequency of pedestrians passing through critical approaches and comparing it with
vehicle volumes. Intersections #6, #4, and #3 had the highest vehicle–pedestrian conflict
rates. To enhance safety and reduce conflicts, the following solutions are proposed:

Implementing advanced traffic signal systems with adaptive control can optimize sig-
nal timings based on real-time conditions, reducing congestion and potential conflicts [35].
Redesigning intersection geometries to improve visibility, increase turning radii, and min-
imize conflict points is essential, which may involve realigning or widening lanes [36].
Optimizing traffic signal timings through comprehensive studies and traffic simulation
models can further reduce delays and queuing [37]. Integrating intelligent transportation
systems, like vehicle-to-infrastructure communication, can provide real-time warnings
and alerts to drivers about potential hazards [38]. Pedestrian safety can be improved by
adding countdown signals, enhanced crosswalks, and refuge islands [39]. LiDAR tech-
nology provides real-time traffic data that can significantly improve traffic signal timing
and coordination. By utilizing LiDAR to monitor and analyze traffic conditions continu-
ously, it is possible to establish correlations between traffic flow patterns and signal phase
distributions. These real-time data allow for dynamic adjustments to signal timings, re-
ducing delays and mitigating bottlenecks at intersections. For example, LiDAR can help
to optimize the duration of signal phases based on the current traffic volume and queue
length, ensuring that each approach receives an adequate signal time proportional to its
needs. This real-time adjustment capability will help to alleviate congestion and improve
the overall traffic flow efficiency. Moreover, LiDAR’s ability to communicate directly with
traffic controllers and send/receive SPaT messages can enhance the synchronization of
traffic signals across multiple intersections, further preventing bottlenecks and improving
traffic management throughout the urban network [3–5]. Sensors mounted at intersections
measure the numbers of vehicles, their speeds, and queue lengths, which are then used to
dynamically adjust the durations of signal phases—green, yellow, and red.

Finally, the continuous monitoring and analysis of crash data at signalized intersec-
tions can identify high-risk areas and inform targeted interventions [40]. These combined
approaches leverage advanced technologies and data-driven methods to ensure a compre-
hensive strategy for improving intersection safety.

The investigation conducted in this study highlighted the critical leading and follow-
ing movements at each intersection. To validate the findings, crash reports spanning from
2018 to 2022 were examined from reliable sources such as police records and insurance
companies. The results presented in Table 4 revealed a remarkable consistency between
the critical movements identified through LiDAR datasets and those documented in crash
reports. This alignment underscores the effectiveness of LiDAR sensors in efficiently captur-
ing near-crash vehicle–vehicle conflicts, thereby affirming their utility in intersection safety
assessments. Moreover, to gauge the risks posed to pedestrians by critical movements,
the frequency of passing pedestrians from critical approaches was evaluated and com-
pared with passing vehicle volumes. Subsequently, intersections #6, #4, and #3 emerged
as hotspots with the highest rates of vehicle–pedestrian conflicts. These findings shed
light on the pressing need to enhance pedestrian safety measures at these intersections in
order to mitigate conflicts and reduce the likelihood of accidents. To address the identified
challenges and enhance the safety of signalized intersections, several proactive solutions
are proposed. Firstly, the implementation of advanced traffic signal systems, such as adap-
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tive signal control, can optimize signal timings in response to real-time traffic conditions,
thereby minimizing congestion and potential conflicts. Secondly, intersection geometry
modifications, including realigning lanes and widening turning radii, can improve visibility
and minimize points of conflict, contributing to overall intersection safety. Additionally,
traffic signal timing optimization through comprehensive studies and data-driven ap-
proaches can alleviate delays, queuing, and conflicts. Integrating intelligent transportation
systems, such as vehicle-to-infrastructure communication, can provide real-time warnings
to drivers about potential conflicts or hazards, enhancing safety. Furthermore, implement-
ing pedestrian safety measures like countdown signals and crosswalk enhancements can
mitigate conflicts between vehicles and pedestrians, thereby improving overall intersection
safety. Continuous data analysis and monitoring of crash data at signalized intersections
are also recommended to identify high-risk areas and trends requiring targeted interven-
tions. By implementing these multifaceted solutions, transportation agencies can work
towards minimizing vehicle–vehicle and vehicle–pedestrian conflicts, thereby enhancing
intersection safety and promoting smoother traffic flow for all road users.

6. Conclusions

This paper aimed to compare the accuracy of LiDAR sensor technology with traditional
crash reports to recognize critical movements and decrease vehicle–vehicle conflicts at
signalized intersections. From January 2022 to June 2023, the study examined datasets of the
vehicle–vehicle conflicts at six distinct intersections in Trois-Rivières City, Quebec, Canada.
The study focused on the recorded data from six LiDAR sensors, as shown in Appendix A,
providing insights into the conflicts that occurred during the specified period. Through
the examination of the conflict trajectories at each intersection and the identification of
the PET and TTC values for leading and following movements, the crucial leading and
following movements were identified. As shown in Table 1, “WN–EW (=EBL and WBT)”
were recognized as the critical leading and following movements for intersections #1, #2, #4,
and #5. At intersection #3, the leading movement NE (=SBL) and the following movement
SN (=NBT) were identified as crucial movements. At intersection #6, the movement EW
(=WBT) was recognized as the critical leading and following movement, resulting in
560 near-crash conflicts with PET < 1 s.

To enhance the accuracy of the analysis, the crash record datasets of the six intersections
from 2018 to 2022 were analyzed. Investigating crash report analyses from reliable sources
offers several benefits. Firstly, it helps in identifying the patterns and trends of crashes,
aiding in understanding the common causes and contributing factors. This information
can then be used to implement effective safety measures and improve traffic management
strategies. Secondly, analyzing crash reports provides valuable insights into the severity
and types of injuries sustained, assisting in prioritizing areas that require immediate
attention. Lastly, it enables policymakers and authorities to make informed decisions
regarding infrastructure improvements and targeted enforcement efforts to reduce crashes
and enhance overall road safety. The crash report analysis revealed that 9 crashes at
intersection #1 were caused by “WN–EW” leading and following movements, 3 crashes
at intersection #2 by “WN–EW” movements, 26 crashes at intersection #3 by “NE–SN”
movements, 24 crashes at intersection #4 by “WN–EW” movements, 4 crashes at intersection
#5 by “WN–EW” movements, and 32 crashes at intersection #6 by “EW” movements.

The analysis of crash reports and LiDAR sensor data confirmed similar critical leading
and following movements, as presented in Table 1. Consequently, the intersections’ crash
rates were calculated based on the daily entering vehicle counts and the frequency of
recorded crashes over the five-year period. As shown in Table 2, intersections #3, #6, #4, #1,
#5, and #2, respectively, require prioritized safety interventions based on their crash rates.
Table 3 identifies the intersections with the highest potential for pedestrian conflicts with
critical leading and following vehicles. The new vehicle–pedestrian categories depicted
in Table 4 classify these vehicle–pedestrian conflicts into four categories: serious, general,
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slight, and potential. The frequencies of vehicle–pedestrian conflicts at each intersection, as
demonstrated in Table 5, were determined using these new categories.

In conclusion, this research demonstrates that the adoption of LiDAR sensor tech-
nology, in conjunction with traditional crash reports, can significantly enhance the under-
standing and management of vehicle–vehicle and vehicle–pedestrian conflicts at signalized
intersections. The key benefits of this approach include the ability to capture real-time,
high-resolution data on vehicle and pedestrian movements, speeds, and proximity, which
traditional crash reports cannot provide.

The main contributions of this research include the identification of the critical leading
and following movements at specific intersections, the validation of LiDAR data through a
comparative analysis with traditional crash reports, and the development of new categories
for vehicle–pedestrian conflicts. These findings offer a robust framework for future studies
and practical applications, helping to prioritize safety interventions and infrastructure
improvements. Other scholars can build on this research by integrating LiDAR sensor data
with advanced analytics and machine learning models, such as Support Vector Machines
(SVMs), Random Forests, Convolutional Neural Networks (CNNs), and Recurrent Neural
Networks (RNNs). These models can be trained on labeled datasets of vehicle–vehicle
conflicts to identify patterns and predict potential conflicts more accurately. Future research
should also explore expanding the time interval and improving access to more reliable
crash report sources to enhance the robustness of the findings.

Author Contributions: For this research article, A.A. contributed to conceptualization, methodology,
formal analysis, investigation, resources, data curation, writing—original draft preparation, visualiza-
tion, and project administration. M.J. contributed to validation, investigation, writing—review and
editing, visualization, and supervision. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Ethical review and approval were not required for this study.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this paper are real-time processed LiDAR data,
which can be shared with the editorial board. The data utilized in this paper originates from LiDAR
sensor dashboards, and along with freely accessible crash report datasets provided by the Quebec
government website. The authors confirm the accuracy and availability of the datasets.

Acknowledgments: This study was supported by the SMARTER Centre, a Tier 1 University Trans-
portation Centre of the U.S. Department of Transportation University Transportation Centers Program
at Morgan State University.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

The purpose of Tables A1–A6 is to present the underlying data used to highlight the
critical movements and understand the unique traffic dynamics at each intersection. These
data are essential for developing effective safety interventions by targeting the movements
with the highest risk. These detailed tables support the main findings by summarizing the
data to identify and prioritize critical movements, corroborate them with the crash data,
and provide actionable insights for traffic safety improvements. By providing this detailed
introduction and interpretation of Tables A1–A6, the aim is to ensure that the concepts are
self-contained and easily understood by the readers.
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Table A1. Intersection #1’s conflict data analysis.

Leading Movements Following Movements

Frequency Average PET Severity Frequency Average PET Severity

EE (U-TURN) 521 4.822 200.2 EE (U-TURN) 495 5.177 147.2
EN 2783 6.01 610.2 EN 2261 5.951 532.2
EW 98,704 6.57 18,161.8 EW 121,940 5.884 28,715.7
NE 55,139 6.99 9954.9 NE 22,168 6.388 4672.9

NN (U-TURN) 914 5.909 217.5 NN (U-TURN) 620 6.097 141.0
NS 892 6.066 189.7 NS 821 5.417 208.6
NW 2778 6.047 623.8 NW 2575 5.7 663.0
SN 6 4.65 1.4 SN 6 3.75 2.2

SS (U-TURN) 8 7.83 1.0 SS (U-TURN) 5 6.68 0.9
SW 616 5.63 146.8 SW 983 6.777 176.9
WE 767 6.16 167.7 WE 526 5.585 137.7
WN 107,755 5.84 25,713.9 WN 118,529 6.83 20,740.5
WS 50 6.18 10.5 WS 33 6.448 6.2

WW (U-TURN) 482 6.147 108.1 WW (U-TURN) 354 6.656 63.3

Table A2. Intersection #2’s conflict data analysis.

Leading Movements Following Movements

Frequency Average PET Severity Frequency Average PET Severity

EE (U-TURN) 101 5.623 25.46 EE (U-TURN) 72 6.078 16.71
EN 52 6.252 10.12 EN 44 6.0235 9.72
EW 2708 6.523 532.76 EW 12643 5.217 3253.9
ES 6702 5.871 1516.2 ES 1676 5.591 409.3
NE 876 5.718 194.1 NE 1298 6.983 213.68
NS 95 6.385 17.21 NS 379 7.213 60.24
NW 22 6.053 5.14 NW 27 5.66 7.148
SN 343 6.561 61.91 SN 984 6.494 191.4
SE 363 6.084 74.77 SE 278 6.068 64.21

SS (U-TURN) 27 6.221 6.19 SS (U-TURN) 35 6.7 6.11
SW 375 6.143 79.6 SW 850 6.573 157.51
WE 4259 6.253 949.57 WE 7932 5.803 1909.61
WN 11,104 5.174 2888.1 WN 749 5.182 206.8
WS 30 6.52 6.69 WS 43 6.15 9.36

WW (U-TURN) 11 5.19 2.67 WW (U-TURN) 2 9.0425 0.22

Table A3. Intersection #3’s conflict data analysis.

Leading Movements Following Movements

Frequency Average PET Severity Frequency Average PET Severity

EE (U-TURN) 203 5.68 46.51 EE (U-TURN) 266 6.632 52.46
EN 50 5.898 12.94 EN 60 5.958 13.49
EW 40 5.904 9.22 EW 51 6.316 9.80
ES 28 5.266 6.77 ES 23 5.754 4.99
NE 45,676 5.527 11937.51 NE 12,216 6.22 2533.7

NN (U-TURN) 286 6.243 59.28 NN (U-TURN) 220 6.525 43.82
NS 21,731 7.075 3459.65 NS 18,907 7.821 2691.61
NW 90 6.082 19.6 NW 89 6.596 16.95
SN 31,543 6.697 5663.58 SN 67,653 6.266 15194.2
SE 857 6.002 182.8 SE 559 5.519 143.31

SS (U-TURN) 34 5.28 8.46 SS (U-TURN) 47 5.962 10.13
SW 269 5.195 72.47 SW 101 6.182 19.37
WE 30,502 7.972 4159.07 WE 26,024 7.216 4091.27
WN 14,860 7.751 2185.96 WN 20,517 6.844 3523.82
WS 1306 5.666 312.52 WS 1137 5.528 288.5

WW (U-TURN) 129 5.997 27.85 WW (U-TURN) 165 6.247 35.44



Future Transp. 2024, 4 852

Table A4. Intersection #4’s conflict data analysis.

Leading Movements Following Movements
Frequency Average PET Severity Frequency Average PET Severity

EE (U-TURN) 34 4.723 10.17 EE (U-TURN) 23 6.023 4.705
EN 1239 5.967 247.63 EN 472 5.578 119.83
EW 6021 5.927 1374.9 EW 18,910 6.088 4092.2
ES 2469 5.362 652.93 ES 12,052 6.782 2177.3
NE 1728 6.308 348.66 NE 1443 5.589 347.06

NN (U-Turn) 48 6.004 10.32 NN (U-Turn) 54 5.37 13.71
NS 5065 6.838 906.13 NS 3352 6.36 677.73
NW 9892 6.158 1919.1 NW 7737 5.682 1853.31
SN 12,416 6.697 2287.2 SN 4954 5.583 1252.3
SE 2316 5.9 512.56 SE 1838 5.176 557.31

SS (U-TURN) 23 7.104 3.71 SS (U-TURN) 36 5.888 8.447
SW 12,569 7.38 1989.8 SW 5936 6.406 1241.44
WE 4833 5.885 1136.3 WE 4299 5.448 1119.48
WN 20,942 6.133 4479.5 WN 16,854 6.822 3140.55
WS 1665 6.25 335.12 WS 1644 5.562 412.81

WW (U-TURN) 66 5.636 16.56 WW (U-TURN) 62 5.9125 13.6

Table A5. Intersection #5’s conflict data analysis.

Leading Movements Following Movements

Frequency Average PET Severity Frequency Average PET Severity

EE (U-TURN) 176 5.632 42.93 EE (U-TURN) 167 5.844 35.38
EN 13,910 5.958 3061.1 EN 12,861 5.907 2788.25
EW 37,867 6.632 7030.4 EW 29,837 5.641 7353
ES 323 5.774 78.61 ES 182 5.821 39.31
NE 66,196 5.08 16746 NE 46,303 5.975 9885.34

NN (U-TURN) 222 5.792 46.76 NN (U-TURN) 279 5.584 63.71
NS 318 6.155 65.03 NS 592 6.425 113.18
NW 28,871 5.928 5977.9 NW 25,662 5.637 6279.18
SN 22,837 5.545 5401.3 SN 62,874 5.102 15,930.68
SE 3054 6.02 627.93 SE 2938 5.81 662.36

SS (U-TURN) 265 5.536 65.12 SS (U-TURN) 280 5.853 62.56
SW 14,119 6.332 2670.8 SW 18,319 5.999 3897.25
WE 18,840 6.594 3481.9 WE 5930 6.078 1314.8
WN 27,862 5.662 6797.3 WN 13,801 6.302 2842.42
WS 66 5.592 15.38 WS 49 6.0138 10.73

WW (U-TURN) 76 5.451 18.49 WW (U-TURN) 49 6.14 10.18

Table A6. Intersection #6’s conflict data analysis.

Leading Movements Following Movements

Frequency Average PET Severity Frequency Average PET Severity

EE (U-TURN) 85 4.45 27.12 EE (U-TURN) 51 5.526 12.23
EN 930 5.438 237.14 EN 659 5.882 149.03
EW 40,955 5.701 9958.3 EW 36,385 5.463 9704.55
ES 2793 5.675 679.93 ES 5225 6.508 486.66

NN (U-TURN) 7 6.112 1.302 NN (U-TURN) 10 7.24 1.77
NE 20,386 5.383 5144 NE 25,404 5.95 5756.7
NS 3033 5.882 681.52 NS 2946 5.346 761.8
NW 1881 5.324 537.08 NW 4003 4.49 1426.08
SN 4045 5.88 885.5 SN 7786 4.915 2165.26
SE 66 5.55 18.55 SE 102 4.535 31.16

SS (U-TURN) 4 5.497 0.86 SS (U-TURN) 7 6.027 1.33
SW 4034 6.252 837.1 SW 2489 4.766 771.7
WE 4599 5.761 1091 WE 6146 6.277 1266.68
WN 18,890 6.026 4276.4 WN 19,162 5.746 4398.2
WS 39 4.27 13.66 WS 40 5.2421 10.48

WW (U-TURN) 463 4.682 154.68 WW (U-TURN) 157 4.695 57.42
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Pseudo code of PET and TTC Calculation:
# Step 1: Pre-process LiDAR Data
# Input: LiDAR data frames capturing vehicle and pedestrian movements
# Output: Filtered point cloud data with background objects removed
# 1.1 Filter data frames to remove background objects
for each frame in LiDAR data:
if no traffic in frame:
Pbackground = frame
else:

Pfiltered = frame − Pbackground
# 1.2 Convert 3D point clouds into spherical coordinates
for each point (x, y, z) in Pfiltered:
r = sqrt(x2 + y2 + z2)
theta = atan2(y, x)
phi = acos(z/r)
spherical points.append((r, theta, phi))
# Step 2: Extract and Segment Trajectories
# Output: Identified and classified trajectories for vehicles and pedestrians
# 2.1 Cluster moving points to distinguish from background using DBSCAN
epsilon = 0.5 # Threshold distance for clustering
minsamples = 5 # Minimum number of points to form a cluster
clusters = DBSCAN (eps = epsilon, minsamples = minsamples).fit(spherical_points)
# 2.2 Identify and classify road users (vehicles, cyclists, pedestrians)
for each cluster in clusters:
heightdi f f = abs (cluster.z − backgroundheight)
if heightdi f f <= heightthreshold:
if velocity(cluster) > vehiclethreshold:
vehicles.append(cluster)
else:
pedestrians.append(cluster)
# Step 3: Prepare Data for CNN
# Output: Structured input matrices representing vehicle states
# 3.1 Represent vehicle states as input sequences (speed, direction, acceleration, proximity)
for each vehicle in vehicles:
statesequence = (vehicle.speed, vehicle.direction, vehicle.acceleration, vehicle.proximity)
Input sequences.append(state sequence)
# 3.2 Convert sequences into structured input matrices
Structured matrices = reshape(input sequences)
# Step 4: Define and Train CNN Model
# Output: Trained CNN model for predicting trajectories
# 4.1 Define CNN architecture
Cnn model = Sequential()
Cnn model.add (Conv2D(filters = 32, kernel size = (3, 3), activation = ‘relu’, input

shape = input shape))
Cnn model.add (MaxPooling2D(pool size = (2, 2)))
Cnn model.add (Flatten())
Cnn model.add (Dense(128, activation = ‘relu’))
Cnn model.add (Dense(num classes, activation = ‘softmax’))
# 4.2 Train the CNN using training data
Cnn model.compile (optimizer = ‘adam’, loss = ‘categorical crossentropy’, metrics = [‘ac-

curacy’])
Cnn model.fit (training data, training labels, validation data = (validation data, valida-

tion labels), epochs = 10)
# Step 5: Predict Trajectories and Calculate PET and TTC
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# Output: Predicted trajectories, PET, and TTC values
# 5.1 Input current vehicle states into the trained CNN model to predict future trajectories
Predictedtrajectories = cnn model.predict (structured_matrices)
# 5.2 Calculate PET and TTC values
for each trajectory in Predictedtrajectories:
for each timestep in trajectory:
# Calculate PET
t f irst = timestep [0]
tsecond = timestep [1]
PET = tsecond − t f irst
# Calculate TTC
dinitial = sqrt ((x1 − x2)2 + (y1 − y2)2)
vrelative = sqrt ((vx1 − vx2) 2 + (vy1 − vy2)2)
TTC = initial/vrelative
# Step 6: Evaluate and Refine Predictions
# Output: Refined PET and TTC values with improved accuracy
# 6.1 Compare predicted PET and TTC with actual values
for each actual value, predicted value in zip (actual data, predicted data):
error = abs(actual value – predicted value)
if error > tolerance:
adjust model parameters()
# Return: Final predicted trajectories, PET, and TTC values
return predicted trajectories, PET, TTC
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