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Abstract: Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant global health issue.
The condition is closely linked to metabolic dysfunctions such as obesity and type 2 diabetes. The
gut–liver axis, a bidirectional communication pathway between the liver and the gut, plays a crucial
role in the pathogenesis of NAFLD. This review delves into the mechanisms underlying the gut–liver
axis, exploring the influence of gut microbiota, intestinal permeability, and inflammatory pathways.
This review also explores the potential therapeutic strategies centered on modulating gut microbiota
such as fecal microbiota transplantation; phage therapy; and the use of specific probiotics, prebiotics,
and postbiotics in managing NAFLD. By understanding these interactions, we can better comprehend
the development and advancement of NAFLD and identify potential therapeutic targets.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is defined by the presence of at least 5%
hepatic steatosis without common secondary causes like excessive alcohol consumption,
chronic viral hepatitis, autoimmune hepatitis, congenital hepatic disorders, or long-term
use of steatosis-inducing medications [1]. The prevalence of NAFLD is escalating globally,
largely due to the obesity epidemic, and is anticipated to become the primary cause of liver
transplantation by 2030, leading to rising healthcare costs [2]. Over the past few decades,
the global prevalence of NAFLD has surged by more than 50%, from 25.3% between 1990
and 2006 to 38.0% between 2016 and 2019, reflecting the parallel rise in obesity and type
2 diabetes (T2D) [3]. In the majority of patients, NAFLD is associated with comorbidities
like obesity, beta cell dysfunction, insulin resistance, T2D, and dyslipidemia [4]. The
stringent associations between NAFLD and its mortality-driving comorbidities are not
entirely understood but may involve continuous low-grade inflammation [2].

As our understanding of the metabolic underpinnings of this condition has evolved,
new terminology and diagnostic criteria have been proposed, i.e., the term metabolic
dysfunction-associated fatty liver disease (MAFLD) was introduced to better capture these
metabolic associations. According to a 2020 consensus statement, MAFLD diagnosis
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requires the presence of hepatic steatosis in addition to one of the following criteria:
overweight/obesity, type 2 diabetes, or evidence of metabolic dysregulation (elevated
waist circumference, hypertension, hypertriglyceridemia, low HDL cholesterol, insulin
resistance, or elevated C-reactive protein levels) [5,6]. More recently, in 2023, the term
metabolic dysfunction-associated steatotic liver disease (MASLD) has been proposed to
refine and simplify the diagnostic criteria. MASLD can be diagnosed if hepatic steatosis is
present along with one of five cardiovascular risk factors: hypertension, type 2 diabetes,
obesity, hypertriglyceridemia, or low HDL cholesterol, and without metabolic risk factors,
the condition is termed cryptogenic steatotic liver disease (SLD). Additionally, a new
category called metabolic dysfunction and alcoholic liver disease (MetALD) has been
introduced for individuals with MASLD who consume more alcohol than the threshold for
nonalcoholic status but less than the threshold for alcoholic liver disease (ALD) (average
daily 20–50 g for women, 30–60 g for men). This shift from NAFLD to MAFLD and
now MASLD reflects an ongoing effort to better characterize and diagnose liver diseases
associated with metabolic dysfunction, ensuring a more targeted and precise approach to
patient care and research [5,6].

Clinically, NAFLD is asymptomatic and is frequently diagnosed incidentally through
abnormal liver enzyme findings or imaging studies by the presence of hepatic steatosis [7].
Additionally, NAFLD is driven by the excessive hepatic accumulation of lipids, partic-
ularly free fatty acids, fueled by the non-esterified fatty acid pool, dietary triglycerides,
and de novo lipogenesis [8]. Lipotoxicity from non-esterified fatty acids and diacylglyc-
erol promotes hepatic insulin resistance and endoplasmic reticulum stress, leading to
chronic inflammation, liver fibrosis, cirrhosis, and ultimately hepatocarcinogenesis. As
NAFLD progresses to non-alcoholic steatohepatitis (NASH), it is characterized by hepatic
steatosis, inflammation, and cellular damage. Insulin resistance, oxidative stress, and pro-
inflammatory cytokines such as TNF-α and IL-6 are key in this progression [9]. Persistent
inflammation and liver damage in NASH can result in fibrosis, where extracellular matrix
components are deposited in an attempt to repair the liver. Fibrosis advances through
stages, ultimately leading to cirrhosis, where extensive scarring disrupts liver architecture
and function, significantly increasing the risk of hepatocellular carcinoma (HCC). Mecha-
nisms leading to HCC include genomic instability from chronic inflammation, epigenetic
changes, and proliferative signaling due to ongoing liver cell damage and regeneration.
Dysregulation in pathways such as insulin/IGF signaling, Wnt/β-catenin, and p53, as
well as angiogenesis facilitated by factors like Vascular endothelial growth factor (VEGF),
further contribute to carcinogenesis [9].

Theories on the pathogenesis of NAFLD have evolved from the two-hits hypothesis
to the current multiple-hits hypothesis. The two-hits hypothesis posits that the first hit
involves triglyceride accumulation in the liver (hepatic steatosis) due to sedentary lifestyles,
high-fat diets, insulin resistance, and obesity. This accumulation increases the liver’s
susceptibility to a second hit, characterized by lipotoxicity from free fatty acids, which then
activates pro-inflammatory cytokines, promotes oxidative stress, and triggers fibrogenesis,
leading to severe NAFLD phenotypes [10]. However, this hypothesis is now considered
outdated as it fails to account for the roles of nutrition, gut microbiota, adipose tissue
hormones, and concurrent insulin resistance in genetically predisposed individuals. The
multiple-hits hypothesis suggests that genetic factors, diet, and environmental influences
can cause gut microbiota dysbiosis, insulin resistance, and obesity, which together promote
NAFLD development and are believed to interact in complex, interrelated ways [10].
Recent research has rapidly uncovered the link between gut microbiota and NAFLD,
particularly in cases of obesity-related and high-fat-diet-induced NAFLD in both adults
and children. Dysbiosis, or disruption of the typically beneficial gut microbiota, promotes
the development of NAFLD by altering gut–liver homeostasis. This includes dysregulation
of the gut barrier, transport of lipopolysaccharide (LPS) to the liver, altered bile acid
profiles, and decreased short-chain fatty acids (SCFAs). The increased recognition of the
importance of gut microbiota-mediated homeostasis in preventing NAFLD suggests that



Livers 2024, 4 437

gut microbiota-targeted preventive and therapeutic strategies, such as probiotics, could
be effective in combating NAFLD [10–12]. This review explores the intricate interactions
and communication between gut microbiota and the liver, proposing potential therapeutic
strategies focused on modulating gut microbiota for managing and treating NAFLD.

1.1. The Gut–Liver Axis: Key Insights and Interconnections

The gut–liver axis refers to the bidirectional network of signals (Figure 1) between
the gut and the liver, connected via the hepatic portal vein, bile tract, and systemic circu-
lation [13]. This axis is crucial for understanding the pathogenesis of various metabolic
disorders including NAFLD and its progression to hepatocellular carcinoma (NAFLD-
HCC).
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Figure 1. This schematic illustrates the complex bidirectional communication between the liver
and gut, known as the gut–liver axis. The diagram also highlights the flow of various substances
and complex signals through this axis, which plays a crucial role in maintaining homeostasis and
influencing disease states. SCFA: Short Chain Fatty Acids; BA: Bile Acids; ROS: Reactive Oxygen
Species; PAMPs: Pathogen-Associated Molecular Patterns; DAMPs: Damage-Associated Molecular
Patterns; CD4: Cluster of Differentiation.

The liver receives nearly two-thirds of its blood supply from the gastrointestinal
tract via the portal vein, which transports nutrients, bacteria, and their components to
the liver while bile and antibodies return to the small intestine to regulate the gut micro-
biome [14–16]. The gut–liver axis plays a crucial role in NAFLD pathogenesis due to its
anatomical and functional connections. Dysbiosis, an imbalance in gut microbiota, can
worsen the condition by increasing intestinal permeability, allowing harmful bacteria and
their components to enter the liver. This stimulates hepatic immune cells and activates
inflammatory pathways, potentially leading to NAFLD, which can progress to NASH, liver
fibrosis, cirrhosis, and ultimately cancer [1,5,17,18]. This interaction is bidirectional, as gut
dysfunction can impact liver health and vice versa, creating a cycle that promotes disease
progression [19,20]. The gut–liver axis’s role in NAFLD is supported by the multiple-hit hy-
pothesis, which states that different genetic, environmental, and lifestyle factors contribute
to the disease development and progression. Other factors such as high caloric intake, phys-
ical inactivity, genetic predispositions [21], obesity, and gut dysbiosis-related damage to the
intestinal integrity can lead to gut–liver axis malfunction, which might contribute to simple
steatosis, thereby allowing bacterial components to enter circulation, a condition known as
the “leaky” gut. This permeable gut permits hepatotoxic bacterial substances, including
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pathogen-associated molecular patterns (PAMPs) and damage-associated molecular pat-
terns (DAMPs), to reach the liver through the hepatic portal circulation and activate toll-like
receptors (TLRs) in hepatic cells. These TLRs sense bacterial products like lipoteichoic acid
and lipopolysaccharides (LPS) influencing gut barrier function and permeability [22,23].

Subsequent triggers by increased lipotoxicity and enhanced intestinal permeability
further worsen the metabolic and systemic profile of NAFLD patients [21]. Recent research
emphasizes the key role of the gut–liver axis in liver diseases beyond NAFLD and states
that the disruptions in the gut–liver axis, gut microbiome composition, and epithelial
barrier function can increase microbial exposure, microbial translocation, infections, and a
pro-inflammatory environment in the liver, thus causing disease progression [22].

1.2. Distinct Gut Microbiome Signatures in NAFLD Patients

The intestinal tract harbors a vast number of microorganisms that play a vital role in
maintaining metabolic homeostasis [10,24,25]. Among these, Firmicutes (primarily Gram-
positive Bacilli, Clostridia, and Mollicutes) and Bacteroidetes (including Gram-negative Pre-
votella, Alistipes, and Parabacteroides) are the most dominant, constituting about 90% of the
gut microbiota [19,24,26,27]. The epithelial mucosal and vascular barriers in the gut allow
nutrient absorption while preventing the transmission of microbes and their toxins into
the circulation. Disruption of gut barriers or dysbiosis, defined as a relative change in
the composition and function of an individual’s commensal microbiota, can increase liver
exposure to harmful substances and create a pro-inflammatory environment [10,26]. In
NAFLD patients, gut microbiota imbalances manifest as reduced microbial diversity and
an overgrowth of pathogenic bacteria like Escherichia coli, impairing the gut microbiota’s
ability to maintain local homeostasis, whereas healthy individuals typically have higher
microbial diversity and lower abundance of pathogenic bacteria [22,28–30] (Figure 2).
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Figure 2. This diagram illustrates the progression of Non-Alcoholic Fatty Liver Disease (NAFLD)
from a normal liver to hepatocellular carcinoma (HCC), highlighting the critical role of gut dysbiosis
which advances through stages like fatty liver, hepatic steatosis, liver fibrosis, and liver cirrhosis.
Gut dysbiosis, marked by decreased beneficial bacteria, namely Firmicutes and Bifidobacterium, and
increased harmful bacteria such as E. coli and Proteobacteria, exacerbates these conditions by promoting
inflammation and liver damage.
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Among the extensive population of NAFLD patients, an observed increase in Pro-
teobacteria, Lachnospiraceae, Escherichia, Enterobacteriaceae, Barnesiella intestinihominis, and
Bacteroidetes is noted, though some studies reported a reduction or no change in Bac-
teroidetes [1,27,31], along with a decline in Prevotella and Firmicutes [28,29]. Da Silva et al.
identified a reduction in levels of certain groups of gut microbiotas, including the Bac-
teroidetes and Firmicutes phyla, and an increase in the abundance of another group of
microbiota in subjects with simple steatosis and NASH compared to controls suggesting
that a particular gut microbiota may play a crucial role in the development and advance-
ment of NAFLD [30]. In a similar study on the Korean population with NAFLD, a relatively
lower alpha and beta diversity was reported with an abundance in the phylum Proteobacte-
ria, family Enterobacteriaceae, genus Citrobacter and a significant decrease in the population
levels of genus Faecalibacterium in subjects with NAFLD when compared to control. Addi-
tionally, they also reported a reduction in the abundance of butyrate-producing bacteria
and a relative enhancement in the ethanol-producing bacteria in people with NAFLD [32].
In another study, it was revealed that the severity of NAFLD is directly linked to gut
dysbiosis and alterations in the metabolic activity of the gastrointestinal microbiota. Here,
Bacteroidetes was found to be associated with liver steatosis and NASH, while Ruminococcus
was found to be significantly correlated with fibrosis [33]. A study on 171 Asians with
NAFLD revealed significant variations in the microbiome diversity, with Ruminococcaceae
and Veillonellaceae being the primary microbiota associated with the disease [34]. In a similar
study on NAFLD patients, the correlation of gut metabolites with the abundance of specific
genera was studied, and it was concluded that a decrease in Oscillospira is coupled to an
up-regulation of 2-butanone, and an increase in Dorea and Ruminococcus was identified as
the gut microbiome signatures linked with NAFLD onset [35].

Studies indicate that NAFLD is associated with a specific disbalance between two
predominant phyla, namely Bacteroides and firmicutes. While some studies suggest in-
creased Firmicutes are linked to NAFLD, others highlight the significant role of Bacteroide
overgrowth in disease development [31,36–38]. A study on fecal microbiota of NAFLD
cases showed an increased abundance of Enterobacteriaceae, Streptococcus, Blautia, Flavobac-
terium, Alkaliphilus, and a significantly reduced level of Akkermansia [39,40]. In another
study, a substantial rise was found in the Bacteroidetes/Firmicutes ratio in NASH subjects
independent of diabetes risk factors or drugs such as metformin use [38]. Additionally,
NAFLD severity is also linked with increased fecal Bacteroides and decreased Prevotella
levels [33]. Metagenome sequencing shows Bacteroides vulgatus and Eubacterium rectale
are prevalent microbes in mild to moderate NAFLD, while Escherichia coli and Bacteroides
vulgatus dominate in liver fibrosis [36,41].

High-throughput sequencing studies of NAFLD patients have revealed increased lev-
els of Dysgonomonas, Escherichia coli, Veillonellaceae, and Bilophila, which promote endotoxin
and endogenous ethanol production [19,42]. This leads to elevated systemic inflamma-
tion and insulin resistance. Conversely, beneficial bacteria like Akkermansia muciniphila,
Faecalibacteriumprausnitzii (F. prausnitzii), Ruminococcaceae, Alistipes, and Bifidobacterium
are reduced, impairing SCFA production and compromising the intestinal mucosal bar-
rier [43,44]. Recent research indicates that dysbiosis of Alistipes in particular can have both
beneficial and detrimental effects, with specific implications in liver fibrosis, colorectal
cancer, and cardiovascular diseases. Its distinctive mechanism of fermenting amino acids,
termed putrefaction, underscores its significant role in inflammation and liver-related
conditions [45–48].

1.3. Dynamic Communication Mechanisms between Gut and Liver in NAFLD

The communication between the gut and liver in NAFLD is mediated via several
mechanisms including the production and transport of live bacteria and its derived metabo-
lites such as SCFAs, bile acids, trimethylamine oxide (TMAO), ethanol, choline, and amino
acids (Figure 3) by the intestinal microbiota and the generation of proinflammatory effects
during NAFLD progression [19].
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Figure 3. The figure illustrates the dynamic interplay and communication mechanisms between the
gut microbiota and the liver, highlighting various physiological processes and pathways involved. It
also emphasizes how alterations in microbial metabolism and signaling pathways can influence the
advancement of NAFLD and its associated complications. FRX: Farnesoid X Receptor; TGR5: Takeda
G protein-coupled receptor 5; GPR: G protein Receptors; TNFα: Tumor Necrosis Factor-alpha; Th
Cells: T helper cells; AMPK: Adenosine monophosphate-activated protein kinase; CD: Cluster of
Differentiation; NH3: Ammonia; OH: Ethanol; PFKB: Phosphofructokinase B; IL1β: Interleukin 1β;
NFκB: Nuclear Factor kappa-light-chain-enhancer of activated B cells.

2. Short-Chain Fatty Acids: Production, Circulation, and Effects on Liver Health

Short-chain fatty acids (SCFAs), particularly propionate, acetate, and butyrate, are
produced through the fermentation of indigestible carbohydrates by gut bacteria [49–52].
While most SCFAs are utilized in the intestine as the source of energy, some are transported
to the liver through the hepatic portal vein via the monocarboxylate transporter 1 (MCT-
1) and the sodium-coupled monocarboxylate transporter 1 (SMCT-1) receptors [1]. The
function of SCFAs in NAFLD is not entirely understood, but elevated fecal SCFA levels and
a predominance of SCFA-producing bacteria are observed in NAFLD subjects compared to
healthy individuals [53–55]. In general, butyrate primarily provides nourishment to colon
epithelial cells, whereas propionate supports gluconeogenesis and cholesterol synthesis,
and acetate acts as the key for lipogenesis and cholesterol biosynthesis in the liver [56–59].

Additionally, SCFAs influence liver metabolism, its metabolic substrates, and signaling
molecules through various mechanisms, including appetite regulation, energy metabolism,
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insulin resistance, and adipose tissue metabolism. They manifest their metabolic ef-
fects by binding to G-protein-coupled receptors (GPRs) such as GPR41, GPR43, and
GPR109A [51,59,60], with GPR43 being the most crucial for regulating insulin sensitivity
and inflammatory responses, thereby influencing fat accumulation and metabolism in
the liver cells and adipose tissue [59–61]. They activate GPR41 and GPR43, prompting
enteroendocrine cells to release peptide YY (PYY), which slows intestinal transit and en-
hances nutrient absorption [62,63]. Furthermore, GPR activation stimulates glucagon-like
peptide-1 (GLP-1), which promotes hepatic lipid β-oxidation and clinically reduces hepatic
steatosis. SCFAs also activate AMP-activated protein kinase (AMPK), stimulating hepatic
autophagy to facilitate triglyceride hydrolysis and free fatty acid β-oxidation [54,64,65].

Beyond metabolism, SCFAs play a role in immune modulation by stimulating pro-
inflammatory T cells like Th1 and Th17 and influencing inflammatory cytokines, such as
TNF-α, a key intermediator of liver inflammation [54,66]. Additionally, systemic acetate can
enhance the recall response function of memory CD8+ T cells, thereby improving infection
control [67]. Further research is needed to fully understand the characteristics and function
of SCFAs and their role in NAFLD pathogenesis, particularly in relation to gut microbiome
imbalance and the gut–liver axis.

2.1. Bile Acid Metabolism and Circulation Insights

Bile acids (BAs) play a significant role in enterohepatic circulation, particularly in
the context of NAFLD. It is synthesized from cholesterol in the liver and secreted into
the intestine to aid in lipid digestion and absorption [68,69]. Gut microbiota, especially
Bacteroidetes, Lactobacillus, Bifidobacterium, and Clostridium XIVa with the help of enzyme
bile salt hydrolases (BSH), converts primary BAs into secondary BAs, which are then
reabsorbed in the ileum and carried back to the liver via the portal vein [1,49,70,71]. This
enterohepatic circulation maintains BA homeostasis and is intricately linked to gut–liver
communication [72]. In NAFLD, gut dysbiosis alters BA metabolism, causing an increase
in BA synthesis, leading to higher levels of primary BAs and a disrupted primary-to-
secondary BA ratio [73]. This imbalance affects the signaling of BA receptors, such as the
farnesoid X receptor (FXR) [20,74] and Takeda G-protein receptor 5 (TGR5), which regulate
lipid and glucose metabolism, insulin sensitivity, and inflammatory responses [70,75,76].
The FXR, which is primarily located in the liver and intestines, upon activation reduces
hepatic lipogenesis and inflammation by inhibiting the NF-κB pathway [71]. Conversely,
suppressed FXR activity, which is often observed in NAFLD, leads to increased lipid
accumulation and inflammation [77]. For instance, germ-free mice, which lack gut micro-
biota, are resistant to liver steatosis, highlighting the role of microbial interactions in BA
metabolism and NAFLD pathogenesis [78]. TGR5, another important bile acid receptor,
upon activation, modulates glucose homeostasis and inflammatory cytokine production,
which further improves liver steatosis and hepatocyte damage [79,80]. Dysbiosis-induced
alterations in BA levels and signaling further exacerbate NAFLD by promoting hepatic
lipid accumulation and reducing insulin sensitivity [80]. Clinical and preclinical studies
demonstrate that targeting the intestinal FXR can influence BA metabolism and NAFLD
outcomes, although differences between human and mouse models necessitate further
research [54]. Maintaining healthy BA metabolism and gut microbiota is essential for
preventing NAFLD progression, and understanding the gut–liver axis offers promising
avenues for gut microbiota-targeted therapies.

2.2. Intestinal Barrier Integrity and Portal Vein Dynamics in the Gut–Liver Axis

Intestinal permeability, crucial for regulating gut–liver communication is determined
by the integrity and robustness of the gut intestinal barrier, which comprises the mucus
layer, intestinal epithelium, and the gut vascular barrier (GVB) and regulates the transport
and circulation from the gut to the liver [81,82]. Enterocytes linked together by tight
junction proteins, namely E-cadherins, occludins, and claudins, regulate the ingress into the
hepatic portal vein and its way into the liver [81,82]. The portal vein provides a direct link
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between the intestine and the liver, delivering approximately 70% of blood, nutrients, and
beneficial microbial products like SCFAs to the liver [31,53,83,84]. Gut dysbiosis disrupts
the gut barrier integrity, allowing toxic factors like live bacteria, bacterial components
(DAMPs, LPS), and proinflammatory metabolites such as ethanol and ammonia to enter
the hepatic portal circulation and reach the liver. These toxins further activate immune cells
and respective inflammatory pathways, thereby contributing to the NAFLD development
and progression [85].

Impaired gut barrier function is a widely recognized characteristic of dysbiosis in
subjects with NAFLD and NASH [1,86]. For instance, several studies have reported that
the severity of NAFLD is associated with higher zonulin levels in patients compared to
healthy controls [87–89]. Furthermore, in a meta-analysis recruiting 128 NAFLD patients,
an increase of 39.1% was reported in intestinal gut permeability in NAFLD subjects as
compared to 6.8% in healthy controls [61,90]. Clinically, it has been observed that patients
with NAFLD exhibit higher portal LPS levels than those with simple steatosis. Additionally,
metabolic alterations in the portal system, such as elevated L-tryptophan, DL-3-phenylacetic
acid, and glycocholic acid, are observed in NAFLD patients [19,91].

Gut microbiota can enhance intestinal gut integrity by generating and synthesizing
metabolites such as SCFAs, which reinforce and strengthen tight junctions [86]. Some
bacteria like Akkermansia muciniphila can improve gut permeability and affect NAFLD de-
velopment and progression by regulating tight junctions [83]. However, gut dysbiosis can
disrupt these tight junctions, thereby allowing bacteria and their metabolites to translocate
from the gut lumen to the liver where Kupffer cells release inflammatory cytokines, exacer-
bating liver inflammation [84]. This inflammatory response is generated via the stimulation
of TLRs on Kupffer cells leading to the subsequent activation of the inflammatory cascade
and production of proinflammatory cytokines namely interleukin (IL)-1β, tumor necrosis
factor (TNF) α, and interferons [85]. Among the TLR family, TLR2, TRL4, TRL5, and TRL9
are best implicated in the pathogenesis of NAFLD [92]. TLR4 specifically binds with LPS,
activates the NF-kB pathway, and further exacerbates the condition by contributing to
chronic low-grade inflammation in obesity and NAFLD [20,59,66,93].

2.3. Dietary Choline: Implications for the Gut–Liver Axis

Choline, an important component of cell membrane phospholipid [94] is crucial
for liver fat metabolism, particularly in forming very low-density lipoproteins (VLDL)
necessary for lipid transfer from the liver via the phosphatidylcholine synthase (Pcs)
pathway [1,95,96]. According to a study, the high choline intake is directly associated with
reduced fatty liver risk in normal-weight women [97]. In animal models of hepatic steatosis,
choline deficiency frequently results in liver fat accumulation and gets reversed in patients
when choline supplementation is given [93]. The intestinal microbiota can influence choline
metabolism by converting dietary choline into trimethylamines, which reduces circulating
choline levels. This mimics choline-deficient diets, contributing to NAFLD development by
impairing phosphatidylcholine synthesis necessary for VLDL assembly, thereby resulting
in triglyceride buildup in hepatocytes [98,99].

Gut commensals such as E. coli and Desulfovibrio desulfuricans can convert choline to
trimethylamine (TMA), which the liver further oxidizes to trimethylamine N-oxide (TMAO),
and elevated TMAO levels impair glucose homeostasis, exacerbate insulin resistance, and
contribute to atherosclerosis, obesity, and NAFLD [1,98]. A study found that higher plasma
TMAO levels are linked to increased all-cause mortality in NAFLD patients [100,101].
Moreover, choline deficiency influences the gut microbiome composition and function,
with higher levels of bacteria like Gammaproteobacteria and Erysipelotrichia, which convert
choline to toxic methylamines, being directly connected to liver damage [1,102,103]. This
alteration supports the role of gut microbes in NAFLD, with enhanced pathogenic bacterial
growth potentially increasing choline demand and contributing to choline depletion and
harmful metabolite production [54,103,104]. Thus, the gut microbiome significantly impacts
NAFLD through altered choline metabolism and related mechanisms.
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2.4. Endogenous Ethanol Production and Its Impact on the Gut–Liver Axis

Ethanol is typically produced in very small quantities in the intestine and is metabo-
lized in the liver by the enzyme alcohol dehydrogenases [105]. Hepatic damage in alcoholic
liver disease (ALD) and NAFLD is almost identical [106], suggesting a link between blood
ethanol levels and changes in gut microbiota [107,108]. Certain gut microbiota can help
in the fermentation of dietary carbohydrates and sugars into ethanol, which further gets
converted into acetate and acetaldehyde via the upregulation of the CYP2E1 pathway,
leading to fatty acid generation and fluctuations in intracellular redox potential, causing an
increased intestinal permeability, endotoxemia, and inflammatory response, thus exacerbat-
ing liver damage [59,109–111]. Gut dysbiosis can enhance the level of ethanol-producing
bacteria such as Escherichia, Klebsiella pneumonia, Bacteroides, Bifidobacterium, and Clostridium.
A study reported a fivefold increase in alcohol-producing bacteria, namely Escherichia
and Proteobacteria, with the quantity of ethanol synthesized to be directly linked to the
abundance of Proteobacteria, particularly Klebsiella pneumoniae [105,112,113]. Additionally,
a study identified Klebsiella pneumonia K14, a high alcohol producer, as a causative fac-
tor for NAFLD [113]. Another study found that mutations in Klebsiella pneumonia K14
and Collinsella aerofaciens influenced alcohol production and were directly correlated with
the severity of NAFLD [114,115]. These findings highlight complex interactions between
ethanol and NAFLD, warranting further research to clarify ethanol’s role in NAFLD devel-
opment and advancement.

2.5. Amino Acid Metabolism in the Gut–Liver Axis

Amino acids and their derived metabolites, including phenylalanine, tryptophan,
branched-chain amino acids (BCAAs), and microbiota-derived metabolites, play a cru-
cial role in the development and pathogenesis of NAFLD by influencing liver function
through mechanisms such as intestinal integrity, inflammation, lipogenesis, and insulin
resistance [116].

Tryptophan, an example of an essential amino acid, is metabolized by gut bacteria
through various pathways. The indole pathway converts tryptophan to indole, which en-
hances intestinal integrity and reduces the severity of NAFLD by promoting tight junction
proteins and glycolysis via the PFKFB3 pathway [109,110]. In another pathway, butyrate is
catalyzed by indoleamine 2,3-dioxygenase (IDO) to generate kynurenines (Kyn), which
further over-activate the Kyn pathway in NAFLD, causing inflammation in various or-
gans [109–117]. Indole-3-acetic acid, a derivative of indole, reduces hepatic lipogenesis and
inflammation, thus improving NAFLD [118]. Serotonin, another tryptophan metabolite,
inhibits energy expenditure in brown adipose tissue in NAFLD by inhibition of serotonin re-
ceptors, namely Thp1 and HTR2a, thereby reducing hepatic steatosis [105,119]. In NAFLD,
there is disturbed tryptophan metabolism, and supplementation of tryptophan might in-
crease the intestinal barrier integrity and improve liver NAFLD and function [110]. Pheny-
lalanine and its derivatives, such as phenylacetic acid (PAA), are reported to contribute
to the development and pathogenesis of NAFLD [120]. In a study, the transplantation of
a liver steatosis-related microbiome into germ-free mice enhanced the PAA and hepatic
triglyceride levels, thereby altering the gene expression related to lipogenesis and thus
promoting triglyceride accumulation. PAA also inhibits the pAkt pathway, which increases
hepatic steatosis by enhancing the use of BCAAs for lipid accumulation [105,121]. BCAAs
like Valine, leucine, and isoleucine are linked to NAFLD via the impairment of the TCA
cycle in NAFLD [122]. According to a study, elevated BCAA levels are associated with
insulin resistance, liver inflammation, and ballooning, indicating severe NAFLD, while free
dietary amino acid intake prevents unhealthy metabolic outcomes, as indicated in male
mice [105,123,124].

2.6. Therapeutic Approaches Targeting NAFLD through Gut Microbiome-Centered Interventions

Gut microbiota interventions show promise in treating NAFLD by modifying microbial
composition and function to enhance overall health. This can be achieved through dietary
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changes like increasing fiber intake or using probiotics, prebiotics, and postbiotics, as well
as through methods such as phage therapy and fecal microbiota transplantation. These
approaches aim to restore microbial balance, influence the gut–liver axis, and reduce liver
inflammation and fat accumulation while minimizing side effects and promoting a safer,
more sustainable management of liver conditions and metabolic health [125].

In contrast, current clinical drugs for NAFLD, such as pioglitazone and vitamin E,
primarily target insulin resistance, oxidative stress, and inflammation. Pioglitazone, a thia-
zolidinedione, improves insulin sensitivity and reduces liver fat content but is associated
with adverse effects like weight gain and an increased risk of heart failure. Vitamin E, an
antioxidant, helps reduce oxidative stress and inflammation in the liver, showing beneficial
effects in non-diabetic NAFLD patients but with potential long-term safety concerns [126].

Other pharmacological agents, such as glucagon-like peptide-1 (GLP-1) agonists and
sodium-glucose co-transporter-2 (SGLT2) inhibitors, show promise for improving metabolic
parameters and reducing liver fat [127,128]. However, these drugs can have side effects
and do not address the underlying gut–liver axis, requiring long-term efficacy and safety
evaluation [129,130]. For instance, pioglitazone can cause weight gain and increase the risk
of congestive heart failure, metformin carries a risk of lactic acidosis, and vitamin E, while
reducing oxidative stress, has been linked to a higher risk of prostate cancer with long-term
use [131,132]. Moreover, these drugs often target specific pathways, which may limit their
effectiveness in addressing the multifactorial nature of NAFLD [130].

Furthermore, gut microbiota therapies generally exhibit a favorable safety profile with
minimal side effects. Most probiotics and prebiotics are well-tolerated, with occasional
mild gastrointestinal symptoms such as bloating or gas being the most common adverse
effects. Unlike clinical drugs, gut microbiota interventions do not carry risks of severe
complications like congestive heart failure, lactic acidosis, or cancer. This makes them a
safer option, especially for patients with NAFLD who are at increased risk of cardiovascular
events or progressive liver disease [44,133]. Therefore, gut microbiota interventions offer a
complementary approach by targeting the root cause of dysbiosis and providing a more
holistic treatment option for NAFLD.

3. Probiotics

Probiotics are non-pathogenic live microorganisms that are generally considered
beneficial for maintaining gut health and are mostly used in diarrhea [134–136] and malnu-
trition [137,138]. Recently, probiotic supplements have been reported to have worthwhile
effects on both intro-intestinal and extro-intestinal diseases, including NAFLD [139,140].

Probiotics can restore gut microbiota balance [141], enhance lipid and glucose pro-
files [142,143], maintain intestinal gut barrier integrity [144], reduce inflammation [145],
and inhibit oxidative stress [146]. These mechanisms theoretically contribute to the effective
prevention of NAFLD.

Multiple animal studies have demonstrated that probiotics benefit NAFLD by reducing
inflammation, hepatic triglyceride levels, overall body weight, and visceral adipose tissue
weight, as well as by improving glucose homeostasis [147]. However, clinical evidence
regarding the direct impact of probiotics on NAFLD is still insufficient, despite numerous
animal studies exploring their therapeutic mechanisms. In a study aimed to evaluate
the overall efficacy of probiotics in treating NASH using a hepatocyte-specific PTEN
knockout mouse model which closely resembles human NAFLD indicated that probiotics
significantly reduced serum transaminase levels, NAFLD activity scores, and the expression
of pro-inflammatory cytokine genes. Additionally, probiotics alleviated oxidative stress,
evidenced by anti-oxidative stress markers, and altered glutathione levels, suggesting a
potential mechanism of action for their beneficial effects. Overall, probiotics demonstrated
positive effects in mitigating NAFLD and preventing carcinogenesis in the PTEN knockout
mice model [15]. Another study found that probiotic supplementation with Lactobacillus
acidophilus in rabbits protected them against NAFLD. The treatment restored liver function,
lipolytic gene expression, and antioxidant levels to normal [148].
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Another meta-analysis aimed to summarize randomized controlled trials that exam-
ined the effects and efficacy of probiotics on NAFLD, which included the assessment of
the impact of probiotics on liver function tests, specifically alanine aminotransferase (ALT),
aspartate aminotransferase (AST), and gamma-glutamyl transferase (GGT). Overall, probi-
otics have shown beneficial effects and could be considered as an additional therapeutic
approach for managing NAFLD [149]. A similar meta-analysis of 21 randomized clinical
trials containing 1037 NAFLD subjects found that probiotic intervention significantly im-
proved liver function tests, blood lipid levels, and blood glucose and insulin levels, thereby
reducing hepatic steatosis. However, it did not affect the BMI index, level of inflammatory
factors, or insulin resistance significantly. Subgroup analysis revealed that treatments
lasting 12 weeks or longer resulted in better improvements in ALT, GGT, triglycerides, and
blood sugar. Overall, the study indicates that probiotics effectively regulate liver function,
liver steatosis, glucose homeostasis, and blood lipid levels in NAFLD subjects [150].

Over the past decade, clinical investigations into probiotic therapies for NAFLD have
shown improvements, but the results and benefits remain contentious. The discrepancies
in the trials mentioned above may be attributed to variations in study design, probiotic
dosage, types of strains, and supplement duration, as well as the characteristics of the
participants. Overall, probiotics may be beneficial in reducing transaminase levels and
partially improving lipid profiles, particularly in the initial stages of NAFLD develop-
ment [151]. However, long-term research is needed to establish more robust evidence and
to determine whether probiotics can prevent the advancement and progression of NAFLD
to liver cirrhosis and HCC. Currently, there are significant challenges in using probiotics to
treat NAFLD. First, selecting the appropriate probiotics is complex due to the diverse range
of strains, with different benefits and effects attributed to different strains; multi-strain
probiotics have shown more effectiveness than single strains. Second, while initial-stage
NAFLD patients have shown improvements with reduced transaminase levels following
probiotics treatment, it is unclear whether probiotics can prevent advancement to liver
fibrosis. Third, both the study duration and probiotic dosage impact efficacy outcomes.
Despite these challenges, probiotics are considered a promising therapeutic strategy and
are anticipated to become an effective, significant, and widely used treatment for NAFLD
patients [151].

4. Prebiotics

Prebiotics are non-viable dietary components linked with gut microbiota modulation
and can provide health-related benefits to the host. They primarily include polysaccharides
like inulin, cellulose, hemicellulose, resistant starch, and pectins as well as oligosaccharides
such as fructooligosaccharides, isomaltooligosaccharides, galactooligosaccharides, lactu-
lose, xylooligosaccharides, and soy oligosaccharides, with fructooligosaccharides being
widely researched in NAFLD [152]. These substances selectively stimulate the growth and
activity of gut microbiota. Numerous animal studies have demonstrated that prebiotic
supplementation can reduce fatty acid synthesis pathways, potentially lowering hepatic
triglyceride accumulation caused by fructose. This effect is achieved through reduced
expression of enzymes involved in hepatic lipogenesis, including fatty acid synthase and
acetyl Co-A carboxylase. Additionally, oligofructose modifies the gut microbiome to pro-
mote Bifidobacterium, which enhances intestinal barrier function and lowers endotoxin
levels [153].

Additionally, in another study on mice models, the administration of prebiotics de-
creased liver inflammation in obese mice via the glucagon-like peptide-2-dependent path-
way, which also positively affected the gut barrier [154]. The study also evaluated the
liver-protective effects of COS23, an enzymatically catalyzed byproduct of chitosan oligosac-
charide (COS), in diet-induced obese mice and reported that it significantly reduced hepatic
steatosis and improved liver injury by decreasing toxic lipids such as triglycerides and free
fatty acids in the liver. It also regulated lipid-related pathways and inflammation while
altering lipid profiles in plasma. Additionally, COS23 modulated gut microbiota, decreas-
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ing Mucispirillum and increasing Coprococcus abundance, and improved intestinal barrier
function. These findings suggest that COS23 holds promise as a clinical treatment for
NAFLD. However, human clinical trials are essential to corroborate this information [155].

Despite limitations in many studies, such as small sample sizes and insufficient data
on patients’ diets and lifestyles, treatments with probiotics and prebiotics for NAFLD
show promise. Strong evidence from short-term, high-quality human studies supports
using dietary probiotics and prebiotics as a possible therapeutic approach for NAFLD.
Nevertheless, additional research is required to establish a link between these results and
alterations in gut microbiota [156].

5. Postbiotics

Postbiotics, which contain various bioactive substances, might exert promising ef-
fects by reducing hepatic lipid build-up [44,157]. A study explored the preventive role of
postbiotics derived from Lactobacillus paracasei on NAFLD. The findings revealed that simul-
taneous ingestion of a high-fat diet (HFD) and postbiotics slowed weight gain, suppressed
epididymal white fat hypertrophy and glycemic hike, improved serum biochemical markers
associated with blood lipid metabolism, and reduced hepatic steatosis and low-grade liver
inflammation in mice [158]. Bacterial sequencing demonstrated that postbiotics altered the
gut microbiota in HFD mice, elevating the levels of Akkermansia and decreasing the relative
abundance of the Lachnospiraceae NK4A136 group, Bilophila, and Ruminiclostridium [158].

6. Fecal Microbiota Transplantation (FMT)

FMT involves transferring fecal matter from a healthy donor to a patient, which can
potentially correct dysbiosis and improve liver health. This procedure helps restore the
balance of commensal gut microbiota and enhances the gut’s natural defenses, prevent-
ing the entry and translocation of potential pathogens [159]. As a result, FMT has been
proposed to address other dysbiosis-related conditions in the gut microbiome, including
those observed in NAFLD [48]. FMT restores the microbiome-mediated regulation of
gut barrier integrity, preventing the entry and migration of potential pathogens, such as
Clostridiales [160]. Initial animal studies provided the first evidence of FMT’s impact on
NAFLD. Leroy et al. found that FMT from NAFLD mice triggered NAFLD development in
most recipient mice, underscoring the substantial colonization of specific bacteria following
FMT [161]. Additionally, a study investigated two different groups of mice fed a high-fat
diet, with one group receiving FMT from healthy donors. This intervention led to a notable
decrease in typical histological features associated with NAFLD in the treated group [162].
Interestingly, improvements in NASH-related histological features, including liver fibrosis
and inflammatory infiltrates, were also observed post-FMT. These improvements correlated
with reductions in body weight, fat content, and serum transaminase levels [163]. The
clinical trials reported have demonstrated promising results of FMT in NAFLD, benefiting
both diabetic and non-diabetic patients, with improvements noted in glycemic control and
liver steatosis. Furthermore, initial reports suggest FMT may also be safe for use in patients
with liver cirrhosis, a progression of NASH [48,164].

FMT seems to be a safe and effective treatment for NAFLD, though further randomized
controlled trials (RCTs) and long-term follow-up studies are necessary to fully evaluate its
effects and efficacy, especially in lean NAFLD patients who often do not benefit significantly
from lifestyle and dietary changes, cholesterol-lowering agents, or probiotics [44].

7. Phage Therapy

Phage therapy, long overshadowed by antibiotics, is now being reconsidered as a
potent tool against antibiotic-resistant bacteria [165]. Given the mechanistic links between
bacterial microbiota, gastrointestinal, and liver disorders, the targeted manipulation of
the gut microbiota through phages’ selective bactericidal action has garnered renewed
attention. The human gut virome, dominated by phages, shows significant alterations
in patients with liver diseases when compared to healthy controls [125]. Changes in the
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phageome have been observed in NAFLD patients, with lower viral diversity in advanced
stages and higher abundance of Enterobacteria, Escherichia, and Lactobacillus phages [125].

Phages can target and reduce specific pathobionts, as evidenced by preclinical studies
showing that selective elimination of pathobionts via phages improves inflammatory bowel
disease, ethanol-induced liver disease, primary sclerosing cholangitis, and NAFLD in
mouse models [166]. For example, phages targeting the cytolysin-producing Enterococcus
faecalis reduced the circulation and presence of harmful protein cytolysin, which is linked to
severe liver disease and mortality in NALD subjects [167]. In studies with humanized mice,
oral administration of phages against cytolysin-positive E. faecalis reduced ethanol-induced
liver injury, liver steatosis, and liver and gut inflammation. These findings highlight
the role of harmful bacteria in fatty liver diseases and demonstrate that phage therapy
can reduce liver disease and its associated complications in preclinical models. Phages
typically have a narrow host range, infecting closely related strains within species, which
minimizes collateral damage to the recipient’s microbiome but may also limit their ability
to broadly modulate the gut microbiome [125]. The impact of the gut intestinal virome on
bacterial microbiota and NAFLD progression remains largely unclear. However, phage
therapy shows potential for treating NAFLD, as demonstrated by the prevention of NAFLD
development in mice after eliminating ethanol-producing Klebsiella pneumoniae through
phage therapy [113,168].

8. Conclusions and Future Prospects

The gut–liver axis plays a fundamental role in the development and pathogenesis of
NAFLD. Gut dysbiosis, along with increased intestinal permeability, and altered bile acid
signaling are the key factors responsible for these liver diseases. Advances in understand-
ing this axis are driving the development of microbiota-based targeted therapeutic tools
to prevent and treat NAFLD, ultimately improving patient outcomes. Despite the proven
therapeutic potential of probiotics, fecal microbiota transplantation, and phage therapy in
these conditions, comprehensive safety assessments and data on microbiota–host interac-
tions are lacking. Most of the current knowledge is derived from animal studies, which
face translational limitations due to physiological differences between species. Hence,
large-scale controlled human studies with standardized and the most effective strains are
needed to optimize dosages and treatment durations to individualize therapy for better
disease management. The findings then need to be translated into clinical practice. Com-
prehensive studies on microbiota–host interactions will help pinpoint specific microbial
strains or metabolites critical to NAFLD pathogenesis, aiding in the identification of reliable
biomarkers for early diagnosis and monitoring. Additionally, integrating multi-omics
technologies will offer a deeper, more comprehensive understanding of the molecular
mechanisms at play, paving the way for personalized medicine and novel therapeutic
targets. By advancing research in these areas, we can develop innovative strategies to
mitigate the global burden of NAFLD and enhance patient outcomes.
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