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Abstract: Autosomal dominant polycystic kidney disease (ADPKD) is the predominant hereditary
factor leading to end-stage renal disease (ESRD) worldwide, affecting individuals across all races
with a prevalence of 1 in 400 to 1 in 1000. The disease presents significant challenges in management,
particularly with limited options for slowing cyst progression, as well as the use of tolvaptan being
restricted to high-risk patients due to potential liver injury. However, determining high-risk status
typically requires magnetic resonance imaging (MRI) to calculate total kidney volume (TKV), a
time-consuming process demanding specialized expertise. Motivated by these challenges, this study
proposes alternative methods for high-risk categorization that do not rely on TKV data. Utilizing
historical patient data, we aim to predict rapid kidney enlargement in ADPKD patients to support
clinical decision-making. We applied seven machine learning algorithms—Random Forest, Logistic
Regression, Support Vector Machine (SVM), Light Gradient Boosting Machine (LightGBM), Gradient
Boosting Tree, XGBoost, and Deep Neural Network (DNN)—to data from the Polycystic Kidney
Disease Outcomes Consortium (PKDOC) database. The XGBoost model, combined with the Synthetic
Minority Oversampling Technique (SMOTE), yielded the best performance. We also leveraged
explainable artificial intelligence (XAI) techniques, specifically Local Interpretable Model-Agnostic
Explanations (LIME) and Shapley Additive Explanations (SHAP), to visualize and clarify the model’s
predictions. Furthermore, we generated text summaries to enhance interpretability. To evaluate the
effectiveness of our approach, we proposed new metrics to assess explainability and conducted a
survey with 27 doctors to compare models with and without XAI techniques. The results indicated
that incorporating XAI and textual summaries significantly improved expert explainability and
increased confidence in the model’s ability to support treatment decisions for ADPKD patients.

Keywords: autosomal dominant polycystic kidney disease (ADPKD); explainable artificial intelli-
gence (XAI); machine learning classification algorithms; user-centered design

1. Introduction

Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic
cause of end-stage renal disease (ESRD) around the world. It affects about 133,893 people
in 19 European Union (EU) countries, about 500,000 people in the United States (US),
and about 31,000 people in Japan [1–3]. ADPKD affects people of all races, with a global
prevalence of around 12.5 million [1]. It is defined by the presence of clusters of fluid-filled
cysts in both kidneys, leading to a steady deterioration in kidney function. The prevalence
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rate of identified cases ranges from 1 in 400 to 1 in 1000, and the age of diagnosis also varies.
The ADPKD hallmarks include progressively enlarging kidney cysts, hypertension, and,
ultimately, ESRD, making it the most prevalent monogenic kidney disease worldwide [4].

Historically, the primary focus of treatments for ADPKD was symptom management,
with limited impact on cyst development and subsequent kidney edema [5]. However,
we can occasionally use specific pharmacological agents, such as tolvaptan, to slow down
the growth rate of cysts [6]. In March 2014, tolvaptan received its initial approval for
individuals with autosomal dominant polycystic kidney disease (ADPKD) in Japan [7].
Then, on 24 April 2018, the U.S. Food and Drug Administration (FDA) approved tolvaptan,
making it the first medication available in the United States for adult patients diagnosed
with autosomal dominant polycystic kidney disease (ADPKD) [8].

However, administration of this medication can result in adverse consequences, in-
cluding an increase in aminotransferase and bilirubin levels, which have the potential to
cause liver damage [9]. Only patients with a high-risk rapid progression profile are eligible
to receive this medicine due to the potential risk. The total kidney volume (TKV) is the gold
standard for determining whether someone has a high-risk profile of rapid progression or
not [10,11]. But one big problem with using TKV in clinical practice is that it’s challenging
to make accurate lines around the kidneys, and it takes a lot of time (45–90 min per patient)
for skilled and experienced staff to measure the TKV [12]. Therefore, there is a need for
alternative methods to accurately and efficiently classify high-risk ADPKD patients to
ensure appropriate treatment and management strategies.

Based on these challenges, we propose a new methodology that utilizes artificial
intelligence (AI) to predict the high-risk profile of ADPKD patients using data sources other
than TKV. Previous studies that used electronic health records (EHR) combined with AI
showed significant results for prediction, diagnosis, and the ability to improve operations
and streamline services [13,14]. Numerous studies have applied artificial intelligence (AI)
in the medical field. For instance, in 2022, the You Only Look Once (YOLO) version four
tiny model was adapted for wireless endoscopic images to detect critical diseases such
as cancer [15]. Additionally, these processes are increasingly integrating explainable AI
(XAI) techniques. In 2023, Mukhtorov et al. combined the ResNet model (ResNet152) with
GradCAM to sort endoscopic images into groups. They performed this by making heat
maps that could be used to explain the presence of dyed polyps and other problems [16].

Furthermore, there is specialized research in the domain of kidney disease that has
implemented AI for processing electronic health records (EHR). In 2021, Bernardini and
colleagues developed a semi-supervised multitask learning (SS-MTL) approach to predict
short-term kidney disease outcomes. The SS-MTL method accurately distinguished be-
tween early-stage chronic kidney disease (CKD) Stage I (normal cases) and more advanced,
higher-risk stages by analyzing temporal changes in EHR data [17]. Prior to this, Njoud
et al. (2019) used AI to diagnose CKD in its early stages based on health condition data from
400 individuals, 250 of whom were diagnosed with CKD [18]. Building on the same dataset,
Raihan et al. (2023) employed the eXtreme Gradient Boosting (XGBoost) algorithm for
CKD prediction, incorporating explainable AI (XAI) techniques through Shapley Additive
Explanations (SHAP) to assess feature importance [19]. Despite these advances, there are
still challenges in utilizing AI for healthcare data. Certain AI methods require substantial
amounts of data, and obtaining clean, reliable, and useful data for healthcare research can
be particularly difficult [12].

Aside from that, the problem with AI is the common trade-off between accuracy
and interpretability. Knowledge-based AI systems tend to prioritize performance over
understandability and explainability, while a highly interpretable machine learning model
may compromise the quality of its decisions [20–22]. Because of that, we developed the
prediction model using the explainable AI (XAI) concept. XAI allows users and parts of
the internal system to be more transparent, providing explanations of their decisions in
some level of detail. We can evaluate an explanation based on its interpretability and
completeness [23]. Therefore, this paper’s proposed solution will not only produce a
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model that can predict high-risk ADPKD patients but also create an interpretable model
for users, specifically doctors, to make them able to understand the rationale behind the
prediction model.

2. Methodology

One of the main objectives of this research is to make AI results consumable, under-
standable, and usable by the end user, in this case, the doctor. Therefore, we incorporate a
user-centered explainable AI approach as outlined by Ribera and Lapedriza. They argued
that explanations are multifaceted and cannot be captured by a singular, static account,
meaning they must be tailored to the specific user profile [24]. They identified three key
stakeholders who need to collaborate to improve the explainability of AI: the developer/AI
researcher, domain experts, and lay users/end users [24].

To support this, we adopt the CRISP-DM (CRoss-Industry Standard Process for Data
Mining) framework. CRISP-DM is a well-established and widely accepted process model
in data mining operations [25]. Additionally, CRISP-DM is well suited to accommodate
user-centered explainable AI. The framework serves as a common point of reference for
discussing data mining processes and enhances the understanding of key data mining
concepts among all stakeholders, particularly end users [26]. The CRISP-DM framework
consists of six distinct phases, though the order of these phases is flexible [26]. The
six phases are business understanding, data understanding, data preparation, modeling,
evaluation, and deployment.

To ensure that user-centered explainable AI is achieved, we map each phase of the
CRISP-DM framework to the relevant stakeholders involved in each process. In this
research, only five CRISP-DM processes are conducted, as the deployment process is
outside the scope. The three main stakeholders are the author of this paper as the AI
researcher, nephrologists as the domain experts, and doctors in general as the end users.
Table 1 maps the five processes and the activities conducted by each stakeholder.

Table 1. Mapping of processes and stakeholder roles and responsibilities.

Process Stage AI Researcher (the Author) Domain Experts
(Nephrology Doctor) End Users (General Doctor)

Business Understanding
Gathers requirements and

defines the business problem
from the AI perspective.

Provide input on medical
requirements, domain

knowledge, and
expected outcomes.

-

Data Understanding

Analyzes the dataset,
identifies data quality issues,
and ensures data are suitable

for AI tasks.

Offer insights into
interpreting the medical data
and validating the features.

-

Data Preparation
Cleans, transforms, and
preprocesses the data

for modeling.

Provide feedback on the
clinical relevance of data

transformations or
feature engineering.

-

Modeling Builds and trains the AI
model. Implements XAI.

Validate the medical accuracy
of the model’s results and

guide any medical
assumptions.

-

Evaluation

Evaluates the AI model’s
performance and

accommodates human
evaluation.

Perform human evaluation
using the proposed

explainability matrix.

Perform human evaluation
using the proposed

explainability matrix.

The next section will divide the paper into three sections, each explaining the imple-
mentation of each CRISP-DM phase, with the exception of business understanding and
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deployment. The Section 1 provides a brief explanation of the business understanding,
while the deployment step is out of scope. We perform evaluation as the last phase without
continuing to the deployment phase.

3. Data
3.1. Data Understanding

The Critical Path Institute (C-Path) has organized the raw data for the modeling
process from the Polycystic Kidney Disease Outcomes Consortium (PKDOC) database. The
data have been standardized and consolidated into a uniform format utilizing the Clinical
Data Interchange Standards Consortium (CDISC) Standard Data Tabulation Model (SDTM)
framework. The data span roughly 70 years of patient records. The universities included in
the list are the University of Colorado-Denver, Mayo Clinic, and Emory University. The
database includes information from 2498 individuals, whose ages at the start of the study
ranged from 0 to 84 years, with an average age of 35.9 and a middle value of 37. Most of the
participants, specifically 81%, are of Caucasian ethnicity, while 59% of them are female [27].

Figure 1 illustrates the process of understanding and preparing data. The first step in
this stage is acquiring the data. On 29 November 2023, 44 CVSs of data were downloaded.
We imported the data into the RDBMS, specifically PostgreSQL. To understand both the
structure and semantics of the data, the Study Data Tabulation Model Implementation
Guide (SDTMIG): Human Clinical Trials Version 3.4 (SDTM 3.4) [28] should be a reference.
In addition, we conducted a consultation with the C-Path team, the data provider, and a
nephrologist, a domain expert, to dive deeply into the data semantics.

Figure 1. Process for data understanding and preparation.

3.2. Selecting the Data

We selected the data for modeling based on consultation and understanding of the
referenced data. Then, we made the selection based on the data availability (not null value)
and their potential relationship with the high-risk profile indicator. Figure 2 illustrates the
data selection process; 10 table-selected data points are used for the modeling process.

Figure 2. Data selection process.
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Table 2 enumerates all the selected downloaded CSVs, provides a brief description
of the data, summarizes the statistical data, and explains the selection criteria for the
modeling process.

Table 2. Table of selected data.

File Name/Num. of
Rows/Num. of
Attributes

Brief Description and Reasons Selection Statistical Information

DM/2498/29

Demographics of patients as subject observations.
Describe personal information as the reference for
all tables. Age, sex, race, and ethnicity are used as
a reference for subject observation.

All 2498 rows have a unique user id.

PR/764/40
List of the procedures that have been performed
on the patients. The procedure is used because this
might be related to how severe the patient is.

Only 326 patients (around 13%) have a procedure
record. There are 24 intervention names that are
categorized into 4 categories: liver, cyst, stone, and
blood procedure.

SU/7667/43

Information about the substance used regularly by
the patients. The daily substance may be
associated with the patient’s daily lifestyle,
potentially influencing its severity.

65% of the patients have records (1623 of
2498 patients). There are five unique substance
categories: alcohol, tobacco, water, decaffeine, and
caffeine.

CE/31449/37

A domain for events containing clinically
significant occurrences that are not adverse events.
The clinical events describe the health conditions
of patients.

93% of patients have a CE record (2325 of 2498).
There are 46 unique clinical event categorizations.
One patient can have multiple clinical events
(multiple rows).

HO/1698/29

Record the inpatient or outpatient event, such as a
hospitalization or rehabilitation event, for the
patient. Although there is not enough information
about whether the hospitalization event is because
of the ADPKD or not, this information might
reflect the severity of the patients.

The inpatient event records only hospitalization.
Only 34% of patients have a HO record
(326 of 2498)

MH/27464/37

Record the patient’s prior medical history as
reported. Medical history documents the patient’s
complete range of problems and all the diagnoses
that have been established.

Patient’s primary diagnosis is ADPKD. There are
39 unique medical history terms, such as
hypertension, migraine, and so on.

VS/308484/35

Record the vital signs of patients, such as
temperature, height, and weight. The latest height
measurement is the only vstest used; these data are
used to calculate hTKV (height-TKV) as a basis to
define the high-risk kidney
enlargement‘classification.

There are eight unique vital signs category
recorded: body mass index, body surface area,
diastolic blood pressure, heart rate, height, pulse
rate, systolic blood pressure, and weight.

FH/4929/29

Specifically contain records of the family history of
ESRD (end-stage renal disease) or ADPKD. Since
ADPKD is an inherited disease, the affected
relative information becomes important.

There are 1808 patients (72.3%) reported to have a
family history of ESRD and/or ADPKD. There are
19 distinct subject categories, such as “FATHER”
and “MOTHER”.

LB/196527/51

Record the patient’s laboratory test results. We do
not use all of the test results; we only use data to
calculate the estimated glomerular filtration rate
(eGFR). The eGFR uses for assessing the presence
and degree of renal disease.

There are 3 categories of lab tests (chemistry,
hematology, and urinalysis) and 34 unique lab
tests or examinations reported (such as creatinine,
potassium, and so on).

MP/29678/42

Specifically record the kidney measurements such
as volume, width, depth, and mass. The kidney
measurement is needed to calculate the total
kidney volume (TKV). TKV is an essential
calculation to define the patient’s high-risk kidney
enlargement profile.

95% of patients (2371 of 2498) have a kidney
measurement record. The object is measured and
categorized as right kidney, left kidney, or bilateral
(both kidneys). The method of measurement is
either ultrasound, MRI, or CT.
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3.3. Calculated Attributes

Other than using the raw data stored in PKDOC database, there are two attributes
that are created based on the raw data calculation. The two attributes are the CKD stage
and the ground truth for high-risk enlargement kidney profile classification. To populate
these two attributes, we calculated the attributes eGFR (estimated glomerular filtration rate)
and hTKV (height-adjusted total kidney volume).

3.3.1. CKD Stage

The first calculated attribute is the CKD stage classification. Polycystic kidney disease
(PKD) is a form of chronic kidney disease (CKD), with the CKD stage label utilizing the
estimated glomerular filtration rate (eGFR) as a parameter. Research reveals significant
negative correlations between the total kidney volume (TKV) and eGFR. Lower eGFR
values are associated with increased TKV growth [29]. By this statement, we can conclude
that eGFR might be one of the crucial attributes to identify the high-risk profile. Figure 3
illustrates the process to obtain the CKD stage classification attribute.

Figure 3. Incorporation of CKD stage classification attribute.

We calculate the eGFR using the CKD-EPI Equation (1). The equation is as follows: Scr
represents serum creatinine in mg/dL, κ is a constant of 0.7 for females and 0.9 for males,
and α is a constant of −0.329 for females and −0.411 for males [30]:

eGFR = 141 × min
(

Scr
κ , 1

)α
× max

(
Scr
κ , 1

)−1.209
× 0.993Age × 1.018[i f f emale]× 1.159[i f black] (1)

We determine the eGFR and then attribute it to the five stages of CKD. The eGFR test
result, which estimates the kidneys’ effectiveness in removing waste and excess fluid from
the bloodstream, determines the stages. A lower eGFR means renal illness worsens and
the kidneys’ efficiency decreases. An eGFR result of 90 or above indicates stage 1, an eGFR
ranging from 60 to 89 indicates stage 2, and an eGFR result of 45 to 59 indicates stage 3a.
We classify Stage 3b as occurring when the estimated glomerular filtration rate (eGFR) falls
between 30 and 44. When the eGFR falls between 15 and 29, we assign Stage 4. When the
eGFR falls below 15, we designate Stage 5 [31].

The data to calculate eGFR, including the creatinine result, age, gender, and ethnicity,
are already available in the raw data. When calculating creatinine levels for patients with
multiple data points, we use only the most recent data point. We determine the creatinine
level by analyzing the data in the LB table, specifically the ‘Creatinine’ lab test under
the ‘Chemistry’ category, which involves examining blood samples. The original unit of
measurement for creatinine is “mg/dL”. Prior to calculating the eGFR, it is necessary to
perform a conversion if the data are expressed in units other than mg/dL. Of the total
2498 patients, 85.1%, namely, 2127 individuals, possess sufficient data to compute the
estimated glomerular filtration rate (eGFR).

3.3.2. High-Risk Profile Classification

The high-risk profile classification is the target class for the modeling process. To
obtain this value, we need to calculate and perform a classification process using the raw
data. Figure 4 depicts the process of populating the high-risk profile classification.
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Figure 4. Process of high-risk profile classification.

We use the hTKV calculation to classify patients with ADPKD as having a high-risk
enlargement of their kidney profile. We group patients into sub classes 1A–1E based on
their hTKV measurement. The TKV, or the kidney total volume from both sides, measures
the hTKV. To adjust for the patient’s height, we divide the TKV by the patient’s height.
We find hTKV ranges for each age group, starting at 150 mL/m and dividing the annual
percentage increases into five groups: less than 1.5% (subclass 1A), 1.5% to 3% (1B), 3%
to 4.5% (1C), 4.5% to 6% (1D), or more than 6% (1E) [32]. This classification, known as
the Mayo Classification, 1C–1E, is for patients with a high risk of rapid progression of
ADPKD [33]. This rule assigns a binary attribute named “high risk profile”, classifying
patients with a Mayo classification of 1A or 1B as ‘0’ (non-high-risk profile), and those
with a Mayo classification of 1C, 1D, or 1E as ‘1’ (high risk profile). We conduct Mayo
classification research on patients who are over the age of 15. As a result, the high-risk
profile attribute only populates patients who are at least 15 years old.

We calculate the annual percentage of kidney volume using patient volume data from
the MP table. The data, obtained from multiple sources and spanning over a decade, may
vary in completeness for each patient. To obtain the TKV patient data, we implement
several regulations as shown in Figure 4 in the ‘Calculate TKV box. You must express the
volume data in milliliters (mL) and the height in meters (m). If you use any other units,
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please convert them accordingly. Out of 2498 patients, 89.7%, or 2240, had sufficient data to
be classified as either having a high-risk or non-high-risk profile.

3.4. Cleansing the Data

After selecting the data and populating new attributes for modeling, we need to
perform the cleansing step. Certain cleansing processes are necessary to ensure the quality
and reliability of the data used for analysis.

1. High Variance Value: We encounter an issue where multiple variations convey the
same meaning due to data sourced from multiple channels over the years. This issue
can be caused by typographical errors or variations in term usage. Some typographical
errors exist in the raw data, such as ‘Caffien’, which should have the same meaning
as ‘Caffein’. There are also differences in using the term, such as when some patients
have medical records for ‘Tuberculosis’ and others have ‘TB’, which actually have the
same meaning. We anticipate that this high variance value will have an impact on
the modeling accuracy, so we manually set the grouping value for some attributes
to minimize the variance. For instance, we classify substances called ‘Caffien’ and
‘Caffein’ using the same feature as ‘Substance_Caffein’. The doctor, with his domain
knowledge, assists in this manual grouping process to prevent misinterpretation.

2. Handle Null Data: Null data are a critical aspect to avoid in the modeling process since
their existence can have a substantial impact on the modeling outcomes. Therefore, it
is crucial to handle this issue. In this research, there are two approaches to handling
it: (1) populate it with an exception categorical like ‘UNKNOWN’, or (2) do not use
the patient data in the modeling process. When the data are categorical, not numeric,
and have a prior exception category, we choose the first approach. Example: Out of
2498 patients, 205 (8.21%) have a null value in their ‘race’ feature. Since there are
already 7 categories of race, including ‘UNKNOWN’, we update the 205 patients
with the ‘Null’ race to ‘UNKNOWN’. Unlike approach 1, we use approach 2 when
the feature is numeric in nature, allowing us to not estimate the value. There are
371 patients who have no ‘Creatinine’ data to calculate their CKD stage; unfortunately,
we are not included in the modeling process to reduce the bias.

3. Irregular data: The raw data are derived from patient registries, not from clinical
studies. The timing of the visits is irregular, and not all tests or measurements are
conducted consistently [27]. This causes doubts about the reliability of time-related
data points. Figure 5 depicts a snapshot of the medical history of one patient. Both
the first and second rows record the same medical history, ‘Abdomen Protube’, at
the same visit time, ‘visit 1’, and on the same study day for history collection (mhdy
feature), ‘1’. Therefore, we can assume these data are duplicates. Hence, instead
of relying on a count-based approach, we utilize the max aggregate method. For
instance, we set the ‘Hypertension’ column to 1 if a patient has at least one recorded
instance of hypertension. On the other hand, if there are no such records, we set the
column to 0.

Figure 5. Snapshot of patient medical history.
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3.5. Transformed Data

To condense the intricate dataset into a more streamlined format, we transform all
the relevant data into a single tabular structure. Appendix A lists the tabular data used
for the modeling process. The feature that is not in the binary type is encoded in the
modeling process. There are 100 feature variables and 1 target variable. In total, 1779 of
2498 patients’ data are used in the modeling process; the other 494 are not used because
there are insufficient data to calculate the CKD stage or/and TKV data to be classified as
high-risk profiles or not. We label 1254 patients as high-risk profiles and 525 as non-high-
risk profiles.

3.6. Dataset Diversity Limitation

Our study acknowledges several limitations related to the demographic of the dataset.
Out of 1779 patients, we analyze the available demographic data to identify potential biases
that may affect the model’s performance. As Franklin et al. (2024) noted, sociodemographic
characteristics—including race, ethnicity, gender, age, and insurance status—can lead to
unequal treatment based on specific demographics, potentially influencing the outcomes of
predictive models [34].

Figure 6 and Table 3 display the distribution of four key demographic features: sex,
age, race, and ethnicity. From this distribution, it becomes clear that there is significant
inequality across almost all features. For example, the age data follow a normal curve, but
only patients over the age of 15 are included in accordance with the Mayo Classification. In
terms of sex, the dataset is imbalanced, with more than half of the patients being female.

Figure 6. Demographic data distribution chart.

The most pronounced imbalance, however, occurs in the race and ethnicity data.
Ethnic information is largely unreported, and a striking 87.18% of the patients belong to
the white race. This over-representation of one demographic group raises concerns about
the potential bias in our model, as it may lead to predictions that are more accurate for one
group while under-performing for others. Although excluding demographic data might
seem like an option to avoid bias, this would not be advisable, as research indicates that
these characteristics are strongly correlated with the disease outcomes being studied.

Therefore, while our research presents valuable findings, we recognize that the lack
of diversity in the dataset poses a limitation. Future research should aim to include more
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balanced and representative datasets to ensure that AI-driven models in healthcare are
equitable across diverse populations.

Table 3. Demographic data distribution.

Variables n %

Age
15–20 128 7.23%
21–30 312 17.63%
31–40 473 26.72%
41–50 489 27.63%
51–60 250 14.12%
61–70 91 5.14%
71–80 22 1.24%
81–85 5 0.28%

Sex
Female 1095 61.86%
Male 675 38.14%

Ethnic
Not Hispanic or Latino 741 41.86%
Hispanic or Latino 23 1.30%
Not Reported 1006 56.84%

Race
White 1543 87.18%
Black or African American 46 2.60%
Asian 14 0.79%
American Indian or Alaska Native 9 0.51%
Native Hawaiian 9 0.51%
Other 22 1.24%
Unknown 135 7.63%

4. Modeling

The experimental scenario illustrated in Figure 7 comprises several key components,
which are detailed below:

1. Data Splitting: The transformed data are split into training and testing sets to ensure
robust model evaluation. The data are divided in an 80:20 ratio, where 80% of
the data is used for training the model and 20% is reserved for testing during the
evaluation phase.

2. Dataset Definition: The experimental modeling utilizes three distinct datasets, the
details of which are provided in the following section. These datasets are curated to
reflect diverse features relevant to high-risk patient identification.

3. Handling Imbalanced Data: As discussed earlier, the ratio of high-risk to non-high-
risk patient profiles in the dataset is 2.4:1. This class imbalance may cause the model
to be biased toward the majority class, potentially leading to over-fitting, where the
model performs well on the training data but poorly on unseen test data. To mitigate
this issue, two techniques were employed.

4. Model Training: Seven machine learning algorithms are selected for this study. The ra-
tionale for selecting these algorithms, along with the experimental results, is discussed
in detail in a later section.

5. Model Performance Metrics: The models are evaluated using several performance met-
rics, including accuracy, precision, recall, F1 score, and the Area Under the Receiver
Operating Characteristic Curve (AUC-ROC). AUC-ROC is chosen as the primary per-
formance metric, as it provides a robust measure of performance for both imbalanced
and balanced datasets, being less influenced by the distribution of classes [35].

6. Hyperparameter Tuning: The model with the highest AUC score is further optimized
through hyperparameter tuning. Optuna, a hyperparameter optimization framework,
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is utilized to systematically search for the best set of parameters, improving the
model’s performance.

7. Explainable AI (XAI) Approach: To enhance the interpretability of the selected model,
two local model-agnostic XAI techniques are applied: Shapley Additive Explanations
(SHAP) and Local Interpretable Model-agnostic Explanations (LIME). These methods
are chosen because they can be applied to any machine learning model, regardless of
its architecture.

8. Explainability Evaluation: The primary objective of this research is to improve ex-
perts’ interpretability of the AI model’s predictions. Therefore, a human evaluation
process is conducted. A custom evaluation matrix, focusing on the explainability of
the model’s predictions, is developed and distributed to medical experts (doctors)
for assessment.

Figure 7. Experimental scenario.

The following sections elaborate on the details of each component of this process.

4.1. Define Datasets

There are three sets of data prepared for the training process. The first set uses all
100 features as mentioned in Appendix A. The second set uses the Random Forest feature
importance method. We only use the feature importance score bigger than 0.01 as depicted
in Figure 8. The third set uses only features that have an absolute correlation score greater
than 0.05 between the feature and the target variable (is_high_risk_profile). Table 4 lists the
features used in the second and third sets; there are 17 common features between the two
sets (bold words in the table).
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Figure 8. Feature importance.

Table 4. Set for modeling process.

Set Feature 1

Set 2 (34 attributes)

‘abdominal_pain’, ‘abdomen_protube’, ‘affacted_father’,
‘affacted_mother’, ‘affacted_sibling’, ‘anemia’, ‘back_pain’, ‘caffeine’,
‘ckd_classification_encoded’, ‘changes_in_appetite’, ‘consume_alcohol’,
‘consume_tobacco’, ‘dthfl_encoded’, ‘ethnic_encoded’,
‘event_cardiac_arrhythmia’, ‘event_cardiac_valve_disease’,
‘event_diverticulosis’, ‘event_end_stage_renal_disease’,
‘event_gross_hematuria’, ‘event_kidney_cyst_hemorrhage’,
‘event_severe_headache’, ‘event_symptomatic_nephrolithiasis’,
‘event_urinary_tract_infection’, ‘fatique’, ‘flank_pain’, ‘headache’,
‘hospitalization’, ‘hypertension’, ‘liver_procedure’, ‘migraine’,
‘mood_changes’, ‘nausea’, ‘race_encoded’, ‘sex_encoded’

Set 3 (33 attributes)

‘abdominal_pain’, ‘abdomen_protube’, ‘affacted_father’, ‘anemia’,
‘anorexia’, ‘back_pain’, ‘blood_procedure’, ‘ckd_classification_encoded’,
‘consume_tobacco’, ‘diarrhea’, ‘ethnic_encoded’, ‘event_aneurysm’,
‘event_cardiac_arrhythmia’, ‘event_edema’,
‘event_end_stage_renal_disease’, ‘event_exertional_chest_pain’,
‘event_gross_hematuria’, ‘event_hepatic_venous_outflow_obstruction’,
‘event_inguinal_hernia’, ‘event_intracranial_aneurysm’, ‘event_nocturia’,
‘event_non_exertional_chest_pain’, ‘event_shortness_of_breath_at_rest’,
‘event_umbilical_hernia’, ‘flank_pain’, ‘hospitalization’, ‘hypertension’,
‘insomnia’, ‘liver_procedure’, ‘migraine’, ‘nausea’, ‘sex_encoded’,
‘stone_procedure’

1 The bold words represent the common features between both sets.

4.2. Handling Imbalanced Data

Imbalanced data, where one class significantly outnumbers another, can adversely
affect the performance of machine learning models. In such cases, models often become
biased toward the majority class, resulting in poor predictive accuracy for the minority
class. This issue is evident in our dataset, where, out of 1779 patients, 1254 are labeled as
high-risk profiles, while only 525 are non-high-risk profiles. This imbalance can lead to
skewed model predictions, favoring the high-risk group while overlooking the non-high-
risk profiles, which may compromise the model’s overall effectiveness [36].

To mitigate this, we implement two widely used techniques: SMOTE (Synthetic Mi-
nority Over-sampling Technique) and ROS (Random Oversampling) [37]. These algorithms
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address the class imbalance by modifying the dataset to achieve a more balanced class dis-
tribution. ROS works by randomly duplicating instances from the minority class, thereby
introducing additional samples to reduce imbalance. However, while effective, ROS may
increase the risk of over-fitting by repeating exact data points from the minority class.
On the other hand, SMOTE generates fictional data by considering the similarities in the
feature space between existing minority cases. SMOTE not only balances the data but also
enriches the dataset with meaningful patterns that may improve model performance [37].

4.3. Model Training

In selecting the machine learning algorithms for model training, two key characteristics
are considered. First, since the dataset consists of tabular data, we select six machine
learning algorithms known for their effectiveness in handling tabular datasets. These
algorithms are widely recognized for their robust performance across various applications
involving structured data. The algorithms used include Random Forest (RF) [38], Logistic
Regression (LR) [39], Support Vector Machines (SVMs) [40], LightGBM [41], Gradient
Boosting Tree (GBT) [42], and XGBoost [43]. Each of these algorithms has been empirically
demonstrated to provide competitive accuracy for tabular datasets, particularly in the
healthcare domain.

Second, the complexity of the dataset, which includes over 10 features, necessitates
the exploration of deep learning approaches in addition to traditional machine learning
methods [44]. Deep Neural Networks (DNNs) are chosen for this purpose due to their
capability to model complex interactions between features and their strong performance
in handling high-dimensional data [45]. DNNs have shown superior ability to capture
non-linear relationships and intricate patterns in data with many features, making them
well suited for datasets with a large number of variables [46].

We combine three datasets, apply three different approaches for handling imbalanced
data, and utilize seven machine learning algorithms. In total, this leads to the execution of
63 distinct experiments, as we test each machine learning algorithm across the different
dataset and data balancing combinations. The hyperparameters used in the training model
are listed in Appendix B.

4.4. Model Performance Metrics

When evaluating the performance of machine learning models, numerous metrics
are available to choose from. Libraries like Scikit-learn provide several commonly used
metrics, including accuracy, precision, recall, and F1 score. Accuracy, which is calculated as
the ratio of correct predictions to the total number of predictions, is not an ideal metric for
medical applications, where data are often highly imbalanced [47].

Sensitivity (recall) measures the proportion of actual positive cases that are correctly
identified, while precision measures the proportion of predicted positive cases that are
truly positive. Although these metrics are used in some research, they have limitations.
Specifically, precision and recall may not fully capture model performance due to the large
background class in imbalanced datasets, which can inflate specificity [48].

The F1 score, which combines both precision and recall, provides a more balanced
measure, particularly in scenarios where the positive class is crucial. It assesses the overlap
between the predicted results and the actual ground truth [48]. Similarly, the Receiver
Operating Characteristic (ROC) curve graphically illustrates a model’s diagnostic abil-
ity across different thresholds, and its Area Under the Curve (AUC) quantifies overall
performance [49].

In the medical domain, metrics like the F1 score and ROC AUC are often more
informative than accuracy alone [48]. AUC, in particular, is a robust metric that performs
well in both balanced and imbalanced datasets because it is less affected by the distribution
of class instances [35].

Table 5 lists the ten models with the highest AUC scores. Performance metrics for all
63 models can be found in Appendix C.
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Table 5. Ten models with the highest AUC score.

Set Attributes Training
Algorithm

Imbalanced
Method Accuracy Precision Recall F1 AUC

Set 3 1 XGBoost SMOTE 0.715 0.682 0.702 0.687 0.702
Set 3 SVM SMOTE 0.681 0.672 0.699 0.666 0.699
Set 3 LightGBM SMOTE 0.703 0.672 0.691 0.676 0.691
Set 3 SVM ROS 0.652 0.662 0.688 0.643 0.688
Set 2 GBT ROS 0.678 0.661 0.687 0.660 0.687
Set 3 GBT ROS 0.670 0.660 0.686 0.654 0.686
Set 3 LR ROS 0.675 0.661 0.685 0.657 0.685
Set 3 LightGBM ROS 0.701 0.667 0.684 0.671 0.684
Set 3 DNN ROS 0.732 0.717 0.732 0.719 0.689
Set 3 RF SMOTE 0.706 0.668 0.681 0.672 0.681

1 The bold models are the models with the highest AUC.

From the table, we observe that tree-based machine learning algorithms, specifically
XGBoost, achieve higher AUC scores compared to deep learning models. This aligns with
the findings of Léo Grinsztajn’s 2022 research, which suggests that tree-based algorithms
often outperform deep learning models for tabular data. This is due to the characteristics
of tabular data, which often contain irregular patterns in the target function, uninformative
features, and non-rotationally invariant data, where linear combinations of features fail to
accurately capture the underlying information [50].

Additionally, the performance metrics indicate that the feature selection process ef-
fectively improves model accuracy. Datasets with more features tend to include irrelevant
and noisy data, which can negatively impact model performance. Notably, the dataset with
the highest number of features, Set 1 with 100 features, does not appear among the ten
models with the highest AUC scores, further emphasizing that larger feature sets do not
necessarily lead to better performance.

4.5. Hyperparameter Tuning

Based on the previous section, the model with the highest AUC score is the one trained
on Set 3, which uses SMOTE to handle imbalanced data and is trained using the XGBoost
algorithm. This model is then further optimized using the Optuna framework. Optuna is
widely recognized for its efficiency in automating hyperparameter optimization, particu-
larly through its Tree-structured Parzen Estimator (TPE) and other advanced algorithms,
which allow for faster and more accurate tuning compared to traditional methods like grid
or random search [51].

We optimize the XGBoost model using seven parameters: ‘lambda’, ‘alpha’, ‘max_depth’,
‘eta’, ‘gamma’, ‘colsample_bytree’, and ‘min_child_weight’. After tuning, the AUC score is
increased by 0.1 as shown in Table 6.

Table 6. Model performance after tuning.

Hyperparameter Tuning Accuracy Precision Recall F1 AUC

’lambda’: 3.9957070357300086, ‘alpha’:
2.799141734671868, ‘max_depth’: 7, ‘eta’:
0.08770989189740201, ‘gamma’:
0.1671936607245508, ‘colsample_bytree’:
0.9400135473143985, ‘min_child_weight’: 9

0.709 0.686 0.712 0.689 0.712

As the primary metric in this research is the Area Under the Curve (AUC), the hy-
perparameter tuning process is centered around maximizing the AUC score. After tuning,
the AUC score, along with other key performance metrics such as precision, recall, and
F1 score, show improvement. However, it is observed that the accuracy of the model
slightly decreases. This outcome is not uncommon in machine learning, especially when
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dealing with imbalanced datasets. Accuracy, while often used as a general metric, can be
misleading in such cases because it does not account for the distribution of classes. A high
accuracy can be achieved even if the model is performing poorly on the minority class,
which is why it is less informative than metrics like AUC, precision, and recall in these
situations. The gains in AUC, precision, recall, and F1 score suggest that the model is now
more capable of making balanced predictions, which is a more desirable outcome in many
real-world applications.

4.6. Explainable AI

Many papers have previously described the concept of AI using various terms, yet they
all concur that the primary goal of XAI is to enable users to understand the rationale behind
a model’s decision-making process. From multiple survey papers of the implementation
of XAI, there are several challenges that present opportunities for further research and
potential solutions. The problem at hand is the common trade-off between accuracy and
interpretability in AI systems [20–22].

Then, in 2016, Ribeiro, Singh, and Guestrin introduced the concept of separating ex-
planations from the model itself, known as model-agnostic interpretability. This approach
provides a flexible and generic framework for interpretability, independent of the underly-
ing machine learning model [52]. Two of the most prominent model-agnostic techniques are
Local Interpretable Model-Agnostic Explanations (LIME) [53] and SHAP (Shapley Additive
Explanations) [54].

The LIME algorithm generates a local surrogate model by training models that ap-
proximate the predictions of the underlying black-box model for specific instances. LIME
focuses on local surrogate models to provide explanations for individual predictions [55].
This flexibility makes LIME highly adaptable to various machine learning algorithms, and
it is particularly effective for processing tabular data.

On the other hand, the SHAP framework defines a class of additive feature importance
methods and demonstrates the existence of a unique solution within this class that satisfies
certain desirable properties [54]. SHAP is widely regarded as a powerful tool for Explain-
able AI (XAI) due to its mathematical rigor, consistency, and ability to provide interpretable
explanations for any machine learning model. Furthermore, it maintains flexibility across
different types of models, making it a highly versatile approach to interpretability.

Both LIME and SHAP provide local explanations, meaning they are capable of inter-
preting the conditions of individual data points. In this study, two cases are selected: one
with a high probability result, and one with a near 50:50 probability split. Visualizations for
the extreme cases are presented in Appendix D.

The figures below (Figures 9–11) present the prediction results for a borderline case
involving a 33-year-old female patient diagnosed with polycystic kidney disease. She has a
family history of kidney disease, as her father is also affected. The patient experiences a
variety of symptoms, including gross hematuria, hypertension, shortness of breath at rest,
edema, nausea, inguinal and umbilical hernias, flank pain, intracranial aneurysm, anorexia,
chest pain, back pain, and abdominal pain. However, she does not exhibit symptoms such
as migraine, hepatic vein obstruction, diarrhea, insomnia, cardiac arrhythmia, anemia, or
other aneurysms. The patient has never been hospitalized or undergone procedures related
to kidney stones, cysts, or liver issues. Based on her eGFR, she is classified as being at stage
2 of chronic kidney disease. Additionally, the patient is an active smoker.

In Figure 9, the model’s prediction for this patient is shown without the XAI approach.
All patient conditions are numerically encoded for computational processing. A prediction
value of 1 indicates that the patient is predicted to be at high risk, while a value of 0 indicates
a low-risk prediction.

Subsequently, Figure 10 presents the LIME visualization for this same case, while
Figure 11 illustrates the SHAP visualization. Both visualizations effectively demonstrate
the contribution of key features to the prediction outcome, highlighting the most important
factors influencing the model’s decision.
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Figure 9. AI prediction without XAI.

Figure 10. Prediction with LIME visualization.

Figure 11. Prediction with SHAP visualization.
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To further enhance the explainability of the model, we hypothesize that adding a
text component to accompany the graphical visualizations produced by LIME and SHAP
would provide a more comprehensive interpretation of the model’s predictions. While the
visual output from LIME and SHAP effectively highlights the contribution of individual
features to the model’s decisions, integrating descriptive explanations could offer deeper
insights, particularly for stakeholders with less technical expertise.

To achieve this, we propose the integration of a generative language model, specifically
ChatGPT, to automatically generate explanatory text based on the results of the LIME and
SHAP visualizations. This approach allows for the translation of complex visual data into
human-readable explanations that describe how specific features influence the prediction.

Figures 12 and 13 present the combined visualizations generated using the LIME and
SHAP approaches, respectively, alongside explanatory text generated by ChatGPT. For
both models, we utilize the same prompt: “Generate an explanation of the prediction result
based on the LIME/SHAP output for this patient case”, where the patient case details are
as outlined in the previous paragraph. The LIME and SHAP visualizations are provided as
inputs to the prompt to guide the generation of a coherent and relevant explanation.

Figure 12. Prediction with LIME visualization and ChatGPT generated text.

By incorporating the ChatGPT generated text with these visualizations, the figures not
only illustrate the importance of specific features but also offer a detailed narrative explain-
ing how these features influence the model’s prediction for this particular patient case.
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Figure 13. Prediction with SHAP visualization and ChatGPT generated text.

5. Human Evaluation

As outlined in Section 2 and Table 1, the evaluation process in this research extends
beyond standard AI model performance metrics such as accuracy, recall, precision, F1, and
AUC. In addition to these mathematical metrics, this study incorporates human evaluation
to assess the model’s explainability.

A primary goal of this research is to ensure that the AI-generated results are inter-
pretable and usable by end users, specifically doctors in this case. As noted by Doshi-Velez
et al. in their work, for machine learning models to be both specific and interpretable,
it is essential to conduct human-grounded evaluations [56]. Therefore, the evaluation
framework includes feedback from doctors, who assess the level of explainability of the
proposed model. To achieve this, a four-step process for human evaluation is implemented,
with each step outlined in detail in the following subsections.

5.1. Define Metrics for Explainability

There is no universally agreed-upon definition of interpretability in machine learning,
nor is there a clear consensus on how to measure it. To address this, we propose a set of
metrics for evaluating explainability. These metrics are derived from the literature on the
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goals of Explainable AI (XAI) as discussed by Barredo Arrieta et al. in 2020 [20]. Their
work categorizes the goals of XAI based on the intended audience, and for this research,
the focus is on domain experts.

The five primary goals of XAI for domain experts are trustworthiness, causality,
transferability, informativeness, and confidence. To quantify these aspects of explainabil-
ity, we adopt a Likert scale, which is effective for measuring subjective perceptions and
attitudes [57], such as levels of ‘confidence’ or ‘trustworthiness’.

For each AI model evaluated, five key questions are posed, with responses measured
on a Likert scale from 1 (strongly disagree) to 5 (strongly agree):

1. Trustworthiness: I trust the AI model’s predictions.
2. Causality: The model’s explanations help me understand the cause-and-effect rela-

tionships behind the predictions.
3. Transferability: I believe the model’s insights can be applied to other patients with

similar conditions.
4. Informativeness: The visualizations and explanations provided by the AI model are

informative and clear.
5. Confidence: I feel confident in using the AI model’s predictions for decision-making.

This structured approach allows us to assess the explainability of the AI models from
a domain expert’s perspective, ensuring that the models meet critical interpretability goals.

5.2. Selection of Models for Assessment

In this assessment process, multiple models are presented to the users (doctors) for
evaluation. The objective is to compare the levels of explainability both before and after the
implementation of Explainable AI (XAI). This comparison helps to evaluate how effectively
XAI enhances users’ understanding of the model’s decisions.

Five visualizations are included for assessment by the respondents. The first visual-
ization represents the baseline model, depicted in Figure 9. The subsequent visualizations
utilize the LIME approach, with two variations: one with generated text (Figure 12) and
one without (Figure 10). The final two visualizations employ the SHAP approach, again
with one version including generated text (Figure 13) and another without (Figure 11).

By comparing these five visualizations, we aim to identify the components that con-
tribute to an increased level of explainability for the users. Insights gained from this
analysis can inform future enhancements to the models and their interpretability features.

5.3. Conducting the Survey with Users

A significant challenge in conducting surveys involving human participants in AI
assessments is the varying levels of understanding regarding artificial intelligence. To
address this issue, we provided a video explanation and conducted face-to-face interviews
prior to the assessment to ensure that all participants grasped the research objectives clearly.

The survey included an assessment of the five models discussed in Section 5.2. Par-
ticipants also asked to indicate their preferred visualizations, provide reasons for their
choices, and respond to open-ended questions regarding which components they believe
need enhancement.

The survey was specifically distributed to doctors. A total of 27 doctors participated
in the survey and confirmed their consent for participation. Among the participants,
15 (55.6%) were male, while the remaining respondents were female as illustrated in
Figure 14. The average age of the respondents was 31.7 years, with the age distribution
depicted in Figure 15.
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Figure 14. Gender demographics of respondents.

Figure 15. Age demographics of respondents.

5.4. Summary of Results on Explainability Levels

After conducting the survey, the Likert assessment was calculated using a straight-
forward method. First, the number of responses for each item was multiplied by the
corresponding Likert scale value. Next, the result of this multiplication was divided by the
total number of respondents. Figure 16 illustrates an example of this calculation.

Figure 16. Example of Likert calculation.

Using this methodology, we evaluated the explainability of the five visualizations
across the five metrics as summarized in Table 7.
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Based on the results, several key highlights can be drawn. In general, the baseline
model exhibits the lowest scores across all metrics. This model, which did not incorporate
any XAI techniques, received particularly low ratings in causality and informativeness.
This indicates that without the aid of explainability, users find it more challenging to trust
or comprehend the model’s decisions.

Table 7. Explainability level result.

Model Trustworthiness Causality Transferability Informativeness Confidence

NoXAI 3.15 2.85 1 3.18 2.22 1 3.00
LIME 3.22 3.26 3.37 3.41 3.04
LIME + Text 3.41 3.52 3.48 3.67 3.30
SHAP 3.40 3.26 3.26 3.33 3.19
SHAP + Text 2 3.70 3.78 3.63 3.82 3.48

1 Both of these features received scores lower than 3 but are the most improved features after applying the XAI
approach. 2 Model visualization using SHAP and generated text achieved the highest score across all features.

The SHAP model with text performed better across all five metrics, consistent with
the findings from the preference question depicted in Figure 17. The reasons for this
include its convincibility, ease of understanding, provision of more informative insights,
and clearer explanations.

Figure 17. User visualization preference.

Furthermore, the inclusion of textual explanations—whether through LIME or SHAP—
enhanced performance across all criteria. This suggests that users prefer models that
offer detailed and comprehensible explanations. Notably, the largest improvements were
observed in the metrics of causality and informativeness, highlighting that these factors are
significantly impacted by the choice of explanation method.

In general, the levels of trustworthiness and confidence in the AI remained relatively
stable. This indicates that respondents hold their inherent trust levels, yet they remain
somewhat cautious regarding the AI predictions. The introduction of explainability resulted
in only slight improvements in these perceptions.

In summary, the results suggest that incorporating XAI techniques, and also including
textual components, significantly enhances user understanding and trust in AI models. This
underscores the importance of providing clear and informative explanations, especially in
areas critical for decision-making, such as causality and informativeness. The findings also
point to the need for ongoing efforts to foster greater trust and confidence among users
when interacting with AI systems.
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6. Conclusions and Future Work

In this study, we propose a methodology for profiling high-risk patients with autoso-
mal dominant polycystic kidney disease (ADPKD), in addition to traditional total kidney
volume (TKV) calculations. By employing machine learning techniques on historical pa-
tient data, we were able to classify high-risk profiles. The dataset utilized for this research
is authentic, having been collected over the past 70 years, but it required preprocessing
prior to the modeling phase. This modeling process involved 63 experiments, integrating
three datasets, utilizing seven machine learning algorithms, and applying three methods to
address imbalanced data. The models were evaluated based on accuracy, precision, recall,
F1 score, and AUC score, with the AUC score serving as the primary objective due to its
robustness in handling imbalanced datasets.

Moreover, the interpretability of the prediction model for experts, particularly doctors,
was a significant concern. Consequently, we implemented Explainable Artificial Intelli-
gence (XAI) approaches. We selected LIME and SHAP for their capabilities in visualizing
the reasoning behind model predictions by displaying feature importance and their contri-
butions to the model prediction. Additionally, we explored the integration of generated
text to further enhance user explainability.

Embedding a user-centered design process, we also conducted human evaluations to
assess the explainability of the model visualizations. We proposed specific metrics to quan-
tify explainability and surveyed participants to compare the five visualizations presented.

The findings from this survey are compelling, highlighting a significant increase in
explainability levels when comparing the model without XAI techniques to those that
implemented such methods. The inclusion of textual summarization notably improved
user understanding. Future research should focus on fostering greater trust and confidence
among users interacting with AI systems, enabling these systems to assist effectively in the
decision-making process.
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Appendix A. Feature for Modeling Process

These are all the features used in the modeling process. The dataset containing all of
these attributes is referred to as ‘Set1’.
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Table A1. Set1 feature.

Feature Type Features Values Source

Demographic (5 features)
age, sex continuous raw data

race, ethnic categorical raw data with null data
handling

flag_death binary raw data with null data
handling

Intervention (4 features) is_liver_procedure, is_cyst_procedure, is_kidney_procedure,
is_blood_procedure binary

performing
one-hot-encoding from
raw data

Substance Used (4 features) is_consume_alcohol, is_consume_tobacco, is_consume_caffeine,
is_consume_decaffeine binary

performing
one-hot-encoding from
raw data

Hospitalization (1 feature) is_hospitalization binary
performing
one-hot-encoding from
raw data

Family history (8 feature)
is_affected_mother, is_affected_father, is_affected_siblings,
is_affected_aunt_uncle, is_affected_grandparents, is_affected_son,
is_affected_daughters, is_affected_others_family_member

binary
performing
one-hot-encoding from
raw data

CKD Stage Classification
(1 feature) CKD_classification categorical

calculated and
categorized from raw
data

High Risk Profile Classification
(1 feature) is_high_risk_profile (Target Variable) binary

calculated and
categorized from raw
data

Medical history and clinical
record (77 features)

hypertension, flank_pain, back_pain, abdominal_pain,
abdomen_protube, anorexia, nausea, anemia, headache, migraine,
gout, fatique, changes_in_appetite, back_trouble, acne, asthma,
hay_fever, rheumatic, pyelonephritis, rheumatic_heart, tuberculosis,
jaundice, heart_attack, allergies, abmass, mood_changes,
pneumonia, myeloma, cancer, scarlet_fever, constipation, diarrhea,
insomnia, impotence, drowsiness, event_urinary_tract_infection,
event_gross_hematuria, event_symptomatic_nephrolithiasis,
event_edema, event_nocturia, event_non_exertional_chest_pain,
event_shortness_of_breath_at_rest, event_exertional_chest_pain,
event_inguinal_hernia, event_umbilical_hernia,
event_intracranial_aneurysm, event_kidney_cyst_hemorrhage,
event_asymptomatic_nephrolithiasis,
event_cardiac_valve_disease, event_heart_palpitations,
event_shortness_of_breath_with_exertion, event_diverticulosis,
event_end_stage_renal_disease, event_cardiac_arrhythmia,
event_shortness_of_breath, event_loss_of_consciousness,
event_symptomatic_intracranial_aneurysm,
coronary_artery_disease, event_left_ventricular_hypertrophys,
event_diabetes_mellitus, event_seizures, event_severe_headache,
event_diverticulitis, event_other_acute_neurological_event,
event_kidney_cyst_infection, event_congenital_heart_disease,
event_abdominal_mass, event_coronary_heart_failure,
event_aneurysm, event_hepatic_venous_outflow_obstruction,
event_ruptured_intracranial_aneurysm,
event_ruptured_intracranial,
event_inferio_vena_cava_compression,
event_ascending_cholangitis, event_peripheralvascular_disease,
event_kidney_stones, event_carotid_disease

binary
performing
one-hot-encoding from
raw data

Appendix B. Hyperparameter

These are the hyperparameters used in the training model. Most of them are the
default values.
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Table A2. Random Forest hyperparameters.

Parameter Value

Number of Estimators 100
Max Depth None
Min Samples Split 2
Min Samples Leaf 1
Max Features auto
Bootstrap True
Random State 42

Table A3. Logistic Regression hyperparameters.

Parameter Value

Penalty l2
C 1.0
Solver lbfgs
Max Iterations 100
Multiclass auto
Random State None

Table A4. SVM hyperparameters.

Parameter Value

C 1.0
Kernel linear
Degree 3
Gamma scale
Max Iterations −1
Random State None

Table A5. LightGBM hyperparameters.

Parameter Value

Learning Rate 0.1
Number of Estimators 100
Max Depth −1
Num Leaves 31
Subsample 1.0
Colsample By Tree 1.0
Min Child Weight 1 × 10−3

Random State 42

Table A6. Gradient Boosting Tree hyperparameters.

Parameter Value

Learning Rate 0.1
Number of Estimators 100
Max Depth 3
Min Samples Split 2
Min Samples Leaf 1
Subsample 1.0
Loss deviance
Random State 42
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Table A7. XGBoost hyperparameters.

Parameter Value

Learning Rate (eta) 0.3
Max Depth 6
Min Child Weight 1
Subsample 1
Colsample by Tree 1
Number of Estimators 100
Gamma 0
Scale Pos Weight 1
Random State 42

Table A8. DNN hyperparameters.

Parameter Value

Data Scaling StandardScaler
Train–Test Split Test Size: 0.2

Random State: 42
Input Layer Shape (n_features)
Hidden Layer 1 Units 64, Activation ReLU
Hidden Layer 2 Units 32, Activation ReLU
Output Layer Units 1, Activation sigmoid
Optimizer Adam, Learning Rate 0.001
Loss Function binary_crossentropy
Metrics accuracy
Epochs 10
Batch Size 32
Validation Split 0.2
Early Stopping Monitor: val_loss, Patience 5
Random State 42

Appendix C. Evaluation Metrics

This serves as the evaluation metric for the 63 experiments conducted.

Table A9. Result for the Evaluation Metrics.

Set Attribute Algorithm Imbalanced Method Accuracy Precision Recall F1 AUC

Set1 DNN SMOTE 0.6864 0.6729 0.6864 0.6777 0.6126
Set1 DNN ROS 0.6723 0.6458 0.6723 0.6519 0.5753
Set1 DNN 0.7119 0.6875 0.7119 0.6781 0.5968
Set1 GBT SMOTE 0.6667 0.6282 0.6398 0.631 0.6397
Set1 GBT ROS 0.678 0.6624 0.6871 0.6597 0.6871
Set1 GBT 0.7288 0.7054 0.6018 0.6017 0.6018
Set1 LightGBM SMOTE 0.6949 0.6446 0.6432 0.6439 0.6432
Set1 LightGBM ROS 0.6977 0.6525 0.6575 0.6547 0.6575
Set1 LightGBM 0.7288 0.6822 0.6385 0.6475 0.6385
Set1 LR SMOTE 0.6808 0.6468 0.6623 0.65 0.6623
Set1 LR ROS 0.6723 0.6417 0.6585 0.6439 0.6585
Set1 LR 0.7288 0.6895 0.619 0.6254 0.6189
Set1 RF SMOTE 0.709 0.6592 0.6535 0.656 0.65348
Set1 RF ROS 0.6893 0.6402 0.6415 0.6408 0.6415
Set1 RF 0.7232 0.678 0.6148 0.6207 0.6148
Set1 SVM SMOTE 0.6582 0.6279 0.6434 0.6292 0.6434
Set1 SVM ROS 0.661 0.6491 0.6723 0.6437 0.6723
Set1 SVM 0.7401 0.7277 0.6174 0.6218 0.6174
Set1 XGBoost SMOTE 0.6751 0.6233 0.6239 0.6236 0.6239
Set1 XGBoost ROS 0.6695 0.6235 0.6296 0.6258 0.6296
Set1 XGBoost 0.726 0.6785 0.6316 0.64 0.6316
Set2 DNN SMOTE 0.7034 0.6999 0.7034 0.7015 0.6504
Set2 DNN ROS 0.6356 0.6437 0.6356 0.6393 0.5878
Set2 DNN 0.7175 0.696 0.7175 0.6912 0.6132
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Table A9. Cont.

Set Attribute Algorithm Imbalanced Method Accuracy Precision Recall F1 AUC

Set2 GBT SMOTE 0.6667 0.6391 0.6569 0.6402 0.6569
Set2 GBT ROS 0.6582 0.6434 0.6654 0.6392 0.6654
Set2 GBT 0.7316 0.7017 0.6137 0.6181 0.6137
Set2 LightGBM SMOTE 0.6921 0.6473 0.6534 0.6498 0.6534
Set2 LightGBM ROS 0.7006 0.6562 0.662 0.6587 0.662
Set2 LightGBM 0.726 0.6773 0.6389 0.6476 0.6389
Set2 LR SMOTE 0.678 0.6491 0.6676 0.6512 0.6676
Set2 LR ROS 0.6525 0.6323 0.6515 0.6302 0.6515
Set2 LR 0.7316 0.7017 0.6137 0.6181 0.6137
Set2 RF SMOTE 0.6977 0.6475 0.6453 0.6463 0.6453
Set2 RF ROS 0.7006 0.6495 0.6449 0.6469 0.6449
Set2 RF 0.7401 0.7216 0.6296 0.638 0.6296
Set2 SVM SMOTE 0.661 0.6383 0.6577 0.6376 0.6577
Set2 SVM ROS 0.6356 0.6367 0.6587 0.6229 0.6587
Set2 SVM 0.7147 0.6929 0.5695 0.5528 0.5695
Set2 XGBoost SMOTE 0.6836 0.6314 0.6301 0.6307 0.6301
Set2 XGBoost ROS 0.6977 0.6525 0.6575 0.6547 0.6575
Set2 XGBoost 0.7006 0.6383 0.6008 0.6052 0.6008
Set3 DNN SMOTE 0.7203 0.7091 0.7203 0.7125 0.6519
Set3 DNN ROS 0.732 0.717 0.732 0.719 0.689
Set3 DNN 0.7345 0.7202 0.7345 0.7017 0.6206
Set3 GBT SMOTE 0.6695 0.653 0.6761 0.6503 0.676
Set3 GBT ROS 0.6695 0.6604 0.6859 0.654 0.6858
Set3 GBT 0.7458 0.7363 0.6264 0.6334 0.6264
Set3 LightGBM SMOTE 0.7034 0.6719 0.691 0.676 0.691
Set3 LightGBM ROS 0.7006 0.667 0.684 0.6711 0.684
Set3 LightGBM 0.7345 0.6908 0.6451 0.6549 0.6451
Set3 LR SMOTE 0.6838 0.6581 0.679 0.6596 0.679
Set3 LR ROS 0.6751 0.6605 0.6851 0.6572 0.6851
Set3 LR 0.7288 0.6995 0.6067 0.6089 0.6067
Set3 RF SMOTE 0.7062 0.668 0.6808 0.6722 0.6808
Set3 RF ROS 0.6808 0.6412 0.6525 0.6446 0.6525
Set3 RF 0.7514 0.7193 0.6599 0.6722 0.6599
Set3 SVM SMOTE 0.6808 0.6718 0.699 0.6658 0.699
Set3 SVM ROS 0.6525 0.6624 0.6882 0.6433 0.6882
Set3 SVM 0.7147 0.6781 0.5793 0.5707 0.5793
Set3 XGBoost SMOTE 0.7147 0.6825 0.7016 0.6872 0.7016
Set3 XGBoost ROS 0.6723 0.6433 0.661 0.6451 0.661
Set3 XGBoost 0.7316 0.6857 0.6455 0.6548 0.6455
Set3 SVM 0.7147 0.6929 0.5695 0.5528 0.5695

Appendix D. Visualization of Extreme Cases

The extreme cases of the patient visualized with both LIME and SHAP.

Figure A1. SHAP visualization for extreme case.
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Figure A2. LIME visualization for extreme case.
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