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Abstract: Small uncrewed aerial systems (sUASs) can be used to quantify emissions of
greenhouse and other gases, providing flexibility in quantifying these emissions from
a multitude of sources, including oil and gas infrastructure, volcano plumes, wildfire
emissions, and natural sources. However, sUAS-based emission estimates are sensitive
to the accuracy of wind speed and direction measurements. In this study, we examined
how filtering and correcting sUAS-based wind measurements affects data accuracy by
comparing data from a miniature ultrasonic anemometer mounted on a sUAS in a joust
configuration to highly accurate wind data taken from a nearby eddy covariance flux tower
(aka the Tower). These corrections had a small effect on wind speed error, but reduced
wind direction errors from 50◦ to >120◦ to 20–30◦. A concurrent experiment examining the
amount of error due to the sUAS and the Tower not being co-located showed that the impact
of this separation was 0.16–0.21 ms−1, a small influence on wind speed errors. Lower
wind speed errors were correlated with lower turbulence intensity and higher relative
wind speeds. There were also some loose trends in diminished wind direction errors
at higher relative wind speeds. Therefore, to improve the quality of sUAS-based wind
measurements, our study suggested that flight planning consider optimizing conditions
that can lower turbulence intensity and maximize relative wind speeds as well as include
post-flight corrections.

Keywords: wind measurement; multirotor; sUAS; flux quantification

1. Introduction
The Intergovernmental Panel on Climate Change (IPCC) has stated that recent in-

creases in global temperatures are human caused. The dominant causes of this warming are
increases in greenhouse gases (GHGs) such as carbon dioxide (CO2) and methane (CH4) [1].
In the United States, the majority of these emissions are from transportation (28%), elec-
tricity production (25%), and industry (23%) [2]. In order to combat climate change, land
managers must first understand how individual GHG sources contribute to these emissions.
A variety of techniques are used to measure the source and magnitude of these gas fluxes
to the atmosphere, including satellites, airborne campaigns, and ground-based techniques.
Due to their maneuverability and low-altitude capabilities, small uncrewed aerial systems
(sUASs) have also recently been used to measure gas emissions and fluxes.

sUASs have been used to help quantify GHG emissions from a variety of sources [3–5].
For example, Gullett et al. [6] measured the nitrogen oxide (NO), nitrogen dioxide (NO2),
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carbon dioxide (CO2), and carbon monoxide (CO) being emitted from natural gas boiler
stack plumes. Their sUAS-based measurements were within 0.8–7.8% of values measured
by continuous emission monitoring systems (CEMSs). sUASs have also been used to
examine emissions from oil and gas infrastructure [7–10], landfills [11–13], as well as ozone
concentrations [14,15]). sUAS-based measurements can be very useful in situations where
monitoring emissions is potentially hazardous, such as measuring volcano plumes [16–18]
and wildfire emissions [19,20], or where the location of interest is difficult to access (i.e., no
roads). The ability of sUASs to quantify GHG emissions from natural sources, such as
wetlands, is also of interest [21].

Early experiments examining the ability of sUASs to measure wetland methane emis-
sions found that although the magnitude of these emissions were similar to eddy covariance
flux tower measurements, sUAS-based fluxes were sensitive to wind data [22]. This sen-
sitivity stems from the fact that sUAS-based emission estimates are directly proportional
to the wind measurements. As such, when wind measurements are off, emission errors
can increase by a factor proportional to the true wind speed error. In [23], uncertainties in
methane emission quantification with sUAS were explored against OTM-33A [24]. The au-
thors explored variations in the way the spatial methane measurements were interpolated
and how the wind components were applied to the measurements (i.e., scalar, logarithmic,
and projected). In brief, they found that cluster-based kriging outperformed ordinary
kriging. However, their emission results still showed uncertainty levels of 30–77% [23],
the variability of which was in part driven by whether the flight occurred during opti-
mal vs sub-optimal wind conditions. They also found that wind speeds below 2.3 ms−1

showed increased errors in flux measurement, further emphasizing the importance of
wind measurements.

Measuring wind data from sUAS has been achieved utilizing on-board ultrasonic
anemometers (UAs) [25,26], five-hole probes [27,28], as well as by using the inertial measure-
ment unit (IMU) of the aircraft [27,29]. With IMU-based techniques, the sUAS accelerometer
and gyroscope data are used (in conjunction with the GPS and altitude measurements)
to estimate the wind. While the IMU approach requires no additional instrumentation,
this method requires intimate knowledge of the aircraft’s aero-mechanical features for
computing drag components, as well as knowledge of power requirements as a function of
pitch and roll commands (requiring wind tunnel testing for highly accurate values) [30].
When sensors are used to measure wind data, placement of these sensors is important.
For example, a five-hole probe sensor has a cone of acceptance of approximately ±45°
relative to the aircraft heading for which the wind can be measured [27], and, as such, this
sensor must be placed on the front of an aircraft. Other wind sensors, such as ultrasonic
anemometers, can be placed in front of or be mounted directly above the aircraft [25,30].
In order to minimize the affect from the rotors, they need to be placed at a distance of
1.5 rotor diameters or greater [26] to allow for free stream airflow into the sensing region.

Measuring gases and winds simultaneously requires integration of the gas and wind
sensors such that theses sensors do not interfere with one another nor impact the perfor-
mance of the sUAS. To reduce mounting hardware and weight, these instruments are often
mounted together, sometime along a boom situated such that the instruments are located in
front of the sUAS in a joust configuration . It can be argued that this configuration may allow
for better airflow into both sensors given the aircraft orientation is pointed predominately
into the wind [31].

The purpose of this study was to examine how wind measurements taken from
joust-configured sUASs during a mission to calculate gas (methane) fluxes compare to
two sets of ground-based wind measurements. We applied various levels of corrections
(e.g., translation- and rotation-induced velocities) to determine key sources of error given
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different measurement scenarios. The paper is organized as follows: in Section 2, the
experimental site, sampling approach, and data corrections/filtering are outlined; Section 3
showcases the results between the two sets of ground-based sensors as well as how the
sUAS-based data vary with filters/corrections for sUAS movement (speed, headings, and
rotation) and angle differences between the sUAS heading and mean wind direction or
sUAS direction of travels; Section 4 discusses our findings and provides suggestions for
obtaining more accurate wind speed and direction measurements; and Section 5 gives some
concluding remarks.

2. Materials and Methods
2.1. Experiment Site

This study took place in the Alaska Peatland Experiment (APEX), located within the
lowlands of the Bonanza Creek Long-term Ecological Research (LTER) site, in Interior
Alaska. SUAS flights were conducted within a collapse scar bog (∼2000 m2) along the
flight lines shown in Figure 1. This bog formed from recent permafrost thaw and is sur-
rounded by forested peat plateaus that still contain permafrost (aka frozen soil [32]). Bog
vegetation is characterized by diverse Sphagnum and Carex spp. plants. This bog has an
eddy covariance flux tower [33] measuring carbon and energy fluxes as well as wind
data. The sUAS was flown in August when methane flux was expected to be near its
maximum. For the time period of these flights (9–11 August 2022, between 11:00 and 19:00),
the average temperature was 21.2 ◦C (std dev = 3.9, range = 13.9–28.8 ◦C, data measured
by the onboard methane sensor, RKI Instruments), the average pressure was 995.6 mb
(std dev = 1.6, range = 995.6–1001.8 mb, RKI Instruments), and the average relative humid-
ity was 40% (range = 30–55%; Fairbanks Airport, https://www.ncdc.noaa.gov/(accessed
on 6 January 2025)). At this site, the wind predominately comes from the northeast
and southwest.

Figure 1. Overview of the bog with locations marked for the two sets of curtains flown (depending
on dominant wind direction, red and blue lines) and the AirMar 200WX WeatherStation (yellow dots).
The Tower is located within the flight curtains at the same location as noted for the AirMar. Also
visible in this image are the boardwalks providing access to this site. Landscape imagery courtesy of
J. Hollingsworth, Bonanza Creek LTER, 2019.

https://www.ncdc.noaa.gov/
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2.2. Aerial-Based Sampling Approach

We placed a TriSonica miniature ultrasonic anemometer (Anemoment, Longmont, CO,
USA) on a Matrice 600 (M600; DJI, Shenzhen, China), which we refer to as the TriSonica.
This instrument was mounted at the end of a carbon fiber boom such that it was 99 cm in
front of the center of the M600 (Figure 2). This placement was chosen to minimize the effects
of propeller wash on wind speed, wind direction, and methane measurements [31,34–36].
One of the main applications of these flights was to estimate methane flux, or the rate of
methane emissions from the bog, using the mass balance method [7]. When a gas plume is
being advected from a source in a single direction, flux can be typically be captured using
only a single downwind curtain (as long as it encapsulates the plume). A curtain consists of
multiple linear transects at various altitudes, typically with equal vertical spacings, which
span the area where the plume is expected. An upwind curtain is often used to either
verify that there is no additional gas entering from upwind of the source area or, if there
is an upwind source, to quantify those background levels. If one orients these curtains
approximately perpendicular to the dominant wind direction, one can assume there is
little to no flux leaving the site from the unmeasured sides and only fly from these upwind
and downwind positions. In our study, the wind direction changed at times, creating
two sets of upwind/downwind curtains (four flights each), which we labeled north/south
(N-S) and east/west (E-W) according to the dominate wind direction (Figure 1). Transects
within a curtain ranged from altitudes of approximately 2 to 20 m (AGL). During periods
of measurement, the boom of the sUAS was pointed in the direction of travel. Once a
transect was completed, the sUAS would climb in altitude ≈ 2 m and rotate until it was
facing the direction of travel again. These flights were flown near an eddy covariance flux
tower (aka Tower) to allow comparisons between the sUAS- and Tower-based wind and
flux measurements.

Figure 2. Photograph of Matrice 600 with TriSonica mini anemometer mounted on boom flying in
Alaskan bog that also has eddy covariance flux tower (aka the Tower). An open path laser system
(OPLS) noted measures methane. Photograph used with permission, J. Jonas, NASA.

2.3. Ground-Based Sampling Approach

In this work, we utilized two different ground-based sensors. The first is the eddy
covariance tower (aka the Tower) which is reserved as the gold standard in this study. The
second is a low-cost and portable solution that is easily deployed to different locations on
the site, referred to as AirMar. Both are described in more detail below.
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2.3.1. Tower

The Tower wind data, uτ(t) = [uτ1, uτ2, uτ3]
T , were measured using a 3D sonic

anemometer (CSAT-3; Campbell Scientific Instruments, Logan, UT, USA) at ≈ 3 m above
ground. The stated resolution for this instrument is 1 mms−1 root mean square (ux, uy)
and 0.5 mms−1 root mean square (uz) with wind direction accuracy of ±0.7◦at 1 ms−1 for
horizontal wind (https://www.campbellsci.com/csat3 (accessed on 6 January 2025)). For
these measurements, 0 degrees north corresponded to 160 degrees (i.e., ϕT = 160), such
that these data needed to be adjusted prior to data comparisons. The Tower data were
sampled at a rate of 10 Hz.

2.3.2. AirMar

The AirMar 200WX WeatherStation (AirMar Technology Corporation, Milford, NH,
USA) was mounted on a tripod, such that measurements, ua(t) = [ua1, ua2, ua3]

T , were
taken 232 cm above the ground level. Because the AirMar is a 2D sensor, there are no
data in the third dimension, such that (ua3 = 0 ∀t). We used this instrument as a mo-
bile sensor to investigate the potential effects of non-collocation on wind measurement.
Therefore, at times, this instrument was located alongside the Tower, while at other times
it was placed at the edge of the bog within the forested peat plateau (Figure 1). This
AirMar unit has a documented wind speed accuracy of 0.15 ms−1 and a stated wind direc-
tion accuracy of ±3◦at 10 ms−1 (https://www.airmar.com/Product/200WX (accessed on
6 January 2025)). The AirMar sensor outputs data at 2 Hz as wind angle, with 0 degrees
being the direction in which the sensor is pointed, and wind speed (in knots). At each loca-
tion the AirMar was deployed, the sensor was aligned to magnetic north using a compass;
therefore, data were converted to true north using the magnetic variation for this region
of 15.92◦ (https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml (accessed on
5 November 2024)).

2.4. Data Post-Processing

To effectively conduct an inter-comparison between the TriSonica (or aerial-based
data) and the land-based measurements (Tower and AirMar), each dataset needed some
processing, filtering, and/or corrections. First, because the sampling frequency and timing
for each instrument were different, for each analysis, a target frequency was chosen and
data were interpolated as needed to this timing. For the inter-comparison between the
Tower and AirMar, the sample frequency was 2 Hz. For the comparison between the Tower
and the aerial-based measurements, it was 5 Hz.

In addition, each instrument had a different orientation and/or coordinate system
(Figure 3). Therefore, each dataset needed to be aligned (spatially). Below we discuss this
process for each component of our system.

Figure 3. The coordinates used for the different wind instruments and the sUASs are shown here.
Because each system used different orientations, the data first needed to be aligned, as described in
Section 2.4.1.

https://www.campbellsci.com/csat3
https://www.airmar.com/Product/200WX
https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml
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2.4.1. sUAS Corrections

The TriSonica was mounted on the boom such that the north orientation was fac-
ing the front of the aircraft (i.e., the direction of flight). First, we needed to ensure
that the TriSonica’s basis vectors, êm(t) = [êm1, êm2, êm3]

T , were aligned with the ba-
sis vectors of the M600’s body fixed frame coordinates, êd(t) = [êd1, êd2, êd3]

T , where
t is time (see Figure 3). For example, a positive value for êd3 of the M600 is pointed to-
wards the ground (https://developer.dji.com/mobile-sdk/documentation/introduction/
flightController_concepts.html (accessed on 21 January 2025)), in contrast to the TriSonica
anemometer, where a positive value of êm3 is pointed away from the ground. Therefore,
the first step in our data processing was to align the TriSonica data to the M600 coordinate
system so that we could correct the TriSonica data according to the M600 direction of flight
(or yaw), pitch, and roll. Positional data from the M600 were recorded in terms of true
north based on the onboard GPS system.

As the sUAS is moving during measurements, the wind sensor is experiencing fluc-
tuations due to local turbulence, propeller effects, and induced effects from sUASs. To
understand the degree to which sUAS orientation was influencing the measurements, we
adjusted the measured TriSonica data, um(t), based on the M600 data, for both translation
[v(t)] and rotation [Ω̇(t)], where Ω = [ϕ, θ, φ]T . To achieve this, we utilized the following
rotation matrices:

Rϕ =

1 0 0
0 cos ϕ − sin ϕ

0 sin ϕ cos ϕ

, Rθ =

 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

, Rφ =

cos φ − sin φ 0
sin φ cos φ 0

0 0 1

. (1)

For simplicity, we let R(Ω) = RϕRθ Rφ. In addition, we used the location of the sensor
relative to the central pivot point of the drone, defined by

r = [l, 0, h]T , (2)

where l and h are the distance in length and height the sensor is located away from the
center of the sUAS, as shown in Figure 4.

Figure 4. This diagram depicts the center of the sUAS (white box) with the TriSonica sensor (blue box)
located out front of the aircraft, as described in Equation (2). The north-east-down (NED) coordinates
(i.e., the êd basis shown in Figure 3) describe the location relative to the center of the sUAS.

We separated the three corrections into different cases. In Correction 1 (C1), the raw
measured wind speed vector is only subject to heading-based and pose corrections:

ûm(k∆t) = R(Ω)um(k∆t). (3)

In Correction 2 (C2), the estimate is further corrected by adjusting for the vehicle’s induced
translational velocity:

https://developer.dji.com/mobile-sdk/documentation/introduction/flightController_concepts.html
https://developer.dji.com/mobile-sdk/documentation/introduction/flightController_concepts.html
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ûm(k∆t) = R(Ω)(um(k∆t)− v(k∆t)). (4)

In Correction 3 (C3), the vehicle’s induced rotational velocity is adjusted using the gyro-
scope data and the sensor position:

ûm(k∆t) = R(Ω)(um(k∆t)− v(k∆t)− vr(k∆t)), (5)

where vr = r × Ω̇.

2.4.2. Filtering

In an effort to determine how wind speed values were affected by sUAS flight pa-
rameters, we considered major factors that could impact the free air stream flow into
the TriSonica sensor. We hypothesized that the propellers and orientation of the aircraft
(relative to the mean wind direction) were the most dominant. Therefore, we chose to filter
the data in three primary ways (see Figure 5). The first was by sUAS velocity (ms−1). We
expected wind speed measurement values to be negatively impacted when the sUAS was
changing direction due to slow speeds and ascending in place, which would increase local
turbulence and propeller induced bias into the sensor (no measurements were performed
while descending). The second was by the relative angle difference between the heading of
the aircraft and the mean wind direction, ∆φ (with respect to the Tower). We were curious
whether data accuracy would be effected by this angle size, as it relates to the location of the
sensor within the free air stream. We experimented with various angles to find the one that
provided the most reliable results. We then filtered the data a third way, considering the
relative difference between the vector describing the direction of travel (i.e., velocity vector)
and the heading vector. When the sUAS heading is perpendicular to the direction of travel,
the free air stream is obstructed by the propeller intake air flow. Therefore, we filtered the
data such that sUAS velocity values, v, below 1 ms−1 were removed. The data were further
filtered by removing any data where the angle size ∆φ was greater than ±20◦. Lastly, we
removed any data where the difference between heading vector and velocity vector, β, was
greater than ±20◦. To verify the validity of these filtering parameter values, the Tower
measurements were used as our ground truth estimate. We reserved the optimal choice
of filtering parameters for future work, which may depend heavily on sensor placement
and environmental conditions and need to be validated in controlled conditions (i.e., wind
tunnel test, etc).

Figure 5. The TriSonica filtering variables based on velocity (v), the relative angle difference between
the aircraft heading and mean wind direction (∆φ), and the relative difference between the direction
of travel and sUAS heading (β). ∆φ is computed with respect to the Tower wind measurement, uτ ,
which is assumed to be the closest measurement to the true wind vector u ≈ uτ .
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3. Results
3.1. AirMar vs. Tower

To understand how differences in sUAS- vs. Tower-based wind measurements may
be influenced by the fact that these two measurements are not co-located, we compared
wind measurements using an AirMar sensor placed both next to the Tower (co-located)
and approximately 22 m away (separated), on the edge of the bog (Figure 1). We found
that when the AirMar sensor was co-located, there was on average 0.51 and 0.45 ms−1

discrepancy between the Tower for the ua1 and ua2 components, respectively (Figure 6).
This difference increased to 0.72 and 0.61 ms−1 when the AirMar was no longer co-located.
The spread of these differences, as represented by the 95% confidence interval, was also
higher when the two sensors were separated.

Figure 6. The difference between the Tower (gold standard sensor) versus the AirMar (stand-alone
sensor) ua1 and ua2 wind components, depending on if the AirMar was co-located versus separated
by about 22 m (see Figure 1). Boxes represent the 25th and 75th percentiles, the bar within shows the
median. Whiskers are 1.5× the inter-quartile range.

3.2. TriSonica vs. Tower

We compared the sUAS-based TriSonica wind measurements to the Tower wind data
to understand how post-flight filtering and data corrections influence sUAS-based wind
speed and direction data. Results are presented in the following ways: (1) TriSonica data
that were subject to filtering, as described in Section 2.4.2, compared to non-filtered data;
(2) TriSonica data subject to corrections (i.e., C1, C2, and C3; see Section 2.4.1) compared
to data without corrections (labeled NC); (3) postulating that due to terrain differences
(Figure 1) the wind of the E-W flights may need to travel over more trees compared to
the N-S flights, increasing turbulence and boundary layer effects; we examined the N-S
and E-W flight data separately, and (4) to establish a baseline, we added the comparison
between the AirMar and Tower wind data for both filtered and non-filtered data (filtering
with respect to the TriSonica). The AirMar data include flights where this sensor was both
co-located and separated from the Tower. The average wind speeds of the Tower for all
flights, both filtered and unfiltered, are shown in Table 1. The error between wind speed of
the Tower and the TriSonica are given in terms of relative error, 100(|um| − |uτ |)/|uτ |.

When considering all of the flight data together (i.e., both N-S and E-W transects) to
compare the different levels of corrections (see Figure 7) we found that

• the AirMar measurement has a median wind speed error of 23% and wind direction
error of 25◦ ± 13;

• the TriSonica wind speed errors are very similar between when the data are not cor-
rected (NC, 36%) and the three corrections (C1–C3; 36%, 45%, and 45%, respectively);
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• the TriSonica wind direction error for the NC and C1 cases have the highest median
values (91◦ ± 47◦ and 108◦ ± 39◦, respectively) and variability with respect to outliers
(from 120% to 200%+).

Table 1. A comparison between the filtered average wind speed data (see Section 2.4.2) from the
tower and the raw (unfiltered) tower data during the different flights (f#) in ms−1. The N-S flights
consist of f1, f2, f7 and f8, and the E-W flights consist of f3–f6.

Flight Number Avg Tower
(Filt)

Std Tower
(Filt)

Avg Tower
(Raw)

Std Tower
(Raw)

f1 2.53 0.47 2.97 0.90
f2 1.34 0.74 2.84 0.89
f3 2.04 0.69 1.76 0.69
f4 1.28 0.41 1.16 0.45
f5 1.70 0.52 1.33 0.68
f6 1.01 0.68 1.14 0.52
f7 1.84 0.29 1.96 0.46
f8 2.13 0.44 1.69 0.81

Figure 7. The wind correction results are shown for all data collected (i.e., no filtering or separating flights
by transect orientation) in a horizontal box plot. The circle with a dot represents the median, the box shows
the quartiles, the whiskers the minimum and maximum values, and the dots represent outliers.

When examining the wind speed data for the N-S and E-W flights separately
(Figure 8a,b), we observed that

• The N-S median TriSonica (all correction levels) and AirMar wind speed data, both
with and without filtering, are very similar, with values ranging from 18 to 30%;

• The E-W median value of the AirMar, 21–23%, is substantially lower than any of the
TriSonica corrected data, both with and without filtering (50–55%);

• The unfiltered N-S and E-W flights have considerably more outliers compared to
filtered data. The AirMar data also show some outliers in the unfiltered case, however
not at the magnitude of the TriSonica data.

Conversely, if we consider wind direction for the N-S and E-W flights (Figure 8c,d),
we observe the following:

• The N-S and E-W median wind direction values for the NC and C1 cases (both filtered
and unfiltered) show little similarity to the Tower or AirMar data.

• The N-S wind direction median values for the C2 and C3 unfiltered cases, 118◦ and
C3, 117◦, respectively, show large increases in error.

• The N-S wind direction median values for the C2 and C3 filtered values, 30◦ and 31◦,
respectively, show large decreases in error compared to unfiltered values.
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• The E-W wind direction median values for the C2 and C3 unfiltered cases, 41◦ and
41◦, respectively, show similar error compared to the AirMar (31◦) but contain more
variability (18◦–73◦ versus 20◦–44◦, respectively).

• The variability for filtered C2 and C3 E-W wind directions (20◦–61◦) is much smaller
than the unfiltered cases for C2 and C3 (18◦–73◦). The filtered C2 and C3 values are
similar to those of the AirMar (24◦–46◦).

Figure 8. Correction and filtering results for N-S flights and E-W flights for errors in wind speed
((a,b), respectively) and wind direction ((c,d), respectively) are shown in a horizontal box plot. The circle
with a dot represents the median, the box shows the quartiles, the whiskers the minimum and maximum
values, and the dots represent outliers. All data are presented with respect to the Tower data. The y-axis
indicates the type of data corrections applied (outlined in Section 2.4.1) and whether they are filtered
(described in Section 2.4.2). Additionally, for comparison, the AirMar data are shown as a baseline.

Given the differences between the N-S and E-W flights, we wondered whether at-
mospheric stability was impacting the ability to measure wind data onboard the sUAS.
To test this idea, we utilized two metrics to describe the wind behavior during the flight,
turbulence intensity, τi, and the normalized standard deviation of the wind direction,
τθ = σθ/360. We defined turbulence intensity (with respect to the Tower measurements) as
the standard deviation of the wind speed magnitude, σu, divided by the mean wind speed
magnitude, ut, such that τi = σu/ut. When the turbulence intensity (τi) value is small
(i.e., close to zero), there is little to no turbulence, which means the wind is more stable and
less variable. Conversely, if the value is larger (closer to 1), the turbulence is greater. When
we plot the average errors in wind speed against τi and τθ (Figure 9), we see that both the
wind speed error (color bar) and spread of this error diminish as turbulence intensity (τi)
and the standard deviation of the wind direction (τθ) decrease. The relationship between
these values and wind direction error is less compelling (Figure 9). To further examine these
factors, we plotted turbulence intensity (τi) against the average and standard deviation of
the error for wind speed (Figure 10). As expected, we found that as we have more stable
wind (lower turbulence intensity), we observe lower average errors in wind speed as well
as lower variability for this error. We also examined (τθ) against the average error for wind
direction and found no correlation (correlation coefficient = 0.06) (data not shown).
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Figure 9. Plotting average TriSonica wind speed % error (value represented in color) by turbulence
intensity (τi) and normalized standard deviation of wind direction (τθ) show that when conditions
are stable TriSonica measurements that were filtered and corrected can perform quite well compared
to Tower measurements. Flight numbers (f#) and standard deviation of % error are listed for each
flight. North-south flight numbers are 1, 2, 7, and 8; east-west flight numbers are 3–6.

Figure 10. Relationship between τi and average and standard deviation wind speed error. Data are
filtered and corrected. Correlation coefficients are 0.79 and 0.90, respectively. Blue circles represent
N-S flights, while orange colors represent E-W flights.

4. Discussion
4.1. Effects of Separation on Wind Data

The sUAS-based measurements we examine in this study are never truly collocated
with our reference sensor, the Tower. As such, some of the error in our comparison
of these two data sources are due to fluctuations in the wind field in these different
locations. To examine how this spatial separation might influence our results, we placed
an additional wind sensor, the AirMar, both next to and 22 m away from the Tower. We
found that separation of the instruments added 0.16–0.21 ms−1 of error. Considering that
at times the errors between the filtered/corrected TriSonica measurements and the AirMar
measurements were similar in magnitude (Figure 8), it can be postulated that under proper
relative wind speed conditions and sUAS orientation the mobile onboard measurements
are no less accurate than fixed measurements taken in a different location.

4.2. Filtering and Correcting Aerial Data

Many conditions (e.g., weather, flight parameters, relative wind speed over the sen-
sor) need to optimized in order for aerial wind measurements to replicate the true sig-
nal. Previous studies where a TriSonica was used to measure wind speed found dif-
ferences in wind speed between the sensor and reference measurements between 20
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and 50% ([26] examining experiments by [37], [25]). Both of these studies mounted the
TriSonica above the sUAS, which may increase errors, especially at low wind speeds [31]. It
is also important to note that both of these studies had the sUAS in a fixed location, which
reduces the relative wind speed over the TriSonica sensor.

sUAS-based wind measurements include other types of error (such as sensor noise,
propeller induced biases, and correction inconsistencies); we set about quantifying the
impact of some of those factors. Some of the errors seen in our data can be attributed to
low true wind speeds. Low wind speeds, combined with the limitations of the TriSonica
(which has stated u/v accuracy of ±0.10 ms−1) and translational velocities of ≈1.5–2 ms−1,
are the likely explanation as to why our average wind speed error is on the order of 1 ms−1

in the not corrected (NC) case. We also wanted to understand more about variability
within our filtered and corrected data. For this examination, we processed these data
using a Savitzky-Golay filter over a 2 s interval and examined the resulting variabilities.
When applying this process to the TriSonica data, we found a wind speed deviation (δ|um|)
of 0.07 ms−1, which is similar to the stated accuracy of this sensor. We also used this
filtering approach to examine errors related to the sUAS. Translational velocity (δ|v|) had
deviations of 0.03 ms−1. Pose (δΩ; pitch, roll, and yaw) had deviations of [1.9, 1.1, 14.9]◦,
respectively, while rotational rates (δΩ̇; pitch rate, roll rate, and yaw rate) had deviations of
[0.14, 0.83, 0.36]◦ s−1, respectively. By utilizing Equation (5), the deviations of the TriSonica
measurement, translational velocity, pose, and rotational rate can be converted to ms−1

using a sequential perturbation method, resulting in an estimated total uncertainty of
around ±0.14 ms−1. Of this value, the TriSonica contributes the majority of the uncertainty
(>80%). The remaining uncertainty lies within the translational velocity (16%), with very
little from rotation rates (3%) and pose (<0.01%). It should be noted that this simple test of
uncertainty propagation does not include the bias and variability induced by the aircraft.

Our observations give clear indications that both corrections and filtering are needed,
especially for more accurate wind direction data (Section 3.2, Figure 8). Our results also
indicate that the translational velocity corrections (C2) are the most effective for calculating
the true wind direction signal. Improvements due to the rotational velocity corrections (C3)
were minor and inconclusive; this result is likely due to the fact that rotational impacts
while flying the main section of each transect are small. The sections most impacted by
rotational effects are the ends of the transects, where the sUAS turns and adjusts its altitude.
Our filtering criteria (Section 2.4.2) excluded the end of each transect, where this process
occurs, due to concerns regarding the influence of propeller wash on both the wind and
methane measurements while the sUAS was turning and ascending. If one needed to also
include transect ends in their data stream, additional investigation into the impacts of the
C2 to C3 correction would be needed. However, we do not recommend including the
end sections of transects. Our results indicate that wind speed and direction errors are
substantially larger without filtering the data for velocity (v; Section 2.4.2), relative angle
differences (∆φ), and the difference between the sUAS heading and wind direction (β).
We suspect that these filtering criteria may be dependent somewhat on sensor placement
relative to the propeller geometry, which in turn impacts the effects of prop wash.

We also found that reduced turbulence intensity (τi) and less variability in wind
direction (τθ) helped reduce errors in wind speed, and, to a lesser effect, wind direction
(Figure 9). Therefore, flying during times when atmospheric stability is at a maximum
would aid in obtaining more accurate sUAS-based wind measurements. However, it is
unrealistic to expect flights to occur only during optimal atmospheric conditions. We
suggest instead users should focus on increasing localized wind stability. Air stability
around a sUAS-based wind sensor is influenced by the aircraft propulsion system, the
sUAS heading, as well as wind speed and direction.
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In N-S flights, most of the wind speed measurements were near or above 2 ms−1

(Table 1). In contrast, in all E-W flights, with the exception of Flight 3, the wind speed
stayed under 2 ms−1. These differences could be one explanation as to why our results
differ depending on transect orientation. To examine this concept further, we plotted wind
speed and wind direction error as a function of relative wind speed for both transects. We
found that wind speed errors diminish as relative wind speed increases (Figure 11A), with
more measurements having errors < 1 ms−1 when relative wind speeds reach 2.5 ms−1 or
greater (Figure 11B). This value is similar to 2.3 ms−1 found in [23], below which authors found
increased errors in sUAS-based emissions. Trends with wind direction errors are less clear,
although these errors do diminish somewhat at relative wind speeds greater than 3.5 ms−1

(Figure 11C,D). Based on these results, we believe that flight planning to increase the time that
sensors are in relatively free air streams could be an effective tool to minimize wind speed
and direction measurement errors. Utilizing the wind triangle (Figure 12), whereby flights are
flown in a manner to maximize relative wind speed (red arrow), during this planning should
positively impact the accuracy of both wind speed and direction measurements. Investigating
the ability to optimize relative wind speeds utilizing the wind triangle is a logical next step
for future investigations. In addition, further studies could examine the relative wind speed
needed for reduced measurement errors. Potential reasons we found smaller wind speed
errors at or above relative wind speeds of 2.5 ms−1 could be lower turbulence intensity and/or
greater atmospheric stability above this value. Understanding the factors controlling this
value and how it may vary with different platform/sensor configurations, environmental
conditions, and terrain would greatly inform future missions.

Figure 11. Errors for wind speed and wind direction plotted against relative wind speed of sUAS-
mounted sensor. Panels (A,C) show data separated by N-S and E-W flights. Panels (B,D) show all
data combined with colors representing percentage of data meeting those criteria. All plots show
decreased errors as relative wind speed increases. All data are filtered and corrected.



Drones 2025, 9, 94 14 of 17

Transect path

Transect induced
wind speed

Wind direction

Orientation
of boom

Wind triangle

Wind
sensor

Relative
wind

Figure 12. A diagram depicting a strategy for measuring joust configured wind measurements. Using
wind triangle concept, one can maximize free air flow of wind sensor if orientation of wind sensor
on boom (green arrow) can match that of relative wind direction (red arrow). Components of wind
triangle are transect-induced wind speed (blue arrow) and wind direction (orange arrow).

5. Conclusions
In this work, we explored the conditions necessary for accurate sUAS-based wind

measurements by evaluating different levels of corrections (i.e., pose and induced velocities
from translation and rotation) and filtering (i.e., aircraft heading and velocity relative to
the true wind direction) for specific flight conditions. Our tests were conducted with the
wind sensor placed in the joust configuration with transects flown as curtains such that
gas emissions (in our case methane) could be determined using the mass balance method.
We found that filtering greatly reduced the number of observations with very high wind
speed errors. Combining filtering with corrections, especially those for transitional velocity,
reduced errors in wind direction measurements from 50◦ to >125◦ to 20–30◦. The range of
the errors we saw varied depending on the correction level applied and transect orientation
(N-S vs. E-W). The importance of transect orientation is likely related to the different wind
speeds found between these two sets of measurements. A simple uncertainty propagation
analysis using the Savitzky–Golay filter, which looked at the deviations from the correction
inputs, found that the TriSonica contributed a large portion of the uncertainty in the
measurement (>80%). These errors are also likely due to low true wind speeds, which,
when combined with the limitations of the TriSonica’s accuracy (stated as ±0.1 ms−1),
created large relative errors. Based on our ground-based sensor comparisons (an AirMar
co-located and separated from the Tower), little error, ≈0.1–0.2 ms−1, is due to the fact
that the Tower and sUAS measurements are not co-located. We also found that wind
speed errors decreased with lower turbulence intensity and higher relative wind speeds
(>2.5 ms−1). Although we did not see a relationship between turbulence intensity and
errors in wind direction, we did observe some loose trends where wind direction errors
were diminished at higher relative wind speeds (>3.5 ms−1). As such, flight planning could
be used to minimize errors in wind speed and, to a lesser effect, wind direction. Future
work should continue investigating optimal flight conditions for sUAS-based wind speed
and direction measurements (e.g., optimum relative wind speeds, location of the sensor,
orientation of the sensor during flight, etc.).
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