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Abstract: In modern marine warfare, unmanned underwater vehicles (UUVs) have fast
and efficient attack capabilities. However, existing research on UUV attack strategies is
relatively limited, often ignoring the requirement for the effective allocation of different
strategic value areas, which restricts its performance in the marine combat environment.
To this end, this paper proposes an innovative UUV task allocation and saturation attack
strategy. The strategy first divides the area according to the distribution density of enemy
UUVs, and then reasonably allocates tasks according to the enemy’s regional value and
the attack capability of our UUVs. Our UUVs then sail to the enemy area and are evenly
distributed in the encirclement to ensure accurate saturation attacks. In the task allocation
link, the grey wolf optimizer is improved by introducing Logistic chaos mapping and
differential evolution mechanism, which improves the search efficiency and allocation
accuracy. At the same time, the combination of the optimal matching algorithm and Bezier
curve dynamic path control ensures the accuracy and flexibility of a coordinated attack.
The simulation experimental results show that the strategy shows high attack efficiency
and practicality in marine combat scenarios, providing an effective solution for UUV attack
tasks in complex marine environments.

Keywords: UUVs; task allocation; saturation attack; collaboration; swarm intelligence

1. Introduction
In recent years, with the advancement of maritime industries and artificial intelli-

gence technologies, naval warfare has been shifting towards networking and intelligence.
UUVs, as intelligent and autonomous maritime agents, have shown broad application
potential [1–3]. Currently, as many researchers accelerate the study of unmanned system
clusters, the field of UUV operations has seen rapid development [4–6]. Therefore, improv-
ing the adaptability and flexibility of UUVs to achieve collaborative combat purposes has
become a research hotspot in the field of shipbuilding and ocean engineering. In particular,
in the context of naval military operations, efficient task allocation and saturation attacks in
complex environments have emerged as key research challenges.

In terms of task allocation, traditional methods for solving task planning include the
Hungarian algorithm, centralized linear programming, etc. In recent years, with in-depth
research on biological swarm intelligence and neural networks, scholars have begun to use
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these theories to study the field of multi-agent task allocation. For example, Chen et al. [7]
proposed a genetic algorithm with genetic constraints (GAC) to address the inefficiency of
traditional genetic algorithms in solving the target allocation problem. Zhuang et al. [8]
introduced an offline task allocation method that combines an improved genetic algorithm
(GA), fast marching method (FMM), and self-attention mechanism (SAM). This algorithm
reduces the total travel distance of UUVs and balances the task load across the UUVs.
Xue et al. [9] proposed an exact algorithm based on the Hungarian algorithm to optimize
the task allocation of multiple UUVs, which effectively minimizes the maximum task
completion time and reduces the overall task duration, making it suitable for time-sensitive
collaborative environments. Bi et al. [10] presented a cooperative task allocation method
based on an improved Non-dominated Sorting Genetic Algorithm II (NSGA-II), enhancing
the convergence speed and quality of collaborative task allocation for heterogeneous
air–sea unmanned systems. Zhang et al. [11] proposed a method that integrates the
nonlinear function fitting ability of deep neural networks with the decision-making control
ability of reinforcement learning to solve multi-UUV task planning problems. However,
reinforcement learning methods often require substantial computational resources and
time, which may become a limiting factor in practical applications, particularly in resource-
constrained or time-critical environments. Xia et al. [12] introduced an improved self-
organizing map (ISOM) network model for multi-task allocation in UUVs. However, this
method has limitations in reasonably allocating tasks with different priorities.

Saturation attacks aim to adopt a large number of weapons in a short period to
exceed the defense capabilities of the enemy system, thereby achieving the destruction
of enemy targets. However, research on saturation attacks involving multiple unmanned
surface vehicles is relatively scarce. Insights from the field of robot and unmanned aerial
vehicle (UAV) swarm systems could offer valuable references for the UUV domain. For
example, Wu et al. [13] analyzed several attack strategies for UAV swarms in urban
combat scenarios, including saturation attacks, precision attacks, and distributed attacks,
to accomplish various combat tasks. Marzoughi et al. [14] investigated how pursuers can
effectively encircle fugitives within a limited area when their mobility is restricted. This
study focuses on the dynamic interaction between pursuers and fugitives, particularly
under resource and environmental constraints, and proposes methods to optimize pursuit
strategies for effective encirclement. Sun et al. [15] introduced the Apollonius Circle as
the ultimate form of attack mode and considered obstacle avoidance. Qian et al. [16]
proposed a method based on deep reinforcement learning for task allocation in UAV swarm
saturation attacks, treating the task allocation problem as a Markov Decision Process
(MDP) and presenting a policy gradient-based training algorithm to enhance learning
speed. Wen et al.[17] studied how to calculate the minimum number of UAVs required to
ensure the completion of encirclement tasks without predefined formations and designed a
cooperative fence controller for tracking mobile targets. Zhang et al. [18] addressed the
saturation attack problem for UAV swarms by investigating autonomous maneuvering
strategies. They constructed an autonomous decision-making model based on a Distributed
Partially Observable Markov Decision Process (POMDP) and utilized a recursive Multi-
Agent Deep Deterministic Policy Gradient (MADDPG) for learning. The effect of a suicide
saturation attack is optimized by designing global and local reward functions.

Inspired by the above, this paper proposes a novel task allocation and saturation
attack method for multiple unmanned vehicles. We first introduce the improved Grey Wolf
Optimizer [19] to solve the task allocation problem of UUVs and adopt a dynamic path
control method based on the stepwise optimal matching algorithm integrated with Bezier
curves to establish a saturation attack model. The final simulation experiment shows that
our UUVs can efficiently complete the saturation attack mission against the enemy through
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reasonable task allocation and planning. In general, the contributions of this paper are
as follows:

• We introduce chaos initialization and generate the initial population position through
the Logistic chaos mapping function, which enhances the population diversity and
global search capability.

• We adopted the differential evolution strategy into the Grey Wolf Optimizer. For
individuals with lower fitness, the update strategy of the three positions of α, β and
ω, and used in the grey wolf optimization algorithm. For individuals with higher
fitness, the differential evolution strategy is used for updating, which enhances the
local search capability.

• A Bezier curve dynamic path control strategy is employed to enable the UUV to
produce a smooth and controllable trajectory, ensuring a smooth path and avoiding
local path jitter when performing attack missions.

The rest of the paper is organized as follows: In Section 2, we present a basic scenario
description of UUVs in a maritime environment. Then, we propose the task allocation
method and coordinated saturation attack strategy for UUVs in Section 3 and Section 4,
respectively. Moreover, Section 5 describes the implementation details and reports the
simulation experiment results. Finally, a brief conclusion is given in Section 6.

2. Basic Scenario Description
This paper focuses on the scenario of swarm operations of UUVs in a maritime

environment. In a specified area, our forces (blue) deploy M UUVs, while the enemy
deploys N UUVs (red). The enemy’s UUVs are initially located at certain positions within
the sea area. By assessing the concentration of enemy UUVs, we partition the region into
target zones. Upon detecting these zones, our UUVs will quickly form a formation and
execute a saturation attack on the enemy’s target area through task allocation. To enhance
the challenge of the attack mission, multiple obstacles are introduced in the scene.

To ensure the efficient execution of the saturation attack, a new deployment strategy
is adopted by our UUVs: they are deployed on both sides of the enemy, as shown in
Figure 1. The advantage of this strategy lies in its ability to comprehensively block the
enemy: by approaching from both sides, our UUVs can quickly encircle the enemy’s target
region, effectively sealing it off. This approach increases the probability of a successful
attack, minimizes the potential damage to our forces due to excessive distance from the
enemy, and ensures more precise attacks. It thus improves both the safety and flexibility of
the operation.

Assume that both the enemy and our forces consist of homogeneous UUVs, meaning
they maintain identical performance parameters. Each UUV participating in the saturation
attack shares its velocity and position with other UUVs in real time. The size of the UUVs
is neglected, and they are treated as point particles. Initially, the distances between all
friendly and enemy units are greater than the radius of the saturation attack formation
formed by our forces. The motion equation of the UUVs [20] can be expressed as follows:

ẋi = ui cos ψi − vi sin ψi

ẏi = ui cos ψi + vi sin ψi

ψ̇i = ri

(1)

where (xi, yi) denotes the position vector and ψi denotes the heading angle of the i-th
UUV in the earth-fixed frame. Additionally, ui, vi, and ri are the forward velocity (surge),
transverse velocity (sway), and angular velocity in the yaw direction in the body-fixed

frame, respectively, V =
√

u2
i + v2

i is the actual movement velocity of the i-th UUV.
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Figure 1. Schematic diagram of the overall framework of saturation attack for UUVs.

3. UUVs Task Allocation Method
The task allocation problem for UUVs can be viewed as a scenario in which multiple

UUVs collaboratively perform multiple tasks within a specified area. In this process,
multiple UUVs may cooperate to complete the same task. When our UUV detects an enemy
target region, it quickly forms a formation to encircle the area. The allocation of tasks is
influenced by factors such as the value, difficulty, and priority of the target area, as well as
the capabilities, movement time, and execution costs of the UUVs. Further, if the enemy
UUVs contained in a certain enemy area have the enemy’s command role and the ability
to cause potential great harm to us, then this area is considered to be a high-value area.
Therefore, the objective is to develop an effective task allocation strategy that maximizes
the overall benefit of our swarm or minimizes the total cost. In this context, inspired by
the hunting behavior of wolf packs, this paper employs a wolf pack mechanism to allocate
tasks to the UUVs, aiming to achieve an optimal solution.

To solve the UUVs task allocation problem, we build an accurate model to optimize
the task allocation efficiency, this paper adopts a five-tuple {P, U, T, F, I} to represent the
problem. Here, P denotes the set of enemy target areas, U denotes the set of our UUVs, T
denotes the set of constraints, F denotes the set of objective functions, and I represents the
maritime environment. To ensure a balanced distribution of tasks among the participating
UUVs, the task allocation must consider the following constraints, costs, and benefits when
assigning tasks to our fleet.

3.1. Constraint Condition

In the process of task allocation for UUV clusters, it is essential to establish appropriate
constraints between UUVs to ensure efficiency and safety in subsequent operations. To
achieve a saturation attack effect while avoiding over- or under-allocation of UUVs to a
single target area, upper and lower limits on the number of UUVs assigned to each target
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area are necessary. This approach can enhance the overall efficiency and success rate of task
allocation. For simplicity in describing the task allocation of the UUVs, each participating
UUV is assigned a numerical identifier, facilitating the implementation of the task allocation
strategy. The specific constraints are as follows:

Assume that the set of our UUVs assigned to a specific enemy area is denoted by
W = {Wi, i = 1, 2, . . . , m}. For each target area, segmented based on the density of enemy
UUVs, the total number of our UUVs allocated should equal the total number of our
UUVs, represented by M. The mathematical expression for this task allocation constraint is
as follows:

W = {Wi, i = 1, 2, . . . , m} (2)

m

∑
i

num(Wi) = M (3)

Xi ∈ {0, 1}, i ∈ {1, 2, 3, ..., M} (4){
mum(Wi) ≥ Smin(W)

num(Wi) ≤ Smax(W)
, Wi ∈ W (5)

dList =
{

Wi ∈ W, Pj ∈ P | Wi → Pj
}

; i, j ∈ {0, 1, 2, ..., m} (6)

In formula (2), specifically, we determine the number of our groups m based on the
divided enemy areas and Wi represents the number of our UUVs deployed to an enemy
target area. In formula (3), The sum of the number of UUVs in each group of our side is
equal to the total number of our UUVs M. In formula (4), each UUV is only allowed to be
assigned to a single enemy target area. Xi represents whether the i-th UUV is assigned to a
target area (1 represents assigned, 0 represents unassigned, and M is our UUV quantity).
In formula (5), Smin(W) and Smax(W) represent the minimum and maximum number of
UUVs required in a certain enemy area, respectively. In formula (6), dList is the final
allocation result and i is the number of a certain group of our UUVs, and j is the number of
the enemy area.

3.2. Target Return

In the task allocation of UUVs, calculating the target payoff during attack operations is
crucial as it serves as a key metric for evaluating the effectiveness of the allocation strategy.
The target payoff includes not only the direct benefits of the mission but also factors in the
efficiency of task completion and the optimal use of resources. The payoff assessment for
our UUVs primarily depends on three factors: the enemy density, the intrinsic value of the
enemy, and the payload capacity of our UUVs. Higher enemy density and intrinsic value
elevate the target area’s importance, leading to the allocation of more UUVs to concentrate
force on that area, thereby maximizing the overall mission payoff. The payload capacity
of our UUVs reflects their attack capability, determining the intensity of the missions they
can undertake. A greater payload capacity enhances the UUV’s attack power, providing
a significant advantage in conducting saturation attacks on enemy targets. To accurately
measure the target payoff achieved, the total payoff for assigning our i-th UUV to target j
can be expressed as follows:{

benefit j
i = kd × dens j + kval × val j + ko × load i

kd + kval + ko = 1
(7)

where the variable densj represents the enemy aggregation density, expressed in terms
of quantity. For instance, when the number of target areas is 1, it signifies a low-value
target area, while when the number is 5, it indicates a high-value target area. In addition,
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kd represents the density weight coefficient, which is used to assess the impact of the
aggregation of enemy unmanned vehicles within a target area on the overall reward.valj

refers to the value of all enemy UUVs within the target area, while kval denotes the target
value weight coefficient, which reflects the influence of target value on task allocation. loadi

represents the payload capacity of the i-th UUV, and ko signifies the weight coefficient of
hitting the target area.

3.3. Comprehensive Loss and Objective Function

In the task allocation of unmanned vehicles, the losses of our unmanned vehicles
when executing the assigned target area can be mainly divided into range loss and attack
loss, both of which have a significant impact on the allocation results. Range loss refers to
the fuel consumption of our unmanned ship due to factors such as distance and complex
paths when traveling to the target area. This loss is closely related to the distance between
our UUV and the enemy’s UUV. The farther the distance, the higher the range loss. Attack
losses are the inevitable losses caused by the enemy’s counterattack when our unmanned
vessel approaches and attacks the target area. This loss usually depends on factors such
as the enemy’s ability to counterattack. The specific cost formula and constraints can be
expressed as follows: 

costi = kdis f
(

dis i,j
)
+ ks f (damage)

f
(

disj
i

)
=

√(
xusv

i − xP
i
)2

+
(

yusv
i − yP

j

)2

kdis + ks = 1

(8)

where f
(

disj
i

)
represents the Euclidean distance between the center coordinates of our i-th

UUV and enemy area j, f
(
disi,j

)
represents the weight coefficient of range loss, f (damage)

represents the enemy’s killing capability, and kdis, ks represents the weight coefficients of
range loss and attack loss, respectively.

We consider the need to reasonably and efficiently allocate the number of our un-
manned vehicles to each enemy area, laying the foundation for subsequent saturation
attacks. Therefore, in the process of allocating our unmanned vehicles, the allocation strat-
egy must consider multiple factors, one is the loss value, and the other is the benefit value.
The reasonable allocation of our unmanned vehicles must not only ensure the successful
implementation of the encirclement but also minimize the cost of our UUVs in the process
of approaching the target area. The specific description of the function is as follows:

f =
U

∑
i=1

P

∑
j=1

(
benefit j

i − cost i

)
(9)

In the formula benefit j
i represents the benefit value generated by our i-th UUV in the

process of attacking target area j, and costi represents the loss value.

3.4. Improved Grey Wolf Optimizer(IGWO)
3.4.1. Grey Wolf Optimizer

Grey Wolf Optimizer [19] is a swarm intelligence optimization algorithm inspired by
wolf hunting behavior. The algorithm mainly imitates the social hierarchy and hunting
strategy of grey wolves and is a bionic optimization algorithm (see Figure 2). It includes
simple implementation, rapid convergence, and superior convergence outcomes, leading
to its effective application in diverse fields for solving optimization issues [21]. The social
structure of grey wolves consists of the following individuals of different levels: α wolf
denotes the leader of the wolf pack and is responsible for major decision-making; β wolf
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assists α wolf in decision-making and may become a future α wolf; δ wolf follows the
instructions of α wolf and β wolf, but has control over the subordinate ω wolves. ω wolves
are the lowest individuals in the group and are responsible for obeying the instructions
of all levels. In this algorithm, the solution in the optimization problem is represented as
"wolf", and α wolf, β wolf, and δ wolf represent the current optimal solution, the second-
best solution, and the third-best solution, respectively. In the algorithm, grey wolves hunt
through three main behaviors:

3a

2a1a

1D

3D

2D

1C

2C

3C

aim_position









guide movement 

direction

(a)  grey wolf social dominance hierarchy

(b)  grey wolf hunting diagram

Figure 2. Schematic diagram of Grey Wolf Optimizer.

Tracking and surrounding prey, the process is described by the following formula:

D⃗ =
∣∣∣C⃗ · X⃗prep (t)− X⃗(t)

∣∣∣
X⃗(t + 1) = X⃗prep (t)− A⃗ · D⃗

(10)

where t represents the number of iterations, X⃗prep (t) represents the location of the prey,
and X⃗(t) represents the current location of the wolf. In addition, the two coefficient vectors
A⃗ and C⃗ are used to adjust the exploration and encirclement behaviors.

Chasing and trapping prey. During the hunting process, the grey wolf will not only
surround the prey but also keep approaching the prey to get close to its position. In
the algorithm, the current solutions of the three wolves α, β and δ are used to guide the
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grey wolves ω to update their position. The description formula of the whole process is
as follows: 

D⃗1 =
∣∣∣C⃗1 · X⃗α − X⃗

∣∣∣
D⃗2 =

∣∣∣C⃗2 · X⃗β − X⃗
∣∣∣

D⃗3 =
∣∣∣C⃗3 · X⃗δ − X⃗

∣∣∣ (11)


X⃗1 = X⃗α − A⃗1 · D⃗1

X⃗2 = X⃗β − A⃗2 · D⃗2

X⃗3 = X⃗δ − A⃗3 · D⃗3

(12)

Here, X⃗α, X⃗β and X⃗δ represent the current positions of the three wolves α, β and δ,
respectively. D⃗1, D⃗2, D⃗3 represent the positions of the three wolves α, β and δ from the grey
wolf, respectively.

Attack prey. Next, the positions of all grey wolves are updated using the following
formula, and the algorithm gradually approaches the optimal solution.

X⃗(t + 1) =
X⃗1 + X⃗2 + X⃗3

3
(13)

3.4.2. Improved Grey Wolf Optimizer

Although the Grey Wolf Optimizer shows good convergence performance and search-
ability, its ability to obtain the global optimal solution for solving complex task allocation
problems still needs to be improved. Based on this, we improve the GWO algorithm
from two aspects according to [22]. The specific process of the improved Grey Wolf Op-
timizer (IGWO) is shown in Figure 3. We first replace the random initialization in the
GWO algorithm with a Logistic chaotic initialization mechanism. Chaotic mapping is a
nonlinear, quasi-random deterministic bounded system that exhibits neither periodicity
nor convergence and is highly sensitive to initial parameters and conditions. The character-
istics of chaotic systems—such as regularity, ergodicity, unpredictability, and sensitivity
to initial conditions—enable the generation of ’quasi-random’ sequences. Compared to
traditional random number generation methods, chaotic sequences often lead to enhanced
search performance, especially in global optimization problems, and offer the following
advantages: (a) Chaotic sequences can cover the entire search space, ensuring no region is
overlooked; (b) they help avoid local optima and facilitate exploration of a broader solution
space; (c) they partially retain optimization directionality, aiding in faster convergence.
In optimization algorithms, common chaotic mapping methods include the Logistic and
Circle maps. The Logistic chaotic map, in particular, is a classical nonlinear map widely
employed in population initialization and search space exploration within optimization
algorithms. The description formula of Logistic mapping is as follows:

xn+1 = r · xn(1 − xn) (14)

where n is the length of the chaotic sequence to be generated, r is the control parameter of
the Logistic mapping, and the common chaotic value range is 2 < r < 4. Figure 4 shows a
schematic diagram of different initializations. It can be seen that the initial individuals in the
traditional Grey Wolf Optimizer are unevenly distributed in the random initialization wolf
pack algorithm, which affects the global search ability of the algorithm. The introduction of
Logistic chaotic mapping can increase the diversity of the population as shown in Figure 4b,
which can solve the problem that the initial individuals appear in local areas.

Secondly, we introduce the Differential Evolution (DE) strategy to balance global
exploration and local development capabilities, thereby improving the overall optimization
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performance. In other words, during the grey wolf’s position update process, if the indi-
vidual fitness is low the position is still updated, and if the individual fitness is high the
differential evolution strategy is used to update its position. The differential evolution algo-
rithm is essentially a population-based global optimization algorithm. Through mutation
operations and crossover operations between individuals in the population, new candidate
solutions are generated to further improve the algorithm’s search depth. Specifically, the
differential evolution strategy operation process is as follows: For mutation operation,
it is to perform differential operation between individuals in the population, introduce
randomness, expand the search range, and improve the global exploration ability. This
helps the grey wolf jump out of the local optimal solution area. The differential mutation is
the core step of the differential evolution algorithm, which uses individuals in the current
population to generate new individuals. The information between individuals is borrowed
from each other to push the solution closer to the optimal solution. Specifically, three
different individuals xr1, xr2 and xr3 are randomly selected to generate the expression of
the new mutation vector λi as follows:

λi = xr1 + F · (xr2 − xr3) (15)

where F is the scaling factor with a value between 0 and 2.

Start

Initialize the number of wolves and set its 

Logistic distribution, the total number of 

iterations T, and A and C

Calculate the fitness of individual gray 

wolves and save the top three wolves 

Alpha, Beta and Delta with the best fitness

Check whether the

 individual fitness                                 

is greater than Π
Yes

Update the current position of the 

gray wolf according to equation (15)

Update its position using a 

differential evolution strategy

No

Update Alpha, Beta, Delta 

and fitness values

Guaranteed allocation and 

bounds checking

Calculate the fitness of all 

gray wolves

Maximum number of

 iterations reached

Y

End

No

Figure 3. The specific process of the IGWO.

For the crossover operation, it generates new candidate solutions through crossover,
so that the new solution can inherit the characteristics of multiple excellent individuals and
enhance local development capabilities. The crossover operation ensures the diversity of
the understanding space. The individuals generated by the mutation also need to cross with
the current individuals to generate candidate solutions. The crossover operation determines



Drones 2025, 9, 115 10 of 21

whether to adopt the solution of the mutated individual based on the crossover probability
(CR). The vector γi,j after crossover is generated by the following description formula:

γi,j =

{
λi,j if rand (0, 1) ≤ CR,
xi,j otherwise

(16)

where CR ∈ (0, 1) is the crossover probability, which is used to control the mixing ratio of the
mutation vector and the original solution, and γi,j is the value of the test vector generated after
crossover in the jth dimension. In addition, λi,j represents the value of the mutation vector in
the jth dimension, and xi,j represents the value of the original individual in the jth dimension.

In order to better describe the distribution relationship between our unmanned vehi-
cles cluster and the enemy area, this paper uses an M × P dimensional matrix to describe
the specific distribution relationship. The corresponding distribution matrix is expressed
as follows:

X =

 X1,1 . . . X1,p

. . . Xi,j . . .
Xm,1 . . . Xm,p

 (17)

where M represents the number of our UUVs and Ui is its number, P represents the
number of enemy areas and j is its number. We define Xi,j = 1 when Ui is assigned to Pj,
and 0 otherwise.

Figure 4. Schematic diagram of different initializations of the GWO algorithm.

4. Coordinated Saturation Attack Against UUVs
For a saturation attack by multiple UUVs, each UUV must carry out effective task

allocation and coordinated control. In this way, each UUV is able to arrive at the target
area synchronously, form a siege and carry out a continuous attack. This paper presents
a method that integrates a stepwise optimal matching allocation algorithm with Bezier
curve-based dynamic control. This approach enables saturation attacks even in complex
environments. By ensuring precise path control and position adjustments, our UUVs
can accurately reach predetermined encirclement points, thereby achieving the intended
saturation attack effect. As Figure 5 is a flow chart.
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Figure 5. Saturation strike flow chart.

4.1. Coordinate Calculation of Encirclement Points

In order to effectively encircle the enemy UUVs in a saturation attack mission, each
UUV needs to reach its own predetermined encirclement point to implement the attack
strategy (see Figure 6). The position of each encirclement point in the Cartesian coordinate
system

(
x(δ)i , y(δ)i

)
is given by the following formula:

θi =
2π(i − 1)

n
, i = 1, 2, . . . , n (18)

{
x(δ)i = Rm cos(θi) + x(δ)c

y(δ)i = Rm sin(θi) + y(δ)c
(19)

Ui(t) ≥ Rm (20)

In formula (18), n represents the number of our UUVs assigned to attack a certain
enemy area. In formula (19),

(
x(δ)c , y(δ)c

)
denotes the center position of the enemy area,

Rm represents the distance between our UUVs and the center of the encirclement (i.e., the
radius of the encirclement). In formula (20), Ui(t) represents the distance between the i-th
UUV and the center of the target area at time t. The constraints of this formula ensure that
the UUV always maintains a distance from the center of the target area not less than Rm

during navigation, thereby avoiding premature exposure or conflict with enemy UUVs.
Until all our UUVs finally reach the encirclement at the same time and evenly, the distance
will be equal to Rm to ensure that our UUVs maintain the best combat state in the attack
mission to prevent the enemy UUVs from actively escaping after discovering our UUVs,
and at the same time to prevent our UUVs from being seriously damaged by the enemy.
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Figure 6. Schematic diagram of saturation attack encirclement.

4.2. Allocation of Encirclement Points Based on Optimal Matching Algorithm

After the encirclement points are determined, how to effectively allocate these en-
circlement points to our UUVs becomes a key issue. The stepwise optimal matching
algorithm [23] is a simple and efficient task allocation method that is usually used to solve
this type of problem. The algorithm achieves encirclement point allocation by minimizing
the distance between the UUVs and the target encirclement point. The core idea is to
approximate the global optimal solution by gradually selecting the local optimal solution
in the process of task allocation. In the problem of allocating our UUVs and encirclement
points, the Algorithm 1 performs task allocation according to the following steps:

Algorithm 1 Optimal matching algorithm

Require: n1 is our UUVs heading to a certain enemy area
Ensure: UUV correspondence with assigned_goalsn1×1

1: Create a matrix assigned_goals ∈ Rn1×2

2: Create a vector assigned_indices ∈ Rn1×1

3: Command assigned_goals = 0 and assigned_indices = 0
4:

{
C(i, j) ∈ Rp1×x1 | C(i, j) = ∥USVi − targetj∥

}
5: for i = 1 to n1 do
6: idx = arg minj{C(i, j) | j /∈ assigned_indices}
7: while idx ∈ assigned_indices do
8: cost_matrix(i, idx) = ∞
9: idx = arg minj{C(i, j) | j /∈ assigned_indices}

10: end while
11: assigned_goals(i, :) = target_positions(idx, :)
12: assigned_indices(i) = idx
13: end for
14: return UUVi(i ∈ (1, 2, . . . , n1)) → assigned_goalsn1×1

4.3. Dynamic Control of Bezier Curves

This paper uses Bezier curves[24] to dynamically control our unmanned vehicles,
which can help our unmanned vehicles achieve smooth path movement in complex en-
vironments so that they can reach the target deployment point faster and safer and then
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carry out saturation attacks. A Bezier curve is a parametric curve usually defined by a set
of control points. Assuming the control points P0, P1, . . . , Pn are given, the mathematical
representation of the Bezier curve is as follows:

B(t) =
n

∑
k=0

Pk ·
(

n
k

)
(1 − t)n−ktk, t ∈ [0, 1] (21)

Among them, Pk denotes the control point, n denotes the order of the Bezier curve, and
t is the parameter of the curve. As shown in Figure 7, it is a fifth-order Bezier curve with a
total of six control points [25]. Based on this, the control points in this paper are determined
based on the initial position, target position, and target center point. The specific control
point expression is as follows: {

d = Pgoal − Pinitial

d̂ = d
∥d∥

(22)



P1 = Pinitial

P2 = Pinitial + scale1 · d̂ · ∥Pgoal − Pcenter∥
P3 = Pinitial + scale2 · d̂ · ∥Pgoal − Pcenter∥
P4 = Pgoal − scale2 · d̂ · ∥Pgoal − Pcenter∥
P5 = Pgoal − scale2 · d̂ · ∥Pgoal − Pcenter∥
P6 = Pgoal

(23)

In formula (22), the direction vector d is the vector from the initial position Pinitial to
the target position Pgoal , where ∥d∥ is the modulus of the vector d and d̂ is the normalized
direction vector; in formula (23), the positions of the control points P1 and P6 are the
initial position and the target position, respectively, and the remaining control points are
determined based on the initial position Pinitial , the target position Pgoal , the direction vector
d, and the control coefficients scale1 and scale2. scale1 controls a larger offset, which is
usually used in the initial stage of the path. scale2 controls a smaller offset, which is usually
used in the middle stage of the path.

In the process of our UUV attack, this paper uses the envelope polygon [26] as the
sea surface obstacle. The envelope polygon refers to the smallest convex polygon that
encloses one or more point sets (the boundary of the obstacle). It is usually used in collision
detection, path planning and other fields to ensure that the shape of the object can effectively
represent the space it occupies. In the process of dynamic control of the Bezier curve, this
paper also introduces an avoidance strategy to protect our UUVs. The specific avoidance
strategy of this paper and the declaration of relevant variables during the driving process
are as follows:

grad =
B(t)− G

∥B(t)− G∥ (24)

B = B + k1 · grad (25)
θ = atan 2

(
By

(
tj
)
− By

(
tj−1

)
, Bx

(
tj
)
− Bx

(
tj−1

))
ω = k2

θ
∆t , ∆t = tj − tj−1

V = k3 ·
B(tj)−B(tj−1)

∆t , ∆t = tj − tj−1

(26)
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Figure 7. A fifth-order Bezier curve with a total of six control points.

Formula (22) represents the direction of the control curve B to the center of the encir-
clement at time t, grad is a unit vector, and G represents the spatial range of the obstacle;
formula (23) updates the control curve B to drive our UUVs to a safe distance from the
obstacle, where k1 is a parameter for setting the safe distance between the control curve
B and the obstacle. In the case of avoiding collision or approaching obstacles, it provides
a buffer zone to ensure that our UUVs will not intersect or get too close to the obstacle
during motion control. Formula (24) represents the changes in the movement velocity v
and angular velocity w of our respective UUVs in the process of driving from the starting
position to their respective encirclement points, where k2 and k3 are the proportional coeffi-
cients for adjusting the movement velocity and angular velocity, both of which are taken as
2 in this paper.

5. Simulation Experiments
In this section, we perform a series of simulation experiments to verify the effective-

ness of the proposed method. First, we introduce the execution details of the simulation
experiment and then report the task allocation results of the improved Grey Wolf Optimizer
for UUVs. Finally, we present the saturation attack results based on Bezier curve control.

5.1. Implementation Details

In the simulation experiment, Windows 10 is used as the operating system and MAT-
LAB 2023a is used as the simulation tool. The hardware platform is Intel(R) Core(TM)
i5−1135G7 processor with a main frequency of 2.40GHz and a memory of 16GB. The simula-
tion experiment takes the USVs as the simulation object and selects x ∈ [0, 500], y ∈ [0, 800],
where x and y represent the length and width of the sea area respectively. 7 enemy USVs
and 8 of our USVs lined up on both sides of the coast are randomly set in the sea area, and
3 reefs are set (inaccessible areas). In the simulation test, each enemy USV has no special
characteristics and can be detected and attacked by any of our USVs. To make the detection
result more accurate, it is assumed that Smin(W) = 3, Smax(W) = 5, that is, each enemy
area requires at least 3 or at most 5 of our USVs to carry out a saturation attack on it. The
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weights of the various coefficients of gain and loss are: kd is 0.3, kval is 0.3, ko is 0.4, kdis is
0.6, and ks is 0.4. The specific parameters are presented in Table 1.

Table 1. Specific parameter settings for saturation attack scenarios.

Parameter Numerical Value

Sea surface area 500× 800
Number of enemy UUVs 7

Number of our UU value of the (a) GVs 8

Enemy UUVs Positions value of the (a) G A(275,250), B(240,285), C(205,250), D(240,215), E(625,200),
F(587,221), G(587 ,178)

Enemy lethality A:2.5, B:2.5, C:2.5, D:2.5, E:2, F:2, G:2
Value of the enemy A:2, B:2, C:2, D:2, E:1.5, F:1.5, G:1.5

Our attack capability U1: 1, U2: 1, U3: 2, U4: 2, U5: 3, U6: 3, U7: 3.5, U8: 3.5

Our UUVs position U1: (100,450), U2: (100,60), U3: (300,450), U4:(100,60)
U5: (500,450), U6:(500,50), U7:(700,450), U8: (720,50)

In addition, Figure 8 shows a schematic diagram of the distribution of the enemy and
our UUVs at sea. The enemy area is divided into the α area with four high−value UUVs
and the β area with three low−value UUVs. Additionally, our UUVs are distributed in the
surrounding sea areas to achieve the purpose of a saturation attack.

Figure 8. Schematic diagram of the distribution of the enemy and our UUVs at sea.

5.2. Task Assignment Result

We use Genetic Algorithm (GA), GWO and IGWO algorithms for the simulation
experiments. In the optimization algorithm, the fitness curve directly reflects the dynamic
changes of the algorithm during the search process. The fitness curves of the three algo-
rithms used in this paper are shown in Figure 9, so as to more intuitively compare their
optimization performance. The ultimate goal of optimization is to achieve task allocation at
the minimum cost. Therefore, this paper directly uses the objective function as the fitness
value to clearly measure the "pros and cons" of each solution. As shown in Figure 9, the
optimal fitness of the three algorithms is 759.9, 661.63 and 608.3, respectively. Considering
that the genetic algorithm and the grey wolf optimizer are a kind of random optimization
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algorithm, we conducted 20 simulation experiments and averaged the experimental results
to ensure the fairness of the comparison. Table 2 shows the results of 20 simulations and
the average optimal fitness value. Note that the initial population size is 100 and the
number of iterations of each simulation experiment is 1000. T represents the number of
simulations, and fitness represents the optimal fitness value. It can be concluded that
the IGWO algorithm we proposed converges faster and has stronger adaptability. This
improvement can significantly improve our resource utilization and improve the efficiency
and accuracy of task completion in UUV task allocation.
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Figure 9. Fitness value of the (a) GA algorithm, (b) GWO algorithm and (c) IGWO algorithm.

Table 2. Results of 20 simulations and the average optimal fitness value

GA algorithm
T 1 2 3 4 5 6 7 8 9 10 20 times average

fitness 760.0 760.0 760.0 760.0 760.0 760.0 760.0 760.0 760.0 760.0
T 11 12 13 14 15 16 17 18 19 20 760.0

fitness 760.0 760.0 760.0 760.0 760.0 760.0 760.0 760.0 760.0 760.0

GWO algorithm
T 1 2 3 4 5 6 7 8 9 10 20 times average

fitness 679.3 629.7 659.5 646.0 716.9 613.2 608.3 675.8 650.9 726.2
T 11 12 13 14 15 16 17 18 19 20 661.63

fitness 656.1 660.9 679.3 616.7 700.4 676.0 664.1 635.6 686.7 651.0

IGWO algorithm
T 1 2 3 4 5 6 7 8 9 10 20 times average

fitness 654.6 629.5 646.0 701.2 650.9 661.7 608.1 697.2 629.1 608.3
T 11 12 13 14 15 16 17 18 19 20 640.34

fitness 608.4 645.0 654.7 628.7 602.3 641.8 626.2 645.1 654.7 613.3

Through the data of 20 experiments with three algorithms, it can be seen that the GA is
the worst, so we mainly compare GWO and IGWO here. In addition, from the perspective
of mathematical statistics, we also conducted statistical analysis on the performance of the
GWO and IGWO algorithms by using the Wilcoxon test and Cohen’s d effect size analysis
to comprehensively evaluate the differences between the two algorithms. Among them,
the Wilcoxon test is a non−parametric test method used to compare whether there is a
significant difference in the median of two independent samples; Cohen’s d effect size
analysis is a standardized effect size indicator used to measure the difference between
two groups of data. The experimental results are shown in Table 3. We can conclude that
through the Wilcoxon test, due to p = 0.0186 < 0.05, we reject the null hypothesis and believe
that there is a significant difference in the median fitness value between the GWO and
IGWO algorithms; through the Cohen’s d effect size analysis d = 0.7133 > 0.7, which is
a high effect size, further verifying the significant advantage of the IGWO algorithm in
performance. In summary, the statistical analysis results show that the IGWO algorithm is
significantly better than the GWO algorithm in global search capability and convergence
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performance. This result provides strong statistical support for the superiority of the
IGWO algorithm.

Table 3. Performance statistical analysis results of GWO and IGWO algorithms.

Inspection Methods Statistics p−Value Effect Size
(Cohen’s d) In Conclusion

Wilcoxon test U = 287.5 0.0186 − There is a significant difference in the median
Cohen’s d effect

size analysis − − 0.7133 High effect size, IGWO has a
significant advantage

Finally, the allocation results of our UUV attack targets are given in Table 4. According
to the prediction of the IGWO algorithm, our UUVs numbered 1, 3, 5, 2, and 4 are assigned
to the α area, and the rest were assigned to the β area. Considering the enemy’s killing
capability, more of our UUVs are allocated to high−value target areas, and fewer UUVs are
allocated to low-value areas, so the allocation results meet the expected goals.

Table 4. The final allocation result (dList).

Enemy Area Our Assigned UUVs

α area U1, U3, U5, U2, U4
β area U6, U7, U8

5.3. Dynamic Path Planning Results

In the dynamic control simulation experiment of the optimal matching algorithm and
Bezier curve, this paper uses a fifth−order Bezier curve and six control points to generate
the path, ensuring the high−precision tracking of the UUVs. As illustrated in Figure 10,
enemy UUVs of different values gather in a certain area on the complex sea surface. Our
UUVs are distributed around the area to carry out a saturation attack on the enemy. After
the task is assigned, our unmanned vehicles set off to rush towards the enemy. For example,
at t = 91 s, our UUVs effectively avoid obstacles on the sea and head towards the enemy
area. At t = 20 s, our UUVs adjust their angles and speeds to form a trend and behavior
of being evenly distributed in the encirclement. At the last moment, our UUVs arrive at
the enemy encirclement evenly and simultaneously, successfully completing the saturation
attack. In addition, Figure 11 presents the distance between each of our UUVs and the
target area over time. It can be seen that the distance between each UUV and the target
gradually decreases, and when it reaches the last moment (t = 100 s), each UUV can reach
the target area at the same time to complete the saturation attack.

Figure 12 shows the trend of the movement velocity and angular velocity of each
UUV. In the initial stage of the path, within 0−2 s, as shown in Figure 10a, the movement
velocity of the UUV = 0, but the angular velocity is 0. At this time, each unmanned vehicle
mainly adjusts its own heading angle to keep consistent with the target route. This dynamic
heading angle adjustment lays the directional foundation for the smooth tracking of the
subsequent path. Then, UUV1−UUV8 gradually adjust their speeds to quickly attack the
enemy. Figure 10b–d shows that our unmanned vehicles corrects the path deviation in
real-time according to the control algorithm. Taking UUV4 as an example, during the
driving process it continuously adjusts the heading angle to avoid islands and reefs so that
the unmanned vehicle moves smoothly along the Bezier curve, significantly improving the
path tracking accuracy. Figure 10 displays the position distribution of the unmanned vehicle
in four states (0 s, 54 s, 91 s, 100 s) from the beginning to the attack process, verifying the
combination of path smoothness and precision control, and ensuring efficient navigation
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in complex marine environments. The experiments fully demonstrate that the strategy
proposed in this paper can achieve efficient saturation strikes against unmanned vehicle
clusters in complex environments.
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Figure 10. Schematic diagram of the dynamic saturation attack process of our UUVs.

Figure 11. Our UUVs arrive at the encirclement points at the same time.
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Figure 12. Schematic diagram of the dynamic changes in velocity and angle of different UUVs.

6. Conclusions
In this article, we present a novel saturation attack strategy aimed at addressing task

allocation and saturation attack issues for UUVs in complex maritime environments. First,
the enemy target area is divided according to the density of enemy UUVs, and task allo-
cation is conducted based on the value of the enemy regions and the strike capabilities of
friendly UUVs. An improved Grey Wolf Optimizer (GWO) is employed for task allocation,
incorporating a Logistic chaotic map to enhance population diversity and differential evo-
lution to optimize local searches, thus improving task allocation efficiency. The saturation
attack strategy leverages a stepwise optimal assignment algorithm and dynamic path
control via Bezier curves to ensure the UUVs form an encirclement and execute precise
attacks, mitigating issues related to path jitter.

We then perform a series of simulation experiments to demonstrate the performance
of the proposed strategy. Experimental results demonstrate that (1) The improved GWO
outperforms the original algorithm in terms of fitness value, convergence speed, and the
ability to escape local optima. These findings indicate that integrating chaotic initialization
and differential evolution into GWO significantly enhances its global optimization capa-
bilities and convergence performance, thereby improving the efficiency of task allocation.
(2) By integrating the stepwise optimal matching allocation algorithm with dynamic path
control using Bezier curves, our UUVs can all reach their designated encirclement points at
the 100 second mark, demonstrating high saturation attack efficiency.

This study also has some limitations. (1) The study assumes that the distribution of
obstacles and enemy UUVs in the marine environment is known and static. However, in
actual combat environments, the marine environment may change dynamically, and the
positions of obstacles and enemy UUVs may change over time. (2) The proposed task
allocation and saturation attack strategies show high efficiency in simulation experiments,
but in actual applications, UUVs may need to respond to emergencies in real−time, such
as the sudden appearance or disappearance of enemy targets.

Future research could focus on the following aspects: (1) rapid response to emergent
enemy targets by integrating real−time target recognition and tracking technologies to op-
timize task allocation strategies; (2) enhancing environmental awareness and autonomous
decision−making capabilities by incorporating dynamic ocean environmental changes and
deep reinforcement learning, thereby improving UUV adaptability and decision−making
in complex combat environments. The saturation attack strategy proposed in this article
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is expected to play an important role in future maritime operations and provide strong
technical support.
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