
Citation: Ding, B.; Zhang, Y.; Ma, S. A

Lightweight Real-Time Infrared

Object Detection Model Based on

YOLOv8 for Unmanned Aerial

Vehicles. Drones 2024, 8, 479.

https://doi.org/10.3390/

drones8090479

Academic Editor: Anastasios Dimou

Received: 3 August 2024

Revised: 10 September 2024

Accepted: 10 September 2024

Published: 12 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

A Lightweight Real-Time Infrared Object Detection Model Based
on YOLOv8 for Unmanned Aerial Vehicles
Baolong Ding, Yihong Zhang * and Shuai Ma

College of Information Science and Technology, Donghua University, Shanghai 201620, China;
2232225@mail.dhu.edu.cn (B.D.); 2232075@mail.dhu.edu.cn (S.M.)
* Correspondence: zhangyh@dhu.edu.cn; Tel.: +86-138-1782-6259

Abstract: Deploying target detection models on edge devices such as UAVs is challenging due
to their limited size and computational capacity, while target detection models typically require
significant computational resources. To address this issue, this study proposes a lightweight real-time
infrared object detection model named LRI-YOLO (Lightweight Real-time Infrared YOLO), which
is based on YOLOv8n. The model improves the C2f module’s Bottleneck structure by integrating
Partial Convolution (PConv) with Pointwise Convolution (PWConv), achieving a more lightweight
design. Furthermore, during the feature fusion stage, the original downsampling structure with
ordinary convolution is replaced with a combination of max pooling and regular convolution. This
modification retains more feature map information. The model’s structure is further optimized by
redesigning the decoupled detection head with Group Convolution (GConv) instead of ordinary
convolution, significantly enhancing detection speed. Additionally, the original BCELoss is replaced
with EMASlideLoss, a newly developed classification loss function introduced in this study. This
loss function allows the model to focus more on hard samples, thereby improving its classification
capability. Compared to the YOLOv8n algorithm, LRI-YOLO is more lightweight, with its parameters
reduced by 46.7% and floating-point operations (FLOPs) reduced by 53.1%. Moreover, the mean
average precision (mAP) reached 94.1%. Notably, on devices with moderate computational power
that only have a Central Processing Unit (CPU), the detection speed reached 42 frames per second
(FPS), surpassing most mainstream models. This indicates that LRI-YOLO offers a novel solution for
real-time infrared object detection on edge devices such as drones.

Keywords: infrared object detection; YOLOv8; UAVs; lightweight network structure; real-time detection

1. Introduction

With technological advancements, Unmanned Aerial Vehicles (UAVs) have emerged as
a cutting-edge platform for image acquisition. Due to their small size, flexible and variable
flight altitudes, good concealment, high efficiency, and relatively low cost [1], UAVs are
increasingly utilized in both civilian and military environments. The use of drones allows
for efficient and flexible data collection over large or inaccessible areas, making them a
valuable tool for tasks that benefit from an aerial perspective [2]. UAVs are commonly
paired with object detection algorithms and have broad applications in fields such as
military reconnaissance [3], disaster search and rescue [4,5], traffic surveillance [6–8], road
planning [9], and daily life [10]. However, when using traditional visible light images
for detection, performance can be significantly affected by weather and light conditions.
This is especially problematic in nighttime environments, where issues such as insufficient
brightness, loss of detail, and reduced contrast may arise [11]. Infrared imaging can
overcome these shortcomings. Infrared imaging technology offers advantages such as
resistance to interference, long detection range, and all-weather capabilities, allowing
detection tasks to be completed at night or under adverse weather conditions [12,13].
Consequently, with the advancement of deep learning, infrared object detection using
UAVs has become a rapidly growing field of research.

Drones 2024, 8, 479. https://doi.org/10.3390/drones8090479 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8090479
https://doi.org/10.3390/drones8090479
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://doi.org/10.3390/drones8090479
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8090479?type=check_update&version=1


Drones 2024, 8, 479 2 of 22

Implementing target detection tasks on UAVs requires processing computations and
storing data directly on UAV nodes [14]. This necessitates equipping UAVs with high-
performance computing resources. However, due to their small size and cost considerations,
the computational capabilities of UAVs are typically limited. Deploying object detection
algorithms directly on edge devices such as drones brings computational resources closer
to the user, reducing communication latency and overhead [15]. Current mainstream
object detection models are characterized by large parameter sizes and slow detection
speeds, making it difficult to meet real-time demands when deployed on edge devices
with constrained computational resources, such as UAVs. Consequently, this paper aims
to streamline the structure of detection models, reducing their size to achieve efficient
detection with minimal computational resources.

Given the typically small size of targets in UAV aerial imagery, often less than
32 × 32 pixels, most of these objects are classified as small objects [16] and provide limited
informational content. This presents a significant challenge for UAV infrared object detec-
tion. Traditional object detection methods identify objects by combining sliding windows,
feature extraction techniques, and feature classifiers. These algorithms have limited feature
representation capabilities, struggle with scale variations, and involve high computational
costs and slow detection speeds when using sliding windows. Conversely, deep learn-
ing object detection algorithms provide outstanding detection performance and can be
updated as necessary [17], which enhances the accuracy and efficiency of infrared target
detection [18]. In recent years, deep learning-based object detection technologies have
developed rapidly [19–21]. Deep learning detection algorithms are generally classified into
two-stage algorithms and one-stage algorithms. Two-stage algorithms include RCNN [22],
Fast-RCNN [23], and Faster-RCNN [24]. Research has shown that two-stage algorithms
are appropriate for scenarios requiring high accuracy [25,26]. One-stage algorithms, such
as the SSD [27] and YOLO series [28–31], directly infer class probabilities and bounding
box positions. One-stage algorithms are quicker than two-stage algorithms because they
eliminate the need to generate a large quantity of candidate boxes, making them more
efficient and better suited for UAV platform usage scenarios. Among these, the YOLO series
of algorithms, after years of improvement, has demonstrated satisfactory performance in
real-time detection and classification of multiple objects [32].

To improve the speed of detecting infrared objects on mobile devices like UAVs, this
paper proposes a new model called LRI-YOLO. We introduce Faster-C2f to optimize the
backbone and neck networks of YOLOv8, reducing computational resource consumption
and accelerating inference speed while enhancing the detection performance. The Super-
Downsample structure replaces the standard convolution downsampling structure in
the neck, preserving richer object feature information and improving detection accuracy.
Additionally, the convolutional layers in the original detection head are optimized, and a
novel detection head structure, Efficient-Head, is implemented to substantially decrease the
model’s FLOPs and parameters. Finally, the EMASlideLoss function enhances the model’s
classification capabilities.

The main contributions of this study are summarized below:

1. This paper introduces a new lightweight module, Faster-C2f, which mainly uses
Partial Convolution and Pointwise Convolution to improve the Bottleneck structure
in C2f. By significantly decreasing both the model’s parameters and computational
complexity, this method enhances detection performance.

2. A new downsampling module, Super-Downsample, is utilized in the neck network.
This module combines the advantages of ordinary convolution and max pooling,
retaining multi-scale features to the maximum extent during the feature fusion stage.

3. The decoupled detection head is redesigned using highly efficient Group Convolution
instead of ordinary convolution, increasing the model’s detection speed. Given the
prevalence of easy samples and the relative sparsity of difficult samples in object
detection datasets, we introduce EMASlideLoss to replace the original BCELoss,



Drones 2024, 8, 479 3 of 22

improving the ability of the model to concentrate on difficult samples and smoothing
the loss function.

4. Considering the limited computational power of edge devices like UAVs, this research
introduces a lightweight network for infrared target detection, LRI-YOLO. Compared
to other state-of-the-art methods, LRI-YOLO demonstrates excellent performance on
the HIT-UAV dataset.

2. Related Work

The YOLO series algorithms are widely recognized for their outstanding performance
in object detection. Liang et al. [33] implemented a lightweight object detection framework
called Edge-YOLO by utilizing pruned feature extraction networks and compressed feature
fusion networks, significantly improving detection efficiency. Wu et al. [34] proposed CDYL
to address the challenge of detecting small and difficult targets in both visible light and
infrared images. This algorithm employs the CFC-DC structure to thoroughly analyze
image edges and relevant information, enhancing the capability to detect small objects
and boosting accuracy in tasks involving densely packed small object detection. Similarly,
Jing et al. [35] developed a framework for UAV infrared target detection to process videos
and images. This framework employs the YOLO model to extract features from ground
infrared videos and images taken by Forward-Looking Infrared cameras. The model that
performs best according to evaluation metrics is applied for the detection of objects in UAV
infrared videos.

In UAV scenarios, infrared images often contain noise. To address this, Pan et al. [14]
developed an enhanced object detection network based on YOLOv7, incorporating various
feature enhancement strategies tailored for infrared objects, adapted to infrared objects,
and optimized for edge computing scenarios. By reducing model complexity, this approach
improves the robustness and accuracy of the model in small target detection. Zhao et al. [36]
introduced a YOLO-ViT model designed for detecting infrared objects on the ground in
UAVs that improves the YOLOv7 backbone by integrating the lightweight MobileViT
network, allowing for better capturing of local and global features and enhanced detection
performance. To address the challenges presented by the intricate ground environment and
varying object scales in infrared images captured by UAVs, Zhao et al. [37] proposed the
ITD-YOLOv8 method. This method utilizes the lightweight GhostHGNetV2 network with
an improved YOLOv8 backbone for feature extraction, capable of capturing object features
at different scales, thereby reducing false detections and missed detections.

3. Materials and Methods
3.1. YOLOv8

Figure 1 illustrates the architecture of YOLOv8 [31]. YOLOv8 is divided into several
series (n, s, m, l, x) by altering the network’s width and depth, with the primary difference
being the scaling factors. The deeper and wider series yield better detection results but
have higher computational demands. Conversely, the series with shallower networks
significantly reduce computational load and improve detection speed, albeit with somewhat
diminished detection performance. Therefore, different sizes of models can be selected
according to different usage scenarios: if the detection task requires high accuracy, the
model with coefficient x is available for selection; on the contrary, if the focus is on a high
detection speed rather than high accuracy for the task, the model with coefficient n can
be selected.

Adopting YOLOv5’s design philosophy, YOLOv8 comprises the backbone, the neck,
and the detection head as its three primary components. In YOLOv8, the C3 structure
from YOLOv5 is replaced with the C2f structure in both the backbone and neck networks.
The C2f structure offers richer gradient flow, achieves further lightweighting, and changes
the channel configuration according to the model’s scale. The YOLOv8 architecture still
includes the SPPF (Spatial Pyramid Pooling-Fast) module from YOLOv5. For feature
enhancement, YOLOv8 incorporates the PA-FPN (Path Aggregation Network–Feature



Drones 2024, 8, 479 4 of 22

Pyramid Network) concept into its design [38]. YOLOv8 employs a decoupled head in
its detection head, as opposed to the coupled head used in YOLOv5, resulting in greater
efficiency during both training and inference.

Drones 2024, 8, x FOR PEER REVIEW 4 of 23 
 

The C2f structure offers richer gradient flow, achieves further lightweighting, and changes 

the channel configuration according to the model’s scale. The YOLOv8 architecture still 

includes the SPPF (Spatial Pyramid Pooling-Fast) module from YOLOv5. For feature en-

hancement, YOLOv8 incorporates the PA-FPN (Path Aggregation Network–Feature Pyr-

amid Network) concept into its design [38]. YOLOv8 employs a decoupled head in its 

detection head, as opposed to the coupled head used in YOLOv5, resulting in greater ef-

ficiency during both training and inference.  

 

Figure 1. The YOLOv8 network structure diagram. 

3.2. LRI-YOLO 

Considering the large parameters and slow detection speed of current mainstream 

target detection networks, this study introduces a lightweight infrared aerial target detec-

tion network, LRI-YOLO, based on YOLOv8n. Firstly, the original C2f module in YOLOv8 

is redesigned, introducing the Faster-C2f module, which significantly decreases the 

model’s parameters and computational complexity, boosting detection speed. Secondly, 

during the neck feature fusion stage, a Super-Downsample module is proposed to replace 

the original ordinary convolution downsampling. Compared to ordinary convolution, 

this method better preserves multi-scale features, improving detection accuracy. Alt-

hough YOLOv8 uses a decoupled detection head which improves detection accuracy, it 

also consumes a considerable number of computational resources. Therefore, this paper 

optimizes the detection head structure by using lightweight Group Convolution [39] to 

replace the ordinary convolution in the detection head, and names this optimized struc-

ture Efficient-Head. Finally, to deal with the challenge of sample imbalance in datasets, 

EMASlideLoss is utilized to replace the original BCELoss [40] classification loss function, 

Figure 1. The YOLOv8 network structure diagram.

3.2. LRI-YOLO

Considering the large parameters and slow detection speed of current mainstream tar-
get detection networks, this study introduces a lightweight infrared aerial target detection
network, LRI-YOLO, based on YOLOv8n. Firstly, the original C2f module in YOLOv8 is
redesigned, introducing the Faster-C2f module, which significantly decreases the model’s
parameters and computational complexity, boosting detection speed. Secondly, during the
neck feature fusion stage, a Super-Downsample module is proposed to replace the original
ordinary convolution downsampling. Compared to ordinary convolution, this method
better preserves multi-scale features, improving detection accuracy. Although YOLOv8
uses a decoupled detection head which improves detection accuracy, it also consumes
a considerable number of computational resources. Therefore, this paper optimizes the
detection head structure by using lightweight Group Convolution [39] to replace the ordi-
nary convolution in the detection head, and names this optimized structure Efficient-Head.
Finally, to deal with the challenge of sample imbalance in datasets, EMASlideLoss is uti-
lized to replace the original BCELoss [40] classification loss function, enabling the model to
concentrate more on challenging samples. LRI-YOLO is illustrated in Figure 2.



Drones 2024, 8, 479 5 of 22

Drones 2024, 8, x FOR PEER REVIEW 5 of 23 
 

enabling the model to concentrate more on challenging samples. LRI-YOLO is illustrated 

in Figure 2. 

 

Figure 2. The LRI-YOLO network structure diagram. Faster-C2f, Super-Downsample, and Efficient-

Head are the three modules proposed in this paper, and the details of these modules will be pre-

sented in the following text. 

The design of LRI-YOLO aims to optimize the network structure while maintaining 

a high detection accuracy and reducing the model size to facilitate deployment on mobile 

devices. The model size is closely related to both detection speed and accuracy. In theory, 

a smaller model results in faster detection on the same device. However, reducing the 

number of parameters can decrease the model’s capacity to learn features, potentially af-

fecting the final detection performance. LRI-YOLO addresses this by utilizing high-per-

formance lightweight convolutions to optimize the parameter-heavy standard convolu-

tions, thus compressing the model size without compromising accuracy. 

3.2.1. The Faster-C2f Module Based on Partial Convolution 

The Faster-C2f module primarily focuses on redesigning the Bottleneck structure in 

the original C2f, resulting in the development of the Faster-Bottleneck. Faster-C2f is pre-

sented in Figure 3. 

Faster-Bottleneck, while retaining the original dual-branch structure, uses Partial 

Convolution (PConv) [41] and Pointwise Convolution (PWConv) [42] to replace the orig-

inal ordinary convolution. The idea of using PConv in combination with PWConv is de-

rived from the FasterNet structure [41]. In this paper, we utilize the concept of PConv 

combined with PWConv to transform the C2f structure, substantially decreasing the pa-

rameters of model and complexity of computations. 

Figure 2. The LRI-YOLO network structure diagram. Faster-C2f, Super-Downsample, and Efficient-
Head are the three modules proposed in this paper, and the details of these modules will be presented
in the following text.

The design of LRI-YOLO aims to optimize the network structure while maintaining a
high detection accuracy and reducing the model size to facilitate deployment on mobile
devices. The model size is closely related to both detection speed and accuracy. In theory, a
smaller model results in faster detection on the same device. However, reducing the number
of parameters can decrease the model’s capacity to learn features, potentially affecting
the final detection performance. LRI-YOLO addresses this by utilizing high-performance
lightweight convolutions to optimize the parameter-heavy standard convolutions, thus
compressing the model size without compromising accuracy.

3.2.1. The Faster-C2f Module Based on Partial Convolution

The Faster-C2f module primarily focuses on redesigning the Bottleneck structure in the
original C2f, resulting in the development of the Faster-Bottleneck. Faster-C2f is presented
in Figure 3.

Drones 2024, 8, x FOR PEER REVIEW 6 of 23 
 

 

Figure 3. The Faster-C2f module structure diagram. 

By significantly decreasing computational redundancy, the PConv decreases 

memory access requirements. As depicted in Figure 4, 𝑤 and ℎ indicate the width and 

height of the output and input feature maps; 𝑐𝑝 stands for the count of channels involved 

in convolution; and 𝑘 indicates the kernel size. The PConv applies convolution to a por-

tion of the input channels to extract spatial features, maintaining the rest of the channels 

unmodified. For efficient memory access, the entire feature map is represented by either 

the first or last continuous channel during computation. Provided that the input and out-

put feature maps have equal channels, the FLOPs for PConv can be computed using Equa-

tion (1). 

2 2

ph w k c    (1) 

Furthermore, the PConv requires comparatively little memory access, as shown in 

Equation (2). 

2 22 2p p ph w c k c h w c  +      (2) 

Following the PConv, a PWConv is added to effectively utilize information from all 

channels. The PWConv employs a kernel size of 1, preserving the feature map’s dimen-

sions while adjusting the channel count based on the number of kernels used. As illus-

trated in Figure 5, if the input feature map has dimensions of height ℎ, width 𝑤, and 𝑐 

channels, applying PWConv with 𝑛 kernels will maintain the feature map’s height and 

width while changing the channels to n. In summary, the integration of PConv and 

PWConv creates an effective receptive field on the input feature map that resembles a T-

shape, enhancing the focus on the central area compared to standard convolution. 

 

Figure 3. The Faster-C2f module structure diagram.



Drones 2024, 8, 479 6 of 22

Faster-Bottleneck, while retaining the original dual-branch structure, uses Partial
Convolution (PConv) [41] and Pointwise Convolution (PWConv) [42] to replace the original
ordinary convolution. The idea of using PConv in combination with PWConv is derived
from the FasterNet structure [41]. In this paper, we utilize the concept of PConv combined
with PWConv to transform the C2f structure, substantially decreasing the parameters of
model and complexity of computations.

By significantly decreasing computational redundancy, the PConv decreases memory
access requirements. As depicted in Figure 4, w and h indicate the width and height of the
output and input feature maps; cp stands for the count of channels involved in convolution;
and k indicates the kernel size. The PConv applies convolution to a portion of the input
channels to extract spatial features, maintaining the rest of the channels unmodified. For
efficient memory access, the entire feature map is represented by either the first or last
continuous channel during computation. Provided that the input and output feature maps
have equal channels, the FLOPs for PConv can be computed using Equation (1).

h × w × k2 × c2
p (1)

Drones 2024, 8, x FOR PEER REVIEW 6 of 23 
 

 

Figure 3. The Faster-C2f module structure diagram. 

By significantly decreasing computational redundancy, the PConv decreases 

memory access requirements. As depicted in Figure 4, 𝑤 and ℎ indicate the width and 

height of the output and input feature maps; 𝑐𝑝 stands for the count of channels involved 

in convolution; and 𝑘 indicates the kernel size. The PConv applies convolution to a por-

tion of the input channels to extract spatial features, maintaining the rest of the channels 

unmodified. For efficient memory access, the entire feature map is represented by either 

the first or last continuous channel during computation. Provided that the input and out-

put feature maps have equal channels, the FLOPs for PConv can be computed using Equa-

tion (1). 

2 2

ph w k c    (1) 

Furthermore, the PConv requires comparatively little memory access, as shown in 

Equation (2). 

2 22 2p p ph w c k c h w c  +      (2) 

Following the PConv, a PWConv is added to effectively utilize information from all 

channels. The PWConv employs a kernel size of 1, preserving the feature map’s dimen-

sions while adjusting the channel count based on the number of kernels used. As illus-

trated in Figure 5, if the input feature map has dimensions of height ℎ, width 𝑤, and 𝑐 

channels, applying PWConv with 𝑛 kernels will maintain the feature map’s height and 

width while changing the channels to n. In summary, the integration of PConv and 

PWConv creates an effective receptive field on the input feature map that resembles a T-

shape, enhancing the focus on the central area compared to standard convolution. 

 
Figure 4. The Partial Convolution schematic diagram (* denotes a convolution operation).

Furthermore, the PConv requires comparatively little memory access, as shown in
Equation (2).

h × w × 2cp + k2 × c2
p ≈ h × w × 2cp (2)

Following the PConv, a PWConv is added to effectively utilize information from all
channels. The PWConv employs a kernel size of 1, preserving the feature map’s dimensions
while adjusting the channel count based on the number of kernels used. As illustrated in
Figure 5, if the input feature map has dimensions of height h, width w, and c channels,
applying PWConv with n kernels will maintain the feature map’s height and width while
changing the channels to n. In summary, the integration of PConv and PWConv creates an
effective receptive field on the input feature map that resembles a T-shape, enhancing the
focus on the central area compared to standard convolution.

Drones 2024, 8, x FOR PEER REVIEW 7 of 23 
 

Figure 4. The Partial Convolution schematic diagram (* denotes a convolution operation). 

 

Figure 5. The Pointwise Convolution schematic diagram (* denotes a convolution operation). 

To prevent overfitting during model training, the DropPath [43] function is employed 

within the Fast-C2f module. The main idea of DropPath is to randomly ignore the outputs 

of certain layers or blocks. This approach is similar to Dropout, but DropPath operates at 

a higher structural level, targeting entire layers or paths instead of individual neurons or 

activations. During each forward pass, DropPath randomly determines whether a specific 

path participates in the computation. Specifically, for a given forward pass sample, Drop-

Path sets the output of a path to zero with a probability P while retaining other paths. In 

this module, DropPath is applied to the outputs of pointwise convolutions to prevent 

overfitting, introducing randomness during training and making the model more robust. 

3.2.2. The Super-Downsample Module Based on Max Pooling and Convolution 

Downsample operations are used very frequently in object detection networks. In the 

early stages, max pooling[n] operations were commonly used for downsampling, but 

later, convolution operations became more prevalent. Max pooling downsampling is sim-

ple and has a low computational cost, allowing it to preserve significant features. How-

ever, it could lead to a reduction in detailed information. Convolutional downsampling 

can retain more original feature information but requires higher computational resources. 

To balance the strengths and weaknesses of these methods, this study proposes a Super-

Downsample structure as a replacement for the convolutional downsampling structure in 

the neck of YOLOv8. The Super-Downsample module structural diagram is depicted in 

Figure 6. 

 

Figure 6. The Super-Downsample module structure diagram. 

The Super-Downsample module is composed of two branches. In the first branch, 

max pooling is applied first, followed by a 1 × 1 convolution to modify channels. In the 

second branch, one 1 × 1 convolution is initially utilized to modify the count of channels, 

followed by 3 × 3 convolution. The super-downsampling result is formed by combining 

the outputs from both branches. Since the feature layer using the 3 × 3 convolution has 

Figure 5. The Pointwise Convolution schematic diagram (* denotes a convolution operation).



Drones 2024, 8, 479 7 of 22

To prevent overfitting during model training, the DropPath [43] function is employed
within the Fast-C2f module. The main idea of DropPath is to randomly ignore the outputs
of certain layers or blocks. This approach is similar to Dropout, but DropPath operates
at a higher structural level, targeting entire layers or paths instead of individual neurons
or activations. During each forward pass, DropPath randomly determines whether a
specific path participates in the computation. Specifically, for a given forward pass sample,
DropPath sets the output of a path to zero with a probability P while retaining other paths.
In this module, DropPath is applied to the outputs of pointwise convolutions to prevent
overfitting, introducing randomness during training and making the model more robust.

3.2.2. The Super-Downsample Module Based on Max Pooling and Convolution

Downsample operations are used very frequently in object detection networks. In the
early stages, max pooling[n] operations were commonly used for downsampling, but later,
convolution operations became more prevalent. Max pooling downsampling is simple
and has a low computational cost, allowing it to preserve significant features. However, it
could lead to a reduction in detailed information. Convolutional downsampling can retain
more original feature information but requires higher computational resources. To balance
the strengths and weaknesses of these methods, this study proposes a Super-Downsample
structure as a replacement for the convolutional downsampling structure in the neck of
YOLOv8. The Super-Downsample module structural diagram is depicted in Figure 6.

Drones 2024, 8, x FOR PEER REVIEW 7 of 23 
 

Figure 4. The Partial Convolution schematic diagram (* denotes a convolution operation). 

 

Figure 5. The Pointwise Convolution schematic diagram (* denotes a convolution operation). 

To prevent overfitting during model training, the DropPath [43] function is employed 

within the Fast-C2f module. The main idea of DropPath is to randomly ignore the outputs 

of certain layers or blocks. This approach is similar to Dropout, but DropPath operates at 

a higher structural level, targeting entire layers or paths instead of individual neurons or 

activations. During each forward pass, DropPath randomly determines whether a specific 

path participates in the computation. Specifically, for a given forward pass sample, Drop-

Path sets the output of a path to zero with a probability P while retaining other paths. In 

this module, DropPath is applied to the outputs of pointwise convolutions to prevent 

overfitting, introducing randomness during training and making the model more robust. 

3.2.2. The Super-Downsample Module Based on Max Pooling and Convolution 

Downsample operations are used very frequently in object detection networks. In the 

early stages, max pooling[n] operations were commonly used for downsampling, but 

later, convolution operations became more prevalent. Max pooling downsampling is sim-

ple and has a low computational cost, allowing it to preserve significant features. How-

ever, it could lead to a reduction in detailed information. Convolutional downsampling 

can retain more original feature information but requires higher computational resources. 

To balance the strengths and weaknesses of these methods, this study proposes a Super-

Downsample structure as a replacement for the convolutional downsampling structure in 

the neck of YOLOv8. The Super-Downsample module structural diagram is depicted in 

Figure 6. 

 

Figure 6. The Super-Downsample module structure diagram. 

The Super-Downsample module is composed of two branches. In the first branch, 

max pooling is applied first, followed by a 1 × 1 convolution to modify channels. In the 

second branch, one 1 × 1 convolution is initially utilized to modify the count of channels, 

followed by 3 × 3 convolution. The super-downsampling result is formed by combining 

the outputs from both branches. Since the feature layer using the 3 × 3 convolution has 

Figure 6. The Super-Downsample module structure diagram.

The Super-Downsample module is composed of two branches. In the first branch,
max pooling is applied first, followed by a 1 × 1 convolution to modify channels. In the
second branch, one 1 × 1 convolution is initially utilized to modify the count of channels,
followed by 3× 3 convolution. The super-downsampling result is formed by combining the
outputs from both branches. Since the feature layer using the 3 × 3 convolution has fewer
features, this module has slightly fewer parameters and reduced computational complexity
compared to standard convolution. Additionally, it combines the advantages of both down-
sampling techniques, thereby retaining more comprehensive feature map information.

3.2.3. The Efficient-Head Module Based on Group Convolution

The detection head in YOLOv8 [31] employs a decoupled head architecture with
two distinct branches, each containing two 3 × 3 convolutions and one 1 × 1 convolu-
tion, responsible for classification and bounding box regression, respectively. Compared
to coupled heads, this design improves the overall detection capabilities. However, it
substantially raises the parameters and FLOPs. The detection head in YOLOv8 accounts
for about one-fourth of the total model parameters. Given the restricted computational
resources of edge devices like UAVs, it is necessary to use high-performance, lightweight
convolution to substitute the 3 × 3 convolution in the detection head. We decided to use
Group Convolution (GConv) [39] to replace the original ordinary convolution, resulting in
the Efficient-Head structure. The Efficient-Head module is displayed in Figure 7.



Drones 2024, 8, 479 8 of 22

Drones 2024, 8, x FOR PEER REVIEW 8 of 23 
 

fewer features, this module has slightly fewer parameters and reduced computational 

complexity compared to standard convolution. Additionally, it combines the advantages 

of both downsampling techniques, thereby retaining more comprehensive feature map 

information. 

3.2.3. The Efficient-Head Module Based on Group Convolution 

The detection head in YOLOv8 [31] employs a decoupled head architecture with two 

distinct branches, each containing two 3 × 3 convolutions and one 1 × 1 convolution, 

responsible for classification and bounding box regression, respectively. Compared to 

coupled heads, this design improves the overall detection capabilities. However, it sub-

stantially raises the parameters and FLOPs. The detection head in YOLOv8 accounts for 

about one-fourth of the total model parameters. Given the restricted computational re-

sources of edge devices like UAVs, it is necessary to use high-performance, lightweight 

convolution to substitute the 3 × 3 convolution in the detection head. We decided to use 

Group Convolution (GConv) [39] to replace the original ordinary convolution, resulting 

in the Efficient-Head structure. The Efficient-Head module is displayed in Figure 7. 

 

Figure 7. The Efficient-Head module structure diagram. 

The GConv serves a similar purpose to regularization by preventing overfitting and 

also decreases the training parameters and reduces the complexity of computations. The 

parameters and computational complexity of GConv are 1/g of those of ordinary convo-

lution, where g denotes the count of groups. In GConv, the feature map is divided into g 

groups, and the convolution kernels are divided similarly. Convolution is performed 

within each corresponding group, and the outputs generated by each group are combined 

along the channel dimension. This principle is illustrated in Figure 8. Theoretically, the 

parameters and computational complexity of GConv are 1/g of those of ordinary convo-

lution. The parameters for ordinary convolution are depicted in Equation (3), and in Equa-

tion (4), the FLOPs are presented. Equation (5) displays the parameters for GConv, and 

the FLOPs are shown in Equation (6). Comparing Equations (3) and (5), it is evident that 

GConv’s parameters are only 1/g of those of ordinary convolution. Similarly, comparing 

Equations (4) and (6), it is clear that the computational complexity is also 1/g of that of 

ordinary convolution. The value of g is a hyperparameter in the Efficient-Head module. 

We performed experiments to determine the best possible value for g, considering detec-

tion accuracy, model parameters, and computational complexity, with g determined to be 

16. 

2

in out in outk k c c k c c   =  (3) 

2

in in in out in in in outh w c c k k k h w c c     =  (4) 

2

( ) ( )in out in outc c k c c
k k g

g g g

 
    = 

 
 (5) 

Figure 7. The Efficient-Head module structure diagram.

The GConv serves a similar purpose to regularization by preventing overfitting and
also decreases the training parameters and reduces the complexity of computations. The
parameters and computational complexity of GConv are 1/g of those of ordinary convo-
lution, where g denotes the count of groups. In GConv, the feature map is divided into
g groups, and the convolution kernels are divided similarly. Convolution is performed
within each corresponding group, and the outputs generated by each group are combined
along the channel dimension. This principle is illustrated in Figure 8. Theoretically, the
parameters and computational complexity of GConv are 1/g of those of ordinary con-
volution. The parameters for ordinary convolution are depicted in Equation (3), and in
Equation (4), the FLOPs are presented. Equation (5) displays the parameters for GConv, and
the FLOPs are shown in Equation (6). Comparing Equations (3) and (5), it is evident that
GConv’s parameters are only 1/g of those of ordinary convolution. Similarly, comparing
Equations (4) and (6), it is clear that the computational complexity is also 1/g of that of
ordinary convolution. The value of g is a hyperparameter in the Efficient-Head module. We
performed experiments to determine the best possible value for g, considering detection
accuracy, model parameters, and computational complexity, with g determined to be 16.

k × k × cin × cout = k2cincout (3)

hin × win × cin × cout × k × k = k2hinwincincout (4)(
(

cin
g
)× (

cout

g
)× k × k

)
× g =

k2cincout

g
(5)

hin × win × (
cin
g
)× (

cout

g
)× k × k × g =

k2hinhincincout

g
(6)

Drones 2024, 8, x FOR PEER REVIEW 9 of 23 
 

2

( ) ( )in out in in in out
in in

c c k h h c c
h w k k g

g g g
      =  (6) 

In these equations, 𝑐𝑖𝑛 stands for the channels in the input feature map, 𝑐𝑜𝑢𝑡 repre-

sents the count of channels in the output feature map, ℎ𝑖𝑛 refers to the height of the input 

feature map, 𝑤𝑖𝑛 indicates the width of the input feature map, and g represents the count 

of groups in the GConv. 

 

Figure 8. The Group Convolution schematic diagram (* denotes a convolution operation). 

3.2.4. The EMASlideLoss Based on SlideLoss and Exponential Moving Average Concept 

The YOLOv8 loss function is divided into classification branch and regression 

branch. For bounding boxes, the regression branch utilizes a combination of 𝐷𝐹𝐿 [44] 

and 𝐶𝐼𝑜𝑈 Loss [45]. The 𝐷𝐹𝐿, a modified version of focal loss, aims to improve the pre-

cision of the predicted bounding box positions and sizes. It achieves this by predicting a 

probability distribution for the bounding box’s location and dimensions, then optimizing 

this distribution using a focal loss function. 

1 1 1( , ) (( ) log( ) ( ) log( ))i i i i i iDFL S S y y S y y S+ + += − − + −  (7) 

Here, 𝑆𝑖 and 𝑆𝑖+1 denote the predicted value and adjacent predicted value output, 

while 𝑦, 𝑦𝑖, and 𝑦𝑖+1 represent the actual value, label integral value, and adjacent label 

integral value, respectively. 

𝐶𝐼𝑜𝑈  [45] is an enhancement of 𝐼𝑜𝑈  [46]. 𝐼𝑜𝑈  quantifies the intersection between 

the ground truth box and the predicted box, detailed in Equation (8). 

A B
IoU

A B
=  (8) 

𝐴 signifies the predicted box, and 𝐵 refers to the ground truth box. 𝐶𝐼𝑜𝑈 extends 

𝐼𝑜𝑈 loss by including both the aspect ratio and the distance between the center points in 

its calculation. This improvement ensures that the predicted box more accurately fits the 

object box and mitigates issues such as divergence. 

The typical calculation for 𝐶𝐼𝑜𝑈 [45] is as follows: 

Figure 8. The Group Convolution schematic diagram (* denotes a convolution operation).



Drones 2024, 8, 479 9 of 22

In these equations, cin stands for the channels in the input feature map, cout represents
the count of channels in the output feature map, hin refers to the height of the input feature
map, win indicates the width of the input feature map, and g represents the count of groups
in the GConv.

3.2.4. The EMASlideLoss Based on SlideLoss and Exponential Moving Average Concept

The YOLOv8 loss function is divided into classification branch and regression branch.
For bounding boxes, the regression branch utilizes a combination of DFL [44] and CIoU
Loss [45]. The DFL, a modified version of focal loss, aims to improve the precision of the
predicted bounding box positions and sizes. It achieves this by predicting a probability dis-
tribution for the bounding box’s location and dimensions, then optimizing this distribution
using a focal loss function.

DFL(Si, Si+1) = −((yi+1 − y) log(Si) + (y − yi) log(Si+1)) (7)

Here, Si and Si+1 denote the predicted value and adjacent predicted value output,
while y, yi, and yi+1 represent the actual value, label integral value, and adjacent label
integral value, respectively.

CIoU [45] is an enhancement of IoU [46]. IoU quantifies the intersection between the
ground truth box and the predicted box, detailed in Equation (8).

IoU =
A ∩ B
A ∪ B

(8)

A signifies the predicted box, and B refers to the ground truth box. CIoU extends
IoU loss by including both the aspect ratio and the distance between the center points in
its calculation. This improvement ensures that the predicted box more accurately fits the
object box and mitigates issues such as divergence.

The typical calculation for CIoU [45] is as follows:

CIoU = IoU − ρ2(b, bgt)

c2 − αv (9)

In this context, b and bgt denote the central points of the predicted and ground truth
boxes. ρ2 signifies the Euclidean distance between two center points. The term c denotes
the diagonal length of the smallest bounding box that can encompass both the ground
truth boxes and predicted boxes. α is a weight function, and v assesses the alignment of the
aspect ratio between the ground truth boxes and predicted boxes. The formulas for this
calculation are as follows:

v =
4

π2 (arctan
wgt

hgt − arctan
wp

hp
)

2

(10)

In this context, hp and wp refer to the height and width of the predicted box, respec-
tively, while hgt and wgt relate to the height and width of the ground truth box.

The CIoU loss function [45] is calculated as follows:

LCIoU = 1 − CIoU (11)

Common classification loss functions include the Cross-Entropy Loss [40] and Binary
Cross-Entropy Loss [40]. The Cross-Entropy Loss is a conventional loss function widely
used in classification tasks, effectively measuring the difference between the model’s
predicted probability distribution and the true labels. However, it is sensitive to class
imbalance, a common issue in object detection, where positive samples (targets) are usually
much fewer than negative samples (background). Additionally, Cross-Entropy Loss can
lead to overfitting, as the model calculates loss for every class, even for classes that rarely
appear. Binary Cross-Entropy Loss, on the other hand, is used for binary classification



Drones 2024, 8, 479 10 of 22

problems and is suitable for multi-label classification scenarios in object detection, where
each grid cell independently determines the presence of a specific object. This loss is
computationally simple, as it independently calculates loss for each class. However, like
the regular Cross-Entropy Loss, Binary Cross-Entropy is also sensitive to class imbalance.

The original YOLOv8 model utilizes the Binary Cross-Entropy Loss (BCELoss) as its
classification loss function, as shown in Equation (12). However, BCELoss is quite sensitive
to class imbalance issues. To address this, this paper proposes replacing BCELoss with
SlideLoss [47], and further optimizes SlideLoss using the Exponential Moving Average
(EMA) approach, resulting in EMASlideLoss, as shown in Equation (13).

LBCE = −y log( p̂)− (1 − y) log(1 − p̂) (12)

LESL = LBCE × ES(x, µ) (13)

In these equations, LBCE represents the Binary Cross-Entropy Loss, where p̂ denotes
the predicted probability for each sample, and y represents the true label of the sample.
LESL refers to the EMASlideLoss, while ES(x, µ) denotes the sample loss weight coefficient.

Since network models often struggle to effectively recognize hard samples, they
cannot fully utilize the data during training. To effectively address this issue, we designed
a weighting function ES(x, µ) that assigns larger weights to hard samples and smaller
weights to easy samples. This approach ensures that hard samples receive more attention in
the loss function, enhancing the model’s ability to learn from more complex instances in the
dataset. By prioritizing hard samples, the model can better handle outliers and edge cases,
ultimately improving prediction accuracy and robustness. Additionally, we introduced the
Exponential Moving Average (EMA) concept to more smoothly assign different weights to
samples, thereby optimizing the overall loss function curve. ES(x, µ) is defined as shown
in Equation (14). Here, x represents the IoU value of the current predicted sample, and µ
denotes the average IoU value across all samples, which is automatically updated through
EMA each time it is called. The update function is shown in Equation (15).

ES(x, µ) =


1

e1−µ

e1−x

, x ≤ µ − 0.1

, µ − 0.1 < x < µ + 0.1

, x ≥ µ + 0.1
(14)

{
µn = β · µn−1 + (1 − β) · µn

β = β0 · (1 − e−
n
τ )

(15)

In this context, µn represents the current average IoU value of all samples, and µn−1 is
the average IoU value from the previous update. β0 is the initial exponential moving weight
decay rate, while β denotes the Exponential Moving Average decay factor. n represents
the number of loss calculation updates, and τ is the time constant controlling the rate of
temporal decay.

3.3. Experimental Dataset

The HIT-UAV dataset [48] was utilized to evaluate the effectiveness of the model and
its ability to generalize in high-altitude infrared image detection tasks.

As a specialized dataset, the HIT-UAV dataset provides high-altitude infrared thermal
data for object detection in UAV applications. This dataset features images taken from
UAVs in diverse environments, such as educational institutions, parking spaces, streets,
and recreational facilities, as shown in Figure 9. It covers a wide array of conditions, with
altitudes varying between 30 and 60 m and covering camera angles from 30 to 90 degrees.
Consequently, the objects to be detected vary in size and shape, which aids the object
detection model in more effectively understanding and capturing the dataset’s diversity
and complexity. This variety increases the generalization capability of the model, allowing
it to deal with inputs of different scales and improving its robustness.



Drones 2024, 8, 479 11 of 22

Drones 2024, 8, x FOR PEER REVIEW 11 of 23 
 

defined as shown in Equation (14). Here, 𝑥 represents the 𝐼𝑜𝑈 value of the current pre-

dicted sample, and 𝜇 denotes the average 𝐼𝑜𝑈 value across all samples, which is auto-

matically updated through EMA each time it is called. The update function is shown in 

Equation (15). 

1

1

1 , 0.1

( , ) , 0.1 0.1

, 0.1x

x

ES x e x

e x





  



−

−

 −


= −   +
  +

 (14) 

1

0

(1 )

(1 )

n n n

n

e 

    

 

−

−

=  + − 


 =  −

 (15) 

In this context, 𝜇𝑛  represents the current average 𝐼𝑜𝑈  value of all samples, and 

𝜇𝑛−1  is the average 𝐼𝑜𝑈  value from the previous update. 𝛽0  is the initial exponential 

moving weight decay rate, while 𝛽 denotes the Exponential Moving Average decay fac-

tor. n  represents the number of loss calculation updates, and 𝜏 is the time constant con-

trolling the rate of temporal decay. 

3.3. Experimental Dataset 

The HIT-UAV dataset [48] was utilized to evaluate the effectiveness of the model and 

its ability to generalize in high-altitude infrared image detection tasks. 

As a specialized dataset, the HIT-UAV dataset provides high-altitude infrared ther-

mal data for object detection in UAV applications. This dataset features images taken from 

UAVs in diverse environments, such as educational institutions, parking spaces, streets, 

and recreational facilities, as shown in Figure 9. It covers a wide array of conditions, with 

altitudes varying between 30 and 60 m and covering camera angles from 30 to 90 degrees. 

Consequently, the objects to be detected vary in size and shape, which aids the object de-

tection model in more effectively understanding and capturing the dataset’s diversity and 

complexity. This variety increases the generalization capability of the model, allowing it 

to deal with inputs of different scales and improving its robustness. 

 

Figure 9. The partial image of the HIT-UAV dataset. Figure 9. The partial image of the HIT-UAV dataset.

The refined dataset comprises 2898 images with dimensions of 640 × 512 pixels,
categorized into humans, bicycles, and vehicles. For this experiment, the dataset was
partitioned into three sections, the training, validation, and test sets, using a 7:1:2 ratio.
Specifically, the training set included 2008 pictures, the validation set contained 287 pictures,
and the test set contained 571 pictures. The HIT-UAV dataset is a vital resource for research
in infrared object detection and recognition using UAVs. As shown in Table 1, it includes a
total of 24,751 object labels, distributed across different sizes: 17,118 labels are for small
objects, which measure less than 32 × 32 pixels and make up only 0.01% of an image’s
pixels; 7249 labels are for medium-sized objects, which are below 96 × 96 pixels; and
384 labels are for large objects. This dataset provides an essential foundation for improving
the capabilities of UAV-based infrared object detection.

Table 1. Number of objects of different sizes in the HIT-UAV dataset.

Small Medium Large

HIT-UAV 17,118 7249 268
Training set 12,045 5205 268

Validation set 1742 665 46
Test set 3331 1379 70

3.4. Evaluation Indicators

In this research, we utilized precision (P), recall (R), mean average precision (mAP),
frames per second (FPS), parameters, and floating-point operations (FLOPs) as evalua-
tion metrics to evaluate our algorithm’s performance. The mAP is crucial for evaluating
the detection accuracy. The parameters and FLOPs indicate the size of the model and
computational complexity, while FPS measures detection speed.

The proportion of correctly detected results among all detections is called precision,
and is illustrated in Equation (16).

Precision =
TP

TP + FP
(16)



Drones 2024, 8, 479 12 of 22

TP (True Positive) indicates the total count of positive samples correctly detected,
while FP (False Positive) signifies the count of negative samples wrongly detected signifies
the total of negative samples that the model has incorrectly labeled as positive.

Recall measures the fraction of accurately detected objects relative to the total count of
objects, as detailed in Equation (17).

Recall =
TP

TP + FN
(17)

FN (False Negative) is the count of positive samples that the model has inaccurately
identified as negative.

Average precision (AP) is employed to evaluate the accuracy of model for each category.
A better AP value means superior performance. This concept is detailed in Equation (18).

AP =
∫ 1

0
P(R)dR (18)

The mAP measures the mean precision across all categories, reflecting the model’s
overall performance across different classes. A higher mAP value signifies superior overall
model performance. This is detailed in Equation (19).

mAP =

n
∑

i=1
APi

n
(19)

FPS signifies the count of images the object detection network can analyze each second.
The calculation formula is provided in Equation (20).

FPS =
N
T

(20)

Here, N signifies the count of processed images, and T indicates the total processing
time.

The number of parameters indicates the total count within the model, usually reflecting
the model’s size. FLOPs are a metric used to quantify the model’s complexity. The larger
these evaluation metrics are, the more hardware computational resources are required for
training and inference.

4. Experimental Results
4.1. Experimental Platform and Parameter Settings

The configuration is detailed in Table 2. The experiment was conducted using an
Intel(R) Xeon(R) Platinum 8352V processor (Intel Corporation, Santa Clara, CA, USA), an
NVIDIA RTX 4090 GPU (NVIDIA Corporation, Santa Clara, CA, USA), and the Linux
operating system. The Python version used was 3.10, and the deep learning framework
used was Pytorch 2.1.1. During the experiment, model detection speed was measured
under two scenarios: one using a GPU and the other using only a CPU. Considering that
GPUs can significantly accelerate the inference of deep learning models, but drones and
other edge devices often do not include GPUs due to size and cost constraints, the second
scenario restricts GPU usage. Instead, the detection speed is measured using only the CPU
to simulate environments with limited computational resources.

The experimental parameter settings are detailed in Table 3. In the experiments, the
SGD optimizer was utilized with an initial learning rate of 0.01%, momentum set at 0.937,
and weight decay at 0.0005. Mosaic data augmentation was applied during training, with
batch size of 32 and image size of 640 × 640. To prevent local optima, the model was trained
for 300 epochs.



Drones 2024, 8, 479 13 of 22

Table 2. Experimental platform configuration.

Names Configurations

GPU NVIDIA RTX 4090
CPU Intel(R) Xeon(R) Platinum 8352V

GPU memory size 24 G
Operating system Linux

Python version Python3.10
Deep learning framework Pytorch2.1.2

Table 3. Model training parameter settings.

Parameters Value

Optimizer SGD
Initial learning rate 0.01%

Momentum 0.937
Weight decay 0.0005

Data augmentation Mosaic
Batch size 32
Image size 640 × 640

Number of epochs 300

To maintain the consistency of all subsequent experimental results, all experiments
were performed on the same platform with identical parameters.

4.2. The Efficient-Head Hyperparameter Experiment

Efficient-Head replaces the two 3 × 3 convolutions in the original detection head
with grouped convolutions. Grouped convolution has a hyperparameter g that determines
how many groups the input feature map is divided into for convolution. To find the most
suitable hyperparameter g, seven sets of experiments were conducted for comparison. The
experiments included the original YOLOv8n and YOLOv8n using Efficient-Head with g set
to 2, 4, 8, 16, 32, and 64, resulting in a total of seven experimental groups. The results are
displayed in Table 4.

Table 4. The Efficient-Head hyperparameter experimental results on the HIT-UAV dataset.

Model P
(%)

R
(%)

Parameters
(M)

FLOPs
(G)

mAP50
(%)

Speed on GPU
(FPS)

Speed on CPU
(FPS)

Yolov8n 91 89.4 3 8.1 93.8 229 30
Yolov8n+Efficient-Head (g = 2) 90.9 87.7 2.3 5.3 93.3 271 38
Yolov8n+Efficient-Head (g = 4) 91.1 88.3 2.3 5.3 93.3 270 39
Yolov8n+Efficient-Head (g = 8) 91.3 88.1 2.4 5.4 93.4 271 40

Yolov8n+Efficient-Head (g = 16) 91.5 89.3 2.4 5.6 93.6 274 39
Yolov8n+Efficient-Head (g = 32) 91.9 88.6 2.5 6 93.7 262 39
Yolov8n+Efficient-Head (g = 64) 91.7 88.5 2.8 6.9 93.2 260 37

The experiments revealed that, although increasing g should theoretically reduce the
parameters and FLOPs, in practice, it was found that increasing the number of groups
introduced additional computational overhead. Therefore, larger values of g do not always
yield better results. The experimental results indicate that when g = 32, the highest precision
of 93.7% was achieved. However, this configuration also resulted in suboptimal parameter
count, computational load, and FPS performance. When g = 16, the precision was slightly
lower by 0.1% compared to g = 32. Despite this minor drop in precision, the configura-
tion with g = 16 exhibited significantly better performance concerning parameter count,
computational demands, and detection frame rate. Therefore, based on these experimental



Drones 2024, 8, 479 14 of 22

results, it was ultimately decided to set the number of groups for Group Convolution in
the Efficient-Head to 16.

4.3. Ablation Experiments

A set of ablation experiments was performed utilizing the HIT-UAV dataset to evaluate
the effectiveness of LRI-YOLO’s different modules. These experiments were intended to
evaluate the influence of each module on LRI-YOLO. To maintain the validity of the results,
all experiments were conducted under identical conditions. The results are displayed in
Table 5. In this table, A refers to the Faster-C2f structure, B denotes the use of the Efficient-
Head module, C relates to the use of the Super-Downsample module, and D is associated
with the use of the EMASlideLoss function.

Table 5. Results of ablation experiments on HIT-UAV.

Yolov8 A B C D P
(%)

R
(%)

Parameters
(M)

FLOPs
(G)

mAP0.5
(%)

Speed on GPU
(FPS)

Speed on CPU
(FPS)

√
91.0 89.4 3 8.1 93.8 229 30

√ √ 91.4
(+0.4)

89.3
(−0.1)

2.39
(−0.61)

6.3
(−1.8)

94.0
(+0.2) 232 (+3) 37 (+7)

√ √ 91.5
(+0.5)

89.3
(−0.1) 2.4 (−0.6) 5.6

(−2.5)
93.6

(−0.2) 274 (+45) 39 (+9)

√ √ 91.2
(+0.2)

89.4
(−0.0) 2.9 (−0.1) 8.0

(−0.1)
94.0

(+0.2) 235 (+6) 33 (+3)

√ √ 91.9
(+0.9)

88.7
(−0.7) 3 (−0.0) 8.1

(−0.0)
93.8

(+0.0) 229 (+0) 30 (+0)

√ √ √ 90.5
(−0.5)

87.3
(−2.1) 1.7 (−1.3) 3.9

(−4.2)
93.4

(−0.4) 238 (+9) 34 (+4)

√ √ √ √ 91.4
(+0.4)

89.1
(−0.3) 1.6 (−1.4) 3.8

(−4.3)
93.9

(+0.1) 240 (+11) 42 (+12)

√ √ √ √ √ 90.7
(−0.3)

89.1
(−0.3) 1.6 (−1.4) 3.8

(−4.3)
94.1

(+0.3) 240 (+11) 42 (+12)

Table 5 demonstrates that the optimized LRI-YOLO considerably decreased model size
and FLOPs, with higher detection frame rates on both GPU and CPU. After incorporating
the lightweight Faster-C2f module, the accuracy slightly improved, while the parameters
were reduced by 23.5% and FLOPs by 22.2%. The detection speed increased by 8% on
the GPU and 23.3% on the CPU. Using the Super-Downsample module, the detection
accuracy reached 94%, indicating that this module can better preserve features during
the downsampling phase of the feature fusion stage. Additionally, the module slightly
reduced the model size and FLOPs and provided a slight improvement in detection FPS.
After incorporating the Efficient-Head structure, the mAP decreased by 0.2%, but the
parameters and FLOPS were reduced by 19.7% and 30.9%, respectively. The detection
speed reached 274 FPS on the GPU and 39 FPS on the CPU. Finally, combining all the
improvements resulted in our LRI-YOLO model. Our model attained a detection accuracy
of 94.1%, reflecting a 0.3% improvement. The count of parameters was reduced to 1.6 M, a
46.7% decrease from the original model. The computational complexity was reduced to
3.9 GFLOPs, only 46.9% of the original model. The detection frame rate on the GPU was
240 FPS, a 5% improvement, and on the CPU, it was 42 FPS, a 40% improvement. This
indicates that our model can fulfill real-time detection requirements on computationally
constrained mobile devices.

To verify whether overfitting occurred during the training of LRI-YOLO, the data
generated from the training process were plotted into the curve graphs shown in Figure 10.
The figure displays the precision, recall, and mAP at an IoU threshold of 0.5, and the mean
mAP calculated across multiple IoU thresholds (from 0.5 to 0.95 with a step size of 0.05). As
observed, the accuracy, recall, and mAP curves under different conditions steadily increase
during the first 100 epochs, followed by a slow rise over the next 200 epochs, and finally



Drones 2024, 8, 479 15 of 22

stabilize. None of these curves show a downward trend after reaching their peak values,
indicating that overfitting did not occur during the training of our LRI-YOLO model.

Drones 2024, 8, x FOR PEER REVIEW 16 of 23 
 

 

Figure 10. The evaluation metric curves. 

4.4. Contrast Experiments 

To demonstrate the effectiveness of LRI-YOLO in infrared aerial target detection 

tasks, the HIT-UAV dataset was used to perform a series of comparative experiments. 

Currently, mainstream object detection models can be broadly categorized into two types: 

the YOLO series and the transformer-based DETR [49–51] series. YOLO models are 

widely used due to their fast detection speed. In contrast, DETR models generally have 

higher computational complexity and slower inference speeds. Therefore, most compari-

son experiments select YOLO models as the primary benchmark. However, to ensure the 

comprehensiveness of the comparison, the RT-DETR [52] model, known for its faster de-

tection speed, was also included in the experiments for evaluation. 

The models selected for the comparison experiment were all trained on the HIT-UAV 

dataset. After training, a simple validation was performed on the validation set, and the 

model weights with the highest accuracy were saved. These saved weights were then used 

for final testing on the test set, where various evaluation metrics were computed. These 

metrics allow for the comparison of different models. The overall process of the compari-

son experiment is illustrated in Figure 11. 

 

Figure 10. The evaluation metric curves.

4.4. Contrast Experiments

To demonstrate the effectiveness of LRI-YOLO in infrared aerial target detection tasks,
the HIT-UAV dataset was used to perform a series of comparative experiments. Currently,
mainstream object detection models can be broadly categorized into two types: the YOLO
series and the transformer-based DETR [49–51] series. YOLO models are widely used due
to their fast detection speed. In contrast, DETR models generally have higher computational
complexity and slower inference speeds. Therefore, most comparison experiments select
YOLO models as the primary benchmark. However, to ensure the comprehensiveness of
the comparison, the RT-DETR [52] model, known for its faster detection speed, was also
included in the experiments for evaluation.

The models selected for the comparison experiment were all trained on the HIT-UAV
dataset. After training, a simple validation was performed on the validation set, and the
model weights with the highest accuracy were saved. These saved weights were then used
for final testing on the test set, where various evaluation metrics were computed. These
metrics allow for the comparison of different models. The overall process of the comparison
experiment is illustrated in Figure 11.



Drones 2024, 8, 479 16 of 22

Drones 2024, 8, x FOR PEER REVIEW 16 of 23 
 

 

Figure 10. The evaluation metric curves. 

4.4. Contrast Experiments 

To demonstrate the effectiveness of LRI-YOLO in infrared aerial target detection 

tasks, the HIT-UAV dataset was used to perform a series of comparative experiments. 

Currently, mainstream object detection models can be broadly categorized into two types: 

the YOLO series and the transformer-based DETR [49–51] series. YOLO models are 

widely used due to their fast detection speed. In contrast, DETR models generally have 

higher computational complexity and slower inference speeds. Therefore, most compari-

son experiments select YOLO models as the primary benchmark. However, to ensure the 

comprehensiveness of the comparison, the RT-DETR [52] model, known for its faster de-

tection speed, was also included in the experiments for evaluation. 

The models selected for the comparison experiment were all trained on the HIT-UAV 

dataset. After training, a simple validation was performed on the validation set, and the 

model weights with the highest accuracy were saved. These saved weights were then used 

for final testing on the test set, where various evaluation metrics were computed. These 

metrics allow for the comparison of different models. The overall process of the compari-

son experiment is illustrated in Figure 11. 

 

Figure 11. Flow chart of comparison experiment.

In the comparative experiments, we maintained consistent training settings with LRI-
YOLO on the HIT-UAV dataset. The final outcomes are presented in Table 6. As indicated
by these results, our algorithm exhibits outstanding detection performance on the aerial
infrared dataset. The model with the highest detection accuracy is YOLOv5s, with an
accuracy of 94.2%. This is followed by our improved model, LRI-YOLO, and YOLOv5m,
both achieving an accuracy of 94.1%, just 0.1% less than the highest accuracy. The RT-DETR
model did not perform well on this dataset, achieving an accuracy of only 93.1%. This
indicates that our model has excellent detection accuracy.

Table 6. Comparison of experimental results on HIT-UAV dataset.

Model P
(%)

R
(%)

Parameters
(M)

FLOPs
(G)

mAP50
(%)

Speed on GPU
(FPS)

Speed on CPU
(FPS)

RTDETR-r18 89.4 88.8 19.9 56.9 93.1 64 8
Yolov3-tiny 86.8 80.4 12.1 18.9 87.6 300 32.8

Yolov3 91.3 90.2 103.7 282.2 93.7 121.8 4.8
Yolov5n 91.4 88.7 2.5 7.1 93.7 234.3 37.3
Yolov5s 91.9 90.2 9.1 23.8 94.2 237.3 23.9
Yolov5m 91.0 91.0 25 64 94.1 187.7 12.4
Yolov5l 92.5 89.8 53.1 134.7 93.5 157.4 8
Yolov6 90.3 87.4 4.2 11.8 92.6 285 38

Yolov8n 91.0 89.4 3 8.1 93.8 229 30
Yolov8s 91.4 89.9 11.1 28.4 94.1 228 22.1
Yolov8m 92.3 88.9 25.8 78.7 93.8 202.3 12.6

Ours 90.7 89.1 1.6 3.8 94.1 240 42

Additionally, we selected four images from different scenes in the test set to compare
the detection performance of the highest-accuracy YOLOv5s model with LRI-YOLO. The
detection results are shown in Figure 12. The first image in each group represents the real
label, the second image represents the detection results of Yolov5s, and the third image
represents the detection results of LRI-YOLO. The occurrence of misdetections is marked
with a yellow box, and the occurrence of missed detections is marked with a blue box. In
the first and second groups, LRI-YOLO successfully detected all true labels, and YOLOv5s,
with the highest detection accuracy, also detected all labeled objects. This is mainly because
the targets in these groups, such as cars and bicycles, are relatively large, leading to better
detection performance. From a drone’s perspective, human targets are smaller and carry
limited feature information, which increases the likelihood of false positives and missed
detections. In the third and fourth groups, LRI-YOLO successfully detected most of the
human targets; however, in the third group, it mistakenly identified another object as a
human in the upper-left corner, and in the fourth group, it failed to detect one human
target. YOLOv5s, the most accurate model, also made the same mistakes in the third and
fourth images. Through the analysis of these four images, it is evident that LRI-YOLO
can correctly detect the majority of infrared targets, though there is a slight chance of false
positives and missed detections, particularly with human targets.



Drones 2024, 8, 479 17 of 22
Drones 2024, 8, x FOR PEER REVIEW 18 of 23 
 

 Real label Yolov5s LRI-YOLO 

Group 1 

   

Group 2 

   

Group 3 

   

Group 4 

   

Figure 12. Visualization of detection results where pink boxes indicate car targets, red boxes indicate 
human targets, and orange boxes indicate bicycle targets (areas framed in green indicate a false 
detection; areas framed in blue indicate a missed detection). 

LRI-YOLO has 1.8M parameters and a computational complexity of only 3.8 
GFLOPs, placing it among the leading models in terms of efficiency. Among the YOLO 
series, the lightest model is YOLOv5n; however, its parameter count and computational 
complexity are still significantly higher than those of LRI-YOLO. As for the RT-DETR 
model, both its parameter count and computational complexity are more than ten times 
that of LRI-YOLO. Although our improved model did not achieve the highest detection 
accuracy, LRI-YOLO has the fewest training parameters and the lowest computational 
complexity. The parameter count is only 1.5M, and the computational complexity is just 
3.9 GFLOPs. Compared to the highest-accuracy model, YOLOv5s, LRI-YOLO’s parameter 
count is only 1/60th and its computational complexity is only 1/7th. This means that the 
improved LRI-YOLO can achieve excellent detection performance without consuming ex-
cessive computational resources. 

Figure 12. Visualization of detection results where pink boxes indicate car targets, red boxes indicate
human targets, and orange boxes indicate bicycle targets (areas framed in green indicate a false
detection; areas framed in blue indicate a missed detection).

LRI-YOLO has 1.8M parameters and a computational complexity of only 3.8 GFLOPs,
placing it among the leading models in terms of efficiency. Among the YOLO series, the
lightest model is YOLOv5n; however, its parameter count and computational complexity
are still significantly higher than those of LRI-YOLO. As for the RT-DETR model, both
its parameter count and computational complexity are more than ten times that of LRI-
YOLO. Although our improved model did not achieve the highest detection accuracy,
LRI-YOLO has the fewest training parameters and the lowest computational complexity.
The parameter count is only 1.5M, and the computational complexity is just 3.9 GFLOPs.
Compared to the highest-accuracy model, YOLOv5s, LRI-YOLO’s parameter count is only
1/60th and its computational complexity is only 1/7th. This means that the improved



Drones 2024, 8, 479 18 of 22

LRI-YOLO can achieve excellent detection performance without consuming excessive
computational resources.

Since GPUs accelerate neural network inference tasks, most mainstream object detec-
tion models can meet real-time requirements when running on GPUs. However, on edge
devices like drones, which only have CPUs, executing detection tasks is challenging due
to the lack of computational resources, making it difficult to achieve the same speed as
on GPU-equipped devices. Therefore, in the comparison experiments, GPU usage was re-
stricted, and inference was performed using only the CPU to simulate resource-constrained
devices. As shown in Table 6, LRI-YOLO achieved the fastest detection speed using a CPU,
reaching 42 frames per second (FPS), which meets real-time detection requirements. Next
was YOLOv6, with a speed of 38 FPS, while RT-DETR achieved only 8 FPS on the CPU. To
more clearly demonstrate the superiority of LRI-YOLO in terms of detection speed on the
CPU, a subset of the data from Table 6 was collected and plotted as a scatter plot shown
in Figure 13. The horizontal axis represents the model’s detection speed, the vertical axis
represents the model’s detection accuracy, and the size of the points reflects the model
size. From the figure, it can be seen that LRI-YOLO is the smallest among all models
and performs well in terms of detection accuracy, providing a new solution for real-time
infrared object detection tasks on edge computing devices such as drones.

Drones 2024, 8, x FOR PEER REVIEW 19 of 23 
 

Since GPUs accelerate neural network inference tasks, most mainstream object detec-

tion models can meet real-time requirements when running on GPUs. However, on edge 

devices like drones, which only have CPUs, executing detection tasks is challenging due 

to the lack of computational resources, making it difficult to achieve the same speed as on 

GPU-equipped devices. Therefore, in the comparison experiments, GPU usage was re-

stricted, and inference was performed using only the CPU to simulate resource-con-

strained devices. As shown in Table 6, LRI-YOLO achieved the fastest detection speed 

using a CPU, reaching 42 frames per second (FPS), which meets real-time detection re-

quirements. Next was YOLOv6, with a speed of 38 FPS, while RT-DETR achieved only 8 

FPS on the CPU. To more clearly demonstrate the superiority of LRI-YOLO in terms of 

detection speed on the CPU, a subset of the data from Table 6 was collected and plotted 

as a scatter plot shown in Figure 13. The horizontal axis represents the model’s detection 

speed, the vertical axis represents the model’s detection accuracy, and the size of the 

points reflects the model size. From the figure, it can be seen that LRI-YOLO is the smallest 

among all models and performs well in terms of detection accuracy, providing a new so-

lution for real-time infrared object detection tasks on edge computing devices such as 

drones. 

 

Figure 13. Scatterplot of combined mAP and speed on CPU parameters (the size of the dots in the 

graph indicates the size of the number of parameters, with smaller dots indicating fewer parame-

ters). 

To validate the effectiveness of LRI-YOLO in different scenarios, we also selected 

several lightweight object detection models and tested them, along with LRI-YOLO, on 

the infrared aerial human–vehicle detection dataset provided by the Iraytek company. 

This dataset was captured by drones equipped with professional infrared camera gimbals, 

recording human and vehicle targets in various scenarios. The dataset contains a large 

amount of infrared image data taken from a surveillance overhead perspective, with the 

drone flying at an altitude of approximately 10–15 m above the ground. The collected data 

Figure 13. Scatterplot of combined mAP and speed on CPU parameters (the size of the dots in the
graph indicates the size of the number of parameters, with smaller dots indicating fewer parameters).

To validate the effectiveness of LRI-YOLO in different scenarios, we also selected
several lightweight object detection models and tested them, along with LRI-YOLO, on
the infrared aerial human–vehicle detection dataset provided by the Iraytek company.
This dataset was captured by drones equipped with professional infrared camera gimbals,
recording human and vehicle targets in various scenarios. The dataset contains a large
amount of infrared image data taken from a surveillance overhead perspective, with the



Drones 2024, 8, 479 19 of 22

drone flying at an altitude of approximately 10–15 m above the ground. The collected
data mainly consist of small infrared targets. The images were annotated with six types
of infrared targets: pedestrians, cars, buses, bicycles, cyclists, and trucks. The image
resolution is 640 × 512. The test results are shown in Table 7. LRI-YOLO achieved an
accuracy of 86.7% on this dataset, which, while not the highest, was still among the leading
models. Additionally, LRI-YOLO has the smallest number of parameters and the lowest
computational complexity among these lightweight models. YOLOv8s achieved the highest
accuracy at 90.0%, but its parameter count is about eight times that of LRI-YOLO, and
its computational complexity is about five times higher, meaning it requires significantly
more computational resources. LRI-YOLO, when using a GPU for detection on this dataset,
achieved a speed of 231 FPS, leading the group. On a CPU, the detection speed reached
38 FPS, meeting the requirements for real-time detection.

Table 7. Comparison of experimental results on the infrared aerial human–vehicle detection dataset.

Model P
(%)

R
(%)

Parameters
(M)

FLOPs
(G)

mAP50
(%)

Speed on GPU
(FPS)

Speed on CPU
(FPS)

RT-DETR-r18 85.1 82.9 19.9 56.9 87.5 63 7
Yolov3-tiny 83.7 78.6 12.1 18.9 83.7 280 17

Yolov5n 84.5 80.0 2.5 7.1 86.4 213 27
Yolov5s 86.2 84.7 9.1 23.8 89.8 211 15
Yolov6 82.7 75.9 4.2 11.8 82.2 262 35

Yolov7-tiny 85.0 80.2 6.02 13.2 86.2 203 26
Yolov8n 83.9 80.6 3 8.1 86.6 220 28
Yolov8s 85.9 85.5 11.1 28.4 90.0 210 14

Ours 83.6 81.0 1.6 3.8 86.7 231 38

5. Conclusions

A new lightweight infrared object detection algorithm, LRI-YOLO, has been proposed
for aerial infrared images, making it well suited for aerial infrared object detection tasks.
Most mainstream models have large parameter counts and high computational complexity,
enabling real-time detection on powerful devices with substantial computational resources.
However, on edge devices without GPUs, these models tend to have slower detection
speeds, failing to meet real-time requirements. In contrast, LRI-YOLO, with its lightweight
model structure, can execute real-time detection on CPU devices that have restricted
computational power.

The LRI-YOLO model was developed by enhancing the YOLOv8n baseline model.
These improvements have resulted in increased detection accuracy and a more lightweight
model structure. Tests on the HIT-UAV dataset demonstrate that the enhanced LRI-YOLO
achieved a 0.3% accuracy improvement, reaching 94.1%. Additionally, the model’s parame-
ters were reduced to 53.3% of the baseline, and its computational complexity was just 46.9%
of the original. As a result, the detection speed significantly increased, with the model
achieving an additional 10 FPS on GPU (totaling 240 FPS) and 10 FPS on CPU (totaling
42 FPS).

Although our model performed well on both datasets, these datasets lack infrared
images captured under complex conditions, such as low contrast or infrared noise. There-
fore, in practical applications where infrared scenes are more complicated, it is necessary to
collect infrared images under these challenging conditions for targeted training.

The LRI-YOLO model is a lightweight aerial infrared object detection model. It can
be deployed on edge devices such as drones for real-time detection, making it suitable for
infrared object detection tasks in various scenarios, including wilderness, urban areas, and
roads. This model has promising application prospects.



Drones 2024, 8, 479 20 of 22

Author Contributions: Conceptualization, B.D.; methodology, B.D.; software, B.D.; validation,
B.D. and S.M.; formal analysis, B.D.; investigation, B.D.; resources, B.D.; data curation, B.D.;
writing—original draft preparation, B.D.; writing—review and editing, B.D. and S.M.; visualiza-
tion, B.D.; supervision, Y.Z.; project administration, Y.Z.; funding acquisition, Y.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Shanghai Industrial Collaborative Innovation Project,
grant number XTCX-KJ-2023-2-18.

Data Availability Statement: The HIT-UAV dataset used in this study is publicly accessible and
can be obtained from the official repository: https://github.com/suojiashun/HIT-UAV-Infrared-
Thermal-Dataset (accessed on 25 March 2024). The infrared aerial human–vehicle detection dataset
provided by the Iraytek company can be accessed via the following link: http://openai.iraytek.com/
apply/Aerial_mancar.html/ (accessed on 25 May 2024). The code used in this study can be obtained
from the first author upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wu, X.; Li, W.; Hong, D.; Tao, R.; Du, Q. Deep Learning for Unmanned Aerial Vehicle-Based Object Detection and Tracking: A

Survey. IEEE Geosci. Remote Sens. Mag. 2022, 10, 91–124. [CrossRef]
2. Yue, M.; Zhang, L.; Huang, J.; Zhang, H. Lightweight and Efficient Tiny-Object Detection Based on Improved YOLOv8n for UAV

Aerial Images. Drones 2024, 8, 276. [CrossRef]
3. Cao, S.; Deng, J.; Luo, J.; Li, Z.; Hu, J.; Peng, Z. Local Convergence Index-Based Infrared Small Target Detection against Complex

Scenes. Remote Sens. 2023, 15, 1464. [CrossRef]
4. Fan, X.; Li, H.; Chen, Y.; Dong, D. UAV Swarm Search Path Planning Method Based on Probability of Containment. Drones 2024,

8, 132. [CrossRef]
5. Oh, D.; Han, J. Smart Search System of Autonomous Flight UAVs for Disaster Rescue. Sensors 2021, 21, 6810. [CrossRef]
6. Qiu, Z.; Bai, H.; Chen, T. Special Vehicle Detection from UAV Perspective via YOLO-GNS Based Deep Learning Network. Drones

2023, 7, 117. [CrossRef]
7. Niu, C.; Song, Y.; Zhao, X. SE-Lightweight YOLO: Higher Accuracy in YOLO Detection for Vehicle Inspection. Appl. Sci. 2023, 13,

13052. [CrossRef]
8. Shokouhifar, M.; Hasanvand, M.; Moharamkhani, E.; Werner, F. Ensemble Heuristic–Metaheuristic Feature Fusion Learning for

Heart Disease Diagnosis Using Tabular Data. Algorithms 2024, 17, 34. [CrossRef]
9. Patel, T.; Guo, B.H.W.; van der Walt, J.D.; Zou, Y. Effective Motion Sensors and Deep Learning Techniques for Unmanned Ground

Vehicle (UGV)-Based Automated Pavement Layer Change Detection in Road Construction. Buildings 2023, 13, 5. [CrossRef]
10. Seth, A.; James, A.; Kuantama, E.; Mukhopadhyay, S.; Han, R. Drone High-Rise Aerial Delivery with Vertical Grid Screening.

Drones 2023, 7, 300. [CrossRef]
11. Zhang, S.; Liu, F. Infrared and Visible Image Fusion Based on Non-subsampled Shearlet Transform, Regional Energy, and

Co-occurrence Filtering. Electron. Lett. 2020, 56, 761–764. [CrossRef]
12. Fan, Y.; Qiu, Q.; Hou, S.; Li, Y.; Xie, J.; Qin, M.; Chu, F. Application of Improved YOLOv5 in Aerial Photographing Infrared

Vehicle Detection. Electronics 2022, 11, 2344. [CrossRef]
13. Yang, L.; Xie, T.; Liu, M.; Zhang, M.; Qi, S.; Yang, J. Infrared Small-Target Detection under a Complex Background Based on a

Local Gradient Contrast Method. Int. J. Appl. Math. Comput. Sci. 2023, 33, 7–70. [CrossRef]
14. Pan, L.; Liu, T.; Cheng, J.; Cheng, B.; Cai, Y. AIMED-Net: An Enhancing Infrared Small Target Detection Net in UAVs with

Multi-Layer Feature Enhancement for Edge Computing. Remote Sens. 2024, 16, 1776. [CrossRef]
15. Feng, H.; Mu, G.; Zhong, S.; Zhang, P.; Yuan, T. Benchmark Analysis of YOLO Performance on Edge Intelligence Devices.

Cryptography 2022, 6, 16. [CrossRef]
16. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in

Context. In Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Lecture Notes in Computer Science;
Springer International Publishing: Cham, Switzerland, 2014; Volume 8693, pp. 740–755. ISBN 978-3-319-10601-4.

17. Wang, Y.; Tian, Y.; Liu, J.; Xu, Y. Multi-Stage Multi-Scale Local Feature Fusion for Infrared Small Target Detection. Remote Sens.
2023, 15, 4506. [CrossRef]

18. Chang, Y.; Li, D.; Gao, Y.; Su, Y.; Jia, X. An Improved YOLO Model for UAV Fuzzy Small Target Image Detection. Appl. Sci. 2023,
13, 5409. [CrossRef]

19. Wu, A.; Deng, C. TIB: Detecting Unknown Objects via Two-Stream Information Bottleneck. IEEE Trans. Pattern Anal. Mach. Intell.
2024, 46, 611–625. [CrossRef]

20. Wu, A.; Deng, C.; Liu, W. Unsupervised Out-of-Distribution Object Detection via PCA-Driven Dynamic Prototype Enhancement.
IEEE Trans. Image Process. 2024, 33, 2431–2446. [CrossRef]

https://github.com/suojiashun/HIT-UAV-Infrared-Thermal-Dataset
https://github.com/suojiashun/HIT-UAV-Infrared-Thermal-Dataset
http://openai.iraytek.com/apply/Aerial_mancar.html/
http://openai.iraytek.com/apply/Aerial_mancar.html/
https://doi.org/10.1109/MGRS.2021.3115137
https://doi.org/10.3390/drones8070276
https://doi.org/10.3390/rs15051464
https://doi.org/10.3390/drones8040132
https://doi.org/10.3390/s21206810
https://doi.org/10.3390/drones7020117
https://doi.org/10.3390/app132413052
https://doi.org/10.3390/a17010034
https://doi.org/10.3390/buildings13010005
https://doi.org/10.3390/drones7050300
https://doi.org/10.1049/el.2020.0557
https://doi.org/10.3390/electronics11152344
https://doi.org/10.34768/amcs-2023-0003
https://doi.org/10.3390/rs16101776
https://doi.org/10.3390/cryptography6020016
https://doi.org/10.3390/rs15184506
https://doi.org/10.3390/app13095409
https://doi.org/10.1109/TPAMI.2023.3323523
https://doi.org/10.1109/TIP.2024.3378464


Drones 2024, 8, 479 21 of 22

21. Wu, A.; Deng, C. Single-Domain Generalized Object Detection in Urban Scene via Cyclic-Disentangled Self-Distillation. In
Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA,
19–24 June 2022; pp. 837–846.

22. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
arXiv 2014, arXiv:1311.2524. pp. 580–587.

23. Girshick, R. Fast R-CNN. arXiv 2015, arXiv:1504.08083. pp. 1440–1448.
24. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In

Proceedings of the Advances in Neural Information Processing Systems; Curran Associates: New York, NY, USA, 2015; Volume 28.
25. Liu, M.; Wang, X.; Zhou, A.; Fu, X.; Ma, Y.; Piao, C. Uav-Yolo: Small Object Detection on Unmanned Aerial Vehicle Perspective.

Sensors 2020, 20, 2238. [CrossRef] [PubMed]
26. Wu, X.; Hong, D.; Ghamisi, P.; Li, W.; Tao, R. MsRi-CCF: Multi-Scale and Rotation-Insensitive Convolutional Channel Features for

Geospatial Object Detection. Remote Sens. 2018, 10, 1990. [CrossRef]
27. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings

of the Computer Vision—ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham,
Switzerland, 2016; pp. 21–37.

28. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

29. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
30. Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object

Detectors. arXiv 2023, arXiv:2207.02696. pp. 7464–7475.
31. Reis, D.; Kupec, J.; Hong, J.; Daoudi, A. Real-Time Flying Object Detection with YOLOv8. arXiv 2024, arXiv:2305.09972.
32. Chen, C.; Zheng, Z.; Xu, T.; Guo, S.; Feng, S.; Yao, W.; Lan, Y. YOLO-Based UAV Technology: A Review of the Research and Its

Applications. Drones 2023, 7, 190. [CrossRef]
33. Liang, S.; Wu, H.; Zhen, L.; Hua, Q.; Garg, S.; Kaddoum, G.; Hassan, M.M.; Yu, K. Edge YOLO: Real-Time Intelligent Object

Detection System Based on Edge-Cloud Cooperation in Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23,
25345–25360. [CrossRef]

34. Wu, H.; Zhu, Y.; Li, S. CDYL for Infrared and Visible Light Image Dense Small Object Detection. Sci. Rep. 2024, 14, 3510. [CrossRef]
35. Jiang, C.; Ren, H.; Ye, X.; Zhu, J.; Zeng, H.; Nan, Y.; Sun, M.; Ren, X.; Huo, H. Object Detection from UAV Thermal Infrared Images

and Videos Using YOLO Models. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102912. [CrossRef]
36. Zhao, X.; Xia, Y.; Zhang, W.; Zheng, C.; Zhang, Z. YOLO-ViT-Based Method for Unmanned Aerial Vehicle Infrared Vehicle Target

Detection. Remote Sens. 2023, 15, 3778. [CrossRef]
37. Zhao, X.; Zhang, W.; Zhang, H.; Zheng, C.; Ma, J.; Zhang, Z. ITD-YOLOv8: An Infrared Target Detection Model Based on YOLOv8

for Unmanned Aerial Vehicles. Drones 2024, 8, 161. [CrossRef]
38. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. arXiv 2018, arXiv:1803.01534. pp.

8759–8768.
39. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of

the Advances in Neural Information Processing Systems; Curran Associates: New York, NY, USA, 2012; Volume 25.
40. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
41. Chen, J.; Kao, S.; He, H.; Zhuo, W.; Wen, S.; Lee, C.-H.; Chan, S.-H.G. Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural

Networks. arXiv 2023, arXiv:2303.03667. pp. 12021–12031.
42. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.
43. Larsson, G.; Maire, M.; Shakhnarovich, G. FractalNet: Ultra-Deep Neural Networks without Residuals. arXiv 2016,

arXiv:1605.07648. [CrossRef]
44. Li, X.; Wang, W.; Hu, X.; Li, J.; Tang, J.; Yang, J. Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for

Dense Object Detection. arXiv 2021, arXiv:2011.12885. pp. 11632–11641.
45. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression.

In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp.
12993–13000.

46. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]

47. Yu, Z.; Huang, H.; Chen, W.; Su, Y.; Liu, Y.; Wang, X. YOLO-FaceV2: A Scale and Occlusion Aware Face Detector. Pattern Recognit.
2024, 155, 110714. [CrossRef]

48. Suo, J.; Wang, T.; Zhang, X.; Chen, H.; Zhou, W.; Shi, W. HIT-UAV: A High-Altitude Infrared Thermal Dataset for Unmanned
Aerial Vehicle-Based Object Detection. Sci. Data 2023, 10, 227. [CrossRef] [PubMed]

49. Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable DETR: Deformable Transformers for End-to-End Object Detection.
arXiv 2010, arXiv:2010.04159. [CrossRef]

50. Dai, Z.; Cai, B.; Lin, Y.; Chen, J. UP-DETR: Unsupervised Pre-Training for Object Detection with Transformers. arXiv 2021,
arXiv:2011.09094. pp. 1601–1610.

https://doi.org/10.3390/s20082238
https://www.ncbi.nlm.nih.gov/pubmed/32326573
https://doi.org/10.3390/rs10121990
https://doi.org/10.3390/drones7030190
https://doi.org/10.1109/TITS.2022.3158253
https://doi.org/10.1038/s41598-024-54146-1
https://doi.org/10.1016/j.jag.2022.102912
https://doi.org/10.3390/rs15153778
https://doi.org/10.3390/drones8040161
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.48550/arXiv.1605.07648
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1016/j.patcog.2024.110714
https://doi.org/10.1038/s41597-023-02066-6
https://www.ncbi.nlm.nih.gov/pubmed/37080987
https://doi.org/10.48550/arXiv.2010.04159


Drones 2024, 8, 479 22 of 22

51. Dai, X.; Chen, Y.; Yang, J.; Zhang, P.; Yuan, L.; Zhang, L. Dynamic DETR: End-to-End Object Detection with Dynamic Attention.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October
2021; pp. 2988–2997.

52. Lv, W.; Zhao, Y.; Xu, S.; Wei, J.; Wang, G.; Cui, C.; Du, Y.; Dang, Q.; Liu, Y. DETRs Beat YOLOs on Real-Time Object Detection.
arXiv 2023, arXiv:2304.08069. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/arXiv.2304.08069

	Introduction 
	Related Work 
	Materials and Methods 
	YOLOv8 
	LRI-YOLO 
	The Faster-C2f Module Based on Partial Convolution 
	The Super-Downsample Module Based on Max Pooling and Convolution 
	The Efficient-Head Module Based on Group Convolution 
	The EMASlideLoss Based on SlideLoss and Exponential Moving Average Concept 

	Experimental Dataset 
	Evaluation Indicators 

	Experimental Results 
	Experimental Platform and Parameter Settings 
	The Efficient-Head Hyperparameter Experiment 
	Ablation Experiments 
	Contrast Experiments 

	Conclusions 
	References

