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Abstract: The Internet of Drones (IoD) is a decentralized network linking drones’ access to controlled
airspace, providing high adaptability to complex scenarios and services to various drone applications,
such as package delivery, traffic surveillance, and rescue, including navigation services. Unmanned
Aerial Vehicles (UAVs), combined with IoD principles, offer numerous strengths, e.g., high mobility,
wireless coverage areas, and the ability to reach inaccessible locations, including significant improve-
ments such as reliability, connectivity, throughput, and decreased delay. Additionally, emerging
blockchain solutions integrated within the concept of the IoD enable effective outcomes that surpass
traditional security approaches, while enabling decentralized features for smart human-centered
applications. Nevertheless, the combination of the IoD and blockchain faces many challenges with
emerging open issues that require further investigation. In this work, we thoroughly survey the
technological concept of the IoD and fundamental aspects of blockchain, while investigating its
contribution to current IoD practices, the impact of novel enabling technologies, and their active
role in the combination of the corresponding synergy. Moreover, we promote the combination of
the two technologies by researching their collaborative functionality through different use cases
and application fields that implement decentralized IoD solutions and highlighting their indicative
benefits, while discussing important challenges and future directions on open issues.

Keywords: Artificial Intelligence; blockchain; Internet of Drones; Internet of Things; open issues;
security; Unmanned Aerial Vehicles; use cases

1. Introduction

Unmanned Aerial Vehicles (UAVs), also known as drones, are pilot-free aircrafts con-
trolled by a remote user or control station. Until recently, drones were operated individually.
However, recent technological accomplishments allow a high number of drones to intercon-
nect and accomplish complex missions coordinately [1], aiming for the efficient management
of their airspace [2]. Such approaches have led to the rise of the Internet of Drones (IoD)
ecosystem [3], leveraging a wide range of applications and deploying various tasks, such as
agricultural monitoring, faster package delivery with reduced operational costs [4], drone
swarm surveillance with autonomous operations, service relaying (e.g., Internet services to
remote locations), and so on [5], due to the increased flexibility, mobility, scalability, and
autonomy [6]. The IoD is considered to be a part of the Internet of Things (IoT), equipped
with interconnected physical devices and Internet-connected sensors [7,8]. Substantially, the
drone network obtains a new perspective, providing more features, while at the same time
key IoT properties are maintained [9]. However, it also inherits the security weaknesses of IoT
networks [10]. As a typical network architecture, it enables communications between UAVs
and devices on the ground [11] in a coordinated manner [12], allowing drones to have flight
control and providing navigation services [13] such as the internal transmission and exchange
of data, with integrated mobility, portability, and automation [14].
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In addition, with drones interacting across a public wireless channel [15], the IoD is
integrated with different systems, such as Wireless Sensor Networks (WSNs), i.e., systems
spatially separated from UAVs allowing them to function efficiently in an expanding
controlled zone, considering connection performance [16], due to congestion prevention,
which results in reducing packet loss while ensuring equal bandwidth allocation [12].
Some significant characteristics of the IoD, such as (a) Device to Device (D2D) support
and Device to Multi-device (D2M) communications, (b) facilitating connectivity to the
contextual networks, and (c) its ability to operate as a data gathering and information
management service [9], combined with its small size, high reconfigurability, functionality,
and real-time accountability, have led to its adoption by more and more organizations [7].
Nevertheless, the IoD is vulnerable to various risks at different levels, such as radio signals
for the communication between drones and users being interrupted, hacking, requested
and transmitted data including Global Positioning System (GPS) signals, and vulnerabilities
in the drone software to malicious injections [12].

On the other hand, blockchain allows transparent data sharing within a decentralized
network, with an immutable ledger facilitating the process of recording transactions and
tracking assets [17], as well as providing trust, security, and reliability of data process-
ing [18]. The dominant advantages and capabilities of blockchain were soon recognized
and leveraged, with relative solutions being applied in different fields, among them UAVs
to tackle emerging problems. Today, the integration of blockchain (public or private) within
the IoD ecosystem has gained growing attention, providing many benefits in relation to the
enhancement of IoD networks, and mitigating security and safety risks, as well as improv-
ing reliability. Consequently, it has been proven that the utilization of a certain amount
of fragmented blockchains [19] is highly effective in a multitude of security applications
due to its vital features, i.e., decentralization, immutability, transparency, traceability, and
auditability [20], as well as cryptographic capabilities. Specifically, blockchain provides
extensive solutions to satisfy demanding IoD security requirements, such as authentication,
privacy, confidentiality, and integrity, through smart contracts (SCs) and access control [4].

Nevertheless, since the IoD and blockchain are considered to be types of embedded
networks, utilizing communication links and smart devices that handle various sensitive
information that is collected, transmitted, and exchanged, they are also being undermined
by threats and vulnerabilities. Such data leaks lead to trust and privacy issues [21,22], while
security breaches between networks and communication links lead to extensive losses of
resources, trust, and availability [23,24].

With the constant evolution of the IoD and blockchain approaches, additional emerg-
ing digital technologies are being incorporated in the respective synergy as impactful
enablers [25], such as (a) Artificial Intelligence (AI) [26]; (b) Cloud Computing (CC) [27];
(c) Edge Computing (EC), including Edge AI for smarter computational systems as well as
intellectual tasks of robotic machinery [28]; (d) IoT [29]; and (e) communication technolo-
gies, such as 5G/6G for smarter communication, fast and accurate processing of big data,
transmission, and handling [30,31].

As the benefits of the corresponding synergy are increasing, improved adjustability
has been noted in various use cases. The combinative concept is adaptable to a wide range
of industrial and application fields, such as healthcare, finance, government, agriculture,
media, and natural disasters, fulfilling their objectives and at the same time ensuring
requirements such as security, scalability, and efficiency [32].

To this end, the aim of this study is to provide an exhaustive review and present the current
status and role of blockchain for the effective enhancement of the IoD. This work covers a wide
range of aspects, summarized in the following distinct points: (1) The referenced frameworks of
the IoD and blockchain, (2) a holistic review of IoD- and blockchain-related works, (3) a conceptual
architecture model and IoD component requirements, (4) security and privacy issues, (5) the role
and contribution of blockchain as an addition to IoD systems, (6) the synergy of the IoD and
blockchain with indicative enabling technologies, (7) referenced use cases of IoD and blockchain
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solutions, (8) the presentation of emerging IoD challenges, (9) proposed potential solutions to face
the corresponding challenges, and (10) open issues and future research directions.

The organization of this survey is as follows: Section 1 provides a brief introduction
to the IoD and blockchain ecosystems as well as requirements regarding their integration,
while highlighting the role of other technologies as conceivable solutions. Section 2 provides
the motivation and the contributions of this work. Section 3 presents the research strategy
followed. Section 4 provides an overview of the IoD ecosystem, including components,
requirements, and a conceptual architecture model, as well as security concerns. Section 5
discusses the concept of blockchain, with an emphasis on its role as an extension of the IoD.
Section 6 focuses on the technologies that enable the combination of the IoD and blockchain,
such as AI, communication technologies (e.g., 5G/6G), the IoT, and Cloud/Edge Computing.
Section 7 investigates indicative use cases—such as supply chains, healthcare, natural disasters,
agriculture, charging/refueling, and media—that implement the corresponding synergy.
Section 8 includes a thorough discussion based on the research findings, summarizing various
challenges at different levels, proposing solutions, and providing open issues and future
research directions. Finally, Section 9 presents the conclusions of our research. Figure 1 depicts
a visual representation of this paper’s structure and related contents.
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2. Motivation and Contribution

Recently, the leverage of interconnecting drones within the concept of the IoD has
revolutionized the proposition of significant infrastructure, aiming towards the control and
access of drones over the Internet. However, these systems are vulnerable to infiltration
issues, including privacy and security concerns. Nevertheless, the integration of blockchain
technology within IoD networks has gained growing attention, providing many benefits
related to the security enhancement of IoD networks.

Several review articles can be found in the recent literature. However, most of the surveys
are restricted to the individual research of IoD and blockchain technologies, mainly focusing
on security issues, with minimal availability on their potential combination. In [33,34], the
authors discuss security concerns and challenges of IoD domains while emphasizing authen-
tication issues. In [35], the authors discuss cybersecurity weaknesses and intrusions of the
IoD, and they elucidate potential countermeasures. In [36], the authors investigate the role of
blockchain in UAV networks in various fields, including the security of systems, attacks on
the IoD, and preventive countermeasures, while in [37] the authors discuss the integration of
blockchain as a solution to tackle IoD network security issues. In [14], the authors analyze
architectures and applications of the IoD, including networking and decentralization, as well
as security and privacy issues. In [38], IoD privacy and security challenges derived from
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drone operations are described, including the impact on an IoD network, particularly on large-
scale networks. In [4], the authors provide a systematic literature review, gathering material
related to the IoD and blockchain technologies, including security issues of the corresponding
technologies. In [39], the researchers focus on the combination of the IoD and blockchain for
certain application fields, including a relative communication network. The paper presented
in [40] discusses blockchain and robotics technologies, focusing on security concerns. Similarly,
Ref. [17] provides an exhausting overview of blockchain technology, including its architecture,
components, characteristics, and operational principles, while in [41] the IoD and blockchain
technologies are thoroughly described, including applications and security issues. Moreover,
Refs. [42,43] describe enabling technologies of IoD, while mentioning blockchain as well.
In [44], the authors propose the combination of 5G networks and blockchain by examining
security issues, while in [45] the authors discuss AI and blockchain as underpinning technolo-
gies, including use cases of the IoD and blockchain. In [46], the authors research blockchain
in combination with Edge Computing, emphasizing security issues and indicative solutions,
while in [47] the authors focus on security vulnerabilities in drone applications and discuss
blockchain as an emerging technology for security solutions for drones.

Table 1 includes the basic features of the aforementioned related works regarding IoD
and blockchain technologies, aiming to comparatively highlight the contribution of the
present review work in relation to previous ones.

Undoubtedly, the available literature offers significant contributions to the research
and academic communities. The majority of studies describe the IoD technology focusing
on drone characteristics and requirements, while others discuss security and privacy issues
related to networks, including proposed solutions utilizing different technologies, such
as blockchain. The corresponding review of the existing literature reveals a significant
gap in research focusing on the underpinning technologies, use cases, and challenges
associated with the integration of blockchain and IoD systems, with the authors across the
previous articles not extensively discussing the role, contribution, and integration of the
specific combination. The lack of focus on the underpinning technologies, uses cases, and
challenges of combining blockchain with IoD appears to be a common theme in these works.
This lack of emphasis on these critical aspects hinders the development and understanding
of how blockchain can enhance the functionality and security of IoD systems.

Understanding how blockchain protocols can be adapted and optimized for use in
a network of interconnected devices is crucial for ensuring data integrity, privacy, and
security. Additionally, identifying the specific challenges and constraints that may arise
from implementing blockchain in IoD environments is essential for developing effective so-
lutions and strategies. Moreover, the literature indicates a significant gap in the exploration
of use cases for blockchain in the context of the IoD. While some studies briefly mention po-
tential applications or scenarios where blockchain could add value to IoD systems, a more
in-depth analysis of real-world examples and industry-specific implementations is needed
to demonstrate the practical benefits of this integration.

Furthermore, the lack of focus on challenges and opportunities associated with inte-
grating blockchain with the IoD is a notable gap in the existing research. Issues such as
scalability, interoperability, data management, and regulatory compliance are critical con-
siderations that must be addressed to ensure the successful implementation of blockchain
technology in IoD environments. Nevertheless, none of them provides a unified approach
to presenting and analyzing in detail the significance of blockchain technology within
an IoD environment. The lack of complete research acted as a solid motivation to carry
out a thorough investigation regarding the contribution of blockchain for impactful IoD
enhancement, holistically identifying its related research gaps. Hence, the contribution
and innovation of our work lie in a detailed analysis of the role of blockchain, correlated
with the field of IoD, including architectures and requirements; underlining attacks; ana-
lyzing security and privacy issues, underpinning technologies, and combinative use cases;
highlighting challenges and constraints; and responding to the key research questions.
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Table 1. Comparative table of the characteristics of the present work versus related available literature.

Characteristics
Blockchain Integration within the Internet of Drones (IoD)

[33] [34] [35] [36] [37] [14] [38] [4] [39] [40] [17] [41] [42] [43] [44] [45] [46] [47] Ours

IoD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓1 × 2 × ✓ ✓ ✓ ✓ × ✓ ✓ ✓

Blockchain × × × ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IoD–blockchain
integration × × × ✓ × × × ✓ ✓ × × ✓ ✓ ✓ × × × × ✓

Contribution
of blockchain × × × × ✓ ✓ × × × × × × × ✓ ✓ × × ✓ ✓

Security issues ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ × × ✓ ✓

Underpinnings
technologies × × × × ✓ × × × × ✓ × × ✓ ✓ ✓ ✓ ✓ ✓ ✓

Uses cases of
IoD and blockchain × × × × × × × × × × × × × × × × × × ✓

Challenges ✓ ✓ × ✓ ✓ ✓ ✓ × × × × ✓ ✓ ✓ × ✓ ✓ × ✓
1 ✓included characteristics; 2 × missing characteristics
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3. Research Methodology

Within the context of this work, a systematic literature review was carried out by
using the Kitchenham approach [48] to identify the status of implementing decentralized
solutions within IoD systems, based on the following research questions:

RQ1: Why is blockchain used in the IoD?
RQ2: What are the strengths and weaknesses of using blockchain in the IoD?
RQ3: Which underpinning technologies are integrated within the IoD and blockchain

ecosystems?
RQ4: In which cases can the IoD and blockchain be applied together?
RQ5: What are the strengths and weaknesses of combining blockchain and the IoD?
RQ6: What are the challenges and open issues related to the integration of blockchain

and the IoD?
In order to have an initial perception of the corresponding research topic, we performed

a search of peer-reviewed journal publications in the Scopus database using the query “(TITLE-
ABS-KEY (internet AND of AND drones) AND TITLE-ABS-KEY (blockchain)) AND (LIMIT-
TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE, “ch”))
AND (LIMIT-TO (LANGUAGE, “English”)) AND (EXCLUDE (PUBYEAR, 2024))”. The
process returned 201 documents. Figure 2 summarizes the number and the proportion of the
total number of published works on the subject in the range from 2017 to 2024, in a full period
of 5 years. Although the combination of IoD and blockchain technologies has been researched
only in the last five years, the ever-increasing number of publications, arithmetically and
proportionally, shows an overall upward trend, indicating the significance of this research
topic. Figure 3 illustrates high-frequency keywords used, in terms of the IoD and blockchain
within the related literature, based on their occurrence, and with the font size indicating the
respective frequency. As can be observed, the majority of the available scientific material
focuses on blockchain and UAVs. In addition, network security, IoT, and 5G communication
systems, as well as authentication, are the most used for various application fields and
investigated issues.
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Based on the literature, since the integration of blockchain within the IoD has not been
investigated in depth, we proceeded to a more extensive research analysis of the relation
between these emerging technologies. According to Figure 4, concerning the main context
of the reports, papers focused on blockchain and the IoD are directly related and, as the
core of this subject, occupy a lot of space on the grid, with greater density, and tend to be in
the motor theme space. However, different technologies, such as AI and augmented reality
(AR), also take place in the corresponding fields as basic themes, while 5G communication
technologies are a potential factor for the operating systems of interest. In addition, security
issues are illustrated to a lesser extent, combined with related file systems. Furthermore,
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many use cases, such as agriculture, robotics, and supply chains, also play a significant role.
However, learning systems and related topics were identified as a common space between
emerging and niche themes, and between emerging and basic ones, respectively, due to
their close relation to the IoT. Nevertheless, the IoD is considered to be a byproduct of the
IoT, resulting in the inclusion of a variety of applications.
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The terms blockchain and drones are utilized at the same frequency and have a notable
impact. In more detail, blockchain appears as “block-chain” in 43.8% of the publications
and as “blockchain” in 55.6% of them, while the term “drones” appears in 44.1% of the
publications. It is evident that these percentages are comparable; hence, there is a clear
potential for interconnection and formation as a main research topic. In addition, blockchain
and drones, combined with IoT features, exhibit similar appearance percentages of 50%
and 52.4%, respectively. However, IoT appears at a higher percentage of 74.3%, due to
the inclusion of decentralized principles and UAVs for different types of applications. On
the other hand, aerial vehicle–blockchain–convolution also has a partial centrality, but
with a different impact in contrast to the previous case. Particularly, convolution with
a percentage of 100% denotes that state-of-the-art technologies such as Machine Learning
(ML) are implemented in blockchain and IoD solutions. Also, the low percentages of aerial
vehicles (41.7%) and blockchain (11.1%) are related to the low utilization frequency of
these specific writings. Figure 5 depicts the impact and centrality of the relative affinity
percentage of each topic.
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4. The Internet of Drones (IoD)

The IoD is considered to be a state-of-the-art subfield of the IoT, supporting the
coordination and interconnection of drones within a common network [9].

4.1. Background of the Internet of Drones (IoD)

The IoD is a layered network providing controlled and coordinated access to drones,
while simultaneously offering important benefits such as scalability, codebase maintenance,
and layer modification flexibility, with minimal changes to other interconnected layers [2].
An indicative IoD network consists of three layers with dedicated functionalities: (a) an air
traffic control network layer, (b) a cellular network layer, and (c) the Internet [49].

A traditional IoD architecture is divided into certain components for the proper and
efficient operational performance of UAVs, through controlling and administering to en-
sure that the collected data reach the correct destination from the source nodes [2,50] and
the utilized communication protocols [51]. Some referenced protocols that support data
transmission between nodes are MAVLink and ROSLink [52]. Practically, decision-making
tasks are conducted by nodes to establish their required behavior within the network [53]
and accelerate the routing between reference and target nodes [54]. The process of data
collection, data transmission, stability, and communication methodologies depend on the
architectural components with novel methodologies researched and analyzed in [55–57],
while further elements in the IoD environment are part of the middleware layer, separated
into service-based and cloud-based counterparts, ensuring the abstraction between the
various interfaces of the IoD, such as programming languages, operating systems, net-
works, and architectures [58]. Service-based middleware provides network access, local
message delivery, caching, and name resolution to the IoD architecture, while ensuring
robust connectivity and collaboration for the entire IoD architecture due to its integration
capabilities in other network layers [59]. Cloud-based middleware delivers a response to
the requested service rapidly and supports various application operations, such as Robot
Operating System (ROS), for their integration within the network architecture [2], while
providing reliable communication between the ground network and UAVs [60]. Since mul-
tiple drones are interconnected to perform various operations simultaneously, data fusion
and sharing is an important element of the IoD infrastructure, allowing the processing and
merging of various data sources to further generate and revise data for decision-making
tasks. Moreover, IoD data can be classified into distributed (meta-architecture), centralized,
and cloud-based data. To begin with, distributed data support their transition into a form
of local interaction, leading to their scalability, fault tolerance, interoperability, ease of
redesign and reconfiguration, and security against unscheduled drone disconnections [61].
Next, centralized data are defined for their smooth operational flow and share all of the
required information through the fusion center, with the support of other interconnected
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devices of the network leading to more accurate task-related information [62]. Cloud-based
data are controlled by cloud interfaces consisting of various services, including safety
analytics, collision prevention, and operations concerning risk-aware navigation [63]. Fi-
nally, network security issues, such as authentication, privacy, availability, and intrusion
detection, as well as considerations for secure data transmission, are the most important
factors that should be implemented in the design of IoD architectures and the development
of their corresponding applications [36]. Figure 6 depicts an overview of the corresponding
elements and features of a traditional IoD infrastructure.
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The main requirements of the IoD can be categorized into communication and security
requirements, due to drones being the main functional component of the corresponding
technology. Figure 7 depicts the respective key IoD requirements.
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Seamless coverage supports the operations of drones at different altitudes in contrast to
networks. For instance, coverage of up to 10 m altitude is appropriate for plant protection,
up to 50 to 100 m for power line inspection, and up to 200 to 300 m is sufficient for
mapping of agricultural land [64]. Real-time and remote controllers are used for the
monitoring of flight conditions, drone tasks, and equipment, as well as emergency control,
depending on conditional latency and data rate requirements. Transmission of high-
definition images and videos provides a high uplink data rate from the drone to the station,
depending on their size and quality, respectively. Also, 5G networks support services such
as multi-data rates of 10 Gbps, low-latency operations, increasing wireless communication
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ranges [65], and additional features as part of the drones’ application, including augmented
and virtual reality [66]. Mobile networks identify and control drones through the support
of (a) registration of flight control serial numbers and legality; (b) detection and monitoring
of drone connections and data communications, whereas in real-time tracking additional
regulatory protocols are established; and (c) time-sensitive evaluation and warning of
flights for risk prevention related to flight paths, traffic, and coordination [13]. Finally,
precise vertical or horizontal positioning is significant; however, it is contingent upon
application [66].

At the same time, privacy and security issues emerge from the network itself, such
as localization errors [67]. Consequently, additional emphasis is required on the authen-
tication of devices, nodes, and users in order to prevent unauthorized access to sensitive
information [68], including mutual authentication between a drone and a Ground Control
Station (GCS). Such countermeasures are achieved through the utilization of security keys,
ensuring absolute secrecy and confidentiality in the protection of wireless communication
channels from unauthorized disclosure of information [69], data availability, access con-
trol [13], integrity of collected data [68], and non-repudiation aiming to reveal concealed
actions [70,71].

4.2. Fundamental IoD Architecture

The IoD, as a network architecture, controls airspace by deploying interconnected
UAVs and by establishing their constant coordination, which is achieved through the
establishment of a Ground Station (GS) and the deployed drones [2]. An essential task of
the UAVs is acquiring and storing data and information from a specific Fly Zone (FZ), which
are then transmitted to the assigned GS via wireless communication modules [72,73] based
on IoT technologies [26,74,75]. Specifically, the airspace is divided into multiple specific
FZs and drone groups, aiming toward the monitoring process of a particular environment
for the effective collection of data, which are transmitted to the management server of the
GCS. The MS has additional responsibilities, such as the storage of private information
pertaining to the user, drone, and air space. In the Control Room (CR), a user monitors the
predetermined IoD environment, with all of the network participants being registered prior
to the drone deployment in the scheduled FZ [69]. After registration, drones collect data
in real-time from their corresponding zone and transmit them to the MS, while being able
to share the collected data with their neighbors. Moreover, the CR can assign instructions
to drones via the MS to perform any required task. The wireless connectivity is achieved
by 5G cellular networks in a specific FZ, in contrast to the connectivity between the GS
and wireless access points, which is wired [76]. Figure 8 depicts a conceptual IoD network
model, with an overview of the communications and responsibilities of various parties in
the IoD environment.
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4.3. Security in the IoD

With the drone industry developing, the number of UAV-based applications is in-
creasing. Consequently, different risks and vulnerabilities are also increasing. An IoD
framework is susceptible to many security and safety issues, which can significantly af-
fect the accomplishment of the predetermined task, the data (acquisition, communication,
storage), and the network [39] while taking into consideration transmissions involving
sensitive and critical information, as the IoD infrastructure becomes a target for many
hostile cyber-attacks [77].

These attacks can be ranked as follows: (a) device attacks, aiming to mimic confidential
credentials to access the drones’ components; (b) network attacks, where data streams are
tampered with and altered; and (c) software attacks, where drones or Ground Stations
are injected with malicious data [78]. Thus, the preservation of confidentiality, integrity,
availability, authenticity, and privacy are key requirements of the IoD, to properly reflect its
capabilities and functions in tackling threats and security breaches [35], i.e., (a) confidential-
ity of wireless communication channels prevents data leaks, (b) integrity ensures that the
collected data remain unchanged, (c) availability of services to authorized users remains
even in the case of infiltration, and (d) authentication verifies identities before access or
exchange of data, while privacy prevents malicious approaches from disclosing personal
data without permission. As a result, data leaks raise serious privacy concerns and threaten
location- and identity-related information [13], leading to trust issues among the related
stakeholders [22].

Moreover, IoD networks are vulnerable to physical threats, with a great impact on
their safety and, as a result, the drones’ requirements for accomplishing their predefined
objectives [39]. Significant examples of physical threats are theft and vandalism [79], harsh
weather conditions (depending on the size of the operating drone), collision among drones
due to the nature of IoD applications and the collaborative manner of drone fleets, and
possible sensory malfunctions [80].

4.3.1. Localization Error-Based Attacks

One of the main categories of attacks on IoD systems is localization error-based at-
tacks [81]. Specifically, lack of localization for cyber–physical systems, such as the IoD,
leads to significant errors that emerge from hindering the estimation of drones’ secure loca-
tion [82]. Figure 9 shows the taxonomy of IoD attacks based on the corresponding category.
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According to the scheme, navigational signals are used to estimate precise locations
within an IoD network, including the Global Positioning System (GPS), Global Navigation
Satellite Systems (GNSSs), and Ground Control Signals (GCSs). GPS spoofing attacks
aim to modify the content of the received GPS signals through the generation of spoof
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GPS signals with specialized generators. As a result, a significant signal delay is created,
causing coordination imbalances and possible midair collisions [83]. Next, channel jamming
disrupts communications [84] through the utilization of GNSS signals received by drones,
in order to provide incorrect directions, while in the case of GCSs third parties transmit
false GC signals for the direction of drones to specific places. Disruptions based on jamming
signals cause the collision of UAVs or unavailability of services [85], facilitating efforts of
hijacking or physical damage to the drone. In the cases of both GNSS and GCS jamming
attacks, all of the signals are interrupted and all of the GCS are obstructed.

Another type of localization error attack is the traditional data injection, resulting
in modified instructions for changing the drones’ programmed route [86]. A selective
forwarding attack, also known as a wormhole attack [87], is a network layer attack on the
IoD, where a malicious node selectively drops or alters packets passing through it, dis-
rupting the normal functioning of the network, with the potential of causing malfunctions
in drone communications and data interactions [88]. Malware attacks, such as Snoopy
software, are installed by third parties for the collection of data related to the utilized Wi-Fi
within the IoD system, resulting in navigation control of the drone. Similarly, skyjet attacks
are related to the installation of hijacking software for the deactivation of the default and
preprogrammed navigation controls [89], while in skyjack attacks the perpetrators attempt
to detect and infiltrate utilized wireless networks [90]. The last type of malware attack is
Maldrone, disrupting the communication between the drone’s flight controls and imple-
mented sensory devices [91]. Tampering attacks on the IoD involve an attacker physically
or digitally altering the drone’s hardware or software, leading to potential unauthorized
control, data theft, or even drone damage [34].

Moving on to message alteration, transmitted data and messages for the efficient
control of drones are disrupted through these approaches, such as the case of man-in-the-
middle attacks on navigational data, where the communicated data streams between the
drone and its corresponding navigational control system are accessed without authoriza-
tion [53]. Also, eavesdropping is where the communicated navigational messages between
the drone of interest and its controller are intercepted through unsecured communication
channels [92]. In wormhole attacks, data regarding navigation and controls are recorded,
adapted, and retransmitted to the drone’s main control system.

Other attacks are related to distance displacement, altering the data on position esti-
mation of the IoD components. In this case, the falsification of data on distance calculation
in terms of size or content can vary compared to the real signal [93].

Algorithm-based attacks are the last type of localization error-based infiltrations,
defined by infused algorithms that cause impactful misleading of auto-pilot functionali-
ties [94] and distort the acoustic position control algorithm through alteration of the drone’s
resonant gyroscope frequency [95]. In addition, a collision attack in the context of the
IoD can refer to two different scenarios: Starting with physical collision, it refers to the
physical impact between two or more drones. This can be mitigated by implementing
advanced collision avoidance systems that use real-time sensor data to detect and avoid
obstacles. Techniques such as geo-fencing, where drones are programmed to stay within
a specific geographical boundary, can also be used. Additionally, drones can be equipped
with fail-safe mechanisms that guide them to a safe landing spot in case of a system failure.
Meanwhile, data collision refers to the scenario where two or more drones try to transmit
data simultaneously over the same frequency, causing the data packets to collide and
resulting in loss of data [96]. An impersonation attack in the context of the IoD involves
an attacker pretending to be a legitimate drone or control station in order to gain unau-
thorized access or control [76]. Also, a side-channel attack involves an attacker gaining
information from the physical implementation of a system, rather than exploiting software
vulnerabilities or cryptographic weaknesses. This can include information leaked through
power consumption, electromagnetic emissions, and timing information [97].
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4.3.2. Attacks Based on Security and Privacy Requirements

This category of IoD attacks is based on the security and privacy requirements of
the corresponding concept, targeting important principles, namely, integrity, availability,
authenticity, confidentiality, and privacy, as also shown in Figure 10.
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Starting with privacy, data that are collected and processed through IoD mechanisms
can be stolen or disrupted by adversaries [98] with strategies such as traffic analysis, by
obtaining information on IoD devices and networks, including location, connected sensory
devices, and their captured data that are distributed between the IoD network and GCS,
resulting in the interception of network traffic.

Another category of attacks is related to the integrity i.e., the accuracy, trust, and con-
sistency of data [99]. IoD integrity is affected by inserting false data in the communications
system, through modification, fabrication, substitutions, and data injections intending to
mislead drone users, or utilizing tactics [100].

Confidentiality is affected by unauthorized access of non-legitimate users to the
components of the IoD network for the retrieval of targeted information [22]. Indicative
examples are spoofing identification, with the attacker pretending to be a legitimate user
by spoofing ID credentials; unauthorized access to the IoD server and services using
hacked accounts or ID duplication; replay attacks through bypassing and replaying of the
established security mechanisms and requests; and eavesdropping for real-time interception
of IoD communications, aiming at the retrieval of confidential information [21].

Attacks related to the availability of the IoD aim to cause physical damage to the
structure of the drone or its hardware components, e.g., through network interruption
(Denial-of-Service, DoS), including flooding, where the attacker overwhelms the drone’s
network by sending a large amount of unnecessary and unwanted traffic. This can cause
the drone’s network to become overloaded, leading to a slowdown in performance or even
a complete shutdown [101] and normal traffic server disruption (Distributed Denial-of-
Service, DDoS), through GPS spoofing and channel jamming, preventing legitimate users
from accessing services and essential resources [102].

In terms of trust, several risks may emerge during the development and deployment
phases, due to misconfiguration and limited incorporation of security mechanisms [103],
through firmware replacements during upgrading processes, or through falsified IoD
mechanisms resulting in data leaks [9]. Other strategies worth mentioning are keyloggers,
utilized for private data to be forwarded directly to attackers, or regulatory violations by
trusted third parties leading to financial and intellectual property losses.

Protecting IoD systems from cyber threats is crucial in ensuring the safety, security,
and reliability of drone operations. To defend against potential attacks, robust security
measures need to be implemented, including encryption, regular software updates, strong
authentication, and continuous monitoring. These measures are essential in safeguarding
drone systems from unauthorized access, data interception, DoS attacks, malware injection,
GPS spoofing, physical attacks, and signal jamming [9].

Encryption plays a crucial role in safeguarding communication channels between
drones and Ground Control Stations while ensuring the confidentiality and integrity
of exchanged data. It ensures that the data are scrambled through the utilization of
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algorithms and can only be decrypted by authorized parties with the necessary keys.
This prevents hackers from eavesdropping on the communications and gaining access
to sensitive information [104]. Regular security updates and patches are also essential in
addressing vulnerabilities in communication. By encrypting data during transmission,
even if intercepted, they remain unreadable and meaningless to unauthorized entities [105].
Implementing strong encryption protocols, such as the Advanced Encryption Standard
(AES) or Rivest–Shamir–Adleman (RSA) encryption, can effectively protect data from
interception attacks. These encryption mechanisms use complex mathematical algorithms
to encode data, making it extremely difficult for attackers to decipher the information
without the decryption key. Additionally, encryption should be applied not only to data in
transit but also to data at rest on drones and GCSs to ensure end-to-end protection [88]

Furthermore, regular auditing and monitoring of communication channels for sus-
picious activities can help detect and prevent data interception attempts in real time, by
setting up intrusion detection. The significance of monitoring traffic for early detection
and prevention of DoS attacks cannot be overstated in safeguarding drone systems. By
closely monitoring network traffic patterns and behavior, organizations can detect unusual
spikes in traffic volume or suspicious activities that may indicate a potential DoS attack.
Early detection enables timely response measures to be implemented, such as filtering out
malicious traffic, rerouting communications through secure channels, or activating backup
systems to ensure uninterrupted drones [33].

To mitigate the risks associated with GPS spoofing attacks, one effective countermea-
sure is GPS signal authentication. This involves verifying the authenticity of the GPS
signals received by drones to ensure their accuracy and integrity. By implementing GPS
signal authentication mechanisms, drones can validate the source of the GPS signals and
detect any attempts at spoofing or manipulation. There are several techniques that can be
used for GPS signal authentication to prevent spoofing attacks. One common method is
cryptographic authentication, which involves using cryptographic algorithms and keys to
digitally sign the GPS signals. This allows drones to verify the authenticity of the signals
by checking the signature against a trusted source [106]. Another approach is to implement
secure communication protocols, such as Secure Sockets Layer (SSL) or Transport Layer
Security (TLS), to encrypt the GPS signals and protect them from interception or manip-
ulation. Additionally, the use of redundant navigation systems can assist in enhancing
the resilience of drones against GPS spoofing attacks. By integrating multiple sources of
navigation data, inertial navigation systems, and visual sensors, drones can cross-validate
the information and detect discrepancies [107].

To mitigate the risks associated with signal jamming, countermeasures such as fre-
quency hopping have been developed. Frequency hopping is a technique used to counteract
the effects of jamming by rapidly changing the frequency at which data are transmitted.
By hopping between different frequencies in a predetermined sequence, drones can avoid
prolonged interference and maintain communication with their controllers. This works by
dividing the available frequency spectrum into multiple channels and switching between
them at regular intervals. This method makes it difficult for attackers to jam the signal
effectively, as they would need to jam multiple frequencies simultaneously to disrupt com-
munication. Additionally, frequency hopping can provide a level of encryption by using
a unique hopping sequence known only to the drone and its controller, further enhancing
the security of the communication link [108,109]. By implementing frequency hopping as
a countermeasure against signal jamming, drone operators can significantly enhance the
resilience of their communication systems, as it enables drones to adapt to changing inter-
ference conditions and maintain reliable connectivity in challenging environments [110].

Moreover, regular software updates are essential for maintaining the security and
functionality of drone systems, since software vulnerabilities are commonly exploited by
attackers to gain unauthorized access or inject malware into drones. By regularly updating
the drone software, security patches can be applied to address known vulnerabilities and
strengthen the system’s resilience against potential cyber threats. Additionally, software
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updates can improve the overall performance and stability of drone operations, reducing
the risk of system malfunctions and disruptions. Similarly, strong authentication mecha-
nisms are crucial for verifying the identity of users and ensuring secure access to drone
systems [111]. By implementing multi-factor authentication, access controls, and user
permissions, the risk of unauthorized access to drones can be significantly reduced. Such
measures prevent malicious actors from exploiting weak credentials or gaining unautho-
rized control over drones, protecting the integrity and confidentiality of sensitive data.
Finally, continuous monitoring of drone systems is essential for detecting and responding
to any unusual activities or security incidents. By monitoring network traffic, system logs,
and user behaviors, potential threats can be identified in real time, allowing for prompt
mitigation measures to be implemented and helping security teams to stay vigilant against
evolving cyber threats and proactively defend against attacks that could compromise the
safety and security of drone operations [77,112].

Blockchain technology can provide robust solutions for enhancing the security of
the IoD environment in various ways. It can be used to create unique digital identities
for individual drones, which are stored and managed on the blockchain, assisting in the
prevention of impersonation attacks. Specifically, each drone in the network is given
a unique identity, with the identity being stored in the blockchain. When a drone attempts
to join the network or perform a transaction (e.g., sending data), it has to prove its identity.
This is done through a process called cryptographic verification. The drone provides
a digital signature, which is a piece of cryptographic data, while other participants in the
network (which could be other drones, or base stations) can use this digital signature to
verify the drone’s identity. If the identity cannot be verified, the drone is not allowed to
join the network or perform transactions [113]. In addition, blockchain can ensure the
confidentiality and integrity of the data using encryption, access control, and immutability,
with the transmitted data being encrypted using cryptographic algorithms. Only entities
with the correct decryption key can access the original data. Moreover, blockchain can be
used to implement sophisticated access control mechanisms. For instance, permissions
can be set on the blockchain to restrict access to certain data for specific entities, while
the immutability of the blockchain ensures that, once data are recorded, they cannot be
altered. This can be useful for maintaining a tamper-proof log of drone activities [4].
Moreover, blockchain can secure the communication between drones and control stations,
preventing various types of attacks [114] providing access control, ensuring that only
authorized drones can access certain resources or perform certain actions, preventing single
points of failure, and making the system more resilient to attacks. This can enhance the
robustness and reliability of IoD systems and enable the use of smart contracts, which are
self-executing contracts with the terms of the agreement directly written into code. These
can be used to automatically enforce access control policies, such as automatically revoking
a drone’s access rights if it behaves maliciously [4]. Regarding integrity, all transactions
on a blockchain are transparent and cannot be altered, ensuring data integrity, while the
use of consensus algorithms to validate transactions and blocks can prevent fraudulent
activities [115].

As a recently emerging and revolutionary technology, blockchain is capable of be-
ing integrated within the IoD ecosystem [4], supporting efficient and secure solutions
due to its prominent features and cryptographic properties [116]. At its core, blockchain
offers decentralized data storage services and the ability to log and secure transactions
through cryptography [117], which is achieved through the interconnection and valida-
tion of data blocks using cryptographic hash functions. Such principles are beneficial
to the design of security mechanisms for tackling the challenges mentioned above [118].
Specifically, blockchain has been integrated with various emerging technologies and con-
cepts, including the IoD, and deployed in critical domains to provide effective and robust
cybersecurity [119,120]. Practically, it maintains a distributed ledger, tracking the activity
of the UAVs in a swarm network, enabling the collected data to maintain their integrity,
making them unable to be tampered with [121]. A significant example of blockchain’s ap-
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plicability as a UAV security mechanism is related to the organizational manner of Ground
Stations with regard to the drone’s status and availability within the network, based on the
related data that can be accessed from the preferred distributed database [122].

4.3.3. Localization Error-Based Attacks

One of the main categories of attacks on IoD systems is localization error-based
attacks [78]. Specifically, lack of localization for cyber–physical systems, such as the IoD,
leads to significant errors that emerge from hindering the estimation of drones’ secure
location [81]. Figure 9 shows the taxonomy of IoD attacks based on the corresponding
category (localization error-based attacks). Table 2 summarizes the investigated published
material on IoD elements, requirements, security issues, and countermeasures.

Table 2. Investigated works on the IoD, by scientific topic.

Investigated Works Scientific Topic

[2,5,26,49–66,72,76] Basic elements and requirements of the IoD

[13,22,35,39,67,71,77–80] Privacy and security issues of the IoD

[9,22,34,78,81–103] IoD attacks

[9,33,77,88,104–115] Protected countermeasures

[116–122] Blockchain measures for IoD security

5. Blockchain Fundamentals
5.1. Overview of Blockchain

Blockchain consists of data structures (blocks) that are linked to each other to form
a chain based on the hash pointer concept, with each block containing the stored data
(or transactions) and the hashes of the previous and current blocks [123]. As a concept,
data blocks, identified by their unique codes, wrap the chronological order of transactions
(recorded in the block header) and store the related information [124]. Simultaneously, the
header contains the result of the Merkle tree [125] and the hash value of its parent block.
Figure 11 presents an overview of the overall concept and functionality of blockchain.
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Due to the established shared ledger throughout the network, the speed of transactions
and data exchange among untrusting parties are significantly increased, eliminating man-
ual processes. In addition, blockchain’s integrated security features assist the verification
and initialization of transactions originated by a trusted party, as well as data encryption
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during transmission and storage. However, the great merit of blockchain is the rapid iden-
tification of weaknesses in the entire network. From the privacy perspective, blockchain, as
a decentralized distributed ledger database system, contains cryptographically generated
data blocks [126]. Moreover, through smart contracts, the self-execution of a program is
performed, with the condition that certain terms are being met.

The blockchain technology consists of five layers in terms of architecture, which
are correlated for the creation of a secure, decentralized, and transparent blockchain
ecosystem [127,128].

Hardware/infrastructure layer: This layer is the foundational layer of a blockchain
system. It comprises all of the physical resources, such as servers, nodes, and specialized
hardware like ASICs (Application-Specific Integrated Circuits) for mining in Proof-of-Work
blockchains, or hardware security modules for securely storing cryptographic keys. This
layer is crucial, as it provides the computational power and storage capacity needed for
the operation of the blockchain network. It is the base upon which all other layers of the
blockchain architecture are built. Without a robust and secure infrastructure layer, the
blockchain network cannot function effectively [129].

Data layer: The data layer involves the storage and management of data within the
blockchain network, including transactions, smart contracts, and other related information.
This layer is essential for ensuring the security and integrity of transactions. Through the
use of cryptographic techniques, decentralized networks, immutability, and data validation
mechanisms, this layer plays a pivotal role in safeguarding the integrity of blockchain
transactions and maintaining the trust and transparency of the network. Data stored in the
blockchain are encrypted using cryptographic hash functions, which are algorithms that
convert input data into a fixed-size string of characters. Any changes made to the data will
result in a different hash value, alerting the network to the presence of unauthorized modi-
fications. Moreover, the decentralized nature of blockchain technology further reinforces
the security and integrity of transactions within the data layer. Furthermore, the data layer
employs data validation mechanisms to ensure the accuracy and integrity of transactions.
When a transaction is initiated, it undergoes a series of validation checks to confirm its
validity and authenticity. These checks may include verifying the digital signatures of
the parties involved, checking for double-spending, and ensuring that the transaction
complies with the rules and protocols of the blockchain network. The transactions that pass
these validation checks are then added to the blockchain, maintaining the integrity of the
ledger [130].

Network layer: This layer focuses on the communication protocols and network
infrastructure that enable nodes to interact and share information securely across the
blockchain network [131]. It handles all aspects of peer-to-peer network communication
within the blockchain system. The network layer is responsible for the communication
between nodes in the blockchain, including the propagation of new transactions and blocks
to all nodes, while nodes communicate with each other via network protocols [132]. This
layer ensures that data are correctly transmitted across the network and, thus, it ensures its
security by applying protective measures against attacks such as DoS.

Consensus layer: The consensus layer is responsible for ensuring agreement among
network participants on the validity of transactions and maintaining the integrity of the
blockchain through various consensus mechanisms. This layer ensures that all transactions
are validated and that new blocks are added to the blockchain in a manner that maintains
the system’s security and integrity. There are several types of consensus algorithms used in
different blockchain networks [133], including Proof of Work (PoW), Proof of Stake (PoS),
Delegated Proof of Stake (DPoS), and Practical Byzantine Fault Tolerance (PBFT). These
algorithms are designed to achieve agreement across all nodes in the network regarding
the state of the distributed ledger [134,135].

Application layer: The application layer is the topmost layer that interfaces with users
and external systems, providing functionalities such as wallets, decentralized applications
(dApps), and user interfaces for interacting with the blockchain network [131]. (a) Wallets:
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These are applications that allow users to store, send, and receive digital assets that are
secured by the blockchain [136]. (b) Decentralized Applications (dApps): These are appli-
cations that run on the blockchain network itself, leveraging its decentralized nature to
provide services that are not controlled by a single entity [137]. (c) User interfaces: These
are the front-end systems that users interact with. They can be web interfaces, mobile
apps, or other types of software that provide a user-friendly way to access the blockchain
network [138]. In essence, the application layer is where the capabilities of the blockchain
network are made tangible and usable for end-users. It is the bridge between the underlying
blockchain infrastructure and the users who benefit from the services that it provides. In
addition, this layer enables the tokenization of assets and the issuance of digital tokens on
the blockchain network [139], facilitates identity management and authentication services
on the blockchain network, enables supply chain traceability and provenance tracking
on the blockchain network, and serves as the foundation for decentralized finance (DeFi)
applications on the blockchain network [140].

Nevertheless, in a distributed network such as blockchain, partial trust between peers
exists, and consensus protocols are established to agree on a single copy of the ledger,
whereas, in the case of the participation of multiple nodes, there must be agreement
on a standard value [118,141]. Distribution, immutability, and decentralization are the
fundamental principles of blockchain, enhancing fault tolerance due to the participants’
contribution to the system [142]. Also, fundamental features (characteristics) of blockchain,
such as transparency, tamper-proofing, and security, make it a high-potential and innovative
technology, capable of being combined with other emerging technologies [143].

• Distribution: Thanks to distribution, independent computers or nodes keep shar-
ing, recording, and synchronizing transactions in their respective electronic ledgers
through protocols and supporting infrastructure. In this manner, the process remains
transparent, dependable, and reliable.

• Immutability: Since each block is specified with a string of characters obtained by
a cryptographic hash function, representing recorded transactions, stored data remain
immutable and unable to be manipulated.

• Decentralization: This indicates the transfer of control, authority, and decision-making
from an individual, organization, or group to a distributed network or its participants,
averting the abuse of power. Consequently, assets can be stored in the network without
the oversight or control of a single person or entity.

• Transparency: Each participant in the blockchain system holds a copy of the blockchain
for the verification of initiating a transaction by a legitimate user.

• Tamper-proofing: After the verification of each block by (all) participants, it is added
to the blockchain through the confirmation of a consensus algorithm. Hence, the
blockchain system maintains a tamper-proof ledger shared by the participants, without
relying on a trusted third party.

• Security: Blockchain systems use asymmetric cryptographic building blocks to encrypt
data, whose security generally relies on the underpinning consensus algorithm, and
this is empowered by most of the participants.

Generally, blockchain networks can be categorized based on their permission model
and structures into (a) public, (b) private, and (c) consortium. All types of blockchains can
be described as permissionless, permitted, or both, since users can join a network with
permissionless blockchain. However, permitted blockchains restrict network access to
specific nodes with specialized rights. A public blockchain is inherently permissionless,
allowing anyone to join, and is completely decentralized. All nodes have equal access
to the ledger, as well as the ability to create new transactions and validate the blocks.
Private blockchains, known as trust blockchains, are authorized and controlled by a single
organization that decides whether a node is permitted to be integrated within the private
network. However, every node has the same rights in terms of functionalities. A consortium
blockchain is an authorized blockchain controlled by a group of organizations, with a higher
degree of decentralization than private blockchains, leading to a higher level of security [4].
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Public blockchains are open networks where anyone can participate and have access
to the shared ledger, defining its high level of accessibility, as they allow anyone to join the
network and contribute to the validation process. This openness also fosters innovation,
as developers can build decentralized applications on these platforms. Moreover, public
blockchains provide a high degree of security and transparency, as the data are shared
across a distributed network of nodes, making it difficult for malicious actors to manipulate
the system. In terms of practical applications, public blockchains are well suited for use
cases that require a high level of transparency and decentralization. For example, they are
often used in the financial sector for peer-to-peer transactions and smart contracts. Public
blockchains are also ideal for applications that involve multiple parties with minimal trust,
as the decentralized nature of the network ensures that no single entity has control over the
data [144,145].

Private blockchains restrict access to selected and verified participants. Unlike public
blockchains, which are open to anyone, private blockchains offer more control and privacy,
maintaining a certain level of confidentiality and security. The primary purpose of private
blockchains is to limit access to sensitive information and transactions within a closed
group of participants. As a result, organizations can ensure that only authorized users
are able to view or modify the information. This enhanced level of security is particularly
important for industries that handle sensitive data, such as financial institutions, healthcare
providers, and government agencies. One of the key benefits of private blockchains is
the ability to customize the network according to the specific needs and preferences of
the participating organizations. This level of customization allows for greater flexibility
in terms of scalability, performance, and governance. Private blockchains also tend to
have higher transaction speeds and lower latency compared to public blockchains, making
them well suited for applications that require real-time processing of transactions. In
addition to security and customization, private blockchains offer a range of other benefits
to organizations. These include increased efficiency and cost savings, as well as improved
transparency and auditability. By using blockchain technology to streamline operations
and automate processes, organizations can reduce the risk of errors and fraud, ultimately
leading to improved trust and credibility among stakeholders [146–148].

Consortium blockchains represent a unique hybrid model that combines elements of
both public and private blockchains. This type of blockchain is characterized by a group of
organizations working together to maintain the network, sharing control and responsibility
among the participants. In consortium blockchains, multiple preselected entities have
the authority to read, write, and validate transactions on the distributed ledger, ensuring
a higher degree of control and privacy compared to public blockchains, while still maintain-
ing some level of decentralization. One of the key characteristics of consortium blockchains
is the collaborative nature of the network. By bringing together multiple organizations
that have mutual trust and shared goals, consortium blockchains enable these entities to
interact with each other in a secure and transparent manner. This collaboration fosters
innovation and efficiency, as participants can leverage the shared infrastructure to stream-
line processes, reduce costs, and improve overall operations [149]. Another key benefit of
consortium blockchains is the balance that they strike between decentralization and control.
While public blockchains prioritize decentralization and openness, and private blockchains
prioritize control and privacy, consortium blockchains offer a middle ground that satisfies
and caters to varying needs in terms of transparency, control, and collaboration [150,151].
Table 3 shows a comparison of the corresponding blockchain types.
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Table 3. Differences among the types of blockchains.

Parameters Public BC Private BC Consortium BC

Accessibility Anyone can participate in the
core activities of the BC network

Selected and verified
participants can join the
network (restricted access)

Participants need permission to
join the network
(restricted access)

Visibility All transactions are visible in
the network

Closed or open to a certain
number of nodes

Open to a certain number of
nodes (preselected nodes)

Control Decentralized Centralized Centralized

Transparency
Transparent, as all transactions
are visible to anyone on
the network

Private, as only authorized
users can view the data and
transactions on the network

Private, as only authorized
users can view the data and
transactions on the network

Scalability Lower Higher Better compared to the
public BC

Privacy Less privacy, as it accessible
to everyone High-level privacy High level privacy compared to

the public BC

Consensus mechanism PoW PoW, PoS, etc. PoW, PoS, etc.

Power consumption High energy consumption Low energy consumption Low energy consumption

Anonymity Users remain anonymous Identities of users involved in
the transaction

Identities of users involved in
the transaction

Security

Highly secure and resistant to
attacks, due to the decentralized
nature of the network and use
of cryptography

Security using cryptography Enhanced security through
access restrictions

Use cases

Mining and exchanging
cryptocurrencies, decentralized
financial systems, supply chain
management, digital arts

Enterprise applications, supply
chain management, and internal
data sharing

Financial institutions, the
healthcare industry, supply
chain management, and
confidential data sharing among
trusted entities

5.2. Contribution of Blockchain to the IoD

The integration of drones and blockchain technologies has the potential to transform
the operational manner of the IoD ecosystem, as it has the capacity to provide powerful
outcomes, such as enhanced security, as highlighted in Section 4.3, as well as novel ap-
plications that are described later on. Specifically, in the case of the IoD, a distributed
network maintains an immutable database of the users’ actions, data obtained by drones,
and GCS commands, with the recorded transactions being shared among the nodes in the
network, assisting in the overall support of the network and verification of data blocks [152].
A typical model consists of the user, infrastructure, and an IoD layer [15,61], enabling the
interaction between two users, or between a user and a drone, while creating blockchain
clusters with a drone being assigned as a master controller. Each cluster controls and
coordinates the behavior of the network’s drones, and the infrastructure layer specifies
the connectivity and control of users and drones through the GCS for efficient and secure
data exchange. The result of the corresponding operational flow leads to the storage of the
updated data within the specified blockchain framework [153]. Figure 12 presents the basic
functionality features of blockchain, integrated with the IoD.

Specifically, blockchain offers significant benefits [4,154] as a main component of
distributed systems [155]:

• It overcomes single-point failures due to decentralization features.
• It provides enhanced security to drone communication.
• Drone data are transparently recorded, maintaining their integrity.
• It ensures accountability and traceability.
• It controls multi-signature access and decentralized administration.
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• It secures shared data due to the encryption and hashing capabilities.
• It is based on the distributed consensus mechanism, enabling smart agreements, trust,

and protection across the utilized decentralized network, with a transaction being
validated as authentic [156].

• It ensures data privacy protection through cryptography [153].
• It provides 5G-enabled drone identification and flight mode detection [157], as well as

drone communication for the preservation of privacy [158].
• It offloads the provision of dynamical cache data [159].
• It provides a secure and transparent platform for managing valuable information and

data obtained by drones [160].
• It ensures the confidentiality of all transactions following decentralized, distributed,

and peer-to-peer (P2P) communication networks, with data being stored on each
node [161].

• It ensures secure data sharing over a tamper-proof and decentralized ledger [162].
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Blockchain facilitates automated privacy preservation [143] at different layers of 5G-
enabled drone communications, such as ID management, data privacy, and trajectory
protection, as well as the consensus of drones’ participation within the network. The
drones’ ID can be registered to the blockchain-based ID management system covering the
entire life cycle of a drone. During this process, trust can be ensured via the decentralized
consensus of blockchain-based systems. Similarly, the termination status can be updated in
the blockchain for the drone ID to be revoked or removed, i.e., during the entire life cycle
of a drone, status changes can be traced through a decentralized ID management system.
Furthermore, the automatic ID management process reduces administration costs due to
the availability of smart contracts. Concerning privacy conditions, collected data can be
violated via Drone-to-Drone (D2D) or Drone-to-Ground (D2G) links, with additional theft
risks related to transits, by utilizing Drone-to-Base-Station (D2B) links [163].

At this point, blockchain contributes to different phases, as it is based on authentication
mechanisms that verify access authorization protocols assigned to drones, along with
cryptographic schemes to minimize the risk of misused data [164]. Also, the blockchain-
based consensus of drone networks ensures reliable interconnection between multiple
drones. However, the maintenance of its reliability is in its infancy due to the dynamic drone
topologies and unreliable wireless communications [165,166]. Additional decentralized
security approaches involve data protection in case of theft, air traffic control, and collision
prevention through secure sharing of real-time location data [167], as well as insurance in
terms of unpredicted damages, with the related data being stored in the ledger without
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possibilities for alteration [168]. Table 4 presents the investigated research papers that
supported the analysis of blockchain, as well as its contribution to IoD systems.

Table 4. Investigated references on blockchain, by scientific topic.

Investigated References Scientific Topic

[118,123–126,141–144] Structure of blockchain

[127–140] Architecture of blockchain

[144–151] Types of blockchain

[15,61,143,152–168] Contribution and benefits of blockchain to the IoD

6. Underpinning Technologies for IoD–Blockchain Integration

Due to constant technological evolution, current applications are designed in a col-
laborative manner, combining features and characteristics and supplementing utilized
technologies in order to provide additional benefits on different levels. In this section, vari-
ous technologies are highlighted in relation to enabling the integration of blockchain and the
IoD. Figure 13 shows the essential underpinning technologies of the IoD and blockchain.
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6.1. Artificial Intelligence (AI)

AI, including sub-disciplines such as Machine Learning and Deep Learning, is a key
technology enabling the IoD and blockchain to act intelligently, providing trust in un-
known environments [169]. AI can enhance the performance, accuracy, and efficiency
of the data derived by multiple drones and other sources while providing a unified and
coherent view of the environment, with blockchain providing immutable data storage. The
implementation of AI algorithms within decentralized IoD systems enables the following:

• Local training of models and sharing by a central server: This allows drones to
operate autonomously and contribute to the collective knowledge of the entire network.
Specifically, it enables data recording and management, sharing of model updates
within the blockchain, coordination between participants, and ensuring transparency,
immutability, and trust in the IoD ecosystem.

• Additional transaction security: During the flight of drones, AI-based mechanisms
support the safety of drone operations by detecting potential risks, such as collisions
or unauthorized intrusions. When data are inserted into the blockchain, an additional
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layer of security is added to it, identifying and preventing or minimizing the risk of
fraud and detected anomalies in transactions. In this manner, the transparency of the
transactions is increased, reducing the need for intermediaries.

• Automating processes of the IoD and blockchain: The key to automatic enhancement
is the integration of AI, decentralized decision-making through blockchain, and au-
tomation to enable systems to adapt and improve autonomously. Drones operate
autonomously without direct human intervention and can dynamically adjust their
routes based on real-time data, traffic, weather conditions, and mission priorities. In
addition, drones analyze sensor data in real time for object detection, path planning,
and decision-making during missions, with the system automatically scheduling main-
tenance and even ordering replacement parts or services, while blockchain facilitates
decentralized coordination among drones, allowing them to share information and
collaborate effectively. Smart contracts on the blockchain can govern interactions and
decision-making, as they can be designed to adapt and optimize themselves based on
changing conditions and performance data [170,171].

• Scalability improvements: Drones collect a vast amount of data that are distributed in
a decentralized system towards multiple nodes while optimizing blockchain consen-
sus algorithms, making blockchain networks more efficient and scalable. AI algorithms
can allocate resources such as processing power and bandwidth dynamically, based
on the specific requirements of each drone’s mission, ensuring efficient resource uti-
lization and scalability. In addition, AI facilitates multi-drone coordination, allowing
them to collaborate efficiently in various tasks, such as surveillance, search and rescue,
or delivery. Moreover, AI analyzes real-time data to optimize the routing of drones,
enabling them to avoid congestion [31].

• Congestion of transactions: Congestion in the drones’ communication network can
result in communication delays, disrupting the execution of drone tasks that rely on
real-time data sharing and control commands, as well as malfunctions and errors
during drone fleet missions, causing disturbances in their coordination. Taking into
consideration the aspect of blockchain, transaction delays are also present. AI can
help improve congestion by prioritizing transactions based on their size and urgency,
analyzing historical data and network conditions to predict potential congestion, dis-
tributing transaction data processing across the network nodes evenly, preventing
specific nodes from becoming bottlenecks during congestion, and allocating resources
dynamically to drones based on their current tasks and priority levels [172]. This
ensures that drones with critical missions are supplied with the required resources
during such situations, manage the communication traffic efficiently, reduce conges-
tion by scheduling data transmission, and control the flow of information between
drones and central servers [45,173].

• Communication: The wireless communication among the drones and data man-
agement within blockchain is secure, thanks to AI providing efficient decentralized
intelligence. AI can assist drones in selecting optimal communication paths, optimize
the utilization of the available frequencies, and enable drones to dynamically switch
to different frequencies or channels to avoid interference, facilitating multi-drone com-
munication coordination. Furthermore, UAVs’ robustness, resilience, and efficiency
are improved by applying Machine Learning, Deep Learning, and ANN-optimized
UAV communication networks [64]. Meanwhile, in the case of blockchain, AI provides
efficient and secure data transfer, optimizing the communication and load distribution
between wireless nodes [174,175].

• Consumption of energy: During data transmission between drones and Ground Sta-
tions, or among drones, a significant amount of energy is consumed. In addition, data
processes within blockchain, or features such as the execution of complex smart con-
tracts, contribute to additional energy consumption. AI can optimize drone routes and
flight patterns, making them more energy-efficient, reducing operational costs [176],
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and establishing intelligent decision-making in relation to data blocks and the overall
ledger [177].

6.2. Cloud Computing (CC)

CC provides flexibility, storage, and resource management, sharing rapid elasticity
and dynamic scalability of resources [27]. The data collected by drones can be gathered in
a cloud capable of maintaining a large amount of data [178]. CC provides the following:

• Scalability: There are platforms with on-demand resources, allowing IoD applications
to scale up or down as needed. Thus, CC provides the capability of handling a variable
number of drones or accommodating traffic spikes during specific missions, as well as
supplementing blockchain storage depending on the resources required by the utilized
nodes [179,180].

• Data storage: The IoD generates large volumes of data, such as high-definition images
and videos, which can be efficiently stored in the cloud, since blockchain networks
often require extensive data storage for the ledger. Cloud storage can provide a reliable
and cost-effective solution for storing blockchain data. In addition, CC prevents data
losses, offering data copies that are stored in different nodes [181].

• Cloud-based AI: In this case, cloud-based AI and analytics tools can be used to process
and analyze the vast amounts of data generated by drones. This is valuable for
extracting insights, detecting anomalies, and optimizing operations.

• Security: Cloud providers often offer robust security features, including encryp-
tion and access control, to protect the data and communication within IoD and
blockchain networks.

6.3. Edge Computing (EC)

Edge Computing is another key technology that can be implemented within IoD
and blockchain infrastructures for data processing and storage at the utilized network’s
edge [182], including the AI known as “edge AI” [183]. EC provides the following:

• Data transfer: It enables drones to perform data processing and decision-making
procedures at the edge, reducing the need to transmit large volumes of data to central
servers. This reduces network congestion and enhances scalability while minimizing
the requirement of transferring massive data volumes over blockchain.

• Low latency: It reduces latency by processing data and making decisions closer to the
source, which is crucial for real-time communication, obstacle detection, and collision
avoidance in IoD applications, while it accelerates the verification and propagation
of blockchain transactions. Consequently, there are significant improvements in the
speed of confirmations and transactions [184].

• Offloading tasks: Combined with AI, it facilitates the computational flow of the server
to offload tasks and data, providing lower latency, higher reliability, improved security
and privacy, and reduced costs and energy consumption [31,185]. Thus, data streams
are shortened to remote centralized servers because of the computational services
at the edge of the network [182], while blockchain technology is used to further
enhance the capabilities of EC, allowing secure communications and data processing
by enabling decentralized approaches [186].

• Data storage: Since the data collected can be stored within the blockchain, edge devices
can store a copy of the blockchain ledger, reducing the reliance on central servers for
data access and ensuring data integrity, while smart contracts can be executed at the
edge, allowing for quicker and more responsive automation of contractual agreements
without the need for centralized cloud services.

• Security and Privacy: Sensitive data obtained by drones can remain on the edge
device or gateway, reducing the exposure to potential security threats and privacy
breaches that may occur during data transmissions to a central server. Also, during
data transfers within the blockchain, an extra layer of security is included, allowing
for localized encryption and data validation at the source.
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6.4. Internet of Things (IoT)

The integration of IoT devices into blockchain and IoD ecosystems has a significant
impact on data collection and accuracy, automation, and real-time decision-making up-
grades. Important IoT features within the combination of the IoD and blockchain include
the following [29,187–189]:

• Real-time data acquisition: IoT sensors and devices on drones result in the collec-
tion of real-time data—specifically, smart monitoring of environmental factors like
temperature, humidity, air quality, and radiation levels, with the data being able
to be registered on a blockchain for storage, analysis, and further decision-making
tasks. Similarly, depending on the status of the collected data, IoT devices can trigger
warning notifications and reports to the related stakeholders, with the history of the
reported data being stored in an immutable decentralized ledger. Also, IoT devices
can be used for identity verification and access control in blockchain-based systems,
enhancing security and privacy.

• Collision Avoidance: IoT sensors can detect nearby objects, including other drones,
aircraft, and obstacles, preventing potential collisions, and ensuring their physical
integrity and safety during flights. Such an approach is handled with the registration of
IoT data within a decentralized system dedicated to the drones’ coordination. Drones
can share their positions and intentions on a blockchain, and smart contracts can
govern their interactions, providing a framework for collision avoidance strategies
through immutable flight data, including routes, altitudes, and times, which can be
reviewed in case of incidents or accidents. Analyzing these data can help identify the
causes of collisions and develop preventive measures.

6.5. Communication Technologies

Effective communication technologies are essential for the IoD and blockchain net-
works to function efficiently and securely, enabling real-time data sharing, command
execution, and secure transactions. In particular, the adoption of 5G and 6G technologies by
the IoD can significantly enhance performance, security, and real-time capabilities, opening
up new opportunities for innovative applications and use cases. Although 6G is still in
the early stages of development, its full capabilities and specifications may change as the
technology evolves. The key communication technologies that play crucial roles in these
domains are described below:

Wireless Communication Protocols: Drones rely on wireless communication to trans-
mit data and receive commands. Common protocols include Wi-Fi, cellular networks, and
LoRa (long range) for long-distance communication. Additionally, Drone-to-Drone (D2D)
communication may use ad hoc mesh networks that enable drones to create a self-healing
network, where each drone acts as a relay for data transmission and enhances coverage
and redundancy [190,191].

Point-to-Point and Point-to-Multipoint Links: These technologies are used for ded-
icated communication links between drones, Ground Stations, and other devices, while
blockchain networks rely on peer-to-peer communication to distribute and validate data,
enabling nodes to connect directly to one another, forming the decentralized network. The
communication among the nodes in the blockchain is achieved by consensus protocols
such as PoW, PoS, and Delegated Proof of Stake (DPoS), whereas, thanks to smart contracts,
communication of blockchain with external data sources (oracles) is achieved to execute
predefined conditions. Oracles ensure that the smart contract interacts with the real world
and receives reliable data [192,193].

Properties of 5G networking:

• Low Latency: 5G offers significantly lower latency (below 1 ms) compared to previous
generations of mobile networks, supporting high data transmission rates in the range
of Gbps. Since drones collect real-world data, 5G’s low latency and high bandwidth
can facilitate this procedure of utilizing external data sources when the related data
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are inserted into a blockchain, with smart contracts enhancing the capabilities of
blockchain-based oracles. This is crucial for real-time communication and decision-
making in drone operations, while during the data processing in blockchain, low
latency in the 5G network provides faster transaction confirmation, propagation, and
validation, leading to faster confirmation times [194,195].

• High Bandwidth: The high bandwidth of 5G networks allows drones to transmit
large volumes of data, including high-definition video feeds, sensor data, and imagery.
When the corresponding data are inserted into the blockchain, a unification is achieved
between the security of the decentralized mechanism and the increased bandwidth of
5G, resulting in advanced scalability, encryption, and authentication [196].

• Reliable Connectivity: 5G provides a more reliable and stable connection for drones,
reducing the risk of signal loss or interference, which is vital for maintaining control
and communication in critical missions, while blockchain provides faster and more
reliable 5G networks, improving the cross-chain communication and enabling the
transfer of assets and data obtained by drones between different blockchain networks
more seamlessly [197].

• Network Slicing: 5G supports network slicing, allowing operators to dedicate specific
network slices to IoD ecosystems, ensuring that drones have dedicated resources and
guaranteed service quality, and enhancing the overall performance. Meanwhile, the
transactions are processed more efficiently, improving the performance of blockchain
networks, especially in scenarios with high transaction volumes [192].

Properties of 6G networking:

• Ultra-Low Latency: 6G is expected to provide even lower latency than 5G, potentially
enabling near-instantaneous communication between drones and control centers. It is
expected that the 6G network will have a transmission rate up to Tbps, i.e., 1000 times
faster than 5G, and the ability to provide latency in ms, which is crucial for real-time
decision-making and autonomous drone operations. In addition, with 6G’s improved
connectivity and low latency, drones can operate in swarms with greater autonomy,
facilitating collaborative tasks and coordinated missions, while in blockchain 6G
can enable faster consensus mechanisms, reducing the time required for transaction
validation. Thus, high transaction volumes are handled easily, with the capability
of being processed simultaneously, making blockchain networks more efficient and
responsive [197,198].

• Terahertz Frequencies: 6G may operate at terahertz frequencies, allowing for higher
data rates and more efficient data transmissions. Drones can stream ultra-high-
definition videos and sensor data, offering more precise positioning and navigation
capabilities, and ensuring accurate location information for drones. In blockchain,
6G frequencies provide faster and more efficient data transmissions and consen-
sus mechanisms, as well as seamless exchange of data and assets between various
blockchains [197].

• Secure Communication: 6G is expected to introduce advanced security features, such
as quantum-resistant encryption, which can ensure the confidentiality and integrity of
data exchanged between drones and other network components. Moreover, blockchain
is expected to introduce advanced security mechanisms, including post-quantum cryp-
tography, which can further enhance the security of decentralized networks [199–201].

Table 5 summarizes the studied references related to the underpinning technologies of
the blockchain–IoD union.

Table 5. Investigated works on the underpinning technologies regarding blockchain–IoD integration.

Investigated Works Underpinning Technologies

[169–177] Artificial Intelligence (AI) within blockchain and the IoD

[178–181] Cloud Computing (CC) within blockchain and the IoD

[182–186] Edge Computing (EC) within blockchain and the IoD
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Table 5. Cont.

Investigated Works Underpinning Technologies

[29,187–189] The Internet of Things (IoT) within blockchain and the IoD

[190–193] Communication technologies

[192,194–198] 5G networks

[197,199–201] 6G networks

7. IoD and Blockchain-Enabled Features and Applied Use Cases

Today, there is a variety of application fields and use cases, integrating core principles
of the IoD and blockchain, as well as providing many benefits and the potential for addi-
tional novel characteristics, while at the same time enhancing data security, transparency,
and automation, enabling various industries to optimize their operations and services
while maintaining trust and accountability [45]. Integrating blockchain technology with
the IoD devices offers several potential benefits, including the following: (a) Enhanced
security: Blockchain’s decentralized and tamper-proof nature can provide robust secu-
rity measures for IoD devices and data, while reducing vulnerabilities to cyber threats.
(b) Improved data integrity: By leveraging blockchain’s immutable ledger, the integrity
and authenticity of data transmitted and stored by IoD devices can be ensured, enhancing
trust among stakeholders. (c) Increased transparency: The transparent and traceable nature
of blockchain technology can enable real-time monitoring and auditing of IoD device
interactions and transactions, promoting accountability and transparency. (d) Efficient
automation: Smart contracts on blockchain can automate processes within the IoD ecosys-
tem, facilitating seamless and efficient interactions between devices, without the need for
intermediaries. (e) Decentralized control: Integrating blockchain with the IoD can enable
devices to operate autonomously, without centralized control, fostering a more distributed
and resilient network architecture. (f) Cost savings: Streamlining processes, reducing
intermediaries, and enhancing security through blockchain integration can lead to cost
savings in IoD operations and maintenance [202–205]. Figure 14 presents key use cases of
IoD–blockchain integration.
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7.1. Supply Chain

A supply chain, also known as an inter-organizational supply chain and intra-
organizational supply chain in the broad and narrow sense, respectively [206], is a net-
work of individuals and companies, including all of the raw materials and components
aiming towards the development of a product or service and its delivery to the rele-
vant consumers [207]. The integration of the IoD and blockchain technology into supply
chains offers numerous benefits, including enhanced transparency, traceability, and security.
Specifically, drones are used for supply chain monitoring and logistics, while blockchain
ensures the transparency of goods’ origins, handling, and delivery, reducing false data and
ensuring the authenticity of products. Moreover, in the context of transactions, blockchain
enables trustworthiness and shareability of data, as drones can securely transmit them to
authorized parties through blockchain-based access control and encryption mechanisms,
promoting data privacy and security. For instance, in a supply chain of the food indus-
try, drones equipped with sensors and cameras can monitor and record the pathway of
products through the supply chain as well as parameters such as location and handling
conditions, which can be stored in a blockchain ledger. In addition, drones can provide
real-time monitoring of goods for conditions such as temperature variations, humidity
levels, and other environmental factors that might affect the quality of products. This
traceability helps in identifying the source(s) of any potential issues, such as contamination
or damage, and facilitates product recalls if necessary, while blockchain ensures that these
data remain tamper-proof and can be accessed by the relevant stakeholders. Moreover,
blockchain-based smart contracts can automate various processes in the supply chain,
including payment settlements, customs clearances, and delivery confirmations. These
contracts can be triggered automatically when predefined conditions are met, reducing
manual intervention and the risk of errors. Drones can be used for aerial inventory checks,
which are particularly valuable in large warehouses and outdoor storage areas, with the
related reports being recorded on the blockchain, ensuring accuracy and transparency in
stock levels and authentication of products at each stage of the supply chain. Furthermore,
drones can capture images of product labels or unique identifiers, with the information
being stored on a dedicated ledger. This helps in preventing counterfeit products from
entering the supply chain, while also conducting quality control inspections during the
manufacturing or packaging process. Any deviations from quality standards can be docu-
mented on the blockchain, providing a permanent record of product quality. Also, drones
can monitor compliance with sustainability and environmental regulations throughout the
supply chain, through the collection of data on emissions, waste disposal, and adherence
to environmental standards that can be securely recorded on the blockchain, in order to
provide access to the related stakeholders [208,209]. Another aspect of the combination of
drones and blockchain in the supply chain is the incorporation of cross-blockchain technol-
ogy for the delivery of physical assets, i.e., a drone includes two blockchains, for the supply
chain and the airspace traffic network, respectively. Thus, a correlation between the two
ledgers is enabled, with the supply chain data blocks interacting in a collaborative manner
with the airspace traffic data blocks through specific algorithmic mechanisms, resulting in
efficient shipment tracking, boosted with confidentiality and interoperability [19,210].

7.2. Healthcare

The integration of the IoD and blockchain technology into healthcare offers numerous
possibilities to enhance various aspects of the healthcare ecosystem, including the improve-
ment of patient care, enhanced data security, streamlined operations, and addressing some
of the key challenges in the healthcare industry, such as data interoperability and fraud
prevention. Drones can be used to deliver medical supplies and equipment to remote areas,
damaged regions, or healthcare facilities in need of urgent supplies, with installed tempera-
ture sensors to monitor the conditions of the supplies during transport. Simultaneously,
the collected data are recorded on the system’s integrated blockchain to ensure the integrity
of the supplies [211]. Another example of a healthcare use case is the utilization of drones
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with implemented telemedicine capabilities, capable of providing remote consultations
to patients in hard-to-reach areas, with the respective patient data (e.g., vital signs or
diagnostic documents, diagnostics by healthcare professionals, and records such as medical
history, including test results, treatment plans, and prescription histories) to be securely
stored and shared on a tamper-proof blockchain platform for future reference [212,213],
including a patient-controlled blockchain account, integrated with identity solutions, to
ensure privacy and data security. In this manner, patients can grant and revoke consent
for healthcare providers to access their medical data via smart contracts [214,215], which
can also help in the development of new treatments and drugs [216]. In the context of
healthcare, drones can also monitor pandemic (e.g., COVID-19) outbreaks by collecting
related data on a blockchain and sharing them with public health agencies for analysis and
early intervention [217,218].

7.3. Natural Disasters

The combination of the IoD and blockchain technology can significantly improve
disaster prevention and recovery efforts, contributing to efficient and effective management
enhancement while simultaneously ensuring transparency and accountability. Drones
assist in coordinating resources, tracking data, and supporting survivors in times of crisis,
ultimately reducing the impact of natural disasters [214], combined with decentralized
solutions, such as smart contracts for resource allocation, based on predefined criteria.
Thanks to their various sensors, such as cameras with thermal optics, they can collect
real-time data related to information on the extent of damage, weather conditions, and the
presence of hazards such as fires or floods in disaster-affected areas, as well as the detection
of survivors. The data collected during search-and-rescue operations are securely recorded
on the blockchain, aiding coordination efforts among rescue teams, especially through the
immutable features of timestamps, to ensure when and where the data were registered in
the ledger [219]. As a result, drones can be used to assess long-term recovery needs in the
context of post-disaster recovery, such as infrastructure repair, environmental restoration,
and rebuilding efforts. The blockchain records data related to recovery projects, ensuring
transparency in resource allocation and project progress [220].

7.4. Charging/Refueling Stations

The charging and refueling stations for drones, often referred to as drone hubs or drone
service centers, play a crucial role in enabling the sustainable operation of drones, especially
in applications such as package delivery, aerial inspections, surveillance, and more [221].
Essentially, drone stations can serve as logistical hubs for managing the movement of
drones, their payloads, and supplies, including storage, sorting, and dispatching of drones
for various missions, while incorporating sustainability practices such as renewable energy
sources and environmentally friendly refueling options for drones. Blockchain can provide
a secure platform for processing the respective transactions for fueling services and their
recording, by ensuring transparency through automated smart contracts depending on
the required service [222], while having proven useful for information exchange between
the drone and established ledgers, ensuring data integrity and security with regard to the
amount of purchased energy, the amount spent, and information on the charged drone [19].
From the refueling perspective, blockchain can record data on emissions produced during
the fueling process and verify the authenticity and quality of the station’s utilized fuel,
ensuring that it meets quality standards, while in terms of charging stations, data on the
energy efficiency of charging equipment can be recorded on the ledger, helping consumers
to filter their available options on stations that use energy-efficient technology. For both
cases, data related to the maintenance and status of the charging or refueling equipment
can be recorded on the blockchain, ensuring that the equipment is well maintained and
reducing the risk of service disruptions [223]. Blockchain can also facilitate the integration
of smart grid practices by allowing proper load balancing and grid optimization for drones
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to access only the required amount of resources, as well as accessing available charging or
fueling resources from other users in a decentralized network.

7.5. Agriculture

The synergy of the IoD and blockchain in agriculture can revolutionize the industry by
enhancing efficiency, transparency, and sustainability, offering benefits such as improved
crop yields, reduced resource wastage, supply chain transparency, and enhanced sus-
tainability. Specifically, significant contributions in agriculture include the following [34]:
(a) Drones equipped with various sensors, including multispectral cameras and LiDAR, can
monitor crop health, detect diseases, and assess nutrient levels, with collected data being
recorded on the blockchain through smart contracts to automate tasks such as planting,
harvesting, and irrigation, optimizing resource usage and enabling decision-making tasks
about irrigation and fertilization. (b) In terms of soil conditions and overall health, drones
equipped with soil sensors can assess soil quality, moisture levels, and nutrient contents,
as well as identifying and monitoring pests and diseases, with the respective data about
locations and health status being recorded on the blockchain, allowing for precise soil and
water management. (c) Taking into consideration weather conditions, drones can provide
real-time weather data, such as temperature, humidity, wind speed, and precipitation.
This information can be shared on the blockchain to support weather forecasting and
agricultural planning. (d) Also, drones can be used to assess carbon sequestration and
reduce emissions that are generated by traditional farming practices. The corresponding
data can be recorded on the blockchain for carbon credit trading [5,45,224]. (e) Finally,
drones can be used for transparent monitoring of agricultural supply chains, from planting
to the delivery of products, with the related data being registered in an immutable record
to ensure product authenticity and quality for relevant stakeholders while automating
transactions and providing access to decentralized markets [225].

7.6. Transportation

The corresponding synergy can have a profound impact on various aspects of trans-
portation, including logistics, offering additional safety, increasing transparency, and pre-
venting fraud actions. Drones equipped with sensors and cameras can inspect the condition
of vehicles, detecting urgent maintenance needs or damage. The data collected can be
stored on the blockchain as a personal maintenance record, with private data on the driver’s
identity and vehicle information remaining secure and accessible only to the parties respon-
sible, e.g., mechanics, technicians, and corporate owners. Another case of transportation,
related to delivery services, enables the utilization of drones for delivering parcels and
cargo across specified locations, with the possibility of malfunctions or physical damage
occurring during the process [14]. Due to blockchain’s integrity, insurance companies have
the ability to verify the conditions and reasons for the malfunctions, in order to proceed
into further damage assessments [5] while ensuring the reliability of data. In addition,
smart contracts on the blockchain can automate cargo insurance claims based on predefined
criteria, reducing additional administrative overheads [226].

7.7. Media

The media industry can gain significant enhancements in various aspects of con-
tent creation, distribution, and consumption, offering simultaneous content protection,
copyright management, decentralized distribution of the generated content, and efficient
monetization processes, while benefiting content creators, consumers, and the industry
as a whole. Drones equipped with high-quality cameras can capture aerial footage and
images, providing unique perspectives for news reporting, documentaries, and entertain-
ment [227]. These media assets can be securely recorded on the blockchain to ensure
authenticity and copyright protection, while blockchain-based platforms enable content
creators to distribute their captured content directly to their audience, reducing the influ-
ence of intermediaries and ensuring proper licensing and distribution. In addition, smart
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contracts can automate content licensing, royalty payments, and sponsorship agreements,
ensuring that content creators are compensated fairly for the use of their work and spon-
sors receive fair exposure [228]. Additionally, blockchain can facilitate fact-checking and
data verification for media reporting, information, and content captured by drones, en-
abling media organizations to create decentralized archives of historical content, preserving
it for future generations, while utilizing the records of content ownership stored in the
respective data blocks for piracy prevention [5,229]. Table 6 summarizes the collection
of references that were investigated for the analysis of potential use cases, based on the
blockchain–IoD union.

Table 6. Investigated references on potential use cases based on the IoD–blockchain union.

Investigated References IoD–Blockchain Use Cases

[45,200–205] Integration of blockchain within IoD devices

[206–211] Supply chain within blockchain and the IoD

[211–218] Health chain within blockchain and the IoD

[214,219,220] Natural disasters within blockchain and the IoD

[221–224] Charging/refueling stations within blockchain and the IoD

[5,34,45,224,227] Agriculture within blockchain and the IoD

[5,14,228] Transportation within blockchain and the IoD

[227–229] Media within blockchain and the IoD

8. Discussion and Open Issues

Despite the benefits of the IoD and blockchain, combined with the valuable contribu-
tions of underpinning technologies, many challenges emerge at different levels, such as
increased computational costs, latency, and potential security gaps. For example, blockchain
is considered to be an emerging technology that faces adaptation difficulties due to its
conventional architecture, as it builds trust in trustless environments using a consensus
mechanism, involves numerous network communications for the synchronization of P2P
networks and, due to the constant addition of new data blocks across the network of
interest, may be considered uncontrollable [6].

On the other hand, due to the mobility and energy constraints of UAVs, application
circumstances and conditions face additional challenges, such as deployment, required
energy consumption, data transmission (communication), security, and privacy [230].
As drones become more prevalent and collect a rising number of data, it is essential to
guarantee the protection and responsible utilization of the resulting information [12].

However, although blockchain provides a secure platform for storing and sharing
data, the lack of clear guidelines and policies to govern the use of this technology is visible.
Therefore, all of these challenges signify the importance of developing an IoD environment
with the inclusion of blockchain features in order to fully complement each other and tackle
the corresponding challenges with this particular combination [118]. Overcoming these
challenges is essential to successfully harness the full potential of the IoD and blockchain,
enabling a wide range of applications in various fields. A detailed list of such challenges,
with indicative suggested approaches to their resolution, is presented below.

8.1. Security and Privacy

The challenges and open issues that derive from IoD–blockchain integration and are
related to security and privacy aspects are listed below:

I. Access control and authentication of UAVs can fail with affected and centralized
authentication methods. Thus, secure decentralized communications among drones,
and between drones and GSS, should be ensured [16].
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II. Due to the lack of robust communication between devices, blockchain should be
combined with solutions such as 5G-enabled IoD, utilization of multiple signatures,
and smart contracts [231].

III. Regarding security and privacy issues of blockchain in 5G-based IoD environments,
a more robust blockchain, in terms of security, would improve data management
between communicating entities in the IoD [70].

IV. Although cryptographic functions and a consensus mechanism are available in
blockchain, insurance of the integrity of the drone-collected data and the processing
rate of transactions are limited. Thus, it would be useful to expand the throughput
and develop mechanisms that will support the participation derived by multiple
entities [232].

V. Blockchain preserves the privacy of users and drone owners through the implemen-
tation of pseudo-random identities. However, transaction data are visible to all
participants. A potential solution would be the development of novel encryption
methods that prevent correlations with previous data blocks [232].

VI. The development of powerful security protocols enhanced with blockchain crypto-
graphic features will tackle repeated attacks, such as man-in-the-middle infiltrations
taking place in the computing environment of the IoD, providing low computational
and communication costs [233].

VII. Lack of security and privacy during the design stage requires the construction of
suitable strategies, including the forensic mechanism to eliminate attacks, as well as
tracing and reconstructing attack events [234].

8.2. Data Communication

The challenges and open issues that derive from IoD–blockchain integration and are
related to data communication aspects are listed below:

I. Lack of security mechanisms for cyber–physical systems to guarantee the secure trans-
mission of information between drones, requiring the development of mechanisms
focused on the verification of registrations and transactions within the integrated
blockchain. Deep Learning approaches are an ideal solution for the protection of flight
paths during the exchange of data between drones and GCSs [118].

II. Lack of security of unmanned traffic management in the IoD, requiring mechanisms
providing secure and unalterable traffic data between drones and GCSs. A potential
solution is logging the respective data into immutable decentralized ledgers [153].

III. The lack of the node’s memory in terms of data storage is conflicting due to the con-
stant growth of data blocks being correlated with each other, along with the storage
required for the drone to collect the predefined data, resulting in the requirement of ad-
ditional memory space. Hence, consideration of the node’s data storage requirements
is essential [235].

IV. In the context of the IoD, many drones collect a vast amount of data. Thus, data
collection and storage among a sufficient number of blockchain nodes for load sharing
would be a potential solution. The development of aggregation schemes is required
to ensure data security, energy efficiency, and reduced communication costs with
integrated encryption techniques that can be used to provide confidentiality and
access control of data [12].

8.3. Autonomy

The challenges and open issues that derive from IoD–blockchain integration and are
related to autonomy aspects are listed below:

I. The lack of reliable infrastructure for an autonomous IoD is tackled by the utilization
of decentralized tools for designing and developing IoD solutions. Hence, drone-
based autonomous systems will ensure security and safety in the operating phase,
avoiding risks and preventing mishaps [236].
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II. Avoidance of functionality errors caused by faulty devices is achieved through the
development of a decentralized mechanism capable of monitoring malfunctions dis-
tributed in the interconnected IoD nodes, along with the comparison of different
traditional architectures, to reduce the overall operational time and increase mainte-
nance quality [237].

III. There is a significant lack of drone operational control, causing demotivation of the
relevant stakeholders. Thus, the creation of platforms with dedicated anti-spoofing
tools, as well as related smart contracts with specific conditions, would improve the
overall protection of the IoD system [238].

IV. Energy efficiency is a big challenge due to the requirements for data processing, stor-
age, transmission, and operation of blockchain functionalities. An efficient solution
would be the development and adoption of smart systems capable of supplementing
the existing IoD solutions for minimal energy consumption [38].

8.4. Wireless Communications/Networking

The challenges and open issues that derive from IoD–blockchain integration and are
related to wireless communications and networking aspects are listed below:

I. Security and privacy challenges regarding the broadcasting of wireless communi-
cations result in important vulnerability of UAVs. The contribution of enabling
technologies, such as AI and blockchain for the design of intelligent decentralized
drones, would assist in the overall data security and privacy in different commu-
nication layers while controlling and monitoring the operational flow of the IoD
system [36].

II. Challenges related to the lack of network maintenance services are tackled with the
development of protocols and the distribution of resource allocations. Additional
indicative solutions include the availability of models that efficiently monitor and
calculate the performance of multi-core CPUs, effective utilization of the related
communication channels, distribution of information to the main data storage, and
secure blockchain ledgers [239].

III. There is a high possibility of data loss or reception of false data by other nodes, as well
as routing issues in the interconnection of drones and IoD networks. To tackle these
challenges, a standardized policy and suitable communication protocols should be
developed for the utilization of authorized components and effective interconnection
and data sharing of the installed sensors, so as to successfully submit the collected
data to the integrated blockchain solution [240].

IV. Network communication issues such as high throughput, latency, and delay, due to
low-quality hardware components, require solutions that implement IoT infrastruc-
tures with smart routing features and integrated 5G networks [240].

V. Due to the lack of upgraded platforms supporting 5G communication networks and
AI, the development of novel architectures with decentralized features would ensure
the increase in network capacity, communication safety, privacy, and cost reduction
for transaction storage [241].

8.5. Regulation and Fairness

The challenges and open issues that derive from IoD–blockchain integration and are
related to regulation and fairness aspects are listed below:

I. Security: Different regulatory frameworks lead to uncertainty in terms of researching
and leveraging the potentiality of drones and blockchain, as well as lack of access
control leading to unfairness in blockchain adaptation. Governments and industry
stakeholders should be proactive in developing clear and consistent regulations to
accommodate the rapid development and deployment of drones and blockchain
technologies [237].

II. Unfair mining issues may lead to further conflicts among stakeholders, with the
risk of the blockchain of one party being considered as valid, while others, although
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legitimate, are identified as invalid. Thus, specific mining metric evaluation models
would support the prevention of unfair treatment [242].

8.6. Architecture and Deployment

The challenges and open issues that derive from IoD–blockchain integration and are
related to architecture and deployment aspects are listed below:

I. Lack of intelligent techniques to detect possible attacks is a significant challenge. The
potential scheme’s design will offer cutting-edge solutions for detecting attacks, as
well as prevention measures. A suitable mechanism will isolate an attack in real time
to reduce localization error, return the drone to its core GS in the case of disconnection,
and prevent the collapse of the entire network [37].

II. Due to ongoing technological evolution, more complex attacks appear. However,
since the IoD and blockchain incorporate additional technologies, the implementation
of AI-based mechanisms mitigates this challenge by using neural networks, Deep
Learning, and Machine Learning algorithms to optimize the security and privacy of
the IoD network [243].

III. High computational and communication costs remain challenging. However, the IoD
architecture may contain devices from the Mobile Edge Computing (MEC) domain,
facilitating quicker and more effective communication by offloading messages to the
closest verified MEC device for processing. This suggests a decrease in computing
costs as well [37].

IV. The lack of reliable real-time detection of obstacles can lead to physical damage to the
drone or civil properties due to collisions. Therefore, the development of avoidance
mechanisms for the early identification of obstacles would be sufficient [244].

V. Deployment of drones related to the covering area and the completion of the scheduled
task requires the programming and training of several UAVs, as well as distributing a
suitable number of blockchain nodes to support the decentralized IoD system. Thus,
the development of a suitable mechanism focusing on the mobility/trajectory motion
to mitigate interference and collision issues would be a sufficient solution [34].

VI. Due to frequent point-to-point network updates and traffic congestion, a noticeable
depletion is generated, leading to the prolonged latency of the network. To avoid
such implications, enhanced architectures would allow drones to have access to their
own assigned data blocks [245].

VII. Authentication schemes suffer from real-time latencies and are vulnerable to potential
attacks. Thus, the establishment of a system that performs automated authentication
in specific flight zones, with the respective coordinates being registered in a dedicated
ledger, would enhance security countermeasures against potential infiltrations [246].

9. Conclusions

This paper researched the technological concept of the IoD, as well as the core princi-
ples of blockchain, aiming towards the proper investigation of the potential synergy of the
two technologies.

The results of our analysis present the significant impact of blockchain technology as
an active component of IoD systems, escaping the traditional utilization of decentralized
mechanisms for security purposes, with the option of incorporating additional technologies,
e.g., AI or computing variations, to further supplement requirements such as automation,
task allocation for efficiency, and improved transmission rates.

Through the investigation of the indicative use cases implementing the corresponding
synergy, certain common and impactful features were realized. Initially, drones provide
flexible mobility and the collection of different types of data, such as multimedia and
numerical data. Simultaneously, integrated blockchain-based frameworks with distributed
nodes within the IoD infrastructure and components ensure immutable data processing
and storage characteristics. As a whole, the resulting solutions enable secure cryptographic,
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authenticated, and real-time sharing among the related stakeholders, while validating the
value of the captured data.

Regarding proposed future guidelines on the topic, further research on important
open issues is required. Significant examples are related to solutions for efficient resource
allocation in terms of energy consumption, costs, and computing processes, since both tech-
nologies are considered to be individually highly demanding, guaranteeing interconnection
between the IoD system and the decentralized ledger, as well as utilizing blockchain data
for coordinating aerial tasks of the drones.
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