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Abstract: The fast and effective monitoring of agrochemical residues is essential for assuring food
safety, since many agricultural products are sprayed with pesticides and commercialised without wait-
ing for the pre-harvest interval. In this study, we investigated the use of spectral reflectance combined
with principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) to
evaluate the discrimination of fungicide-contaminated lettuces, considering three maximum residue
limits (MRLs) [3.5, 5, and 7 mg carbon disulphide (CS2) kg−1]. The non-systemic Mancozeb fungicide
(dithiocarbamate) was adopted in this research. Spectral reflectance (Vis/NIR) was measured by a
hand-held spectrometer connected to a clip probe with an integrating sphere. The lettuce spectra
were pre-treated (centring, standard normal variate, and first derivative) before data processing. Our
findings suggest that PCA recognised inherent similarities in the fungicide-contaminated lettuce
spectra, categorising them into two distinct groups. The PLS-DA models for all MRLs resulted in high
accuracy levels, with correct discriminations ranging from 94.5 to 100% for the external validation
dataset. Overall, our study demonstrates that spectroscopy combined with discriminating methods
is a promising tool for non-destructive and fast discrimination of fungicide-contaminated lettuces.
This methodology can be used in industrial food processing, enabling large-scale individual analysis
and real-time decision making.

Keywords: Lactuca sativa L.; dithiocarbamate; spectral reflectance

1. Introduction

Lettuce (Lactuca sativa L.) is an annual plant belonging to the Asteraceae family. Glob-
ally, millions of tons of lettuce are cultivated annually to meet the increasing demand for
ready-to-eat vegetables. Furthermore, this vegetable is known for its numerous medici-
nal properties attributed to phytonutrients, vitamins, and metabolites such as terpenoids,
flavonoids, and phenolic compounds. These properties include pain alleviation, relief from
stomach ailments, inflammation, and urinary tract infections [1]. In its chemical composi-
tion, lettuce also contains a variety of macroelements (e.g., Ca2+, Mg2+, K+, and Na+) and
trace elements (e.g., Fe2+, Zn2+, Cu2+, and Mn2+) essential for human nutrition [2].

In actual agriculture, pesticides are sprayed to vegetable, fruit, and grain crops for
control and protect them against pests and pathogens. People are exposed to pesticides
mainly by the consumption of fresh foods, even they are cleaned and sanitised. Unfortu-
nately, many agricultural products sprayed with agrochemicals are commercialised without
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waiting the pre-harvest interval for safe consumption. The manufacturers affirm that the
adequate use of pesticides does not harm the human health and contaminate the soil.
However, residues can persist on the agricultural crops after harvest if abusive spraying of
pesticides are made disregarding the safety recommendations [3]. This risk is particularly
considerable for widely consumed crops susceptible to fungi and pests.

Several scientific studies have reported the presence and persistence of pesticides
in vegetables and fruits from Morocco [4], China [5], Algeria [6], Chile [7], Iran [8], and
Brazil [9], among others. Dithiocarbamate fungicides are an important group of non-
systemic pesticides used in large scale around the world in agricultural crops [10]. They are
characterised by a wide spectrum of activity to combat different crop pathogens, low manu-
facturing costs, and small mammal toxicity [11]. Mancozeb (ethylene-bis-dithiocarbamate)
is a fungicide applied to protect vegetable and fruit crops against a broad range of foliar
fungal diseases [12]. However, a long-term study has revealed potent carcinogenic activity
associated with this pesticide [13]. It is registered for use in many countries on horticultural
and agricultural food crops, as well as on ornamentals and forestry species [14].

Maximum residue limits (MRLs) are the upper legal levels of a concentration for
residues of pesticides in food, considering good agricultural practices to ensure minimal
consumer exposure. The establishment of the MRL values considers dietary risks and
patterns, as well as edaphoclimatic conditions. International standardisation of MRL is de-
sirable for facilitating trade and ensuring global food safety controls. However, differences
among countries in agricultural practices, risk assessments, regulatory frameworks, and
consumer preferences contribute to the variation in MRL adopted worldwide. The Codex
Alimentarius Commission, established by the Food and Agriculture Organization (FAO)
and the World Health Organization (WHO), develops international food standards, guide-
lines, and codes of practice, including MRLs. These standards serve as a reference for many
countries in setting their own MRL. However, the definition and establishment of MRLs in
food (Table 1) are typically the responsibility of national or regional regulatory agencies.

Table 1. Maximum residue limits (MRLs) for the dithiocarbamate (including Mancozeb) concentration
in lettuce, established by government agencies of several countries or organisations.

Country/Organisation Crop † MRLs (mg CS2 kg−1) Reference

Canada Lettuce 0.1 [15]
Codex Alimentarius (FAO/WHO) Lettuce (head) 0.5 [16]

Great Britain Lettuce 5.0 [17]
Israel Lettuce 5.0 [18]

Australia Leafy vegetables 5.0 [19]
New Zealand Vegetables 7.0 [20]

Japan Lettuce (leaf) 10.0 [21]
Hong Kong Lettuce (head/leaf) 0.5/18.0 [22]

United States of America Lettuce (head/leaf) 3.5/18.0 [23]
South Korea Lettuce (head/leaf) 20.0/10.0 [24]

† Maximum residue limits obtained at the access dates specified in the reference section. Carbon disulphide (CS2).

In a bibliometric review based on the Web of Science database, Veiga-del-Baño et al. [25]
discussed the global trends of dithiocarbamate residues in food between 1948 and 2021.
These authors concluded that the scientific production and the Reference Publication Year
Spectroscopy (RPYS) presented a decrease in the years 2020 and 2021, possibly motivated
by legislative changes in MRL and/or prohibition of the use of different dithiocarbamates.
Indeed, adjustments in MRL and prohibitions for specific crops have been implemented
by regulatory agencies in several countries. For instance, spraying Mancozeb on lettuce
was permitted by the European Food Safety Authority (EFSA) until 2020, considering a
MRL of 5 mg CS2 kg−1 [26]. However, the Commission Implementing Regulation (EU)
2020/2087 decided not to renew the approval of the Mancozeb for use in the European
Union countries [27]. Additionally, this pesticide is not authorised for lettuce by the
National Sanitary Surveillance Agency of Brazil (ANVISA). Nevertheless, analyses carried
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out by the Program on Pesticide Residue Analysis in Food, linked to ANVISA, showed
Mancozeb residues in lettuce samples grown in several states of Brazil.

The quantification and detection of fungicide residues in agricultural products are
of high importance, since they are toxic to humans on various levels and are associated
with long-term negative health impacts [28]. Gas chromatography and liquid chromatogra-
phy combined with tandem mass spectrometry are the most widely used techniques for
multi-residue analysis of pesticides in vegetables and fruits, usually combined with the
QuEChERS method [4]. However, according to Pu et al. [29], there is pressure for non-
contact, non-destructive, rapid, and efficient methods for fast evaluation of agricultural
crops in the cultivation areas, processing industry, and markets. Fast and environmentally
friendly techniques that use fewer solvents and smaller sample sizes have been studied
and applied. Following this trend, the horticultural sector has sought out new technologies
to enhance its competitiveness. This includes modern agricultural practices, genetically
improved plants, more efficient machines, and the investment on automatic classification
tools [30]. The automatic classification and discrimination of plants is increasing in im-
portance, since it is required to optimise the on-line monitoring procedures in the field
and industry, improving remote sensing identification and traceability, as well as to assure
product credibility.

The great success of spectroscopy as one of the most versatile techniques in analytical
chemistry is due its handle easiness and measurement speediness, providing molecular
information for samples in different physical states, with minimum or without chemical
treatment [31]. Specifically, the spectral reflectance has been successful in classifying
different agricultural products, for instance when discriminating different varieties of
rice [32], olive [33], grapevine [34], coffee [35], and sugarcane [36]. This technique has been
also used to detect maturation stages in lettuces [37], to evaluate spinach quality [38], and to
identify bruises on apples [39]. Despite the harmful effects of pesticides, their use has been
increasing every year. Li et al. [5] affirmed that the lack of knowledge and training among
farmers is one of the major challenges to the correct application of pesticides. Many farmers
in several countries use dithiocarbamates to protect vegetable and fruit crops against foliar
fungal diseases, sometimes not waiting for the pre-harvest interval and even though these
fungicides are not approved by government agencies for specific crops. Thus, regular
monitoring of pesticide residue is essential for the protection of human health, international
trade, and food safety. For this purpose, is very important to develop and validate a tool
that enables fast and effective detection, as well as the discrimination of pesticide residues
in crops.

The present study was developed to evaluate two discriminating methods (principal
component analysis and partial least squares discriminant analysis) combined with spectral
reflectance (Vis/NIR) for discriminating fungicide-contaminated lettuces, considering three
MRLs (3.5, 5, and 7 mg CS2 kg−1). Without the objective of accurate quantitation, the
proposed method can improve the lettuce traceability for contaminants, contributing to
real-time decision making and assuring healthy food for human consumption.

2. Materials and Methods
2.1. Plant Material, Experimental Design, and Location

The Regina variety of lettuce, characterised by green plain leaves, was grown or-
ganically on a certified farm situated in Capim Branco, Minas Gerais, Brazil. The farm’s
coordinates are 19◦34′ S latitude, 44◦10′ W longitude, with an elevation of 816 m (Figure 1).
The climate of this region is classified as Cwa (Köppen system), featuring warm temperate
conditions with dry winters and wet summers [40].

The lettuce seeds were sown in polypropylene trays (15 units with 50 cells each) filled
with organic soil [soil and humus in the ratio of 1:0.5 (w:w basis)] (Figure 2). Seedling
growth took place beneath a low-density polyethylene film (Suncover Av Blue 180 µm,
Ginegar, Leme, SP, Brazil), enabling better irrigation management. Inside the greenhouse, a
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photoselective shading net (ChromatiNet Raschel Red 35%, Ginegar, Leme, SP, Brazil) was
used, reducing direct sunlight exposure on the plants and enhancing the crop yield.
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The healthy and vigorous seedlings were transferred to polypropylene pots
(0.24 m × 0.24 m × 0.22 m) filled with a thin layer of gravel, covered by soil blended with
organic materials (vegetable biomass and cow manure) in a ratio of 1:1 (w:w basis) (Figure 2).
Fertilising was done by the addition of syrup containing 10% cow urine. Crop watering
was managed using a drip system regulated by an automatic controller. The experiment
comprised 500 lettuce plants, with 355 designated as experimental units and 145 for bound-
ary effects.

Several days prior to the plants reaching physiological maturity, the lettuce plants
were moved to a different greenhouse for fungicide application. This greenhouse is approx-
imately 22 km away from the organic farm, situated at the Federal University of São João
del-Rei, located at the Sete Lagoas, Minas Gerais, Brazil (Figures 1 and 2). It also features
the same covering as described earlier (photoselective shading net and polyethylene film).
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2.2. Fungicide Spraying

In this research, the Mancozeb (dithiocarbamate), which is a non-systemic fungicide,
was employed. Its active component is a precursor of carbon disulphide (CS2), which
has many useful chemical and physical properties, being characterised by a toxic, highly
volatile, flammable, colourless, liquid organosulfur compound. The pesticide was solu-
bilised in water to ensure an adequate volume for application on the lettuce heads (Figure 2).
The dosage recommended in the package instructions for green leafy vegetables was fol-
lowed (2 to 3 kg of pesticide per hectare). Except for five plants designated as control
units, selected randomly within the greenhouse, the Mancozeb spraying on lettuce plants
was made using an electric equipment, producing droplets with diameters of 29 µm on
average. Standardisation was maintained regarding the timing of application and the dis-
tance between the sprayer nozzle and the lettuce heads. The uniformity and homogeneity
of fungicide application on the plants was verified individually by a magnifying glass
equipped with an LED ring light.

In line with the dosage, this study adhered to the pre-harvest interval of 14 days, spec-
ified in the package instructions for the consumption with safety of green leafy vegetables.
Sampling for laboratory analyses and spectral measurements occurred on alternate days
within this interval, commencing one day after pesticide spraying and totalling seven days.
Each day, 10 samples were collected, each weighing over 500 g and comprising five ran-
domly selected plants. Fresh mass was obtained by an analytical balance after removing
the roots. Thus, 50 lettuce heads were sampled daily, resulting in a total of 350 plants. The
experimental design was completely randomised with seven alternate days after pesticide
spraying (treatments) and 10 samples (repetitions).

2.3. Reflectance Measurements

Lettuce spectral signatures (Figures 2 and 3) were assessed using a portable spectrom-
eter (JAZ-EL350, Ocean Optics, Orlando, FL, USA), interconnected to a light source and
powered by a battery (Table 2). To obtain the reflected light from the leaf, a specialised
clip probe (SpectroClip-R, Ocean Optics, Orlando, FL, USA) was employed (Figure 3).
This probe incorporates an integrating sphere designed to diffuse the incoming flux, al-
lowing that the spectrometer detector measure the dispersed light for each wavelength.
The illuminated sample area within the clip probe measures 5 mm in diameter. Premium
fibres of 600 µm (Vis/NIR) coupled the light source and the spectrometer to the probe. A
SpectralonTM diffuse reflectance standard was the reference for spectral measurements.

Following the warm-up period of the light source, reference standard measurements
were taken before obtaining the spectral signatures of lettuce leaves. The spectral data
were calibrated using the software SpectraSuite 2.0 (Ocean Optics, Orlando, FL, USA) and
expressed as a relative percentage of the reference standard:

Rλ
cal = [(Rλ

leaf − Rλ
dark)/(Rλ

ref − Rλ
dark)] × 100

where Rλ
cal is the calibrated spectral reflectance from the lettuce leaves (%), Rλ

leaf is the
spectral reflectance from the lettuce leaves (dimensionless), Rλ

ref is the spectral reflectance
from the diffuse reflectance standard (dimensionless), and Rλ

dark is the spectral reflectance
considering light absence from the overall closure of the light source shutter (dimensionless).

As represented in the diagram (Figure 2), spectral reflectance measurements were
carried out inside the greenhouse at the end of the afternoon, under mild ambient temper-
ature conditions (approximately 23 ◦C) with the purpose of avoiding the overheating of
the spectrometer detector and light source. From each plant, three leaves were randomly
chosen from the outer, middle, and inner regions of the lettuce head. Three separate mea-
surements were taken at standardised and evenly spaced locations on the adaxial surface of
the leaf, avoiding the edges and veins. Consequently, a total of 3195 spectra were measured,
accounting for the 350 sprayed lettuce heads and the five plants without dithiocarbamate
residues (control units).
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Table 2. Specifications and operational parameters for portable spectrometer JAZ-EL350, light source,
and battery.

Detector: 2048-element linear silicon CCD array sensor Signal-to-noise ratio: 250:1 (full signal)
Wavelength range (grating): 400–1000 nm Display: organic light-emitting diode (128 × 64 pixels)
Optical resolution: 1.3 nm (full width at half maximum) Light source (range): 360–1100 nm (tungsten-halogen)
Integration time: 870 µs to 65 s Light source (lifetime): 500–10,000 h
Entrance aperture: 25 µm width slit Battery: rechargeable lithium-ion
Fiber optic connector: type SMA 905 Data storage: SD card (2 GB capacity)

Information obtained from Ocean Optics catalogues.

The digital files with the spectral signatures were saved on an external hard drive
and moved to a portable computer for analysis using electronic spreadsheets. Throughout
the analysis process, the average spectral signatures were calculated for each sample of
lettuce plants.

2.4. Dithiocarbamate Analytical Determination

The samples were divided into quarters, ground in an automatic blender, stored in
airtight packages, and frozen in an ultra-freezer (−30 ◦C) to minimise metabolisation and
degradation of the pesticide. The analytical measurement of dithiocarbamate followed the
reference method of Cullen [41], which was later refined by Keppel [42]. Mancozeb con-
centration was quantified by spectrophotometric analysis, measuring the cupric complex
formed with the CS2 released from the acid decomposition of the analyte in the presence
of a reducing agent (stannous chloride) [43]. The resulting solution (copper II acetate
monohydrate + CS2) was contained in a quartz cuvette. Measurements were performed
using a UV–Vis spectrophotometer (Cary 50, Varian, Agilent, Santa Clara, CA, USA) at
435 nm. Following laboratory analyses, 70 reference values were measured, with 10 values
corresponding to each treatment.

2.5. Chemometric Analysis

The chemometric and multivariate statistical methods used to assess the potential of
spectral reflectance for discriminating fungicide-contaminated lettuces were the principal
component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). Three
MRLs (3.5, 5, and 7 mg CS2 kg−1) were selected according to the values presented in Table 1,
assuming that lower limits are adopted for most countries or organisations and that there



Horticulturae 2024, 10, 828 7 of 16

is a strong trend of decrease or prohibition of dithiocarbamate use in agricultural products
over time. All spectra were pre-treated (centring, standard normal variate, and first deriva-
tive) before each data processing. Preliminary tests indicated that these pre-treatments
were more appropriate for obtaining smaller discrimination errors, also improving the
accuracy and robustness of the models.

According to Lopes and Steidle Neto [44], centring and normalisation are mandatory
steps before PCA and PLS-DA. These pre-treatments were computed following the proce-
dures recommended by Moscetti et al. [45], Yuan et al. [46], and Martens and Naes [47]. For
centring, an average spectrum was calculated by using all the spectra in the dataset and
then it was subtracted from each spectrum (mean-centring). The standard normal variate
(SNV) was applied as normalisation technique, in which the spectrum was subtracted at
every wavelength by the spectrum average and this result was divided by the spectrum
standard deviation. First derivative was calculated by the Savitzky–Golay algorithm [48]
with 25 derivative points (window for calculation), optimally fitting the dataset points to a
polynomial in the least-squares sense.

A PCA was performed before PLS-DA to derive the principal components (PC) from the
spectral data, seeking inherent similarities of data, detecting patterns, and verifying outliers
in the dataset [49,50]. Consequently, the original data were transformed into new variables
(PCs), which were orthogonal and uncorrelated. The first PC represented the largest amount
of variance in the original dataset, and each succeeding component accounted for as much
of the remaining variability as possible. The PCA was run with the spectral data following
procedures proposed by Saporta [51], where the original data matrix was decomposed into
scores, loadings, and residual matrices. The score matrix represented the coordinates of the
transformed variables in the PC space. That is, it was related with the original regressors and
was applied for data exploration and model predictions. The loading matrix represented the
correlation of each PC at the specified wavelengths, while the residual matrix was the portion
of the data not explained by the PCs, such as noise and uncertainties.

PLS-DA is a supervised method and uses a training set of samples to define a decision
boundary in the space of response patterns. For this, spectral reflectance was associated
with the reference method results and data were grouped into predefined classes, which
varied according to the different MRLs used in this research. Mathematical models were
then built, capable of identifying unknown samples with different MRL thresholds (3.5,
5, and 7 mg CS2 kg−1). When applying the PLS-DA method, the calibration with cross-
validation followed by an external validation was used, as it is the most recommended
procedure when developing chemometric models [52]. Thus, the dataset was divided into
groups, and models from reduced data were developed with one of the groups omitted and
used for test purposes. Prediction residuals were calculated for each developed model, and
the process was repeated with another subset of the calibration dataset, until every subset
was left out once [50]. The final model was that with the lower prediction residual and was
used with the external validation dataset in order to perform independent discriminations,
evaluating its final performance.

Following Huang et al. [53], 2/3 of the samples (47 spectra) were utilised as the cali-
bration with cross-validation dataset, and 1/3 of the samples (23 spectra) as the external
validation dataset. Both datasets contained representative samples of the seven experimen-
tal treatments. This method was used for estimating independent data, distinct from the
calibration with cross-validation dataset [54].

PLS-DA data reduction was conducted seeking for discriminant factors, which were
linear combinations of selected PCs resulting from the PCA analysis, allowing a better
separation of the centres of gravity of the MRLs considered as threshold [55]. Models
for one to five discriminant factors were tested while building the models. The choice of
the optimal number of discriminant factors was determined according to the increment
of the calibration with cross-validation errors, as more discriminant factors were used in
each model. The number of discriminant factors was incremented until calibration with
cross-validation errors did not vary or were greater than the previous analysis.
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During this process, two matrices (X and Y) were constructed. The X matrix corresponded
to the original data, while the Y matrix consisted of one column associated with the residue
level (above or below the maximum allowable value) and as many lines as there were spectra.
Each spectrum had the value 1 for the class it belongs to and 0 for the other. A model was
developed for each class, and the closer a spectrum of a certain column in Y was to 1, the more
likely that sample was classified as a member of a particular MRL. This procedure guaranteed
that observations were always classified in one of the available residue levels. It was repeated
three times, considering the MRLs of 3.5, 5, and 7 mg CS2 kg−1.

The PCA results were visualised with the score plot of the first two principal compo-
nents aiming to provide the most efficient two-dimensional representation of the fungicide
residue information contained in the dataset. The performances of PLS-DA models were
assessed by loading profiles and confusion matrices, which represented the numbers of
samples attributed to each MRL compared to the dithiocarbamate analytical values (ref-
erences). The diagonals of the confusion matrices contained the correct discrimination
percentages, with best results approaching 100%. Confusion matrices were processed for
both calibration with cross-validation and external validation datasets.

Based on the discrimination percentages presented in confusion matrices, kappa
coefficients were calculated to evaluate the accuracies of the discriminant analyses [56].
According to McHugh [57], this correlation statistic is useful for either interrater or intrarater
reliability testing. Salkind [58] and Gold et al. [59] reported six benchmarks for interpreting
the kappa coefficient results: poor (<0.00), slight (0.00–0.20), fair (0.21–0.40), moderate
(0.41–0.60), substantial (0.61–0.80), and almost perfect (0.81–1.00). The software SPECTOX
2.0 was custom-built for this research to facilitate chemometric analysis and spectral data
processing tasks. It was developed in Java using the software NetBeans 22 (Apache Software
Foundation, Wilmington, DE, USA). The pre-treatment algorithms were integrated into the
software SCILAB 6.1.1 (Scilab Enterprises, Versailles, France).

3. Results
3.1. CS2 Behaviour in Lettuce and NIR Spectral Signatures

Table 3 presents the Mancozeb residue values, expressed as CS2, on head lettuces dur-
ing the pre-harvest interval, determined from the average dithiocarbamate measurements.
The residues of dithiocarbamate were below the maximum limits adopted in this work (3.5,
5, and 7 mg CS2 kg−1) after 3 to 5 days. The average spectral reflectance of the lettuce sam-
ples, with presence and absence of dithiocarbamate (Mancozeb), are presented in Figure 4.
Due to instrumental and systematic noises, the spectral region used for chemometric anal-
ysis was 500–1000 nm. It was found that lettuce reflectance for fungicide-contaminated
and fungicide-free leaves after pre-treatments (centring, standard normal variate, and first
derivative) exhibited similar patterns. However, more accentuated differences between the
spectra were verified at 675 and 725 nm.

Table 3. Dithiocarbamate concentration and standard error values, obtained from reference measure-
ments, on head lettuces at 7 intervals (from 1 to 13 days) after fungicide (Mancozeb) spraying.

Time
(days)

Dithiocarbamate
(mg CS2 kg−1)

Standard Error
(mg CS2 kg−1)

1 10.3 ±1.70
3 5.6 ±1.11
5 2.4 ±0.87
7 1.0 ±0.50
9 0.7 ±0.23
11 0.4 ±0.17
13 0.1 ±0.08
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3.2. Principal Component Analysis

The PCA score plots of the first two principal components (PC1 and PC2), considering
different MRLs (3.5, 5, and 7 mg CS2 kg−1) for fungicide-contaminated lettuce leaves, are
presented in Figure 5. It was possible to verify that two classes were well separated along
the first principal component (PC1), indicating that the fungicide-contaminated lettuce
spectra carry a discriminant information. The score plots differed according to the MRL
used to identify the samples. For the MRL of 3.5 mg CS2 kg−1, 80.8 and 97.7% of the
samples were correctly associated as greater (PC1 < 3.0) and smaller (PC1 > 3.0) than the
threshold, respectively. When considering the MRL of 5 mg CS2 kg−1, 85.7 and 100% of
the samples correctly appeared as greater (PC1 < 2.95) and smaller (PC1 > 2.95) than the
MRL, respectively. Finally, considering the MRL of 7 mg CS2 kg−1, 87.5 and 91.8% of the
samples were correctly identified as greater (PC1 < 2.95) and smaller (PC1 > 2.95) than the
threshold, respectively.

3.3. Classification by PLS-DA

The confusion matrices that represent the classification results after applying the
PLS-DA method, considering the correct discrimination percentages, for calibration with
cross-validation and external validation are presented in Table 4 for the MRL values of 3.5,
5, and 7 mg CS2 kg−1. When considering the calibration with cross-validation dataset, the
kappa coefficients of the PLS-DA models reached 0.939, 0.980, and 0.982 for the MRLs of
3.5, 5, and 7 mg CS2 kg−1, respectively. For external validation data, the kappa coefficients
for 3.5 and 7 mg CS2 kg−1 were 0.920, while for 5 mg CS2 kg−1 was 0.975.

The loadings of the first discriminant factor for all MRL values used in this research
are presented in Figure 6. Loading patterns were very similar, but the slight differences
in the intensities of the characteristic peaks and valleys evidenced that the MRL values
affected the resultant PLS-DA model, leading to distinct contributions of each wavelength
to the fungicide-contaminated lettuce discrimination.
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Table 4. Confusion matrices resulting from PLS-DA for the calibration with cross-validation and
external validation, considering the maximum residue limits (MRLs) of 3.5, 5, and 7 mg CS2 kg−1.

Calibration with Cross-Validation External Validation

3.5 mg CS2 kg−1

>3.5 ≤3.5 >3.5 ≤3.5
>3.5 97.73% 3.85% >3.5 97.47% 5.47%
≤3.5 2.27% 96.15% ≤3.5 2.53% 94.53%

5.0 mg CS2 kg−1

>5.0 ≤5.0 >5.0 ≤5.0
>5.0 97.96% 0.00% >5.0 97.51% 0.00%
≤5.0 2.04% 100.00% ≤5.0 2.49% 100.00%

7.0 mg CS2 kg−1

>7.0 ≤7.0 >7.0 ≤7.0
>7.0 98.15% 0.00% >7.0 96.99% 5.03%
≤7.0 1.85% 100.00% ≤7.0 3.01% 94.97%
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4. Discussion

During the initial seven days post-spraying, the rates at which the concentration
of dithiocarbamate decreased were larger and variable, reaching a reduction of 90.3%.
Constant rates of decline (0.3 mg CS2 kg−1) were verified from the seventh to the thirteenth
day, corresponding to a reduction of 8.7%. These results are close to those reported by
Fantke and Juraske [60], who reported that dissipation half-live of dithiocarbamates range
from 3 to 5 days. This finding was based on a review of 811 scientific literature sources,
encompassing 4513 dissipation half-lives for 346 pesticides measured in 183 plant species.

The more accentuated differences between the spectra at 675 and 725 nm are probably
associated with the greater absorbances of fungicide-contaminated samples in relation to
those in the fungicide-free ones (Figure 4). Pre-treating the spectra with the first derivative
may have contributed to improve the sensitivity of these wavelengths, eliminating the
influence of irrelevant information, as well as improving the detectability of subtle spectral
features [61,62]. Yu et al. [63] verified a marked peak around 700 nm when applying the
first derivative spectra for detecting pyrethroid pesticide residues on Hami melons.

The PCA is an unsupervised and exploratory procedure, allowing the finding of in-
herent similarities in data. This statistical multivariate method is useful for separating
samples according to their common spectral characteristics, determining a smaller dimen-
sion hyperplane on which the points will be projected from the higher dimension [50]. It
was also the first step in order to detect patterns when applying the supervised method
(PLS-DA). In all score plots, data presented the same scatter pattern and PC values, but
they differed regarding which samples were correctly grouped and separated between
above or below a MRL value (Figure 5). The separation among the categories can be based
on the first principal component, since it accounted for a significant portion of the total
data variance (96.5%), confirming that spectral pre-treatments were able to effectively filter
out a considerable portion of the signal variability not associated with the class belonging
(above or below a specific MRL).

Despite the good results obtained with PCA, using the PLS-DA is advantageous, since
it allows an automatic and quantitative discrimination. That is, it comprises a statistical
method for determining the most discriminative variables regarding a specific category
according to a sample spectral signature, assigning an unknown sample to a predefined
class based on its spectrum. For this, PLS-DA is pointed as suitable for datasets with a
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high degree of inter-correlation between the independent variables [36]. In this study, it
improved the discrimination procedure of the fungicide-contaminated lettuces based on pre-
established MRL values. Another benefit of applying the PLS-DA method is assuring more
reliable and robust models. Lopes and Steidle Neto [44] affirmed that calibration with cross-
validation guarantees that the same samples have the probability to be used for training
and testing the chemometric models based on equal pre-processing and multivariate
techniques. Additionally, the external validation procedure allows for the confirming of
the predictive capability of each model from new samples, independent of those used for
calibrating purposes.

The best results with PLS-DA models were verified with one discriminant factor for
all MRL values used in this research. This was expected, since during PCA, the first PC
presented a large contribution in explaining the original data variance (96.5%). According
to Berrueta [50], models with fewer discriminant factors tend to be less complex, also pre-
senting a faster processing. The loading profiles showed that all wavelengths contributed
towards discriminating the fungicide-contaminated lettuces, considering the MRLs of 3.5,
5, and 7 mg CS2 kg−1. However, the sharpest and most consistent peak was observed
between 550 and 700 nm, showing a clear difference between the CS2 concentrations in
the lettuce leaves. The NIR wavelengths of 750, 790, 840, and 900 nm were also relevant
(Figure 6). Specifically, a well-defined valley was observed at 675 nm, consistent with the
pre-treated spectra of the studied lettuces (Figure 4) and confirming the sensitivity of this
wavelength to carry valuable information about the samples. Wavelengths from 500 to
700 nm are generally associated with lettuce pigment contents (chlorophyll, carotenoid,
and anthocyanin) [64], which tend to decrease after Mancozeb spraying, mainly due to
oxidative damage [65]. It is important to emphasise that in addition to lettuces being rich in
chlorophyll and carotenoids, they also present high anthocyanin concentrations, especially
when cultivated in greenhouses [30]. Many NIR wavelengths are also useful for lettuce
pigment predictions [64]. Additionally, the NIR wavelengths, especially in the region
around 900 nm, tend to be associated with higher absorbances in samples contaminated
with fungicide compared to those without fungicide [61].

In this study, both for calibration with cross-validation and external validation pro-
cedures, the misclassification rates decreased as compared to the PCA. However, the
classification patterns were maintained, with the developed model performing better and
reaching 100% of correct discriminations for samples with Mancozeb residues below the
limit of 5 mg CS2 kg−1 for both calibration with cross-validation and external validation.
When considering the limits of 3.5 and 7 mg CS2 kg−1, the last one performed better
for calibration with cross-validation, but both were close when evaluating the external
validation results.

The kappa coefficients found in this research confirm the excellent performance of
the three proposed models and agree with the classification patterns discussed above.
Following interpretation proposed by McHugh [57] and Pérez-Rodríguez et al. [66], the
kappa coefficients obtained in this work were within the data reliability range of 82 to 100%,
indicating an almost perfect agreement of the classifiers.

The suitable performance of PLS-DA for discriminating the fungicide-contaminated
lettuces is probably because this method combines the virtues of other supervised algo-
rithms with noise reduction and variable selection advantages of traditional PLS regression.
Other studies also recommended the PLS-DA for classification purposes. For instance,
Borràs et al. [67] combined this procedure with near-infrared spectroscopy for discriminat-
ing sweet and bitter almonds by measurements of the kernel surfaces without any sample
pre-treatment. Manfredi et al. [68] affirmed that PLS-DA was more accurate when discrimi-
nating raw hazelnuts from different origins and cultivars based on infrared spectrometry.
Steidle Neto et al. [36] confirmed the potential of PLS-DA to be utilised as a basis for the
development of automatic sorting systems of sugarcane varieties.

Our results showed that data pre-treatment also affected the discrimination results.
Often, spectral signatures do not visibly differ among themselves, containing undesir-
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able components (noises), which can reduce the computing efficiency of the proposed
models [44]. Spectral pre-treatments can help to remove unnecessary information, which
cannot be properly processed by the chemometric methods, enhancing spectral differences
between classes. However, the excessive pre-treatment or the inadequate use of these tech-
niques can lead to loss of spectral information that can be useful for the discriminations [45].
Centring improved the classification accuracy, improving the differences between spectra.
The normalisation adjusted the spectral data from the different groups (MRLs) to an identi-
cal baseline, facilitating subsequent spectral analysis and comparisons in the discrimination
procedure [46]. Spectra first derivative corrected both additive and multiplicative effects,
removing baseline shifts and minimising overlapped peaks of spectra.

Our findings suggest that combining spectral reflectance (Vis/NIR) with PCA and
PLS-DA enables the differentiation of fungicide-contaminated lettuce. Nevertheless, it is
essential to perform spectral measurements using a high-resolution spectrometer, after
allowing sufficient time for the light source to warm-up. Established methods in scientific
literature outline that dithiocarbamate residues in agricultural crops can be quantified
accurately, typically utilising gas or liquid chromatography, often coupled to mass spec-
trometry [11]. These conventional methods are both time-consuming and labour-intensive,
demanding sample preparation (often destructive), skilled personnel, and costly process
chemistry. While highly sensitive, these techniques are better suited for spot checks.

5. Directions for Practical Applications and Further Research

This technique can be used in industrial food processing or directly in the field for
fast quality control purposes and/or discrimination of head lettuces that are not easy to
reach with conventional methods. Additionally, it is important to reduce irregularities and
enhance the inspection of agricultural crops by government agencies of different countries.
The implementation of this innovative approach can also reduce costs associated with
equipment, electrical energy, and chemical analyses.

The proposed methodology should be adapted to other MRLs, pesticides, and agri-
cultural products, namely, lettuce and other vegetables, with large economic potential in
future studies. Additional research may also focus on expanding the dataset to account for
distinct lettuce growth cycles during different seasons of the year, as well as developing
models based on ultraviolet and mid-infrared wavelengths.

6. Conclusions

The success of the proposed method depends on standardised measurements with
precise placement of the probe on the sample, as well as correct spectrometer calibration.
The results obtained can also be improved, minimising or eliminating the observed discrim-
ination errors by using high-sensitivity equipment and evaluating the thermal influence
on measurements. The findings of this study showed that the spectral reflectance over the
visible (Vis) and near-infrared (NIR) regions combined with principal component analysis
(PCA) and partial least squares discriminant analysis (PLS-DA) is a promising tool for
non-destructive and fast discrimination of fungicide-contaminated lettuces, considering
three maximum residue limits (MRLs) [3.5, 5, and 7 mg CS2 kg−1]. Without the objective of
accurate quantitation, the discrimination method evaluated in this research has potential
to improve the lettuce traceability by allowing real-time decision making and assuring
healthy food for human consumption.
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