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Abstract: Aspergillus fumigatus is an environmental fungus recently included in the fungal high-
priority pathogens by the World Health Organization. While immunodeficiency and/or pre-existing
lung damage represent a well-recognized fertile ground for fungal growth, it is increasingly being
recognized that severe viral infections may similarly favor A. fumigatus colonization and infection, as
recently experienced in the Coronavirus disease 2019 (COVID-19) pandemic. Herein, in a murine
model of COVID-19-associated pulmonary aspergillosis (CAPA), obtained by the concomitant ex-
posure to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike protein and
A. fumigatus conidia, we found that the microbial compound indole-3-aldehyde (3-IAld) was able
to ameliorate CAPA by working at multiple levels during viral infection and fungal superinfection,
including epithelial barrier protection, promotion of antiviral responses, and limiting viral replication.
As a consequence, 3-IAld limited the pathogenic sequelae of fungal superinfection as revealed by
the controlled fungal burden and restrained inflammatory pathology. These results point to indole
compounds as potential agents to prevent CAPA.

Keywords: CAPA; aspergillosis; SARS-CoV-2; indole-3-aldehyde

1. Introduction

Fungal diseases are an important cause of morbidity and mortality in humans. In
recognition of their impact on human health, the World Health Organization has recently
elaborated a fungal priority pathogens list to guide research and policy interventions [1].
In an attempt to prioritize fungal pathogens, three categories were defined, i.e., critical-,
high-, and medium-priority groups. Within the former, the mold Aspergillus fumigatus and
the yeasts Cryptococcus neoformans, Candida albicans, and C. auris were included [1]. Current
estimates show that over 6.5 million people annually are affected by a severe fungal disease,
with over 3.75 million deaths, 68% of which are directly attributable to the fungal disease [2].
Higher incidence was reported for invasive aspergillosis, chronic pulmonary aspergillosis,
and candidemia and invasive candidiasis, with invasive aspergillosis associated with the
higher crude mortality [2].

A. fumigatus is an environmental saprotrophic fungus whose life cycle is character-
ized by the production of asexual spores, or conidia, that are efficiently dispersed in the
environment [3]. Humans are constantly exposed to A. fumigatus conidia that enter the
upper respiratory tract to reach the alveoli. In the immunocompetent host, the conidia are
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efficiently removed by mechanical and immunological mechanisms, based on mucociliary
clearance and removal by alveolar macrophages, respectively [3]. If clearance fails, A. fumi-
gatus conidia can germinate and initiate hyphal growth. The clinical picture of A. fumigatus
colonization and/or infection is tailored to the host phenotype. Immunocompromised indi-
viduals, such as those undergoing hematopoietic stem cell transplantation or in induction
chemotherapy for leukemia, may develop a life-threatening invasive aspergillosis, while
aspergilloma or chronic pulmonary aspergillosis may affect patients with pre-existing lung
damage. A. fumigatus may also be the cause of asthmatic reactions, such as in chronic
bronchopulmonary aspergillosis [3].

The recent Coronavirus disease 2019 (COVID-19) pandemic caused by the Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has recently expanded the clinical
scenarios of A. fumigatus infection to include COVID-19-associated pulmonary aspergillosis
(CAPA) [4–7]. A multicenter study in France reported a 15% prevalence of CAPA in
critically ill patients requiring invasive mechanical ventilation during the first wave [8], and
a 5.1% prevalence in the Delta and Omicron waves, which rose to 9.1% among patients who
required invasive mechanical ventilation [9]. Along with influenza-associated pulmonary
aspergillosis, CAPA represents a form of viral-associated pulmonary aspergillosis in which
a severe viral infection, likely by disrupting epithelial integrity and inducing a severe
inflammatory response in critical patients, predisposes to the development of invasive
fungal infection [7]. Therefore, protection against mucosal barrier impairment might be
crucial to prevent fungal superinfection after severe viral disease.

The commensal microbes that colonize the bodily surfaces exposed to the external
environment, collectively known as microbiota, and their metabolites, such as short-chain
fatty acids (SCFAs) and tryptophan (Trp)-derived indolic compounds, are increasingly being
recognized for their role in maintaining mucosal homeostasis [10]. One such compound,
indole-3-aldehyde (3-IAld), was identified by our group as a product of Lactobacilli under
conditions of unrestricted Trp availability with the ability to provide antifungal resistance
and protection against mucosal damage [11,12]. The activities associated with 3-IAld have
since expanded to confirm its potent role in promoting epithelial barrier function, immune
homeostasis, and colonization resistance at mucosal sites [13].

Based on these premises, we herein established a murine model of CAPA and explored
the potential therapeutic activity of 3-IAld in this model. Our results show that 3-IAld
exerted a multiplicity of effects in CAPA, from nasal barrier protection to the inhibition of
viral replication and subsequent Aspergillus superinfection.

2. Materials and Methods
2.1. Mice, Infections, and Treatments

Male BALB/c mice, 8–10 weeks old, were purchased from Charles River Laboratories
(Calco, Italy). To establish a murine model of CAPA, mice were anesthetized via intraperi-
toneal injection with Penthotal, (50 mg/kg) before intratracheally instillation of 15 µg/mice
of SARS-CoV-2 recombinant wild-type (WT) Spike protein (SPwt) (ECD, His & Flag Tag,
Genescript, Z03481) or Delta (∆) Spike protein (SP∆) (RBD, L452R, T478K, Avi & His Tag,
Genescript, Z03613) to mimic SARS-CoV-2 infection. Contextually, 1.5 × 108 A. fumigatus
(Af293) resting conidia/50 µL of saline were administered to mimic fungal superinfec-
tion. The dose of the Spike protein was derived from a previously established model of
SARS-CoV-2 infection [14] while the infectious dose of the fungus was chosen to obtain
measurable fungal growth at 3 dpi as per protocol. Four mice were used in each experiment.
Quantification of fungal growth was performed as described [7]. Briefly, fungal growth
was expressed as colony-forming units (log10 CFUs), obtained by serially diluting lung
homogenates on Sabouraud agar plates incubated at 35 ◦C for 24 h. Bronchoalveolar lavage
(BAL) was performed by cannulating the trachea and washing the airways with 3 × 0.5 mL
of PBS to collect the BAL fluid. For differential BAL fluid cell counts, cytospin prepa-
rations were made and stained with May–Grünwald Giemsa reagents (Sigma–Aldrich,
St. Louis, MO, USA). For histology, lungs were removed and immediately fixed in 10%
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neutral buffered formalin (Bio-Optica Milano Spa, Milan, Italy) for 24 h. The fixed organs
were dehydrated, embedded in paraffin, sectioned into 3–4 µm, and stained with Periodic
Acid-Schiff reagent (Abcam, Cambridge, UK). 3-IAld (Sigma-Aldrich, Milan, Italy) was
encapsulated into microparticles (2:1 Eudragit® S100:L100 ratio with 30% w/w ETHOCEL
std. 7 (Dow Chemical Company, Milan, Italy) in ethanol), as detailed [15]. It was given
orally at a dose of 18 mg/kg in 200 µL of PBS, a day before and a day post-infection and SP
administration. Mice were sacrificed at 3 days post-infection. Infections were performed
under isoflurane anesthesia, and all efforts were made to minimize suffering. Mouse
experiments were performed according to Italian Approved Animal Welfare Authorization
360/2015-PR and Legislative Decree 26/2014, regarding the animal license obtained by the
Italian Ministry of Health lasting for 5 years (2015–2020).

2.2. SiRNA Design and Delivery

Predesigned SiRNA against Ace2 (mm.Ri.Ace2.13.1) were purchased from Integrated
DNA Technologies (IDT) (TEMA Ricerca Srl, Castenaso, Bologna, Italy). For in vivo exper-
iments, each mouse received intranasal administration of 10 µg/kg unmodified SiRNA
or equivalent dose of nonspecific control SiRNA duplex (scramble) in a volume of 20 µL
of duplex buffer (IDT). Intranasal SiRNA was given the day before and the day after
the infection.

2.3. TUNEL Staining

Sections were deparaffinized, rehydrated, and treated with 0.1 M citrate buffer, pH 6.0,
for 20 min in a water bath at 95 ◦C, washed, and fixed in 4% buffered paraformaldehyde,
pH 7.3, for 36 h. The sections were then washed and blocked in 0.1 M Tris/HCl buffer, pH
7.5, and supplemented with 3% bovine serum albumin and 20% FCS. The slides were then
incubated with fluorescein-coupled dUTP and TUNEL enzyme (Roche Diagnostics SpA,
Monza, Italy) in the presence of terminal deoxynucleotidyltransferase. The samples were
then washed with PBS, incubated for 10 min at 70 ◦C to remove unspecific binding. The
sections were mounted and analyzed by fluorescent microscopy using a 20× objective.

2.4. Real-Time PCR

Real-time PCR was performed using the CFX96 Touch Real-Time PCR detection system
and iTaq Universal SYBR Green Supermix (Bio-Rad Laboratories, Inc., Hercules, CA, USA).
Organs were lysed and total RNA was extracted using TRIzol Reagent (Thermo Fisher
Scientific, Waltham, MA, USA) and reverse transcribed with PrimeScript RT Reagent Kit
with gDNA Eraser (Takara Bio. Inc., Kusatsu, Japan), according to the manufacturer’s
directions. Amplification efficiencies were validated and normalized against β-actin. The
thermal profile for SYBR Green real-time PCR was at 95 ◦C for 3 min, followed by 40 cycles
of denaturation for 30 s at 95 ◦C, and an annealing/extension step of 30 s at 60 ◦C. Each
data point was examined for integrity by analysis of the amplification plot. The mRNA-
normalized data were expressed as relative mRNA levels with respect to the control. The
primers are listed in Table 1.

Table 1. List of primers.

Murine Primers

β-actin
(Beta-Actin)

forward AGCCATGTACGTAGCCATCC
reverse CTCTCAGCTGTGGTGGTGAA

Ace2
(Angiotensin-Converting Enzyme 2)

forward TCCATT-GGTCTTCTGCCATCC
reverse AACGATCTCCCGCTTCATCTC

Ahr
(Aryl Hydrocarbon Receptor)

forward TCCATCCTGGAAATTCGAACC
reverse TCTTCATCCGTCAGTGGTCTC

Ahrr
(Aryl Hydrocarbon Receptor Repressor)

forward AGAGGGTTCCCCGTGCAG
reverse ACTCACCACCAGAGCGAAGC
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Table 1. Cont.

Murine Primers

Cyp1b1
(Cytochrome P450 Family 1 Subfam.B Member 1)

forward TTCTCCAGCTTTTTGCCTGT
reverse TAATGAAGCCGTCCTTGTCC

Human Primers

β-actin
(Beta-Actin)

forward CACTCTTCCAGCCTTCCTTCC
reverse ACAGCACTGTGTTGGCGTAC

IL1B
(Interleukin 1 Beta)

forward AAGCTCCTGTGGCAATTGAA
reverse TCCTCCTTCTGGAACTGCTG

IL10
(Interleukin 10)

forward CCTGCCTAACATGCTTCGAGA
reverse TCTTGGTTCTCAGCTTGGGG

IFNA1
(Interferon Alpha 1)

forward ACCCACAGCCTGGATAACAG
reverse ACTGGTTGCCATCAAACTCC

IFNB1
(Interferon Beta 1)

forward AGTAGGCGACACTGTTCGTG
reverse GCCTCCCATTCAATTGCCAC

OAS1
(2′-5′-Oligoadenylate Synthetase 1)

forward GAGACCCAAAGGGTTGGAGG
reverse TCATCGTCTGCACTGTTGCT

PPARG
(Peroxisome Proliferator-Activated
Receptor Gamma)

forward TCGAGGACACCGGAGAGG
reverse CACGGAGCTGATCCCAAAGT

NQO1
(NAD(P)H Quinone Dehydrogenase 1)

forward GGTTTGGAGTCCCTGCCATT
reverse ACCAGTGGTGATGGAAAGCA

HMOX1
(Heme Oxygenase 1)

forward TGACCCATGACACCAAGGAC
reverse AGTGTAAGGACCCATCGGAGA.

Viral Primers

Orf8
(Open Reading Frame 8)

forward GGTGCTGACTGAGAGCAATAA
reverse CACATTAGAGCCGGTTGAGTAG

RdRp
(RNA-dependent RNA polymerase)

Forward ACGCTCAAAGCTACTGAGGAGAC
reverse GGTCTAGGTTTACCAACTTCCC

2.5. Cytokine Determination by ELISA

Cytokine content was determined in lung homogenates by using specific ELISA
kits according to the manufacturer’s instructions (BioLegend Inc., San Diego, CA, USA,
cod. 432616).

2.6. Cells, Infection, and Treatments

Vero (ATCC-CCl-81) E6 monolayer cells cultured in 96-well plates (3 × 104 cells/well)
were exposed to 10 µM of unformulated 3-IAld (Sigma Aldrich) or 50 µM of the natural
phytochemical [16], indole-3-carbinole (I3C) (Sigma Aldrich), or 10 µM of Remdesivir
(Veklury®, Gilead, Foster City, CA, USA) either 1 h before (prophylactic protocol) or 1 h
after (therapeutic protocol) the infection with the SARS-CoV-2-B.1.1.7 variant of concern at
a multiplicity of infection (MOI), defined as the ratio of agents (virus) to infection targets
(cell), =0.001, using ATCC-formulated Eagle’s Minimum Essential Medium (EMEM) supple-
mented with heat-inactivated 2% FBS, 2 mM L-glutamine, and 1% penicillin–streptomycin.
The B.1.1.7 SARS-CoV-2 strain has been isolated from a nasopharyngeal swab of a symp-
tomatic patient. The virus isolation was performed in the Biosafety Level 3 (BSL3) Virology
laboratory at “Santa Maria della Misericordia Hospital”, Perugia, Italy, as previously de-
scribed [17]. The compounds were dissolved to 10 mM in DMSO and then diluted in
culture medium. DMSO (1 and 0.01% (v/v)) was used as the control.

RPMI 2650 (ATCC-CCL-30) cells were maintained in MEM supplemented with 10%
fetal bovine serum (FBS), 1% sodium pyruvate, GlutaMAX 4 mM, and 0.2% Non-Essential
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Amino Acids Solution. The cells were maintained at 37 ◦C in a humidified atmosphere
containing 5% CO2. Cells were seeded on 6-well tissue culture plates and infected with
the SARS-CoV-2 variant at an MOI = 0.001 after pre-treatment for 1 h with 10 µM of 3-IAld
or 50 µM of I3C. Cells were assessed for viability and gene expression after 24 h of viral
exposure. Experiments and sample processing were conducted in the BSL3 laboratory.

2.7. Plaque Reduction Assay

Supernatants’ viral titer was determined by plaque assay as previously described [18]
with some modifications. Vero E6 cells (600,000 cells/well) were seeded in a 6-well plate
and incubated at 37 ◦C with 5% CO2 for 24 h in EMEM supplemented with heat-inactivated
2% FBS and 2 mM L-glutamine. After incubation, the medium was removed and cells were
infected with 500 µL of ten-fold serial dilution of the supernatants, rocking the plates every
fifteen minutes. In the meanwhile, the overlay medium (complete medium with Agar 0.1%)
was prepared and maintained in a 50 ◦C water bath. After 1 h of infection, the overlay
medium (2 mL) was poured into each well and the plates were incubated for 3 days at
37 ◦C. Finally, the overlay was discarded, cells were fixed for 30 min with 4% formalin,
and stained with 0.5% crystal violet. Viral titer was determined as plaque-forming units
per ml (PFU/mL), considering wells with plaques ranging from 2 to 100. For each pool
of supernatants, plaque reduction assay was performed in duplicate. Experiments were
conducted in the BSL3 laboratory.

2.8. Cytopathic Effect Inhibition Assay

Monolayers of Vero E6 cells growing in 96-well plates (3 × 104 cells/well) were
exposed to 10 µM of 3-IAld or 50 µM of I3C in DMSO, 1 h before or 1 h after SARS-CoV-2
infection at an MOI = 0.001 using EMEM supplemented with heat-inactivated 2% FBS and
2 mM L-glutamine. DMSO (0.5 and 0.05% (v/v)) was used as the control. Cell viability
was measured 72 h later by a standard crystal violet staining assay, measuring the optical
density (OD) at 595 nm. The extent of in vitro inhibition of SARS-CoV-2-driven cell damage
was expressed as percentage of surviving cells.

2.9. Statistical Analysis

GraphPad Prism software 6.01 (GraphPad Software, San Diego, CA, USA) was used
to determine the statistical significance. Significance was defined as p < 0.05. Data are
expressed as mean ± SD. Statistical significance was calculated by one-way ANOVA
(Tukey’s or Bonferroni’s post hoc test) for multiple comparisons.

3. Results
3.1. SARS-CoV-2 Spike Protein Worsens Aspergillus Infection in a Murine Model of CAPA

In order to establish a model of CAPA, we resorted to a surrogate model of SARS-
CoV-2 infection [14], in which BALB/c mice are concomitantly exposed to A. fumigatus
conidia and the SARS-CoV-2 Spike protein, either from the WT virus or the ∆ variant
(Figure 1A). We found that the concomitant treatment with either form of SARS-CoV-2
Spike protein significantly increased the fungal burden (Figure 1B) and worsened the lung
histopathology while increasing neutrophil infiltration in the BAL (Figure 1D). Treatments
also increased the levels of the SARS-CoV-2 Spike protein receptor Angiotensin-converting
enzyme 2 (Ace2) expression in the lung (Figure 1C) and of IL-1β in the lung homogenate
(Figure 1E). Blocking ACE2 by the local delivery of SiRNA against Ace2 during the con-
comitant exposure to the Spike protein and Aspergillus conidia (Figure 1C) prevented the
increased fungal burden and the ensuing inflammatory response (Figure 1D,E), indicating
that the binding of the SARS-CoV-2 Spike protein to its ACE2 receptor is mediating the
worsening effect on the A. fumigatus infection.
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Figure 1. SARS-CoV-2 Spike protein worsens Aspergillus infection in murine CAPA. BALB/c mice
were intratracheally infected with Aspergillus fumigatus conidia and treated with the Spike protein
from the wild-type (SPwt) or the Delta (SP∆) variant and siRNA of Ace2 (SiAce2) as indicated in (A).
Mice were evaluated for (B) fungal growth (log10 CFU, mean ± SEM); (C) expression of Ace2 in the
lung by RT-PCR; (D) lung histopathology and neutrophil recruitment (% in the BAL, in the inset); and
(E) IL-1β production (by ELISA). Images were taken with a high-resolution microscope (Olympus
BX51), 20× magnification (scale bars, 200 µm). Data are presented as mean ± SD of one representative
out of three independent experiments. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, Aspergillus-
infected mice treated with the SPwt and/or SP∆, with or without SiAce2 vs. Aspergillus-infected mice,
one-way ANOVA, Bonferroni post hoc test.

These results indicate that the concomitant treatment with SARS-CoV-2 Spike protein
and A. fumigatus conidia may represent a valuable model of CAPA whereby viral challenge
increases the susceptibility to fungal disease.

3.2. 3-IAld Protects against CAPA

Since the SPwt and the SP∆ variant of the SARS-CoV-2 Spike protein produced over-
lapping effects in our model of CAPA, subsequent experiments were performed only with
the SPwt. In order to explore the potential therapeutic application of 3-IAld, BALB/c
mice were exposed to A. fumigatus conidia and SPwt as above and treated with 3-IAld,
formulated in microparticles for small intestine local delivery [15], 1 day before and 1 day
after the viral and fungal challenge (Figure 2A). Mice were sacrificed 3 days later and
analyzed for fungal burden, lung histopathology, and IL-1β levels. We found that treat-
ment with 3-IAld significantly reduced the fungal burden (Figure 2B), improved the lung
inflammatory pathology (Figure 2C), reduced the number of TUNEL-positive apoptotic
epithelial cells (Figure 2C), and the IL-1β levels in lung homogenates (Figure 2E). These
results indicate that 3-IAld protects from inflammatory pathology and epithelial damage in
fungal pneumonia.
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Figure 2. 3-IAld protects against CAPA. BALB/c mice were intratracheally infected with Aspergillus
fumigatus conidia, exposed to the wild-type Spike protein (SPwt), and treated with 3-IAld admin-
istered orally at a dose of 18 mg/kg, a day before and a day after the infection, as illustrated in
(A). Mice were evaluated for (B) fungal growth (log10 CFU, mean ± SEM); (C,D) lung (neutrophil
recruitment in the BAL, in the inset) and intestine histopathology, and TUNEL staining; (E) IL-1β
production (ELISA) in lung homogenates; and (F) expression of Ahr, Cyp1b1, and Ahrr in the lung by
RT-PCR. Images were taken with a high-resolution microscope (Olympus BX51), 20× magnification
(scale bars, 200 µm). Data are presented as mean ± SD of one representative out of three independent
experiments. * p < 0.05, ** p < 0.01, *** p < 0.001, Aspergillus-infected mice treated with SPwt and 3-IAld
vs. Aspergillus-infected mice treated only with SPwt. One-way ANOVA, Bonferroni post hoc test.
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3.3. 3-IAld Restores Mucosal Homeostasis in CAPA via the Aryl Hydrocarbon Receptor

Since 3-IAld was locally administered in the intestine, where it is known to exert
barrier-enhancing and anti-inflammatory effects [13], we also evaluated signs of inflam-
matory pathology in the colon. As expected, administration of 3-IAld prevented colon
damage and reduced the number of TUNEL-positive apoptotic cells in CAPA (Figure 2D),
indicating that 3-IAld is able to afford epithelia barrier protection locally and at distal
sites. In line with 3-IAld being a ligand of the Aryl Hydrocarbon Receptor (AhR) [19], a
ligand-activated transcription factor involved in the regulation of multiple physiological
functions, including the regulation of the mucosal immune homeostasis [20], treatment
with 3-IAld resulted in the up-regulation of the AhR target genes [21], Cyp1b1, and the AhR
repressor (Ahrr) (Figure 2F) in the lung, as already observed in the intestinal tract [15].

Collectively, these results indicate that 3-IAld is able to protect against the epithelial
damage and inflammatory effects caused by the combined viral and fungal challenge in
murine CAPA.

3.4. 3-IAld Counteracts the SARS-CoV-2 Immunomodulatory Effects in Nasal Epithelial Cells

While A. fumigatus conidia reach the lung alveoli owing to their small size [3], SARS-
CoV-2 first interacts with ACE2 in the nasal mucosa, and only subsequently translocates
to the lungs, likely by aspiration [22]. Therefore, the nasal mucosa represents a critical
barrier against SARS-CoV-2 infection and its integrity should be preserved to protect
against viral entry [23]. Based on these premises, we have resorted to RPMI cells, a human
nasal epithelial cell line, infected with SARS-CoV-2 (B.1.1.7 variant of concern) to evaluate
the potential effect of 3-IAld in the modulation of genes involved in the antiviral and
inflammatory response. As a positive control, we used I3C, known for its antiviral activity
including against SARS-CoV-2 [24–26]. As shown in Figure 3A,B, challenge with SARS-
CoV-2 altered the number and morphology of RPMI cells while inducing the production of
the pro-inflammatory cytokine IL-1 β. Interestingly, the effects induced by viral exposure
were partially rescued by I3C and, even more, by 3-IAld. In particular, both I3C and 3-IAld
reverted the viral-induced pro-inflammatory profile by reducing IL-1β production and
increasing IL-10 (Figure 3B), while potentiating the expression of the antiviral type I IFNs
and 2′−5′-oligoadenylate synthetase (OAS1) genes (Figure 3C). In addition, both I3C and,
even more, 3-IAld increased the expression of genes involved in the response to oxidative
stress, such as Peroxisome Proliferator-Activated Receptor Gamma (PPARG), NAD(P)H
Quinone Dehydrogenase 1 (NQO1), and Heme Oxygenase 1 (HMOX-1) (Figure 3D).

Altogether, these results indicate that 3-IAld is able to modulate the antiviral, inflam-
matory, and oxidative stress responses in the nasal epithelium, thus likely preventing the
initial steps of SARS-CoV-2 infection.

3.5. 3-IAld Exerts Direct Antiviral Effects In Vitro

Given the antiviral activity of indole derivatives containing an indole core frame-
work [27], we tested whether 3-IAld could also directly have antiviral effects by inhibiting
SARS-CoV-2 replication. For this reason, we resorted to VeroE6 cells, kidney epithelial cells
extracted from an African green monkey, infected with SARS-CoV-2 in the presence or
not of 3-IAld or I3C, each supplied either before or after viral exposure at a concentration
found to be optimal ([25] and Supplementary Figure S1). As a positive control, the broad-
spectrum antiviral drug Remdesivir was used in parallel. As shown in Figure 4A, both
3-IAld and I3C significantly inhibited SARS-CoV-2 replication and VeroE6 cell death in the
prophylactic, but not therapeutic, protocol. In line with these observations, a prophylactic,
but not therapeutic, administration of 3-IAld reduced the levels of the Open Reading Frame
8 (Orf8) and RNA-dependent RNA polymerase (RdRp) viral genes (Figure 4C).
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Collectively, these results indicate that 3-IAld is potentially able to counteract the SARS-
CoV-2 infection by modulating the expression of genes involved in mucosal protection and
immune response, as well as by directly inhibiting viral replication.

4. Discussion

The results presented in this study demonstrate that the microbial-derived product 3-
IAld is able to limit the pathogenic consequences of SARS-CoV-2 infection and subsequent
Aspergillus superinfection by working at multiple levels. Indeed, 3-IAld was able to limit
viral replication by acting directly on the virus and to switch the host immune system from a
pathogenic pro-inflammatory state to a protective antiviral response. These activities likely
occur at the nasal mucosa, which represents the entry site for the virus before translocation
to the lower respiratory tract. Moreover, and likely, as a consequence, 3-IAld limited the
pathogenic sequelae of fungal superinfection as revealed by the controlled fungal burden
and restrained inflammatory pathology in the lungs.

These results confirm and extend previous findings on the role of indole derivatives
containing an indole core framework to prevent and/or treat viral infections [27]. For
example, a small-molecule compound with an indole moiety was found to inhibit the main
protease of SARS-CoV-2 and to block virus replication [28]. Even more, arbidol, an indole
derivative that inhibits virus entry, membrane fusion, and viral release [29,30], is approved
as a prophylactic and therapeutic agent to treat influenza and other acute respiratory viral
infections in Russia and China [31]. Of interest, the anti-influenza virus activity of arbidol
was comparable to that of 3-IAld [32]. Studies have also shown that arbidol significantly
contributed to both clinical and laboratory improvements in COVID-19 patients [33,34],
arguing for a wide-ranging antiviral activity these compounds may have.

Our results indicate that 3-IAld works better in a prophylactic rather than therapeutic
protocol. The same observation has been reported for I3C, whose antiviral activity during
SARS-CoV-2 infection in Vero E6 cells was better observed in a pre-treatment protocol
compared to co- and post-treatment protocols [25]. At least in the case of 3-IAld, the
reason for this result may be linked to the mechanism of action. For instance, it has been
previously shown that ligands of AhR inhibited SARS-CoV-2 infection of Vero E6 cells by
reducing the expression of ACE2 [35]. Should 3-IAld, a ligand of AhR, work by means of a
similar mechanism, this might explain why administration before SARS-CoV-2 infection
has optimal efficacy because it would interfere with the initial steps of viral entry.

It is increasingly being recognized that 3-IAld can engage a variety of cellular and
molecular mechanisms in the different settings in which it has been studied [13], some of
which may be working in the protection against SARS-CoV-2 infection and subsequent
Aspergillus superinfection. For instance, it has been shown that small-molecule mast cell
(MC) activators may enhance immunity in the nasal mucosa and may be used as nasal
vaccine adjuvants [36]. Interestingly, 3-IAld is able to modulate the Trp metabolism in
MCs and protect against autoimmune manifestations in multiple sclerosis [19], raising
the interesting hypothesis that 3-IAld may be used to engage MCs in the nasal mucosa in
vaccination strategies against COVID-19. 3-IAld could also modulate the composition and
function of the microbiome. Indeed, we have previously shown that 3-IAld increases the
relative abundance of pectin-degrading and sugar-degrading anaerobic bacteria resulting
in increased levels of fecal SCFA and likely hydrogen sulfide (H2S), an end-product of the
bacterial fermentation of pectin [37]. Of note, it has been proposed that H2S may target
SARS-CoV-2 cell entry, replication, and induction of inflammatory response [38]. Whether
3-IAld may induce H2S with functional activity in the nose remains to be addressed.

The potential mechanisms engaged by 3-IAld depend on AhR activation, whose role
in COVID-19 is controversial. Some studies have found that AhR is negatively correlated
with SARS-CoV-2 infection and the outcome. Indeed, it was shown that AhR is activated
by an IFNβ or IFNγ/indoleamine 2,3-dioxygenase (IDO)1/kynurenine (kyn) pathway in
alveolar epithelial cells to increase the expression of mucins and induce hypoxia [39]. In ad-
dition, AhR activation promoted SARS-CoV-2 infection and replication, limited type I IFN
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signaling, and up-regulated the expression of ACE2, thus acting as a proviral factor [40,41]
whose inhibition was suggested to be used as a therapeutic approach in COVID-19. At
variance with these studies, a repurposing screen identified Phortress, an AhR-activating
ligand, as an antiviral candidate for both an Alpha- and a Beta-coronavirus [42]. Similarly,
as previously mentioned, AhR activation decreased the ACE2 expression and SARS-CoV-2
infection of Vero E6 cells [35]. This is in line with the antiviral activity of AhR agonists
against Influenza A virus [43] and the protection against Acute Respiratory Distress Syn-
drome [44]. We have similarly found that AhR activation by 3-IAld was associated with
type I IFN production and interference with SARS-CoV-2 replication in nasal cells and
VeroE6 cells.

The different ligand- and tissue-specific activities of AhR [45] may account for these
discrepancies. For instance, it was shown that 3-IAld could limit graft-versus-host disease
(GvHD) by activating type I IFN signaling [46], consistent with the notion that not only
the diversity of the ligands, but also the context in which AhR is activated may direct
downstream signaling pathways. An inflammatory GvHD may redirect AhR activation
towards type I IFN signaling while an antiviral background response may instead promote
an AhR-mediated inflammatory signaling, thus making AhR a regulatory node to balance
between the two responses. Tissue-specific differences in the expression and activation
of AhR, and of AhR ligands as well, in the lower and higher respiratory tract may also
be involved. For instance, scRNA studies in the respiratory tract [47–49] have shown that
IDO1 is most expressed in the nose and belongs to the immune genes over-represented in
the top ACE2-correlated genes [49]. In agreement with these studies, our results on Trp
metabolites in hematological patients [50,51] indicate that the nose had higher levels of kyn
compared with the pharynx [52]. This might suggest that in a background of high IDO1
activity, such as in the nose, AhR may be more responsive to the action of different ligands
compared to the lungs where the levels of kyn are lower. Thus, at variance with the nose,
the increased kyn levels in the lung upon viral-induced IFN signaling may activate AhR to
promote a pro-inflammatory response. Should such a scenario prove to be plausible, AhR
antagonists might prove more effective for local targeting into the lungs rather than for
constraining AhR activity across the entire respiratory tree.

In conclusion, our results shed new light on the potential role of AhR in COVID-
19 by virtue of its promiscuity of ligands and activities, and specifically put forward
the hypothesis that microbial compounds, such as 3-IAld, owing to their multiplicity of
activities and favorable safety profile [13], may be used as prophylactic agents in the
protection against viral colonization and infection, and subsequent fungal superinfection.
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