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Abstract: Pestalotioid fungi are associated with a wide variety of plants around the world as
pathogens, endophytes, and saprobes. In this study, diseased leaves and branches of plants were
collected from Guizhou and Sichuan in China. Here, the fungal isolates were identified based on a
phylogenetic analysis of the internal transcribed spacer region (ITS), the translation elongation factor
1-alpha (tef1-α) and the beta-tubulin (tub2) of ribosomal DNA, and the morphological characteristics.
Ten Neopestalotiopsis isolates and two Pestalotiopsis isolates were obtained, and these isolates were
further confirmed as four novel species (N. acericola, N. cercidicola, N. phoenicis, and P. guiyangensis)
and one known species, N. concentrica.
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1. Introduction

Coelomycetous fungi are a diverse group of asexually reproducing fungi that belong to
the phylum Ascomycota [1]. This group includes a wide variety of fungi that can be found
in different environments, including soil, plant surfaces, and even in association with other
organisms [1]. Coelomycetous fungi are pathogens of a wide variety of plants, with types
such as endophytes, saprophytes, and pathogenic fungi [2]. Concerning Sporocadaceae, as a
member of coelomycetous fungi, a lot of research has been carried out on their taxonomy
and pathology based on phylogeny and morphology, and pestalotioid species are some
of the most common pathogenic genera [3]. Pestalotioid species are the main group of
pathogenic fungi that cause leaf spot disease in plants, and they have been found to cause
serious ecological problems [4–12].

Species of pestalotioid fungi have various ecological behaviors as plant pathogens,
endophytes, or saprobes, and are widespread in temperate and tropical regions [13–15].
Pestalotiopsis was divided from Pestalotia as a distinct genus, on the basis of varying num-
bers of conidia, by Steyaert in 1949 [16]. Subsequently, Nag Raj [17,18] argued that the
categorization of many species in Pestalotiopsis, as delineated by Steyaert, is problematic and
pointed out that the type of species associated with Pestalotiopsis must be re-examined. In
2014, Maharachchikumbura et al. [15] reclassified Pestalotiopsis into three genera (Neopestalo-
tiopsis, Pestalotiopsis, and Pseudopestalotiopsis). Neopestalotiopsis differs from Pestalotiopsis
and Pseudopestalotiopsis based on its multicolored median cells [15]. Pseudopestalotiopsis can
be distinguished from Pestalotiopsis by comparing the color of the concolorous median cells
for those possessing equally pigmented median cells [15]. Currently, the three genera are
grouped as Pestalotioid fungi [15].

Many novel species have been introduced into pestalotioid fungi in recent years [12].
Pestalotioid fungi primarily cause branch and leaf diseases, including canker lesions, leaf
spots, gray blight, fruit rots, and various post-harvest diseases [12,15,19–30]. For example,
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Neopestalotiopsis amomi causes leaf blight in Amomum villosum [20]. Pestalotioid fungi were
found to cause stem girdling and dieback in young eucalyptus plants in Portugal [28]. The
above examples show that, in plants, pestalotioid fungi are widespread as phytopathogenic
hosts. The aim of this study was to identify the pestalotioid fungi collected from plants
in China (Figure 1) based on both their morphological characters and the combination of
molecular phylogentic analyses of ITS, tef1-α, and tub2.
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Figure 1. Diseased plants in Sichuan and Guizhou: (A) Symptoms of Rhapis excelsa in Sichuan;
(B) Leaf spots of Phoenix canariensis in Sichuan; (C) Branch dieback of Acer palmatum in Sichuan;
(D) Pathogenic fungi on Cercis chinensis leaves in Guizhou; (E) Leaf spots of Eriobotrya japonica
in Guizhou.

2. Materials and Methods
2.1. Sample Collection and Isolation

A survey of plants in the Guizhou and Sichuan provinces of China in 2023 resulted in
the collection of 98 samples (20 branches and 25 leaves in Sichuan; 28 branches and 25 leaves
in Guizhou) with different symptoms, including 12 samples (10 samples in Sicuan and
2 samples in Guizhou) with typical symptoms. The leaves were isolated using the tissue
isolation method [31], the surfaces of the leaves were gently wiped clean with distilled
water, and the leaf spots were cut into small pieces (0.1 × 0.2 cm) and sterilized (75%
ethanol for 30 s, 5% sodium hypochlorite for 45 s, and rinsed with distilled water). After
disinfection, the leaves were placed on dry sterile filter paper to absorb the moisture, and
then the leaves were placed on potato dextrose agar (PDA; 200 g potatoes, 20 g dextrose,
20 g agar per liter) and incubated at 25 ◦C in the dark until spores germinated. Pure cultures
were obtained by cutting off hyphal tips of single germinating conidia, transferring them to
new PDA plates, and incubating them in the dark at 25 ◦C. The surface of the blade was
sterilized, and the top layer of fruiting bodies on the diseased branches was scraped off.
Then, the fruiting bodies were placed on PDA medium and incubated at 25 ◦C under dark
conditions until the spores germinated. Individual germinated conidia were transferred
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to fresh PDA plates to obtain pure cultures. Herbarium materials were deposited at the
Museum of the Beijing Forestry University (BJFC). The 12 cultures obtained in this study
were deposited at the China Forestry Culture Collection Centre, Beijing, China (CFCC).

2.2. DNA Extraction, PCR Amplification, and Phylogenetic Analysis

Genomic DNA was extracted from mycelium on the PDA using the CTAB method [32].
The PCR mixture consisted of 10 µL TopTaq™ Master Mix, 6 µL nucleasefree H2O, 1 µL of
each primer, and 2 µL DNA. The samples were made up to the final volume of 20 µL. The
amplification of partial gene sequences was carried out using three DNA fragments (ITS,
the translation elongation factor 1-alpha (tef1-α), and beta-tubulin (tub2)). ITS used primer
sets ITS1/ITS4 [33], tef1-α used primer sets EF1-728F/EF1-1567R [34], and tub2 u primer
sets T1/Bt-2b [35]. The genes and PCR conditions used for the different genera are listed in
Table 1. The DNA was sequenced by the SinoGenoMax Company Limited (Beijing, China).
The forward and reverse reads were assembled using Seqman v. 7.1.0. MEGA6 was used
to manually compare and check the sequences [36]. Ambiguous regions were excluded
from the alignments. Phylogenetic analyses were analyzed with Maximum Likelihood
analysis (ML) and Bayesian Inference (BI) analysis. Maximum Likelihood analysis (ML)
was performed in PhyMLv.7.2.8 [37], and MrBayes v. 3.2.0 was used for Bayesian Inference
(BI) analysis [38]. Maximum Likelihood analysis (ML) was performed using the GTR
site substitution model, and branch support was assessed using the bootstrapping (BS)
method with 1000 repetitions [39]. Bayesian Inference (BI) analysis was performed using
the Markov chain Monte Carlo (MCMC) algorithm [39]. For Neopestalotiopsis, the GTR+I
model, with a certain proportion of invariant sites, was chosen for ITS, and the HKY+G
model with gamma distribution rate was chosen for tef1-α and tub2. The GTR+I+G model
was chosen for the ITS of Pestalotiopsis, and the HKY+I+G model was chosen for tef1-α and
tub2. Two MCMC chains were run for 1,000,000 generations, starting from the random
tree, and the first 25% of the trees were discarded every 1000 generations as the posterior
probabilities (BPP). The posterior probabilities (BPP) for each analysis were used to evaluate
the remaining trees [39]. The resulting trees were observed in Figtree v. 1.3.1.

Table 1. Gene fragments and PCR thermal cycle program used in this study.

Locus PCR Primers PCR: Thermal Cycles: (Annealing Temp. in Bold) Reference

ITS ITS1/ITS4 (95 ◦C: 30 s, 51 ◦C: 30 s, 72 ◦C: 1 min) × 35 cycles [33]

tef1-α EF1-728F/EF1-1567R (95 ◦C: 15 s, 55 ◦C: 20 s, 72 ◦C: 1 min) × 35 cycles [34]

tub2 T1/Bt-2b (95 ◦C: 30 s, 55 ◦C: 30 s, 72 ◦C: 1 min) × 35 cycles [35]

3. Results
3.1. Phylogenetic Analyses

In this study, we combined the analysis of the concatenated DNA sequence datasets of
ITS, tef1-α, and tub2 to construct phylogenetic trees for Neopestalotiopsis and Pestalotiopsis.
The combined species phylogeny of Neopestalotiopsis isolates consisted of 147 sequences,
including outgroups Pseudopestalotiopsis cocos (culture CBS 272.29), Ps. indica (culture CBS
459.78), and Ps. theae (culture MFLUCC12–0055). A total of 2186 characters (556 in ITS, 882
in tef1-α, and 748 in tub2) were included in the phylogenetic analysis. The ML tree with
bootstrap values and BI posterior probabilities is shown in Figure 2. The phylogenetic tree
inferred from the concatenated alignment resolved the ten Neopestalotiopsis isolates into
four well-supported monophyletic evolutionary branches representing three new and one
known species of Neopestalotiopsis, respectively (Figure 2). In Pestalotiopsis, the phylogeny of
the Pestalotiopsis isolates consisted of 192 sequences, including the outgroup Neopestalotiopsis
magna (culture MFLUCC 12–652). A total of 1919 characters (536 in ITS, 572 in tef1-α,
and 811 in tub2) were included in the phylogenetic analysis. Similar tree topologies were
obtained using ML and BI methods (Figure 3). The two isolates of Pestalotiopsis decomposed
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into a well-supported monophyletic evolutionary branch representing a new species of
Pestalotiopsis (Figure 3). All of the sequences obtained in this study were submitted to
GenBank (Table S1).
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Figure 2. Phylograms were generated by maximum likelihood (ML) based on combined ITS, tef1-α,
and tub2 sequence data of Neopetalotiopsis isolates. The tree was rooted by Ps. cocos (CBS 272.29), Ps.
indica (CBS 459.78), and Ps. theae (MFLUCC12–0055). Scale bars indicate 0.02 nucleotide changes per
locus. ML bootstrap support values above 70% are shown near nodes. Thickened branches represent
posterior probabilities above 0.95 from BI. Isolates from this study are marked in blue in the trees.
Ex-type strains are in bold and labeled T.
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3.2. Taxonomy

Five pestalotioid species were identified and characterized based on a polyphasic
approach. There are three new species of Neopestalotiopsis, identified as N. acericola, N.
cercidicola, and N. phoenicis, respectively, and one known species (N. concentrica). One
Pestalotiopsis species was identified as P. guiyangensis. For all of these identified taxa, species
descriptions and illustrations are given below.

Neopestalotiopsis acericola W.S. Zhang & X.L. Fan, sp. nov. (Figure 4).
MycoBank: MB 854098
Etymology: Named after the genus of the host species, Acer.
Holotype: BJFC-S2333
Description: Conidiomata pycnidial in vivo. Asexual morph: Conidiomata ellipsoidal

to rounded black and semi-immersed, beneath grayish, erumpent, and raised areas of the
host epidermis, central black ostioles, 61–125 µm in diameter, rhombic to rounded, scattered
or aggregate, with spores scattered around the dehisce with locules. Conidiophores reduced
to conidiogenous cells, smooth and hyaline. Conidiogenous cells, ampulliform, discrete,
thin-walled, smooth and hyaline. Conidia fusoid, ellipsoid to subcylindrical, straight or
slightly curved, 19.0–24.0 × 6.5–8.0 µm (av. ± SD = 21.57 ± 1.17 × 7.53 ± 0.38 µm, n = 50),
L/W = 2.4–3.3 µm (av. ± SD = 2.87 ± 0.21 µm, n = 50), 4-septate; basal cell coni-
cal, with a truncated base, hyaline or pale brown, thin-walled, and 3.0–6.0 µm long
(av. ± SD = 4.45 ± 0.81 µm, n = 50); three median cells that are versicolored, minutely ver-
ruculose or smooth, septa and periclinal walls that are darker than the rest of the cell. The
second cell from the base is honey brown and 3.0–6.0 µm long (av. ± SD = 4.31 ± 0.59 µm,
n = 50); the third cell is dark brown and 4.0–6.5 µm long (av. ± SD = 5.19 ± 0.60 µm,
n = 50); the fourth cell is brown and 3.5–5.5 µm long (av. ± SD = 4.55 ± 0.55 µm,
n = 50); the apical cell is 2.5–4.5 µm long (av. ± SD = 3.32 ± 0.52 µm, n = 50), hya-
line, inverted trapezoidal to conical, smooth, and thin-walled, with two or three tubular
apical appendages arising from the apical crest, unbranched, filiform, and 15.0–24.5 µm
long (av. ± SD = 20.55 ± 1.95 µm, n = 50); the basal appendage is single, unbranched, and
3.0–7.0 µm long (av. ± SD = 4.45 ± 0.81 µm, n = 50). A sexual morph was not observed.

Culture characteristics: The colonies on PDA reached up to 60 mm in diameter after
seven days at 25 ◦C. The colonies were filamentous, with an undulate edge to circular,
white, with a dense aerial mycelium on the surface, and the fruiting bodies were black.

Typus: CHINA, Sichuan Province, Guangyuan City, Lizhou District, 105◦38′31′′ E,
32◦27′41′′ N, from branches of Acer palmatum, Y.X. Li and L. Lin, 11 October 2023 (holotype
BJFC-S2333, ex-holotype culture CFCC 70620); ibid. (paratype BJFC-S2334, ex-paratype
culture CFCC 70627).

Notes: Two isolates from our collection developed an independent clade in the phylo-
genetic tree with 100% ML and 1.00 BI value (Figure 2). N. acericola was phylogenetically
close to N. iberica (Figure 2), but there were eight nucleotide differences, including seven
in tef1-α (427/435, 98.16%) and one in tub2 (375/376, 99.73%) with N. iberica, and differed
in conidia width (N. acericola (6.5–8.0 µm); N. iberica ((7.2) 8.2–8.7 (9.8) µm). Moreover, N.
acericola had a smaller fourth cell (3.5–5.5 µm) than N. iberica (4.5–6.6 µm) and three median
cells of N. acericola with minutely verruculose or smooth surface, three median cells of N.
iberica with a smooth surface. Additionally, Neopestalotiopsis acericola was isolated from the
branches of Acer palmatum. Neopestalotiopsis iberica was isolated from the leaves and stems
of Eucalyptus globulus [28].
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Figure 4. Neopestalotiopsis acericola (BJFC-S2333). (A,B) Habit of conidiomata on twig; (C) Transverse
section of a conidioma; (D) Longitudinal section through a conidioma; (E) Conidiogenous cells giving
rise to conidia; (F) Conidia. Scale bars: (A–F) = 10 µm.

Neopestalotiopsiscercidicola W.S. Zhang & X.L. Fan, sp. nov. (Figure 5).
MycoBank: MB 854099
Etymology: Named after the genus of the host species, Cercis.
Holotype: BJFC-S2338
Description: Pathogenic on Cercis chinensis leaves. Asexual morph: Conidiomata

pycnidial on PDA. Conidiomata are 200–300 µm in diameter, 47–148 µm high, globu-
lar, scattered or aggregated, and black. Conidiophores reduce to conidiogenous cells,
smooth and hyaline. Conidiogenous cells are ampulliform, discrete, thin-walled, and
smooth and hyaline. Conidia are shuttle-shaped, ellipsoid to subcylindrical, straight or
slightly curved, smooth, 17.5–23.5 × 5.5–8.5 µm (av. ± SD = 20.71 ± 1.22 × 6.90 ± 0.62 µm,
n = 50), L/W = 2.5–3.5 µm (av. ± SD = 3.02 ± 0.25 µm, n = 50), 4-septate; the basal
cell is conical, with a truncated base, hyaline, smooth, thin-walled, and 2.5–5.0 µm long
(av. ± SD = 3.60 ± 0.47 µm, n = 50); three median cells are versicolored, cylindrical,
with the second cell from the base being pale brown and 3.0–5.0 µm long
(av. ± SD = 4.20 ± 0.49 µm, n = 50); the third cell is honey brown and 3.5–5.5 µm
long (av. ± SD = 4.84 ± 0.42 µm, n = 50); the fourth cell is pale brown and 3.5–5.0 µm
long (av. ± SD = 4.36 ± 0.38 µm, n = 50); the apical cell is 2.0–4.0 µm long
(av. ± SD = 3.26 ± 0.43 µm, n = 50), hyaline, inverted trapezoidal to conical, smooth, and
thin-walled, with two or three tubular apical appendages arising from the apical crest,
unbranched, filiform, and 15.0–27.5 (29.9) µm long (av. ± SD = 21.32 ± 3.54 µm, n = 50);
a basal appendage is present and 3.0–5.5 µm long (av. ± SD = 4.26 ± 0.63 µm, n = 50). A
sexual morph was not observed.

Culture characteristics: The colonies on PDA reached up to 59 mm in diameter after
seven days at 25 ◦C. The colonies were filamentous to circular, white, with dense aerial
mycelium on the surface, and the reverse color was pale yellow. Fruiting bodies were
observed after seven days.
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Typus: CHINA, Sichuan Province, Guangyuan City, Lizhou District, 105◦51′23′′ E,
32◦25′04′′ N, on leaf spots of Cercis chinensis, Y.X. Li and L. Lin, 9 October 2023 (holotype
BJFC-S2338, ex-holotype culture CFCC 70632); ibid. (paratype BJFC-S2339, ex-paratype
culture CFCC 70624).

Additional material examined: CHINA, Sichuan Province, Guangyuan City, Lizhou
District, 105◦51′23′′ E, 32◦25′04′′ N, on leaf spots of Cercis chinensis, Y.X. Li and L.L, 9 October
2023 (BJFC-S2340, living culture CFCC 70623).

Notes: Phylogenetic analysis combining the DNA sequence datasets of ITS, tef1-α,
and tub2 revealed that N. cercidicola formed a separate branch (BI/ML = 1/100) (Figure 2).
N. cercidicola was phylogenetically close to N. haikouensis (Figure 2), but there were five bp
different in the concatenated alignment (one nucleotide difference in ITS, 484/485, 99.79%;
two in tef1-α, 432/434, 99.53%; and two in tub2, 710/712, 99.71%) with N. haikouensis, and
differed in host and culture characteristics (N. cercidicola from leaf spots of Cercis chinensis,
colonies filamentous to circular, white, with dense aerial mycelium on the surface, and
the reverse color was pale yellow; N. haikouensis from leaf spots of Ilex chinensis, colonies
edge undulate, white to gray-white, with moderate aerial mycelium on the surface, and the
reverse was similar in color) [40].
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Figure 5. Neopestalotiopsis cercidicola (ex-holotype culture CFCC 70632). (A) Diseased leaf of Cercis
chinensis; (B) Colony on PDA at seven days; (C) Conidial masses formed on PDA; (D) Conidiogenous
cells; (E,F) Conidia. Scale bars: (C–F) = 10 µm.

Neopestalotiopsisconcentrica C. Peng & C.M. Tian, Persoonia 49: 227, 2022. (Figure 6).
Description: See C. Peng et al. [41].
Material examined: CHINA, Sichuan Province, Guangyuan City, Chaotian District,

105◦55′25′′ E, 32◦39′11′′ N, on leaf spots of Rhapis excelsa, Y.X. Li and L. Lin, 10 October 2023
(BJFC-S2341, living culture CFCC 70629). ibid. (BJFC-S2342, living culture CFCC 70619).

Notes: N. concentrica was originally described from spines of Rosa rugosa in Henan
Province, China [41]. In this study, two isolates (CFCC 70629 and CFCC 70619) clustered
together with N. concentrica (CFCC 55163, CFCC 55162, and ROC 135) with 67% ML and
0.91% BI value (Figure 2). Therefore, two isolates were identified as N. concentrica (Figure 6)
as a new host and novel geographic record for China.
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Neopestalotiopsis phoenicis W.S. Zhang & X.L. Fan, sp. nov. (Figure 7).
MycoBank: MB 854100
Etymology: Named after the genus of the host species, Phoenix.
Holotype: BJFC-S2335
Description: Associated with leaf spots of Phoenix canariensis. Asexual morph: Conid-

iomata pycnidial on PDA. Conidiomata are globular, scattered or aggregated, and black.
Conidiophores reduce to conidiogenous cells, smooth and hyaline. Conidiogenous
cells are discrete, thin-walled, and smooth and hyaline. Conidia are ampulliform, el-
lipsoid to subcylindrical, straight or slightly curved, smooth, 22.0–28.5 × 5.0–10.0 µm
(av. ± SD = 24.36 ± 1.91 × 7.96 ± 1.10 µm, n = 50), L/W = 2.0–4.0 µm
(av. ± SD = 3.11 ± 0.45 µm, n = 50), 4-septate; the basal cell is conical to semiellipsoid, with
a truncated base, hyaline, smooth, thin-walled, and 3.0–6.0 µm long
(av. ± SD = 4.39 ± 0.68 µm, n = 50); three median cells are versicolored, subelliptic to
elliptic, with the second cell from the base being honey brown and 4.0–5.5 µm long
(av. ± SD = 4.76 ± 0.42 µm, n = 50); the third cell is pale brown or honey brown and
4.0–6.0 µm long (av. ± SD = 4.86 ± 0.53 µm, n = 50); the fourth cell is pale brown and
4.0–6.0 µm long (av. ± SD = 5.04 ± 0.41 µm, n = 50); the apical cell is 1.5–4.0 µm long
(av. ± SD = 2.91 ± 0.48 µm, n = 50), hyaline, conic, smooth, and thin-walled, with two or
three tubular apical appendages arising from the apical crest, unbranched, filiform, and
3.0–8.0 µm long (av. ± SD = 5.40 ± 1.17 µm, n = 50); a basal appendage is present and
3.0–6.0 µm long (av. ± SD = 4.25 ± 0.72 µm, n = 50). A sexual morph was not observed.

Culture characteristics: The colonies on PDA reached up to 55 mm in diameter after
seven days at 25 ◦C. The colonies were filamentous to circular, with dense aerial mycelium
on surface, and white from above and reverse. Fruiting bodies were observed after ten days.

Typus: CHINA, Sichuan Province, Guangyuan City, Lizhou District, 105◦51′23′′ E,
32◦25′04′′ N, on leaf spots of Phoenix canariensis, Y.X. Li and X.L. Fan, 9 October 2023
(holotype BJFC-S2335, ex-holotype culture CFCC 70625); ibid. (paratype BJFC-S2336, ex-
paratype culture CFCC 70621).
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Additional material examined: CHINA, Sichuan Province, Guangyuan City, Lizhou
District, 105◦51′23′′ E, 32◦25′04′′ N, on leaf spots of Phoenix canariensis, Y.X. Li and X.L. Fan,
9 October 2023 (BJFC-S2337, living culture CFCC 70622).

Notes: The three strains of N. phoenicis in this study formed a well-supported clade
(BI/ML = 0.998/92) (Figure 2). N. phoenicis was phylogenetically close to N. hyperici
(Figure 2), but there were 16 bp different in the concatenated alignment. A comparison of
ITS regions showed 10 nucleotide differences with oleaginous N. hyperici (509/519, 98.07%).
Moreover, N. phoenicis could be distinguished from N. hyperici by larger conidia (22.0–28.5
vs. 17.0–22.0 µm) and shorter tubular apical appendages (3.0–8.0 vs. 11–23 µm) [20].
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Figure 7. Neopestalotiopsis phoenicis (ex-holotype culture CFCC 70625). (A) Diseased leaf of Phoenix
canariensis; (B) Colony on PDA at seven days; (C) Conidial masses formed on PDA; (D,E) Conidio-
genous cells; (F) Conidia. Scale bars: (C–F) = 10 µm.

Pestalotiopsisguiyangensis W.S. Zhang & X.L. Fan, sp. nov. (Figure 8).
MycoBank: MB 854101
Etymology: Named for the location of the holotype specimen, Guiyang.
Holotype: BJFC-S2343
Description: Pathogenic on Eriobotrya japonica and Rohdea japonica leaves. Asexual

morph: Conidiomata pycnidial on PDA. Conidiomata are irregular to globular, scattered or
aggregated, and black. Conidiophores reduce to conidiogenous cells, smooth and hyaline.
Conidiogenous cells are discrete, thin-walled, and smooth and hyaline. Conidia are fusoid,
ellipsoid to subcylindrical, straight or slightly curved, minutely verruculose or smooth,
20.0–27.0 × 4.5–7.0 µm (av. ± SD = 22.9 ± 1.56 × 6.11 ± 0.55 µm, n = 50), L/W = 3.0–5.4 µm
(av. ± SD = 3.79 ± 0.47 µm, n = 50), 4-septate; the basal cell is subconical to conical, with a
truncated base, hyaline or pale brown, minutely verruculose or smooth, thin-walled, and
3.0–5.5 µm long (av. ± SD = 4.34 ± 0.52 µm, n = 50); three median cells are versicolored,
cylindrical, and the second cell from the base is pale brown or brown and 4.0–6.5 µm long
(av. ± SD = 5.06 ± 0.44 µm, n = 50); the third cell is honey brown or dark brown and
4.0–5.5 µm long (av. ± SD = 5.06 ± 0.43 µm, n = 50); the fourth cell is pale brown and
4.0–5.0 µm long (av. ± SD = 4.68 ± 0.47 µm, n = 50); the apical cell is 2.5–4.5 µm long
(av. ± SD = 3.39 ± 0.38 µm, n = 50), hyaline, conic, smooth, and thin-walled, with two or
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three tubular apical appendages arising from the apical crest, unbranched, filiform, and
10.5–18.0 µm long (av. ± SD = 15.35 ± 1.76 µm, n = 50); a basal appendage is present,
2.5–6.5 µm long (av. ± SD = 4.81 ± 0.77 µm, n = 50). A sexual morph was not observed.

Culture characteristics: The colonies on PDA reached up to 60 mm in diameter after
seven days at 25 ◦C. The colonies were feathery and diffuse, white, with dense aerial
mycelium on the surface, and the reverse color was pale yellow. Fruiting bodies were
observed after fifteen days.

Typus: CHINA, Guizhou Province, Guiyang City, Huaxi District, 106◦40′12′′ E,
26◦25′48′′ N, on leaf spots of Eriobotrya japonica, Y.X. Li and L. Lin, 18 August 2023 (holotype
BJFC-S2343, ex-holotype culture CFCC 70626). CHINA, Guizhou Province, Guiyang City,
Huaxi District, 106◦40′12′′ E, 26◦25′48′′ N, on leaf spots of Rohdea japonica, Y.X. Li and L.L,
18 August 2023 (paratype BJFC-S2344, ex-paratype culture CFCC 70630).

Notes: Two Pestalotiopsis developed an independent clade in the phylogenetic tree with
85% ML and 0.96 BI value (Figure 3). P. guiyangensis was phylogenetically close to P. oryzae,
but there were nine bp different in the concatenated alignment. The tef1-α region showed a
five-base difference with oleaginous P. oryzae (568/573, 98.12%). In addition, P. guiyangensis
had a smaller third cell (4.0–5.5 µm) than P. oryzae (5.5–7.0 µm), and P. guiyangensis could
be distinguished from P. oryzae by narrower fourth cells (4.0–5.0 vs. 5–6.5 µm) and shorter
apical appendages (10.5–18.0 vs. 18–27 µm). In addtion, P. guiyangensis had culture
characteristics that were different from P. oryzae (the P. guiyangensis colonies were feathery
and diffuse, while P. oryzae had an undulate edge, convex with the papilate surface) [15].
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cells; (E) Conidia. Scale bars: (C–E) = 10 µm.

4. Discussion

In this study, we investigated pestalotioid fungi of plants in Sichuan and Guizhou
provinces in China. We included ten sequenced isolates of Neopestalotiopsis and two se-
quenced isolates of Pestalotiopsis to provide a backbone tree for the genera Neopestalotiopsis
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and Pestalotiopsis. In this study, four new species (N. acericola, N. cercidicola, N. phoenicis,
and P. guiyangensis) and one known species (N. concentrica) were identified on the basis of
morphological and phylogenetic analyses.

Pestalotioid fungi are important pathogens of plant diseases, and it has been shown
that pestalotioid fungi have no host specificity [42]. For example, Pestalotiopsis chamaeropis
infests plants in China such as Quercus acutissima, Rosa chinensis, and Camellia sinensis [42];
while Neopestalotiopsis rhapidis was found to infest plants in China such as Rhapis excelsa
and Podocarpus macrophyllus [20]. In this study, the coelomycetous fungi were found to
infest Rhapis excelsa in addition to infesting Rosa rugosa in China [41]. The new species,
Pestalotiopsis guiyangensis, in this study was found to infest different hosts (Eriobotrya
japonica and Rohdea japonica). This indicates that there may be a high undescribed diversity
of fungi and host diversity in plants in China [41].

The present study provides a further extension of the backbone tree of Neopestalotiopsis
and Pestalotiopsis, and future work requires further investigation in order to establish a
more stable backbone tree of Neopestalotiopsis and Pestalotiopsis. More sampling is needed
in the future to determine the spread and epidemiology of pestalotioid fungi in Guizhou
and Sichuan, China. Therefore, future work needs to be carried out on pathogenicity
testing and disease control methods, as this can help us to prevent diseases caused by
pestalotioid fungi.

Sequence data are essential to resolve these three genera, as many pestalotioid species
have overlapping morphological traits [14]. A gene-by-gene assessment of phylogenetic
resolution can yield higher levels of protein genes than those of ribosomal regions [43]. Hu
et al. [44] suggested that at least two gene combinations (ITS and tub2) should be used to re-
solve the phylogeny of species of Neopestalotiopsis and Pestalotiopsis. Maharachchikumbura
et al. [14] tested ten gene regions to resolve the bound species in Neopestalotiopsis and Pestalo-
tiopsis, and finally screened the three most applicable regions (ITS, tef1-α, and tub2) [14].
Liu F et al. [45] investigated a genome-wide phylogenetic tree based on Colletotrichum,
which could better define the Colletotrichum species complex boundaries. Considering
the importance of pestalotioid fungi, genome sequencing of pestalotioid species is recom-
mended. This will not only pave the way for comprehensively resolving the tree of life
of Neopestalotiopsis and Pestalotiopsis, but also provide important data for revealing their
evolution and adaptive mechanisms and improve our understanding of the genetic basis of
various biological features and metabolic potential of these fungi.
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