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Abstract: Prostate cancer (PC) is a prevalent and potentially fatal form of cancer that affects men
globally. However, the existing diagnostic methods, such as biopsies or digital rectal examination
(DRE), have limitations in terms of invasiveness, cost, and accuracy. This study proposes a novel
machine learning approach for the diagnosis of PC by leveraging clinical biomarkers and personalized
questionnaires. In our research, we explore various machine learning methods, including traditional,
tree-based, and advanced tabular deep learning methods, to analyze tabular data related to PC.
Additionally, we introduce the novel utilization of convolutional neural networks (CNNs) and
transfer learning, which have been predominantly applied in image-related tasks, for handling
tabular data after being transformed to proper graphical representations via our proposed Tab2Visual
modeling framework. Furthermore, we investigate leveraging the prediction accuracy further by
constructing ensemble models. An experimental evaluation of our proposed approach demonstrates
its effectiveness in achieving superior performance attaining an F1-score of 0.907 and an AUC of 0.911.
This offers promising potential for the accurate detection of PC without the reliance on invasive and
high-cost procedures.

Keywords: deep learning; machine learning; prostate cancer; stacking classifier; transfer learning

1. Introduction

Prostate cancer (PC) is a prevalent and potentially fatal cancer that affects men glob-
ally, and it is the second leading cause of cancer-related deaths in men worldwide after
leukemia [1]. In the United States, approximately one in six men are diagnosed with PC [2].
The early detection of PC is crucial to increase the chances of successful treatment. The
examination of a man’s blood for prostate-specific antigen (PSA) levels or via a digital
rectal exam (DRE) are common routines for PC diagnosis. If abnormal results are obtained
from either of these tests, a prostate biopsy is recommended to assess the prognosis of
individuals with PC [3]. However, these tests have limitations in terms of accuracy and
invasiveness. The PSA test has a high incidence of false positives and false negatives [4],
while DRE and prostate biopsies, particularly the latter, are associated with a high degree
of invasiveness and have the potential to induce serious physical harm [5,6]. As such,
current diagnostic methods need improvement to reduce the risk of harm and to increase
accuracy. The development of accurate, low-cost, and non-invasive diagnostic models has
thus become a crucial area of research.

Over the past few years, several studies have highlighted the potential of machine
learning in detecting prostate cancer at an early stage. For example, Wang et al. [7] con-
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ducted a study where they developed a machine learning approach for predicting PC using
radiomic features extracted from multiparametric magnetic resonance imaging (MRI) data.
The model demonstrated a high level of accuracy, achieving an area under the curve (AUC)
of 0.905. In a separate investigation, Song et al. [8] developed a machine learning model
based on convolutional neural networks (CNNs) to detect PC by analyzing histopathologi-
cal images of biopsy samples. The model outperformed traditional diagnostic methods,
achieving an AUC of 0.937. In another study, Varghese et al. [9] proposed a deep learning
model for predicting the aggressiveness of PC using clinical and histopathological features.
They achieved an accuracy of 87.7% in predicting the presence of high-grade PC. In a recent
study, Peng et al. [10] introduced a machine learning approach for predicting the presence
of clinically significant prostate cancer (CSPC) using clinical and imaging features. The
study employed a deep learning model that integrated CNNs with gradient boosting ma-
chine (GBM) [11]. On the validation set, the model achieved an AUC of 0.88. The findings
of the study suggested that machine learning models had the potential to accurately predict
the diagnosis of CSPC in a non-invasive manner, thereby reducing unnecessary biopsies.
Bhattacharya et al. [12] proposed a radiogenomic approach to predict the prognosis of
prostate cancer. The researchers combined radiomic features extracted from MRI images
with genetic data to develop their model. The results showed that the model achieved a
higher accuracy in predicting PC recurrence compared to traditional clinical methods.

In a study focused on detecting prostate cancer from pre-biopsy information [13],
various machine learning techniques, including artificial neural networks (ANNs), ran-
dom forests (RF), and support vector machines (SVMs), were employed. The study’s
results indicated that these methods achieved relatively high F1-score and AUC when
classifying samples into two categories (benign/insignificant cancer vs. significant cancer).
However, the same methods achieved lower F1-scores and AUC values when classifying
samples into three categories (benign, insignificant, and significant). These findings sug-
gest that machine learning techniques may be effective in detecting prostate cancer, but
their performance may vary depending on the specific classification task. Furthermore,
Perera et al. [14] utilized a four-layer neural network to detect prostate cancer using PSA
and age information, achieving an AUC value of 0.72. Lee et al. [15] used the Synthetic
Minority Oversampling Technique (SMOTE) [16] to balance the data used for predicting
prostate cancer from PSA, DRE, and age information. The authors explored the application
of RFs, SVMs, logistic regression (LR), extreme gradient boosting (XGBoost) [17], and
light gradient boosted machine (LightGBM) [18]. RFs outperformed the other methods for
patients aged 75 or older, while LR yielded better results for patients below the age of 75.

Very recently, some researchers have considered multi-omics data for enhancing
prostate cancer diagnosis. Two notable examples are [19,20]. The first work relies on
uniform manifold approximation and projection (UMAP) to embed gene expression, DNA
methylation, and copy number alteration to create images used later for classification by
CNNs. The latter work utilizes the Pairwise Controlled Manifold Approximation Projection
(PaCMAP) dimensionality reduction technique to embed various omic sources in a CNN
prediction model for PC grading.

Upon conducting a thorough analysis of the literature, the following becomes apparent:

• Radiographic and imaging-based diagnostic methods have shown high capabilities
in detecting prostate cancer. However, these approaches often come at a high cost.
Conversely, invasive procedures like biopsies raise concerns regarding potential harm
to patients.

• Several of the aforementioned methods aim to reduce the need for invasive biopsies
in prostate cancer diagnosis by utilizing machine learning techniques that rely on
clinical biomarkers. These techniques utilize structured tabular data as input, which is
easier and cheaper to obtain than medical images. Tabular data exhibit heterogeneity
among their features, resulting in weaker correlations among them compared to
homogeneous data, such as images or text. Tabular data often involve numerical and
categorical features, where numerical features tend to have more dense representations,
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while categorical features tend to have more sparse representations. It thus becomes
challenging to identify and exploit correlations among features without relying on
spatial information.

• In classification problems involving tabular data, tree-based methods are frequently
employed. These methods construct a hierarchical structure resembling a tree to
make predictions about the target variable class using the available features. They are
popular due to their ability to efficiently select relevant features and provide statistical
information gains. Moreover, they offer advantages, such as quick training times,
interpretability, and the ability to visualize the decision-making process, making them
highly desirable for real-world applications.

• Deep neural networks (DNNs), particularly CNNs, excel in image classification tasks,
offering automatic feature learning, spatial invariance, parameter sharing, and hierar-
chical representation. That is why they have been used in some existing approaches for
PC diagnosis from radiographic [7,10,12] or histopathological images [8,9]. However,
DNNs are not always effective for tabular data classification compared to tree-based
methods. This justifies the few reported DNN-based methods for PC detection from
non-radiographic data.

Our research objective is to develop machine learning approaches that can precisely
predict prostate cancer without relying on expensive or invasive diagnostic procedures,
such as radiography, DRE, and biopsies. In pursuit of this objective, this paper delves into
the utilization of clinical biomarkers, particularly PSA levels, along with individualized
data acquired through questionnaires, for the diagnosis of prostate cancer. This strategy
aims to curtail the necessity for invasive procedures, consequently mitigating potential
risks and discomfort for patients.

To this end, we first compiled real data from 84 PC patients. The data included
PSA as a clinical biomarker, age from patient’s demographic data, in conjunction with
several pieces of questionnaire-supplied information about the symptoms a patient has.
Our goal was to utilize these data to develop a predictive model for prostate cancer. We
then investigated and evaluated a comprehensive set of machine learning algorithms to
build this predictive model. Our study included traditional classification methods, such as
RFs, ANNs, and SVMs. It also covered the family of tree-based methods, such as decision
trees, random forests, and gradient boosting machines, which continue to be the primary
methods in the field of learning from tabular data. We also investigated employing the
latest developments in deep learning methods that are particularly designed to work with
tabular data, namely, TabNet [21] and TabPFN [22]. Unlike tree-based models, these deep
models enable end-to-end learning for tabular data.

A key aspect of the current paper is that we investigated another, novel strategy to
solve the problem at hand. This strategy was motivated by the unprecedented achievements
of deep CNNs. These CNN architectures, like the sophisticated models of AlexNet, VGG,
ResNet, Inception, and EfficientNet, have showcased their exceptional capability to surpass
human-level performance across a diverse array of image classification tasks. They adeptly
discern intricate patterns from extensive image datasets. In contrast, deep learning for
tabular data classification has not been able to show similar progress. This disparity arises
from the fact that tabular data lack the spatial arrangement and local correlations that CNNs
are purposely built to leverage. To bridge this gap, we introduce in this paper a strategy
that is based on visual representation of tabular data, which we call Tab2Visual modeling.
This representation imbues the data with spatial structure and local correlations, enabling a
CNN to adeptly discern and extract meaningful features crucial for classification. As such,
it presents substantial potential for enhancing the performance of CNNs on tabular datasets.
It also harnesses the power of CNNs and transfer learning, reducing the need for extensive
labeled data by fine-tuning pre-trained models. In addition, while data in the medical
fields are often limited in size, this graphical representation opens the door to employing
data augmentation techniques that are more appropriate to work on images rather than on
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tabular data, thus increasing the size of the data. We demonstrate in this paper that this
novel strategy does indeed elevate the prediction accuracy of prostate cancer.

It is important to note that we are aware of only three works in the literature that
share with our Tab2Visual strategy the idea of converting non-image data into images for
CNN-based classification. In the so-called DeepInsight approach [23], the data samples
in the feature space are projected onto a 2-D space using t-distributed stochastic neighbor
embedding (t-SNE) [24]. Then, the approach finds a minimal rectangular area on this 2-D
space that includes all the projected feature points, which represents the formed image.
Bazgir et al. [25] follow the same projection idea; however, t-SNE is replaced with a Bayesian
multidimensional scaling to project the features onto a 2-D space. The third work, known
as Image Generator for Tabular Data (IGTD) [26], forms an image by assigning each feature
to an image pixel whose intensity reflects the value of the corresponding feature. Similar
features are assigned to neighboring pixels while dissimilar features map to far-apart pixels.
The result of IGTD is an image of the same size as the number of features in the data.

These three existing methods face challenges when dealing with datasets that have
a limited number of features, as they are primarily designed for feature-rich datasets.
Additionally, they encounter difficulty in generating meaningful image augmentations from
the resulting images, which makes their application to smaller datasets more challenging.
Compared with these methods, our proposed Tab2Visual approach offers key advantages.
It can handle datasets with a small number of features. Moreover, it enables the application
of powerful image augmentation techniques, which, in turn, enriches the dataset and
enhances the predictive model’s ability to generalize to unseen data.

Last but not least, we investigated ensemble methods to leverage the classification
accuracy. We also developed a stacking classifier that integrated the most effective methods
identified in our study, demonstrating highly promising results in prostate cancer prediction
from tabular data. More importantly, we deployed this predictive model online through
the open-source framework, Streamlit, allowing the research community to experiment
with our PC diagnostic tool.

The structure of this paper is as follows: Section 2 details the data used in this study.
Section 3 describes the methods employed, while Section 4 introduces the Tab2Visual
modeling approach. Section 5 reports our comprehensive experimental results, and finally,
Section 6 presents our concluding remarks.

2. Dataset

The dataset used in our work was collected from Mansora University Hospital in Egypt.
It consisted of 84 patients (45 benign prostatic hyperplasia, 39 prostatic carcinoma). The
patients’ informed consent was obtained (IRB number: R21.04.1289 from IRB of the Faculty
of Medicine, Mansoura University, Egypt on 9 June 2021). The dataset was composed of
the patient’s age, PSA level, and personalized information about how a patient felt as taken
from questionnaires. Table 1 shows a description of the dataset’s nine attributes (features).
The dataset’s categorical variables were graded on a scale from zero to five, where zero
indicated the absence of a condition and five signified the highest degree. The PSA and age
features were used because both had already been found very relevant and useful for our
classification problem by several previous works(e.g., [14]). The categorical variables were
recommended by the medical members of our team to quantify the frequency and severity
of symptoms as perceived by a patient. While being clinically relevant, all of them shared
the advantage of being costless and rather easy for the patient to provide. For instance, in
the case of the Nocturia feature, if a person woke up on four nights per week to urinate,
the corresponding questionnaire response would be three(approximately half of the time).
Similarly, zero denoted never, one represented seldom, two indicated less than half of
the time, four signified more than half of the time, and five corresponded to always or
every time.
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Table 1. Prostate cancer dataset description.

Feature Name Description Feature Type

PSA Prostate-specific antigen value Continuous

AGE Age Continuous

IEBladder Frequency of feeling that the bladder is not completely empty
after urination Categorical

UrinateAgain Frequency of urinating again in less than 2 h Categorical

Intermittency Frequency of the urine stream cut-off during urination Categorical

Urgency Frequency of difficulty to delay urination Categorical

Nocturia Frequency of getting up at night to urinate Categorical

Straining Frequency of difficulty to start urination Categorical

WeakUrine Frequency of feeling the weakness of the urine stream Categorical

Based on the t-SNE [24] visualization of the PC data shown in Figure 1, it appears
that a group of PC positive samples forms a distinct cluster towards the upper part of
the figure. On the other hand, the distribution of the negative samples is more scattered
and intertwined with other positive samples. This lack of clear separation between the
positive and negative samples indicates that there may not be a straightforward decision
boundary that can easily distinguish between the two classes based on the features used
in the t-SNE visualization. This insight suggested that the classification problem was
rather complex, and linear classification models would not be sufficient for accurately
predicting prostate cancer based on the selected features alone. More sophisticated, non-
linear modeling techniques, such as ensemble methods or deep learning approaches, may
be worth exploring to improve the classification performance.

Figure 1. t-SNE visualization of the prostate cancer data samples. There is a lack of clear separation
between the positive and negative samples.

A violin plot is a statistical visualization that provides a representation of the distribu-
tion of a dataset’s numerical values, displaying both the probability density and frequency
distribution. It is considered a hybrid of a box plot and a kernel density plot. The violin
plots shown in Figure 2 yielded significant insights into the distribution of features across
PC positive and negative samples. Notably, higher levels of PSA, IEBladder, and Urgency
were associated with a higher likelihood of cancer diagnosis. Positive samples tended to
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exhibit narrower distributions in PSA values, suggesting a more concentrated range com-
pared to negative samples. In terms of IEBladder and Urgency, positive samples showcased
a broader range, indicative of a wider spectrum of experiences. The overlapping violin plots
for other features suggested potential challenges in using them as standalone indicators of
prostate cancer. Again, the findings underscored the complexity of distinguishing between
positive and negative samples, emphasizing the need for a comprehensive classification
approach to prostate cancer diagnosis.

Figure 2. Violin plots for feature distributions in the prostate cancer dataset across the two classes,
positive (true) and negative (false).

The heatmap of correlations in Figure 3 shows that the strongest positive correlation
was between Urgency and IEBladder, indicating that individuals who reported urgency
symptoms also tended to experience incomplete emptying of the bladder after urination.
Additionally, the positive correlation between PSA and Urgency implied that individuals
with elevated PSA levels could also report urgency symptoms. Furthermore, the moder-
ately positive correlation between IEBladder and UrinatingAgain highlighted a potential
association between these aspects. It is worth noting that while these correlations did
provide useful associations, they did not necessarily establish causation.
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Figure 3. Correlation matrix of the PC dataset’s features. Strong positive correlation exists between
Urgency and IEBladder, and between PSA and Urgency.

3. Methods

In this section, we briefly describe several classification methods we investigated in
our study, which was approved by the IRB of the Faculty of Medicine, Mansoura University,
Egypt on 9 June 2021 (IRB number: R21.04.1289). All patients included in this study gave
written informed consent to participate in this research.

3.1. Classical Machine Learning Methods

We investigated several classical machine learning methods. These included logistic
regression (LR) [27]. LR is a versatile algorithm, particularly effective in binary classification
scenarios, as it predicts target variable probabilities. Another method is support vector
machines (SVMs) [28]. An SVM aims to maximize the class margin by projecting data into
higher-dimensional feature spaces, enabling effective handling of non-linearly separable
data. We also explored shallow artificial neural networks (ANNs) using different network
architectures in terms of the number of hidden layers and their sizes.

3.2. Tree-Based Machine Learning Methods

Tree-based methods are commonly used in classification problems with tabular data.
These methods construct a tree-like structure to determine the target variable class based
on the provided features. In our study, we investigate several of these methods, including
random forest (RF) [29], Extra Trees [30], extreme gradient boosting (XGBoost) [17], and
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Light Gradient-Boosting Machine (LightGBM) [18]. The latter is an open-source library
developed by Microsoft, known for its focus on examples with large gradients, emphasizing
computational efficiency and automatic feature selection. This makes LightGBM a good
choice for handling large and complex datasets [18].

3.3. Deep Learning Methods for Tabular Data

We then explored advanced deep learning methods particularly designed to work
with tabular data. The first one was the TabNet architecture by Arik and Pfister [21]. This
architecture operates as a sequential attention multi-step model, with sparse instance-
wise feature selection controlled by sequential attention. In addition, it quantifies feature
contributions. The second one was the more recent TabPFN architecture, introduced by
Hollmann et al. [22]. It is a Prior-Data Fitted Network (PFN) based on a transformer model.
This architecture addresses challenges associated with tabular data training, especially on
small datasets, employing progressive feature normalization and incorporating a residual
connection for improved convergence speed and performance. Another advantage of
TabPFN is its elimination of hyperparameter tuning, making it a convenient choice. It
was shown to achieve competitive performance across various classification tasks while
maintaining network compactness [22].

3.4. Ensemble Models

Ensemble models are powerful techniques in machine learning that combine multiple
base models to improve overall performance and robustness. In our study, we utilized
several types of ensemble methods: hard voting, soft voting, and stacking classifiers. Here
is a general explanation of these methods.

3.4.1. Voting Classifiers

The hard voting classifier makes predictions based on the majority vote from a collec-
tion of individual classifiers. Each classifier independently predicts a class label, and the
final prediction is determined by the class label that receives the most votes. This method
leverages the collective decision-making process to enhance accuracy and reduce the impact
of individual classifier errors. Unlike hard voting, the soft-voting classifier considers the
predicted probabilities of each class from all the classifiers. The final prediction is made by
averaging these probabilities and selecting the class with the highest average probability.
This approach benefits from the confidence levels of each classifier, often leading to more
nuanced and accurate predictions.

3.4.2. Stacking Classifier

The stacking classifier is an advanced ensemble method that involves multiple layers
of models. The general process for stacking includes several base classifiers trained on
the original dataset. Each of these classifiers generates predictions, which are then used
to create a new dataset consisting of the predicted probabilities or class labels from the
first-tier classifiers as features. A meta-classifier is then trained on this new dataset. The
meta-classifier learns to make the final prediction based on the outputs of the first-tier
classifiers and can be any machine learning model, often a simpler and robust model like a
random forest or logistic regression.

3.5. Tab2Visual: Graphical Representation of Tabular Data

In recent years, significant strides have been made in image classification, largely due
to the advent of CNNs in deep learning. CNNs learn relevant features from raw pixel
values, recognize patterns regardless of position, and use shared weights for efficiency.
They capture both low-level and high-level patterns, making them ideal for image classi-
fication. CNNs can also be utilized for transfer learning, reducing the need for extensive
labeled data by fine-tuning pre-trained models. However, the progress in applying deep
learning to tabular data classification has been comparatively gradual. This is primarily
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because tabular data lack the spatial structure and local correlations that CNNs are tailored
to exploit.

Recognizing this discrepancy, we introduce Tab2Visual modeling, an innovative ap-
proach that bridges this gap by transforming tabular data into images. By representing
tabular data as images, we introduce spatial structure and local correlations, enabling CNN
to effectively learn and extract meaningful features for classification. When working with
medical tabular datasets, the proposed methodology offers two immediate benefits. This
graphical representation allows us to employ data augmentation techniques that are more
appropriate to work on images rather than on tabular data, thus increasing the size of the
data, which is a common problem with medical datasets. Second, the augmented image
dataset can then be utilized to train CNNs with transfer learning, allowing the network to
leverage pre-learned knowledge from large-scale image datasets.

The detailed steps for the proposed Tab2Visual modeling are illustrated in Figure 4
and explained as follows:

Figure 4. Tab2Visual modeling approach. Tabular data are normalized then encoded as images of
width-varying bars. These images are then augmented and fed to CNNs.

• Data normalization: We begin by applying min-max normalization to the tabular
dataset, ensuring that each feature’s values are scaled within the range [0, 1]. This
normalization process standardizes the data and facilitates consistent comparisons
between features.

• Image preparation: We then create a visual representation by creating an image that
consists of as many vertical bars as the number of features, m, in the dataset. Each
bar has a maximum width of b = w/m, where w is the image width, thus ensuring
an equal division of the image’s spatial space among the features. For example, our
prostate dataset has 9 features, thus the image representation for each sample consists
of 9 bars, see Figure 5.

• Feature encoding: Each feature i is encoded as a vertical bar in the image, such that
the bar width is taken as vi b, where vi is the normalized feature value. A feature with
the maximum normalized value of 1 will occupy the full bar width b. This encoding
of features as width-modulated bars visually preserves the relative magnitudes of the
features in the image. Additionally, each feature is assigned a distinct color for easier
visual identification.
An example is shown in Figure 5 which shows an image representation of a sample of
the prostate cancer data.

• Image augmentation: In order to increase the data size, we apply various image
augmentation techniques to each image. While image mirroring, rotation, and trans-
lation are more commonly used in the literature for this purpose, we propose to use
a different set of operations that better fit the semantics of the image contents. We
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propose to employ elastic distortion, and the morphological operations of dilation,
erosion, closing, and opening, with various degrees. These operations introduce subtle
variations in the bar edges and cause varying degrees of widening or shrinking effects
on the image bars. This in turn helps generate novel synthetic training samples for
classification model training, improving the model’s generalization to unseen data.
More specifically, our augmentation procedure first applies elastic distortion with a
random deformation strength to the image. Then, morphological dilation and erosion
are performed on the image with random probabilities in a random order with a struc-
turing element of random size. This results in an image being subjected to dilation
only, erosion only, dilation followed by erosion (morphological closing), or erosion
followed by dilation (morphological opening) with random varying degrees. Figure 6
illustrates three samples of the PC dataset in image representations along with some
of their augmentations.

Figure 5. An image representation of a sample of the PC data. The image consists of 9 bars of widths
proportional to feature values.

• Transfer learning with CNNs: A CNN can then be trained on the augmented dataset.
To leverage the power of deep learning in image classification, we adopt transfer
learning with state-of-the-art CNN models. The augmented dataset is utilized to
fine-tune these pre-trained models, allowing the network to learn meaningful patterns
from the transformed tabular data images.

In this paper, we relied on EfficientNet as our CNN predictive model. The EfficientNet
series encompasses a range of CNN architectures renowned for achieving state-of-the-
art accuracy on several classification tasks while maintaining high efficiency compared
to earlier models [31]. EfficientNet V1 was introduced by Tan and Le in 2019 [31]. It
introduced a composite scaling technique that uniformly adjusted network width, depth,
and resolution, all guided by a predetermined set of scaling coefficients. The foundational
model, EfficientNet-B0, was crafted through a combination of AutoML and the Mobile
Neural Architecture Search (MNAS) framework. Subsequently, this model was upscaled to
yield the successive versions, EfficientNet-B1 through B7. The “Bs” in EfficientNet refer to
different variants or models within the EfficientNet architecture family. They denote the
compound scaling factor that determines the model’s width, depth, and resolution. The
larger the “B” value, the larger and more complex the model is.

EfficientNet V2 [32] is an enhanced iteration of the original EfficientNet series. Its de-
velopment has involved a blend of training-aware neural architecture search and scaling, a
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dual approach that holistically optimizes the interplay between training speed and parameter
efficiency. In contrast to its predecessor, EfficientNet V2 avoids utilizing depthwise convolu-
tions and squeeze-and-excitation blocks in the initial layers. It also adopts smaller kernel sizes
and contraction ratios in its mobile blocks. Moreover, it implements an upgraded progressive
learning technique that contributes to both accelerated training speed and better accuracy. In
several reported experiments [32–35], EfficientNet V2 is demonstrated to be effective in trans-
fer learning tasks, achieving notable accuracy while employing fewer parameters compared
to alternative models. These experiments prove it to be a fitting option for transfer learning
when working with limited data. These advantages are the main motivation behind its use in
our proposed Tab2Visual modeling framework.

(a) (b) (c)

Figure 6. Applying augmentation techniques to the image representation of the prostate cancer
data. Three samples in Column (a) are used to generate two image augmentations in Columns
(b,c) per each.

4. Evaluation Metrics

To comprehensively assess the performance of our models, we employed a variety of
evaluation metrics. These metrics captured different aspects of the model’s performance
and ensured a robust evaluation. They are described briefly in this section.

4.1. Precision

Precision measures the proportion of true positive predictions among all positive
predictions made by the model. It is calculated as:

Precision =
TP

TP + FP

where TP is the number of true positives and FP is the number of false positives. High
precision indicates a low false positive rate, which is important in scenarios where the cost
of false positives is high.

4.2. Recall

Recall, also known as sensitivity, measures the proportion of true positive predictions
among all actual positive instances. It is calculated as:

Recall =
TP

TP + FN
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where TP is the number of true positives and FN is the number of false negatives. High
recall is crucial in scenarios where missing a positive instance is costly.

4.3. F1-Score

The F1-score is the harmonic mean of precision and recall, providing a balance between
the two metrics. It is particularly useful when there is a need to balance precision and recall.
It is calculated as:

F1-Score = 2 × Precision × Recall
Precision + Recall

A higher F1-score indicates a better balance between precision and recall.

4.4. Area under the Curve (AUC)

The AUC of the receiver operating characteristic (ROC) curve measures the model’s
ability to distinguish between positive and negative classes. The ROC curve plots the true
positive rate (TPR) against the false positive rate (FPR) at various threshold settings. The
AUC is calculated as:

TPR =
TP

TP + FN

FPR =
FP

FP + TN
where TP is the number of true positives, FN is the number of false negatives, FP is
the number of false positives, and TN is the number of true negatives. An AUC of
1 indicates perfect classification, while an AUC of 0.5 suggests performance no better than
random chance.

5. Experimental Results

This section reports a series of experiments using the proposed approach. Our ex-
periments first focused on using the collected data in tabular format to predict prostate
cancer employing several machine learning methods. Then, we assessed our proposed
Tab2Visual approach converting tabular data into visual representations and afterwards,
using CNN-based transfer learning for prostate cancer diagnosis.

5.1. Experiments on Tabular Representations

The methods described in Section 3 were applied to the collected dataset in its original
tabular format. To assess the effectiveness of these methods, we employed leave-one-
out cross-validation (LOOCV). LOOCV is a special case of K-fold cross-validation where
the number of folds is the same as the number of data points. It thus fully utilizes all
the available data for both training and testing (every data point is used for training
and testing, but never at the same time), which is very beneficial when the data size
is small or scarce, which was true in our case. Moreover, it eliminates the influence
of random splitting of data. Thus, LOOCV is a nearly unbiased and reliable method
of estimating a classifier’s performance [36] as long as the training and testing sets are
drawn from the same distribution. However, it has the disadvantage of being more
computationally expensive than K-Fold cross-validation especially for large datasets. We
report the popular performance metrics of recall, precision, F1-score, and the area under
the receiver operating characteristic curve (AUC) in our experiments. We carried out
hyperparameter optimization using the Optuna framework [37]. Table 2 summarizes the
hyperparameters related to each classifier, the parameter search range, and the best working
set of parameters.
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Table 2. Hyperparameter tuning for tabular classification methods.

Method Hyperparameter Search Space Best Value

Logistic regression penalty [l1, l2] l1
C 0.01 to 1 0.248

SVM
C 0.001 to 100 3

kernel [‘linear’, ‘poly’, ‘rbf’] ‘rbf’
gamma 0.001 to 100 0.1

Random forest

n_estimators 1 to 500 46
max_depth 1 to 40 8

min_samples_split 2 to 14 1
min_samples_leaf 1 to 14 1

max_features [‘auto’, ‘sqrt’, ‘log2’] ‘log2’

Extra Trees

n_estimators 1 to 500 96
max_depth 1 to 40 10

min_samples_split 2 to 14 51
min_samples_leaf 1 to 14 1

max_features [‘auto’, ‘sqrt’, ‘log2’] ’sqrt’

XGBoost

n_estimators 1 to 500 18
max_depth 1 to 40 3

gamma 0 to 5 4.2854
learning_rate 0.01 to 1 0.307

reg_alpha 0 to 2 1.779
reg_lambda 0 to 2 0.439
subsample 0.5 to 1 0.996

colsample_bytree 0.5 to 1 0.733

LightGBM

n_estimators 1 to 500 18
max_depth 1 to 20 6
num_leaves 2 to 256 98

learning_rate 0.01 to 1 0.358
reg_alpha 0 to 2 1.699

reg_lambda 0 to 2 0.872
subsample 0.5 to 1 0.698

colsample_bytree 0.5 to 1 0.762

CatBoost

iterations 50 to 300 72
learning_rate 0.01 to 0.3 0.3720

depth 2 to 12 2
l2_leaf_reg 1 to 10 8.712

Shallow ANN

n_hidden_layers [1, 3] 2
n_neurons_hidden_layer 1 to 256 32–8

learning_rate 0.0001 to 0.1 0.0501
batch_size [16, 32, 64, 128] 16

weight_decay 0.00001 to 0.01 0.001
drop_prob 0.1 to 0.7 0.5

TabNet

batch_size [8, 16, 32, 64] 16
mask_type [‘entmax’, ‘sparsemax’] ‘sparsemax’

n_d 8 to 64 (step 4) 8
n_a 8 to 64 (step 4) 8

n_steps 1 to 8 (step 1) 5
gamma 1.0 to 1.4 (step 0.2) 1.2

n_shared 1 to 3 2
lambda_sparse 0.0001 to 1 0.000106

patienceScheduler 3 to 10 6
learning_rate 0.001 to 1 0.02

TabPFN n_ensemble_configurations [1, 32] 3



Bioengineering 2024, 11, 635 14 of 25

The classification results are presented in Table 3. Notably, TabPFN, LightGBM, and
XGBoost models demonstrated superior performance among all methods, achieving an
identical F1-Score of 0.849. TabPFN exhibited superior performance in terms of the AUC
value compared to LightGBM and XGBoost, registering an AUC of 0.870. On the other
hand, the performance of TabNet appeared suboptimal. This may be attributed to the small
data size for accommodating the intricacies of its complex neural network architecture.
In addition to being the top performer in this experiment, TabPFN exhibited the least
tuning complexity; its design involved the adjustment of a single parameter, the number of
ensemble configurations, in a straightforward manner.

Table 3. Classification results by various classification methods on tabular representations.

Classifier Precision Recall F1-Score AUC

LR 0.931 0.692 0.825 0.836

SVM 0.903 0.718 0.800 0.816

LightGBM 0.912 0.795 0.849 0.861

XGBoost 0.912 0.795 0.849 0.854

Random forest 0.815 0.795 0.805 0.862

ExtraTrees 0.886 0.795 0.838 0.869

ANN 0.816 0.795 0.805 0.856

TabNet 0.811 0.769 0.789 0.859

TabPFN 0.912 0.795 0.849 0.870

5.2. Experiments on Image Representations

In the second part of our experiments, all the collected data samples were converted
into images of size 640 × 480 pixels using the proposed Tab2Visual approach of Figure 4.
This image size was determined after several preliminary experiments to balance the
classification performance and computational efficiency.

Given the rather modest size of our dataset (only 84 samples), we resorted to transfer
learning rather than training a CNN from scratch. Moreover, our Tab2Visual approach
allowed us to apply image augmentations to increase the dataset size with different aug-
mentation levels. To perform image augmentations, differently from the common image
augmentation methods in the literature (e.g., image mirroring, rotation, and translation), we
used employ elastic distortion, and the morphological operations of dilation, erosion, clos-
ing, and opening, with various degrees. More specifically, we relied in our implementation
of the proposed augmentation methods on the OpenCV and Albumentations libraries. We
controlled the amount of elastic distortion by the scaling factor α that controls the intensity
of the displacement/deformation field and the standard deviation σ of the Gaussian filter
applied to the displacement field. The higher the α, the more the image was distorted. A
low σ resulted in small, localized ripple-like distortions, while a high value gave rise to
larger, smoother distortions (like waves). We controlled each of the morphological dilation
and erosion operations by its probability of application to the image, Pd and Pe, respectively,
as well as the size of the structuring element used. Larger structuring elements produced a
more significant dilation or erosion effect. In addition, the order of performing dilation or
erosion was taken randomly. The combined effect gave rise to an image being subjected
to dilation only, erosion only, dilation followed by erosion (morphological closing), or
erosion followed by dilation (morphological opening) with random varying degrees. Vari-
ous values of the control parameters were used for generating the image augmentations:
α ∈ [40, 60], σ ∈ [3, 5], Pd ∈ [0.7, 0.8], and Pe ∈ [0.7, 0.8]. The structuring element was of size
(2, 5) or smaller.

We used the augmented image dataset to tune an EfficientNet V2 model. For our
sake, we chose the smallest version of EfficientNet V2, more specifically, the B0 model
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(called herein EffNetV2_b0) pre-trained on the ImageNet-1k [38] dataset, which contains
1.2 million labeled images in 1000 categories. The reason behind choosing the smallest
model was twofold; first, to mitigate overfitting due to the limited dataset size and second,
to reduce the computational resources required.

It is important to stress that in our experiments, we used LOOCV on our set of
84 samples, where one sample was held out for testing, and the remaining samples were
used for training. These remaining samples underwent fresh image augmentations in
every iteration of the LOOCV process, preventing any potential data leakage from training
to testing.

Table 4 reports the performance accuracy of the EffNetV2_b0 model for various aug-
mentation levels. In the table, Agmnt_1 means that each sample was augmented once, thus
doubling the size of the training data. In the same manner, data were enlarged 10 times
for Agmnt_9. The model without any data augmentation achieved an F1-Score of 0.85
and an AUC of 0.887. All the obtained models consistently yielded AUC values higher
than 0.87 for all augmentation levels. Notably, as the augmentation level increased, the
performance tended to increase, reaching an AUC of 0.901 on Agmnt_7. EffNetV2_B0 on
Agmnt_9 achieved an F1-Score and an AUC of 0.857 and 0.899, respectively, surpassing all
the methods reported in Table 3.

We also compared the performance of the EffNetV2_b0 model against another popular
CNN model, ResNet. We selected the smallest ResNet18 model for the same reasons
stated before. Grid search was used for hyperparameter tuning for both CNN models,
EffNetV2_B0 and ResNet18. The specifics of the hyperparameter search space and the
parameters yielding the best results for each model are detailed in Table 5 without any
image augmentation. Note that we trained our models for 20 epochs using the Adam
optimizer and the binary log-loss function. Additionally, dropout, weight decay, and
batch normalization were utilized during the training of each model to mitigate potential
overfitting and improve learning dynamics. It is clear from Table 5 that while both models
yielded nearly equal precision, EffNetV2_b0 offered considerably better performance on all
other metrics, firmly establishing its superiority on this specific classification task.

Table 4. Performance of EffNetV2_B0 on image representations with varying augmentation levels.

Augmentation Training Size Precision Recall F1-Score AUC

No Agmnt 83 0.829 0.872 0.850 0.887

Agmnt_1 166 0.864 0.820 0.842 0.870

Agmnt_2 249 0.833 0.769 0.800 0.877

Agmnt_3 332 0.800 0.821 0.810 0.872

Agmnt_4 415 0.846 0.846 0.846 0.886

Agmnt_5 498 0.861 0.794 0.827 0.875

Agmnt_6 581 0.886 0.795 0.839 0.873

Agmnt_7 664 0.886 0.795 0.839 0.901

Agmnt_8 747 0.825 0.846 0.835 0.897

Agmnt_9 830 0.868 0.846 0.857 0.899

The selection of the EffNetV2_b0 model for our study was a carefully considered deci-
sion, guided by several factors [32–35]. The EffNetV2_b0 variant is known for its balance
of efficiency, performance, and effectiveness in transfer learning. This was particularly
crucial given the small size of our dataset, where computational efficiency and model
performance had to be optimized to avoid overfitting. EffNetV2_b0 offered a superior
trade-off, ensuring that we maintained high accuracy while keeping computational de-
mands manageable. Additionally, EffNetV2_b0’s computational efficiency was particularly
beneficial for LOOCV, which is computationally intensive. The reduced complexity of the
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B0 variant minimized the risk of overfitting, a key concern with small datasets. Its effi-
ciency allowed us to perform LOOCV more effectively, ensuring robust validation without
excessive computational costs.

Table 5. Hyperparameter tuning for classification methods for image representations.

Method Parameter Search Space Best Value Method Evaluation

ResNet18

n_hidden_layers {0, 1, 2} 0 Precision: 0.806
Recall: 0.872

F1-Score: 0.850
AUC: 0.887

n_neurons_layer {32, 64, 128, 256} No hidden layer
learning_rate [0.000001, 1] 0.001
weight_decay [0.0001, 0.5] 0.01

drop_out_probability [0.1, 0.7] 0.5

EffNetV2_B0

n_hidden_layers {0, 1, 2} 0 Precision: 0.806
Recall: 0.872

F1-Score: 0.850
AUC: 0.887

n_neurons_layer {32, 64, 128, 256} No hidden layer
learning_rate [0.000001, 1] 0.001
weight_decay [0.0001, 0.5] 0.01

drop_out_probability [0.1, 0.7] 0.5

5.3. Discussion

Figures 7 and 8 summarize our findings about the most accurate predictive models in
our study. The F1-scores of these models are illustrated in Figure 7. Clearly, the Tab2Visual
approach improved the classification performance. Specifically, EffNetV2_B0 (Agmnt_9)
achieved an F1-score of 0.857 outperforming all other classifiers. Figure 8 presents the ROC
curves of all methods and their corresponding AUC values, revealing an improvement via
the Tab2Visual approach. The EffNetV2_B0 model trained on the data after being modeled
by the Tab2Visual approach achieved the highest AUC score of 0.901.

Figure 7. F1-scores for the best classifiers on tabular and image representations. EffNet_V2 Agmnt_9
achieved the highest F1-score of 0.857.

The calibration curves for the best-performing tabular and image-based methods
are depicted in Figure 9. Notably, all methods exhibited a tendency to cluster around
the diagonal line, signifying good calibration. To discern which classifier demonstrated
superior calibration, we turned to the Brier score [39]. This metric quantifies the mean
squared difference between predicted probabilities and actual outcomes, with a lower score
indicating better calibration. Figure 10 presents the Brier scores for each method. Clearly,
EffNetV2_B0 (Agmnt_9) achieved the highest level of calibration, attaining a Brier score
of 0.1129.
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Figure 8. ROC curves for the best classification methods.

Figure 9. Calibration curves for the best tabular and image-based methods.

All these results underscored the performance gain by the proposed Tab2Visual ap-
proach, emphasizing the potential benefits of integrating image representation in the
classification task.

We next investigated the feature importance values for the tree-based classifiers (XG-
Boost and LightGBM). Figure 11 illustrates the feature importance values as identified
by tree-based classifiers. Notably, PSA emerged as the most significant in both models,
followed by IEBladder, which also showed considerable importance. In Figure 12, we
explored the feature importance for the Tab2Visual model (particulary, EffNetV2 with
9 augmentations), using Gradient Explainer [40], a tool for interpreting CNN predictions
and helping in approximating the feature importance values of the model. The density
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of white points indicates areas the model focused on to make a decision. Consistent with
the tree-based classifiers, PSA and IEBladder feature areas showed the highest intensity of
white pixels, underlining their critical role in the prediction. The medium intensity of white
pixels in areas corresponding to Nocturia, Intermittency, and Urgency suggested these
features also contributed to the decision-making process. However, regions representing
Age and Straining had minimal or no white pixel intensity, implying that these features
were less important.

Figure 10. Brier scores for the best tabular and image-based methods. EffNet_V2 Agmnt_9 achieved
the best score of 0.1129.

Figure 11. Feature importance values of the tree-based XGBoost and LightGBM classifiers.

It is also of interest to comment on the time performance of all classification methods.
All methods were implemented on a workstation equipped with an Intel Core i9 CPU
running at 3 MHz, featuring 18 cores, 256 GB of RAM, and an NVidia Quadro RTX 5000
GPU with 12 GB of dedicated memory. Table 6 reports the training times for all models in
our study, derived from the entire LOOCV process involving 84 samples. As anticipated, the
neural network-based methods showed longer training times, with EffNetV2_B0 exhibiting
the longest time owing to its inherently more complex CNN architecture. However, when
it came to inference time, which measures the time duration for making a prediction on a
single sample, all models demonstrated fast response times. This makes them well suited
for real-time operation in computer-aided diagnosis (CAD) systems. Of particular interest,
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according to Table 6, the EffNetV2_B0 model demonstrated an inference time of 21 ms,
significantly better than its training time.

Figure 12. Approximation of Tab2Visual feature importance values using Gradient Explainer. The
density of white points indicates areas the model focuses on to make a decision.

Table 6. Time performance for the various classifiers investigated in our study.

Classifier Training Time (s) Inference Time (ms)

LR 2.3 1.2

SVM 4.4 0.2

Random forest 18 1.7

ExtraTrees 9 1

LightGBM 6.8 1.5

XGBoost 11.4 2

ANN 67 10

TabNet 544 7

TabPFN 21 101

EffNetV2_B0 3780 21
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5.4. Ensemble Models

Our goal here was to investigate leveraging the classification performance further
by constructing an ensemble model with enhanced predictive capability. To this end,
we selected the most effective classifiers from our study, namely, TabPFN, LightGBM,
EffNetV2_B0 (No Agmnt), EffNetV2_B0 (Agmnt_4), and EffNetV2_B0 (Agmnt_9), to build
both hard- and soft-voting classifiers. The hard-voting classifier determined predictions by
majority voting from the individual classifiers, while the soft-voting classifier calculated
the average predicted probability across all classifiers.

Additionally, we designed a stacking classifier, illustrated in Figure 13, comprising the
aforementioned top-performing classifiers followed by a random forest meta-classifier. In
this approach, the first-tier classifiers were trained on the entire dataset, with one sample
held out for testing. The predictions from these first-tier classifiers were then aggregated to
train the meta-classifier. This resulting stacking classifier was subsequently applied to the
held-out test sample. This process was iterated for all samples in the dataset as typically
done in LOOCV.

Displayed in Figure 14 are the outcomes of the hard-voting, soft-voting, and stacking
classifiers in comparison with the performance of the top-performing individual classifier.
The stacking classifier demonstrated a notable enhancement surpassing all other classifiers,
attaining an F1-score of 0.907 and an AUC of 0.911.

Our proposed, top-performing model, the stacking classifier, was deployed in the
public domain as an Internet-accessible web application. This user-friendly tool is powered
by Streamlit, an open-source framework designed for the swift development and sharing of
machine learning and data science web applications. Our goal here is to allow the research
community to experiment with our PC screening tool. The interested reader can experience
this tool by visiting the web address: https://prostate-cancer-diagnosis.streamlit.app/
(last accessed 20 June 2024).

Figure 13. Construction of the stacking classifier with the best-performing models in level 1 and a
random forest meta classifier.

https://prostate-cancer-diagnosis.streamlit.app/
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Figure 14. Results of ensemble models and best-performing individual classifiers. The stacking
classifier achieved the highest F1-score and AUC value of 0.907 and 0.911, respectively.

5.5. Overfitting Mitigation and Regularization

To ensure our Tab2Visual approach avoided overfitting, we employed several strate-
gies. We leveraged transfer learning by using pre-trained convolutional neural network
(CNN) models, specifically EfficientNet V2 (the B0 model). The B0 model, being the smallest
in the EfficientNet family, helped in avoiding model complexity and mitigating overfit-
ting. During fine-tuning, we froze all the EfficientNet model weights, allowing the model
to benefit from the generalization capabilities of models trained on large-scale datasets.
Additionally, we included batch normalization, strong weight decay, and dropout for
regularization during the fine-tuning process to prevent the model from relying too heavily
on specific weights or neurons. Data augmentation played a crucial role in enhancing the
model’s robustness. We applied various image augmentation techniques such as elastic dis-
tortion and morphological operations (dilation, erosion, closing, and opening) to introduce
subtle variations in the training data, thus improving the model’s ability to generalize to
unseen data.

For tabular data methods, we included ensemble tree-based methods such as random
forests and gradient boosting. Ensemble methods combine the predictions of multiple
models to improve robustness and reduce overfitting. We also fine-tuned the regularization
parameters in these methods to control model complexity. Furthermore, we built an
ensemble of the best-performing methods, carefully selecting diverse base models that
handled the data differently. This diversity in model approaches enhanced performance
and reduced the effect of overfitting by balancing out individual model shortcomings,
ensuring robustness and generalizability in the final predictions.

6. Conclusions

In this paper, we presented a comprehensive study aimed at developing an accurate
and non-invasive diagnostic tool for prostate cancer. Leveraging clinical biomarkers, like
PSA levels, and personalized patient data obtained through questionnaires, our approach
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provided a viable alternative to invasive procedures, such as biopsies, and costly MRI scans.
To develop this tool, we conducted an extensive evaluation of various classification models,
spanning from traditional to tree-based classifiers, and explored advanced deep learning
architectures tailored for tabular data. Moreover, we introduced the Tab2Visual modeling
approach, which transformed tabular data into image representations, demonstrating
superior performance compared to other methodologies. More specifically, employing
EfficientNet V2 on augmented image representations, we achieved an F1-score and AUC of
0.857 and 0.899, respectively.

Furthermore, we investigated ensemble methods to leverage classification accuracy.
We developed a stacking classifier, incorporating the top-performing individual classifiers
of our study in the initial layer, complemented by a random forest meta-classifier. This
ensemble model excelled in distinguishing benign and malignant cancer, yielding an F1-
score of 0.907 and an AUC of 0.911. These results strongly indicated that our proposed
approach showed great promise as a cost-effective alternative to current, more invasive,
and costly diagnostic procedures for prostate cancer.

We believe that this paper makes the following contributions:

• Addressing a novel research problem of predicting prostate cancer from PSA lev-
els and individualized questionnaires without relying on expensive or invasive
diagnostic procedures.

• Collection of clinical data from 84 patients, including PSA levels and personalized
information through questionnaires, to develop this predictive model.

• Comprehensive assessment and comparison of various machine learning techniques,
including traditional, tree-based approaches, and advanced tabular deep neural net-
work architectures (TabNet and TabPFN) for accurate and cost-effective prostate
cancer prediction.

• Introduction of Tab2Visual modeling, a novel approach that converts tabular sam-
ples into image representations, enabling powerful and novel image augmentations
to increase the dataset size and enhance the model’s ability to generalize to un-
seen data. It allows the use of CNNs with transfer learning, resulting in higher
prediction accuracy.

• Development of a stacked classifier integrating the most effective methods identified in
the study, demonstrating highly promising performance in prostate cancer prediction.

• Sharing our best predictive model with the research community through its deploy-
ment on the Internet as a web application using the Streamlit open-source framework.

7. Limitations and Future Work

We strongly believe that the proposed Tab2Visual modeling approach holds great
potential for significantly enhancing the performance of deep learning models on tabular
datasets in general. However, we do realize that the proposed approach in this paper has
some limitations that require further investigation:

• The use of deep learning models such as EfficientNet V2 involves significant com-
putational overhead in terms of training time and hardware resources. To address
this, we are optimizing our models for efficiency by exploring lightweight archi-
tectures and pruning techniques that maintain high performance while reducing
computational demands.

• The Tab2Visual modeling converts tabular data into an image of width-modulated
bars arranged in a single row. When dealing with datasets with many features, each
feature is allocated a narrower bar in the image, which can make it challenging for the
model to distinguish between features. To address this, we are exploring alternative
layouts for the visual representation, such as arranging the bars in multiple rows
or using other geometric shapes that can better accommodate a higher number of
features without compromising clarity.

• Transforming tabular data into visual representations can sometimes lead to a loss
of interpretability, especially for domain experts accustomed to traditional tabular
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formats. To improve interpretability, we are developing tools and interfaces that allow
users to seamlessly switch between the tabular and visual representations and are
working on enhancing the explainability of our models by integrating visualization
techniques that highlight the most important features and their contributions to the
model’s predictions.

• The dataset used in this study is relatively small, comprising only 84 samples, which
may affect the generalizability of the model. We are actively seeking to expand our
dataset by collaborating with additional medical institutions and incorporating data
from different demographics and geographical locations, which will enable more
robust training and validation of our model.

As part of our ongoing research endeavors, we are currently focusing on training and
validating our approach on larger datasets and investigating other image augmentation
methods for the proposed Tab2Visual approach. This pursuit is expected to yield improved
accuracy for the proposed PC diagnostic tool.
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