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Abstract: Introduction: Cardiovascular diseases stand as the leading global cause of mortality. Major
modifiable risk factors encompass overweight/obese conditions, high blood pressure, elevated LDL
cholesterol, diabetes, smoking, secondhand smoke exposure, unhealthy diet, and physical inactivity.
In the present study, we explored the relationship between cardiovascular risk factors and epigenetic
age (DNAm age), an estimate reflecting an individual’s actual physiological functionality and overall
health. Additionally, we assessed the association between DNAm age acceleration and cardiovascular
risk, as evaluated through the Framingham risk score (FRS). Methods: The study includes 190 subjects
with overweight/obese conditions. We calculated their DNAm age using Zbieć-Piekarska et al.’s
DNAm age estimator on five sets of CpGs analyzed in the peripheral leucocytes. Linear regression
models were employed to test the associations. Results: Various parameters contributing to increased
cardiovascular risk were associated with DNAm age acceleration, such as systolic blood pressure
(β = 0.045; SE = 0.019; p = 0.019), heart rate (β = 0.096; SE = 0.032; p = 0.003), blood glucose (β = 0.025;
SE = 0.012; p = 0.030), glycated hemoglobin (β = 0.105; SE = 0.042; p = 0.013), diabetes (β = 2.247;
SE = 0.841; p = 0.008), and menopausal conditions (β = 2.942; SE = 1.207; p = 0.016), as well as
neutrophil (β = 0.100; SE = 0.042; p = 0.018) and granulocyte (β = 0.095; SE = 0.044; p = 0.033)
counts. Moreover, DNAm age acceleration raised the FRS (∆% 5.3%, 95% CI 0.8; 9.9, p = 0.019).
Conclusion: For the first time, we report that cardiovascular risk factors accelerated DNAm age in a
selected population of hypersusceptible individuals with overweight or obesity. Our results highlight
the potential of DNAm age acceleration as a biomarker of cumulative effects in cardiovascular
risk assessment.
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1. Introduction

Cardiovascular diseases (CVDs) stand as the primary global cause of mortality, con-
tributing to around 18.6 million deaths worldwide annually [1]. Overweight and obesity,
defined as a body mass index (BMI) of ≥25 and ≥30 kg/m2, respectively, is strongly linked
to an elevated cardiovascular risk. Other major modifiable risk factors for CVDs include
high blood pressure, high low-density lipoprotein (LDL) cholesterol, diabetes, smoking and
secondhand smoke exposure, unhealthy diet, and physical inactivity [2]. It is not surprising
that these factors are all associated with CVD because they lead to the same biological
effects: low-grade systemic inflammation, redox imbalance, mitochondrial dysfunction,
the accumulation of cytotoxic macromolecules, and impairment of the immune system, all
mechanisms with a crucial role in the pathophysiology of CVD [2,3].

Age is an independent unmodifiable risk factor for CVD, and aging is a physiological
process associated with a progressive deterioration in cardiovascular function [4]. Notably,
chronological age does not always correspond to biological age, referring to an individual’s
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age as determined by his/her overall health, physiological condition, and actual cell
functionality [5]. Therefore, it is increasingly evident that it is crucial to evaluate the role of
biological age in cardiovascular risk assessment, especially in high-susceptibility conditions,
such as obesity.

Epigenetic modifications such as DNA methylation are hallmarks of biological ag-
ing [6]. Over the past decade, a variety of models have been developed for the estimation
of epigenetic age (DNAm age) through so-called epigenetic clocks, which are based on
patterns of DNA methylation [7]. Among the most prominent clocks, the Hannum Clock
focuses on 71 CpG sites associated with age-related changes in the blood cells [8]. The Hor-
vath Clock incorporated 353 CpGs and was designed across multiple tissues, including sites
from the Hannum Clock for blood cells, as a potential “pan-tissue” master clock for DNAm
age [9]. Starting from these first-generation clocks, different minimized clocks have been
developed that incorporate only a limited number of CpG sites strongly correlated with bio-
logical age. One notable example is the DNAm age estimator proposed by Zbieć-Piekarska
and colleagues, which is based on five sets of CpGs analyzed in the peripheral leukocytes
and consistently shows a strong correlation with chronological age [10–12].

Under physiological conditions, DNAm age is expected to align with chronological
age, meaning there is no DNAm age acceleration, referred to as the residue between
chronological age and DNAm age. However, in pathological conditions such as obesity,
there have been reports of DNAm age acceleration, suggesting an increased risk of age-
related conditions like CVD [3].

In recent years, several models have been developed for estimating cardiovascular
risk based on various risk factors to which individuals have been exposed. Among them,
the Framingham risk score (FRS), developed based on studies from the Framingham Heart
Study, allows for the estimation of an individual’s risk of developing CVD, such as coronary
heart disease or stroke, over 10 years [13].

In the present study, within the context of overweight/obesity—a major risk factor for
CVDs—we aimed to elucidate the link between cardiovascular risk factors and DNAm age.
We estimated DNAm age using the estimator proposed by Zbieć-Piekarska. Additionally,
we investigated the association between DNAm age acceleration and cardiovascular risk,
which was assessed using the FRS.

2. Materials and Methods
2.1. Study Population, Personal Data, and Biological Samples

The study was carried out on subjects recruited between 2010 and 2015 at the Cen-
ter for Obesity and Work (Department of Preventive Medicine, IRCCS Fondazione Cà
Granda Ospedale Maggiore Policlinico at the University of Milan). We randomly selected
a subgroup of 190 people already enrolled in the context of the larger study SPHERE
(ERC-2011-STG 282413) [14].

The study was approved by the Ethics Committee of the Fondazione Cà Granda-
Ospedale Maggiore Policlinico (Approval no.1425), following the Declaration of Helsinki’s
principles. Each participant who agreed to participate signed a written informed consent
and subsequently was asked to complete lifestyle and dietary questionnaires, including on
their current and past smoking habits, alcohol consumption, and physical activity.

According to the European Association for the Study of Obesity (EASO), we have
committed to minimizing the bias related to the term “obesity” as much as possible and
eliminating the stigma attached to labeling individuals based on their condition [15]. The
eligibility criteria for enrolment in the study, as previously described [16], were (1) being
older than 18 years at enrolment; (2) being overweight/obese according to the following
definition: overweight is defined as a BMI between 25 and 30 kg/m2 and obesity is defined
as a BMI of 30 kg/m2 or more; (3) being resident in Lombardy at the time of the recruitment;
and (4) agreement to signing informed consent and donating blood samples. The exclusion
criteria included a previous diagnosis of cancer, heart disease, or stroke in the last year
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or of other chronic diseases, such as multiple sclerosis, Alzheimer’s disease, Parkinson’s
disease, depression, bipolar disorder, schizophrenia, or epilepsy.

2.2. Sample Collection and DNA Extraction

Seven mL of whole blood from each participant was collected into ethylenediaminete-
traacetic acid (EDTA) tubes by venous phlebotomy. The blood was centrifuged at 2500 rpm
for 15 min. The buffy coat fraction was transferred into cryovials and immediately frozen
at −80 ◦C until use. Genomic DNA was extracted from 250 µL of the buffy coat using the
Wizard® Genomic DNA Purification Kit (Promega, Medison, WI, USA), according to the
manufacturer’s instructions.

2.3. Bisulphite Conversion

Genomic DNA (500 ng) was bisulphite-converted using the EZ DNA Methylation
Direct Kit (Zymo Research, Orange, CA, USA), in accordance with the manufacturer’s
protocol. The converted DNA was eluted in 30 µL of M-Elution Buffer.

2.4. Determination of Epigenetic Age

DNAm age was calculated considering the methylation pattern of five CpG sites at five
genes (ELOVL2, C1orf132/MIR29B2C, FHL2, KLF14, TRIM59), as previously reported [10,17].

The DNA samples (500 ng) were initially plated at a concentration of 25 ng/µL
in 96-well plates. Sodium bisulphite conversion was performed using the EZ-96 DNA
Methylation-Gold™ Kit from Zymo Research (Irvine, CA, USA), following the manufac-
turer’s instructions. After bisulphite treatment, the DNA was eluted to a final volume of
200 µL. To set up the PCR reaction, 10 µL of the bisulphite-treated template DNA was
combined with 25 µL of GoTaq Hot Start Green Master Mix (Promega). Additionally,
1 µL of the forward primer (10 µM) and 1 µL of the 5′-end biotinylated reverse primer
(10 µM) was added. This resulted in a total reaction volume of 50 µL. The PCR reaction was
subjected to the following cycling conditions, which have been previously described [10],
and the primer sequences and sequencing regions are reported in Supplementary Table S1.
Biological (epigenetic; DNAm) age (Y) was calculated as follows:

Y = 3.26847784751817 + 0.465445549010653 methC7-ELOVL2 − 0.355450171437202 methC1 − C1orf132/MIR29B2C +
0.306488541137007 methC7-TRIM59 + 0.832684435238792 methC1-KLF14 + 0.237081243617191 methC2-FHL2

2.5. Statistical Analysis

A descriptive analysis was conducted on the socio-demographic and clinical char-
acteristics of the population. In cases where the data showed a normal distribution, the
mean and standard deviation were reported; otherwise, the median and quartiles were
reported. For qualitative variables, counts and respective percentages were provided. The
degree of linear correlation between chronological age and biological age was evaluated
using Pearson’s correlation coefficient. To obtain an estimate of biological aging that was
independent of chronological age, a measure known as age acceleration was used. It was
calculated by applying a simple linear regression model with chronological age as the
independent variable and biological age as the outcome. The residual of this statistical
model, which is the difference between the observed biological age and the one predicted
by the model, represents the acceleration of aging due to epigenetic effects [18,19].

If biological age is greater than chronological age, the age acceleration will have a
positive value, expressed in years; otherwise, it will be negative. To assess the association
of the clinical and socio-demographic characteristics of the study population with age
acceleration, univariate regression models were used. Then, we applied a multivariable
stepwise linear regression model to identify an efficient combination of independent pre-
dictors that was significantly associated with age acceleration. Given the existence of
multicollinearity among the predictor variables, the variance inflation factor (VIF) statistic
was calculated, and the variables selected for entry into the multivariable stepwise model
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were heart rate, systolic blood pressure, total cholesterol, glycated hemoglobin, neutrophils,
gender, smoking, and body mass index (BMI). Lastly, through a univariate linear regression
model, it was evaluated whether age acceleration was associated with the probability of
experiencing a cardiovascular event in the next ten years, measured using the FRS for
cardiovascular risk. The FRS was previously transformed using the natural logarithm to
satisfy the assumption of normality of the linear regression model.

All the statistical analyses were performed and the corresponding graphical represen-
tations generated using SAS 9.4 statistical software (SAS Institute Inc., Cary, NC, USA).

3. Results
3.1. Study Population

The main demographic and lifestyle characteristics of the study population are re-
ported in Table 1. The mean age was 51.7 ± 18.1 years. Of the 190 enrolled subjects, 75.6%
were women, 26.3% were overweight (BMI 25–30 kg/m2), 42.1% showed first-degree obe-
sity (30 ≤ BMI < 35), and 31.6% had second-degree obesity (BMI ≥ 35 kg/m2). Regarding
the lifestyle of the subjects enrolled, 46.3% were non-smokers and 53.7% were smokers;
42% consumed alcohol; 56% had a sedentary lifestyle; and only 5.8% defined themselves
as sporty.

Table 1. Participant characteristics at study enrollment (N = 190).

Characteristics

Age, years 51.7 ± 18.1
Gender

Males 47 (24.7%)
Females 143 (75.6%)

BMI, kg/m2 33 ± 4.6
BMI < 30 50 (26.3%)
BMI 30–35 80 (42.1%)
BMI ≥ 35 60 (31.6%)

Smoking status
Non-smoker 88 (46.3%)
Smoker 102 (53.7%)

Alcohol consumption
Yes 80 (42.2%)
No 55 (28.9%)
Missing 55 (28.9%)

Physical activity levels
Sedentary 108 (56.8%)
Active 59 (31.0%)
Sporty 11 (5.8%)
Active and sporty 6 (3.2%)
Missing 6 (3.2%)

BMI indicates body mass index. Continuous variables are expressed as means ± standard deviation (SD); discrete
variables are expressed as counts (%).

The clinical characteristics of the participants in the study are reported in Table 2.
Among the 143 women, 84 (58.8%) were in menopause, and the mean age of menopause
onset was 47.7 ± 6.2 years. Of the 190 enrolled subjects, 79 referred (41.6%) to having
metabolic syndrome. Their mean systolic blood pressure was 124.2 ± 17.9 mmHg, while
their mean diastolic blood pressure was 77.0 ± 9.6 mmHg, and 71 out of 179 referred to the
use of antihypertensive medications. A total of 40 subjects (21.0%) suffered from diabetes,
and 24 (12.6%) referred to using medication for that condition. Their mean total cholesterol
concentration was 204.1 ± 41.2 mg/dL, and 26 (13.7%) used lipid-lowering medications.
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Table 2. Clinical characteristics of participants at study enrollment (N = 190).

Clinical Characteristics

Menopause (only for 143 women)
Yes 84 (58.8%)
No 55 (38.5%)
Missing 4 (2.7%)

Metabolic syndrome
Yes 79 (41.6%)
No 111 (58.4%)

Blood pressure, mmHg
Systolic 124.2 ± 17.9
Diastolic 77.0 ± 9.6

Antihypertensive medications
Yes 71 (37.4%)
No 119 (62.6%)

Glucose, mg/dL 92 [85, 103]
Glycated hemoglobin, mmol/mol 39.8 [36.6, 43]
Insulin level, U/mL 12.0 [8.8, 17.9]
Diabetes

Yes 40 (21.0%)
No 150 (79.0%)

Diabetes medications
Yes 24 (12.6%)
No 166 (87.4%)

Triglycerides, mg/dL 100 [75, 145]
Total cholesterol, mg/dL 204.1 ± 41.2
HDL, mg/dL 58.6 ± 15.8
LDL, mg/dL 125.2 ± 36.7
Lipid-lowering medications

Yes 26 (13.7%)
No 164 (86.3%)

Heart rate, bpm 66.8 ± 10.2
Fibrinogen, mg/dL 334 ± 63.6
C-reactive protein, mg/L 0.30 [0.15, 0.49]
Serum creatinine, mg/dL 0.8 ± 0.2
AST, U/L 20 [17, 24]
ALT, U/L 20 [15, 30]
Gamma-flutamyltransferase, U/L 17 [12, 28]
TSH, U/mL 1.9 [1.2, 2.6]
Neutrophils, % 58.5 ± 7.9
Eosinophils, % 2.6 ± 1.6
Lymphocytes, % 30.5 ± 7.7
Monocytes, % 7.7 ± 1.9
Basophils, % 0.5 ± 0.3
Granulocytes, % 61.7 ± 7.6
Framingham risk score, % 5.8 [2.1, 12.2]

Continuous variables are expressed as means ± standard deviation (SD) or as medians [first quartile-third
quartile] if not normally distributed; discrete variables are expressed as counts (%).

3.2. Cardiovascular Parameters and DNAm Age

We tested the correlation between chronological age and DNA methylation (DNAm)
age and observed that chronological age was positively correlated with DNAm age as
estimated through the Zbieć-Piekarska method (ρ = 0.92, p < 0.001, R2 = 0.85).

The associations between demographic, lifestyle, and clinical characteristics and
DNAm age acceleration were explored through univariate regression analyses, and the re-
sults are reported in Table 3. Several parameters that contribute to increased cardiovascular
risk, such as systolic blood pressure (β = 0.05; SE = 0.02; p = 0.016), blood glucose (β = 0.03;
SE = 0.01; p = 0.030), and glycated hemoglobin levels (β = 0.11; SE = 0.04; p = 0.013), as
well as increased heart rate (β = 0.10; SE = 0.03; p = 0.003), were associated with DNAm



Biomedicines 2024, 12, 1631 6 of 13

age acceleration. In addition, individuals with diabetes exhibited an average DNAm age
acceleration of 1.45 years, while non-diabetic subjects displayed a DNAm age deceleration
of −0.79 years (β = 2.25; SE = 0.84; p = 0.008). Among the women in menopause, the
average DNAm age acceleration was 1.08 years, compared to −1.86 years for the women
not in menopause (β = 2.94; SE = 1.22; p = 0.016). Both neutrophil (β = 0.10; SE = 0.04;
p = 0.018) and granulocyte (β = 0.09; SE = 0.44; p = 0.033) counts were associated with
increased DNAm age acceleration, while lymphocyte count was not (β = −0.08; SE = 0.04;
p-value = 0.068).

Table 3. Association between demographic, lifestyle, and clinical characteristics and DNAm age
acceleration according to univariate linear regression models (N = 190).

β SE p-Value

Gender
Female vs. male 0.997 0.791 0.209
BMI, kg/m2 0.009 0.073 0.898
BMI 30;35 vs. BMI < 30 1.053 0.833 0.208

0.523BMI ≥ 35 vs. BMI < 30 −0.287 0.884 0.746
Smoking habits
Smoker vs. non-smoker −0.708 0.675 0.269
Alcohol consumption
Yes vs. No −0.198 0.752 0.793
Physical activity levels
Active vs. sedentary behavior 0.968 0.746 0.196
Sporty vs. sedentary behavior −0.927 1.475 0.531 0.619
Active and sporty vs. sedentary behavior 1.811 1.869 0.334
Menopause (only women)
Yes vs. no 2.219 0.767 0.005
Metabolic syndrome
Yes vs. no 0.875 0.688 0.205
Blood pressure, mmHg
Systolic 0.045 0.019 0.019
Diastolic 0.036 0.035 0.303
Antihypertensive medications
Yes vs. no 0.336 0.703 0.633
Glucose, mg/dL 0.025 0.012 0.030
Glycated hemoglobin, mmol/mol 0.105 0.042 0.013
Insulin level, U/mL 0.033 0.038 0.389
Diabetes
Yes vs. No 2.247 0.841 0.008
Diabetes medications
Yes vs. no 1.145 1.042 0.273
Triglycerides, mg/dL 0.001 0.003 0.640
Total cholesterol, mg/dL 0.015 0.008 0.069
HDL, mg/dL 0.006 0.021 0.774
LDL, mg/dL 0.013 0.009 0.173
Lipid-lowering medications
Yes vs. no 0.896 1.022 0.382
Heart rate, bpm 0.096 0.032 0.003
Fibrinogen, mg/dL −0.001 0.005 0.904
C-reactive protein, mg/L 0.175 0.492 0.723
Serum creatinine, mg/dL −0.327 1.526 0.831
AST, U/L −0.013 0.035 0.713
ALT, U/L −0.011 0.014 0.434
Gamma-glutamyltransferase, U/L 0.002 0.016 0.922
TSH, U/mL 0.295 0.255 0.249
Neutrophils, % 0.100 0.042 0.018
Eosinophils, % −0.252 0.207 0.225
Lymphocytes, % −0.080 0.043 0.068
Monocytes, % −0.150 0.183 0.416
Basophils, % −0.483 1.149 0.674
Granulocytes, % 0.095 0.044 0.033

The significant variables (p-value ≤ 0.05) are reported in bold.

We applied a multivariable stepwise linear regression model to identify the combina-
tion of independent predictors significantly associated with DNAm age acceleration. We
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observed that heart rate, systolic blood pressure, total cholesterol, and neutrophils were
positively associated with DNAm age acceleration (Table 4; Figure 1), with the neutrophil
concentration in the plasma as the independent variable with the strongest association
(p = 0.015).

Table 4. Association of demographic, lifestyle, and clinical characteristics with DNAm age accelera-
tion by multivariable stepwise linear regression model (N = 190).

β SE 95% CI Partial Correlation
Coefficient p-Value

Heart rate, bpm 0.078 0.032 (0.014; 0.141) 0.183 0.016
Systolic blood pressure, mmHg 0.035 0.018 (−0.002; 0.071) 0.143 0.061

Total cholesterol, mg/dL 0.019 0.008 (0.020; 0.185) 0.168 0.028
Neutrophils, % 0.102 0.041 (0.002; 0.035) 0.185 0.015

The significant values (p-value ≤ 0.05) are reported in bold.
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Figure 1. Standardized regression β coefficients with 95% confidence intervals (CIs) of the multi-
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clinical characteristics with DNAm age acceleration.

3.3. DNAm Age Acceleration Is Associated with Cardiovascular Risk

We further assessed the effects of DNAm age acceleration on the FRS and observed
that each year of increase in DNAm age acceleration corresponded to an increase of 5.3% in
the FRS (∆% 5.3%, 95% CI 0.8; 9.9, p = 0.019), as reported in Figure 2.
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4. Discussion

In the present study, we explored the relationship between cardiovascular risk fac-
tors, such as blood glucose, diabetes, blood pressure, heart rate, and menopause, and
DNAm age in a population of 190 hypersusceptible individuals with the condition of over-
weight/obese. Additionally, we assessed the association between DNAm age acceleration
and the cardiovascular risk that was estimated by calculating the FRS.

We specifically focused on a population of subjects with the condition of
overweight/obesity, as it is a major cardiovascular risk factor [17,20,21]. Our findings
are in accordance with previous studies conducted in different populations of individuals
in normal condition or with overweight, indicating that BMI is associated with DNAm
age acceleration. In particular, Navalainen and colleagues investigated the relationship be-
tween BMI and age acceleration in three different cohorts (i.e., young adults, middle-aged,
and nonagenarians) and found that BMI was correlated with increased age acceleration in
middle-aged individuals [22]. Although data from a large longitudinal study conducted by
Sun and colleagues suggest that a high BMI might be a cause rather than a consequence
of DNA methylation changes [23], no such evidence has been reported so far to clarify
whether obesity acts as a driver of or is a result of epigenetic age acceleration [24]. Several
studies have delved into obesity-associated DNAm aging within metabolically active tis-
sues [25]. These investigations have validated obesity-related DNAm age acceleration in
the blood and liver, adipose, and buccal tissues.

To estimate DNAm age, we utilized the DNAm age predictor model developed
by Zbieć-Piekarska and colleagues [10]. Unlike traditional epigenetic clocks, which are
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based on the assessment of DNAm age through a methylome-wide approach, clocks
that rely on fewer CpGs (referred to as minimized clocks) offer the possibility of being
scaled up or operated at a reduced sample cost. Previous studies have proposed several
minimized clocks utilizing robust age-related CpGs (such as ELOVL2 and FHL2) [26]. The
Zbieć-Piekarska model was originally developed for forensic analyses, and it has since
been adapted and validated in other studies, demonstrating a high level of accuracy in
human blood samples [27]. In this epigenetic clock, the CpG sites evaluated are located
in the ELOVL2, C1orf132/MIR29B2C, TRIM59, KLF14, and FHL2 genes [10]. ELOVL2
encodes an enzyme involved in the elongation of long-chain polyunsaturated fatty acids,
playing a role in the regulation of aging [28,29]. C1orf132/MIR29B2C, located on 1q32.2,
has been correlated with aging processes. Recently, this gene was found to encode the
microRNA hsa-miR-29b-2, which regulates gene expression post-transcriptionally and has
roles in cellular senescence and aging [10]. The TRIM59-encoded protein is involved in
the ubiquitination and degradation of target proteins, playing a role in cellular stress
responses and oncogenesis [30]. It has been associated with aging-related changes in
the epigenome [31]. The KLF14 gene encodes a transcriptional regulator implicated in
metabolic processes, including glucose metabolism and lipid regulation [32]. The FHL2 gene
encodes a conserved protein involved in signal transduction, transcriptional regulation,
and cytoskeletal organization, previously correlated with aging [10].

In our study population, chronological age showed a strong positive association with
DNAm age. This result confirmed the reliability of the DNAm age estimator proposed by
Zbieć-Piekarska and colleagues, as previously reported by other studies in different pop-
ulations [17,33]. In addition to first-generation and minimized clocks, second-generation
clocks such as the PhenoAge Clock incorporate clinical biomarkers to predict mortality
and age-related diseases [34], while the GrimAge Clock estimates mortality risk by con-
sidering DNA methylation markers associated with lifestyle and environmental factors.
A recently introduced third-generation epigenetic clock, known as the Dunedin Pace of
Aging methylation clock (DunedinPoAm), tracks longitudinal changes in several biomark-
ers related to organ system integrity over time to measure the rate at which individuals
age [35]. These clocks collectively provide nuanced perspectives on biological age and
offer valuable insights into age-related diseases and mortality risk [36]. It will be crucial
to validate the results obtained in the present exploratory study in future studies utilizing
clocks that integrate clinical parameters into the estimation of biological age. This approach
will provide a comprehensive view of cardiovascular risk factors.

We observed that menopause, systolic blood pressure, glucose and glycated hemoglobin
levels, diabetes, heart rate, and neutrophil and granulocyte concentrations were associated
with DNAm age acceleration. After applying a multivariable stepwise linear regression
model, we further observed that heart rate, total cholesterol, and neutrophil concentration
were the strongest variables associated with DNAm age acceleration. Interestingly, neutrophil
concentration had the most significant association, thus supporting the involvement of inflam-
mation. Our results are in accordance with the evidence reported by Horvath et al. 2015, who
demonstrated that DNAm age acceleration assessed in the peripheral blood was associated
with increased neutrophil and granulocyte counts, suggesting that this condition is linked
to pathogenic mechanisms involving the activation of inflammatory processes [37]. Consis-
tently, overweight/obesity conditions and CVDs are characterized by chronic, low-grade
inflammation. Overweight or obesity conditions often exacerbate systemic metabolic dys-
function, including dyslipidemia and insulin resistance, leading to cardiometabolic syndrome,
involving a constellation of metabolic abnormalities that are CVD risk factors [38,39].

Aging plays a crucial role in CVD, and older individuals are not only more prone
to developing acute CVDs but also more likely to succumb to them [40]. This is due
to the natural decline in tissue and cell functions with age [41]. In addition, during the
aging process and in age-related diseases, inflammation plays a critical role since increased
systemic inflammation, known as “inflammaging”, predisposes individuals to several
age-related conditions, including cardiovascular diseases [42]. In this context, the use of
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epigenetic clocks has proven instrumental in estimating individuals’ biological age and
exploring the aging process. Additionally, they could be powerful tools for assessing the
effects of exposure to various risk factors on biological functionality through estimates
of DNAm age acceleration [25]. Indeed, higher DNAm age acceleration is suggestive of
tissues aging faster than expected according to chronological age and has been associated
with worsening outcomes as measured by cardiometabolic risk factors [43].

Several studies have demonstrated the impact of multiple inflammatory factors on
DNAm age and their association with different diseases, including CVDs, in different
populations [44–47]. In light of this, we investigated the association between DNAm
age acceleration and cardiovascular risk as assessed using the FRS in our population of
highly susceptible individuals and observed that DNAm age acceleration increases the
FRS. Previous studies have examined the link between DNAm age acceleration and the
FRS in different cohorts, such as the Framingham Heart Study, the Atherosclerosis Risk in
Communities, and the Cardiovascular Health Study [48,49]. However, the results remained
inconclusive, likely due to heterogeneity in the study designs, the specific outcomes exam-
ined, and the different epigenetic aging measures [50,51]. A recent study demonstrated the
relationship between increased DNAm age acceleration and a higher FRS in an African
American population characterized by an average BMI indicative of overweight [47].

Lifestyle improvements such as diets and physical activity could reduce epigenetic
age, leading to an overall improvement in health, as demonstrated by the Diet, Physical
Activity, and Mammography (DAMA) study, and consequently may reduce the FRS [52].

The mean age of menopause onset in our population was lower (47.7 years) than that
of the general European population (i.e., 50.5 years) [53]. We observed that menopause
induced DNAm age acceleration, in accordance with the evidence previously described
by Levine and colleagues in three different populations of women of a normal weight [54].
To our knowledge, this is the first study to investigate the link between menopause and
age acceleration in a population of selected women with overweight or obesity. The link
between overweight/obesity and the age of menopause onset is still controversial [55];
however, women who experience natural menopause at a later age have a lower risk
of CVD [56]. Different mechanisms have been proposed for linking menopause and
CVD, such as menopause-related hot flashes and night sweats, which might affect blood
pressure [55,56]. Recent evidence shows that depression during the menopause transition
is linked to a higher cardiovascular disease risk [57,58]. On the other hand, menopause
onset could be precociously induced by CVD during reproductive years, cigarette smoking,
or genetic factors [59]. Future studies are needed to identify the molecular mechanisms
underlying the link between menopause and CVD with the aim of clarifying the causal
relationship between these two conditions.

The novelty of this study lies in its demonstration of the relationship between car-
diovascular risks and DNAm age acceleration within a specific population of highly sus-
ceptible individuals with overweight or obesity. Furthermore, this evidence was obtained
using a parsimonious estimator of DNAm age, which could potentially allow for its
large-scale application.

We acknowledge some limitations of our study. First, the study was cross-sectional, so
it was not possible to determine the predictive capability of DNAm age acceleration for
cardiovascular outcomes. However, it was possible to assess its relationship with specific
cardiovascular risk factors. Therefore, future longitudinal studies in larger populations of
both hypersusceptible and healthy subjects will be necessary to determine the predictive
value of DNAm age for cardiovascular outcomes. Moreover, we used an algorithm based
on a “reference population”. This introduces confounding variables that are difficult to
accurately assess. Consequently, future research should prioritize the development of
reliable algorithms to enhance our ability to identify individuals at risk, ultimately leading
to improved control and follow-up measures for preventive interventions.
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5. Conclusions

Our study has revealed for the first time the association between DNAm age accelera-
tion and cardiovascular risk in individuals with overweight or obese and offers valuable
insights into the relationship between BMI, DNAm age, and cardiovascular risk. The ob-
tained evidence indicates that DNAm age might be considered a potential effect biomarker
of cumulative exposure to different cardiovascular risk factors and pave the way to future
prospective studies aimed at evaluating the predictive potential of epigenetic clocks for
cardiovascular risk assessment.
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